1
|
Jiang ZL, Liu Y, Zhang CH, Chu T, Yang YL, Zhu YW, Wang Y, Liu YF, Zhang YX, Feng ZF, Ji XY, Wu DD. Emerging roles of hydrogen sulfide in colorectal cancer. Chem Biol Interact 2024; 403:111226. [PMID: 39237072 DOI: 10.1016/j.cbi.2024.111226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Hydrogen sulfide (H2S), an endogenous gasotransmitter, plays a key role in several critical physiological and pathological processes in vivo, including vasodilation, anti-infection, anti-tumor, anti-inflammation, and angiogenesis. In colorectal cancer (CRC), aberrant overexpression of H2S-producing enzymes has been observed. Due to the important role of H2S in the proliferation, growth, and death of cancer cells, H2S can serve as a potential target for cancer therapy. In this review, we thoroughly analyzed the underlying mechanism of action of H2S in CRC from the following aspects: the synthesis and catabolism of H2S in CRC cells and its effect on cell signal transduction pathways; the inhibition effects of exogenous H2S donors with different concentrations on the growth of CRC cells and the underlying mechanism of H2S in garlic and other natural products. Furthermore, we elucidate the expression characteristics of H2S in CRC and construct a comprehensive H2S-related signaling pathway network, which has important basic and practical significance for promoting the clinical research of H2S-related drugs.
Collapse
Affiliation(s)
- Zhi-Liang Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Yi Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Chuan-Hao Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Lun Yang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Medicine, Huaxian County People's Hospital, Anyang, Henan, 456400, China; Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China.
| |
Collapse
|
2
|
Ferguson DT, Taka E, Messeha S, Flores-Rozas H, Reed SL, Redmond BV, Soliman KFA, Kanga KJW, Darling-Reed SF. The Garlic Compound, Diallyl Trisulfide, Attenuates Benzo[a]Pyrene-Induced Precancerous Effect through Its Antioxidant Effect, AhR Inhibition, and Increased DNA Repair in Human Breast Epithelial Cells. Nutrients 2024; 16:300. [PMID: 38276538 PMCID: PMC10819007 DOI: 10.3390/nu16020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Exposure to B[a]P, the most characterized polycyclic aromatic hydrocarbon, significantly increases breast cancer risk. Our lab has previously reported that diallyl trisulfide (DATS), a garlic organosulfur compound (OSC) with chemopreventive and cell cycle arrest properties, reduces lipid peroxides and DNA damage in normal breast epithelial (MCF-10A) cells. In this study, we evaluated the ability of DATS to block the B[a]P-induced initiation of carcinogenesis in MCF-10A cells by examining changes in proliferation, clonogenic formation, reactive oxygen species (ROS) formation, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, and protein expression of ARNT/HIF-1β, CYP1A1, and DNA POLβ. The study results indicate that B[a]P increased proliferation, clonogenic formation, ROS formation, and 8-OHdG levels, as well as increasing the protein expression of ARNT/HIF-1β and CYP1A1 compared to the control. Conversely, DATS/B[a]P co-treatment (CoTx) inhibited cell proliferation, clonogenic formation, ROS formation, and 8-OHdG levels compared to B[a]P alone. Treatment with DATS significantly inhibited (p < 0.0001) AhR expression, implicated in the development and progression of breast cancer. The CoTx also attenuated all the above-mentioned B[a]P-induced changes in protein expression. At the same time, it increased DNA POLβ protein expression, which indicates increased DNA repair, thus causing a chemopreventive effect. These results provide evidence for the chemopreventive effects of DATS in breast cancer prevention.
Collapse
Affiliation(s)
- Dominique T. Ferguson
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.M.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Equar Taka
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.M.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Samia Messeha
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.M.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Hernan Flores-Rozas
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.M.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Sarah L. Reed
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.M.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Bryan V. Redmond
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Karam F. A. Soliman
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.M.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Konan J. W. Kanga
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA;
| | - Selina F. Darling-Reed
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.M.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| |
Collapse
|
3
|
Oravetz K, Todea AV, Balacescu O, Cruceriu D, Rakosy-Tican E. Potential antitumor activity of garlic against colorectal cancer: focus on the molecular mechanisms of action. Eur J Nutr 2023; 62:2347-2363. [PMID: 37140645 DOI: 10.1007/s00394-023-03166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
PURPOSE The aim of this review is to highlight the potential of garlic phytoconstituents as antitumor agents in colorectal cancer management based on their molecular mechanisms of action, while asking if their consumption, as part of the human diet, might contribute to the prevention of colorectal cancer. METHODS To gather information on appropriate in vitro, in vivo and human observational studies on this topic, the keywords "Allium sativum", "garlic", "colorectal cancer", "antitumor effect", "in vitro", "in vivo", "garlic consumption" and "colorectal cancer risk" were searched in different combinations in the international databases ScienceDirect, PubMed and Google Scholar. After duplicate and reviews removal, 61 research articles and meta-analyses published between 2000 and 2022 in peer-reviewed journals were found and included in this review. RESULTS Garlic (Allium sativum) proves to be a rich source of compounds with antitumor potential. Garlic-derived extracts and several of its individual constituents, especially organosulfur compounds such as allicin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, diallyl tetrasulfide, allylmethylsulfide, S-allylmercaptocysteine, Z-ajoene, thiacremonone and Se-methyl-L-selenocysteine were found to possess cytotoxic, cytostatic, antiangiogenic and antimetastatic activities in different in vitro and in vivo models of colorectal cancer. The molecular mechanisms for their antitumor effects are associated with the modulation of several well-known signaling pathways involved in cell cycle progression, especially G1-S and G2-M transitions, as well as both the intrinsic and extrinsic apoptotic pathways. However, even though in various animal models some of these compounds have chemopreventive effects, based on different human observational studies, a diet rich in garlic is not consistently associated with a lower risk of developing colorectal cancer. CONCLUSION Independent of the impact of garlic consumption on colorectal cancer initiation and promotion in humans, its constituents might be good candidates for future conventional and/or complementary therapies, based on their diverse mechanisms of action.
Collapse
Affiliation(s)
- Kinga Oravetz
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, "Babes-Bolyai" University, 5-7 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Adelina-Violeta Todea
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, "Babes-Bolyai" University, 5-7 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Daniel Cruceriu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, "Babes-Bolyai" University, 5-7 Clinicilor Street, 400006, Cluj-Napoca, Romania.
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015, Cluj-Napoca, Romania.
| | - Elena Rakosy-Tican
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, "Babes-Bolyai" University, 5-7 Clinicilor Street, 400006, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Alotaibi A, Gadekar VP, Gundla PS, Mandarthi S, Jayendra N, Tungekar A, Lavanya BV, Bhagavath AK, Cordero MAW, Pitkaniemi J, Niazi SK, Upadhya R, Bepari A, Hebbar P. Global comparative transcriptomes uncover novel and population-specific gene expression in esophageal squamous cell carcinoma. Infect Agent Cancer 2023; 18:47. [PMID: 37641095 PMCID: PMC10463703 DOI: 10.1186/s13027-023-00525-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) has a poor prognosis and is one of the deadliest gastrointestinal malignancies. Despite numerous transcriptomics studies to understand its molecular basis, the impact of population-specific differences on this disease remains unexplored. AIMS This study aimed to investigate the population-specific differences in gene expression patterns among ESCC samples obtained from six distinct global populations, identify differentially expressed genes (DEGs) and their associated pathways, and identify potential biomarkers for ESCC diagnosis and prognosis. In addition, this study deciphers population specific microbial and chemical risk factors in ESCC. METHODS We compared the gene expression patterns of ESCC samples from six different global populations by analyzing microarray datasets. To identify DEGs, we conducted stringent quality control and employed linear modeling. We cross-compared the resulting DEG lists of each populations along with ESCC ATLAS to identify known and novel DEGs. We performed a survival analysis using The Cancer Genome Atlas Program (TCGA) data to identify potential biomarkers for ESCC diagnosis and prognosis among the novel DEGs. Finally, we performed comparative functional enrichment and toxicogenomic analysis. RESULTS Here we report 19 genes with distinct expression patterns among populations, indicating population-specific variations in ESCC. Additionally, we discovered 166 novel DEGs, such as ENDOU, SLCO1B3, KCNS3, IFI35, among others. The survival analysis identified three novel genes (CHRM3, CREG2, H2AC6) critical for ESCC survival. Notably, our findings showed that ECM-related gene ontology terms and pathways were significantly enriched among the DEGs in ESCC. We also found population-specific variations in immune response and microbial infection-related pathways which included genes enriched for HPV, Ameobiosis, Leishmaniosis, and Human Cytomegaloviruses. Our toxicogenomic analysis identified tobacco smoking as the primary risk factor and cisplatin as the main drug chemical interacting with the maximum number of DEGs across populations. CONCLUSION This study provides new insights into population-specific differences in gene expression patterns and their associated pathways in ESCC. Our findings suggest that changes in extracellular matrix (ECM) organization may be crucial to the development and progression of this cancer, and that environmental and genetic factors play important roles in the disease. The novel DEGs identified may serve as potential biomarkers for diagnosis, prognosis and treatment.
Collapse
Grants
- 43- PRFA-P-8 the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication
- 43- PRFA-P-8 the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication
- 43- PRFA-P-8 the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication
- 43- PRFA-P-8 the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication
- 43- PRFA-P-8 the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication
- 43- PRFA-P-8 the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication
- 43- PRFA-P-8 the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication
Collapse
Affiliation(s)
- Amal Alotaibi
- Basic Science Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | | | - Sumana Mandarthi
- Mbiomics LLC, 16192 Coastal Highway, Lewes, DE, 19958, USA
- Meta Biosciences Pvt Ltd, Manipal-GOK Bioincubator, Manipal, India
| | - Nidhi Jayendra
- Mbiomics LLC, 16192 Coastal Highway, Lewes, DE, 19958, USA
| | - Asna Tungekar
- Mbiomics LLC, 16192 Coastal Highway, Lewes, DE, 19958, USA
| | - B V Lavanya
- Mbiomics LLC, 16192 Coastal Highway, Lewes, DE, 19958, USA
| | - Ashok Kumar Bhagavath
- Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, TX, USA
| | - Mary Anne Wong Cordero
- Basic Science Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Janne Pitkaniemi
- Finnish Cancer Registry, Unioninkatu 22, 00130, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Shaik Kalimulla Niazi
- Department of Preparatory Health Sciences, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Raghavendra Upadhya
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, India
| | - Asmatanzeem Bepari
- Basic Science Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Prashantha Hebbar
- Mbiomics LLC, 16192 Coastal Highway, Lewes, DE, 19958, USA.
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, India.
- Meta Biosciences Pvt Ltd, Manipal-GOK Bioincubator, Manipal, India.
| |
Collapse
|
5
|
Liskova V, Chovancova B, Babula P, Rezuchova I, Pavlov KP, Matuskova M, Krizanova O. Cystathionine β-synthase affects organization of cytoskeleton and modulates carcinogenesis in colorectal carcinoma cells. Front Oncol 2023; 13:1178021. [PMID: 37483514 PMCID: PMC10361516 DOI: 10.3389/fonc.2023.1178021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Background Cystathionine β-synthase (CBS), one of three enzymes that endogenously produce hydrogen sulfide, is extensively studied for its relevance in the cells of various tumors. In our previous work, we observed that the immunofluorescence pattern of CBS is very similar to that of tubulin and actin. Therefore, we focused on the potential interaction of CBS with cytoskeletal proteins β-actin and β-tubulin and the functional relevance of the potential interaction of these proteins in colorectal carcinoma cell lines. Methods To study the potential interaction of CBS with cytoskeletal proteins and its functional consequences, a CBS-knockout DLD1 (DLDx) cell line was established by using the CRISPR/Cas9 gene editing method. The interaction of the selected cytoskeletal protein with CBS was studied by immunoprecipitation, Western blot analysis, immunofluorescence, and proximity ligation assay. The functional consequences were studied by proliferation and migration assays and by generation of xenografts in SCID/bg mice. Results We have found that CBS, an enzyme that endogenously produces H2S, binds to cytoskeletal β-tubulin and, to a lesser extent, also to β-actin in colorectal carcinoma-derived cells. When CBS was knocked out by the CRISPR/Cas9 technique (DLDx), we observed a de-arranged cytoskeleton compared to the unmodified DLD1 cell line. Treatment of these cells with a slow sulfide donor GYY4137 resulted in normal organization of the cytoskeleton, thus pointing to the role of CBS in microtubule dynamics. To evaluate the physiological importance of this observation, both DLD1 and DLDx cells were injected into SCID/bg mice, and the size and mass of the developed xenografts were evaluated. Significantly larger tumors developed from DLDx compared to the DLD1 cells, which correlated with the increased proliferation of these cells. Conclusions Taken together, in colorectal cancer DLD1 cells, CBS binds to the cytoskeleton, modulates microtubule dynamics, and thus affects the proliferation and migration in the colorectal carcinoma stable cell line.
Collapse
Affiliation(s)
- Veronika Liskova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Chovancova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Ingeborg Rezuchova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Kristina Ploth Pavlov
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslava Matuskova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Olga Krizanova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
6
|
Huang L, Liu Z, Wang J, Fu J, Jia Y, Ji L, Wang T. Bioactivity and health effects of garlic essential oil: A review. Food Sci Nutr 2023; 11:2450-2470. [PMID: 37324866 PMCID: PMC10261769 DOI: 10.1002/fsn3.3253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Garlic (Allium sativum L.), the underground bulb of the Allium plant in the family Liliaceae, is a common and popular spice that has historically been used to prevent and treat many different diseases such as pain, deafness, diarrhea, tumors, and other healthy problems. Garlic essential oil contains a variety of organosulfur compounds, such as the most representative diallyl disulfides (DADS) and diallyl trisulfides (DATS), which have attracted great interest in medicine, food, and agriculture because of their rich biological activities. This paper reviews the research progress on the composition and bioactivities of garlic essential oil mixtures and the bioactivity of some typical monomeric sulfides in garlic essential oil. The active mechanisms of representative sulfides in garlic essential oil were analyzed, and the applications of garlic essential oil in functional food, food additives, and clinical treatment were discussed. Combined with the current research status, the limitations and development direction of garlic essential oil in the study of molecular mechanism were discussed, which is of great significance to the development of garlic essential oil as a natural and safe alternative medicine for treatment.
Collapse
Affiliation(s)
- Lei Huang
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| | - Zhenxin Liu
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| | - Jing Wang
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| | - Jiaolong Fu
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| | - Yonglu Jia
- Department of Stomotology, Suzhou Kowloon HospitalShanghai Jiaotong University School of MedicineSuzhouChina
| | - Lilian Ji
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| | - Taoyun Wang
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| |
Collapse
|
7
|
Ben Arfa A, Boulaaba M, Merhi F, Bauvois B, Ingrid A, Auger J, Neffati M, Najjaa H. Effects of Allium roseum L. extracts on the proliferation and the differentiation of the acute myeloid leukemia cell line U937. Food Sci Nutr 2023; 11:2099-2105. [PMID: 37181314 PMCID: PMC10171498 DOI: 10.1002/fsn3.2965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/23/2022] [Accepted: 06/17/2022] [Indexed: 11/11/2022] Open
Abstract
Epidemiologic studies keep up the proposition that Allium vegetables can lower the risk of cancers. Acute myeloid leukemia (AML) cells exhibit high proliferative potency and have a reduced capacity of undergoing apoptosis and maturation. The beneficial effects of Allium seem related to the organosulfur products generated upon processing of these species. For this purpose, the aim of this study was to test Allium roseum fresh (FAE), crude (CAE) and dried (DAE) aqueous extracts for activity against the human acute leukemia cell line (U937). As assessed by flow cytometry, inhibited cell proliferation was in a dose-dependent manner. Firstly, study showed that cell growth was inhibited with 20 mg/mL using FAE and CAE (60% and 73% respectively). Secondly, our experiments clearly indicate that all A. roseum extracts do not induce cell apoptosis. This was confirmed by the soft binding of Annexin V to phosphatidylserine. Finally, the high expression of macrophage's marker CD11 associated with adequate morphological changes proves clearly the differentiation aspect produced by A. roseum extract. Taken together, these data suggest that A. roseum could be a promising candidate for the alternative medicine in the field of cancer therapy.
Collapse
Affiliation(s)
- Abdelkarim Ben Arfa
- Laboratoire des Ecosystèmes Pastoraux et de Valorization des Plantes SpontanéesInstitut des Régions AridesUniversité de GabèsMédenineTunisie
| | - Mondher Boulaaba
- Laboratoire des Plantes Aromatiques et Médicinales, Centre de BiotechnologieTechnopark de Borj‐Cédria (CBBC)Hammam‐LifTunisie
| | - Faten Merhi
- INSERM U872, Université Pierre et Marie Curie, Université Paris DescartesCentre de Recherche des CordeliersParisFrance
| | - Brigitte Bauvois
- INSERM U872, Université Pierre et Marie Curie, Université Paris DescartesCentre de Recherche des CordeliersParisFrance
| | - Arnault Ingrid
- IRBI, UMR CNRS 6035Université François RabelaisToursFrance
| | - Jacques Auger
- IRBI, UMR CNRS 6035Université François RabelaisToursFrance
| | - Mohamed Neffati
- Laboratoire des Ecosystèmes Pastoraux et de Valorization des Plantes SpontanéesInstitut des Régions AridesUniversité de GabèsMédenineTunisie
| | - Hanen Najjaa
- Laboratoire des Ecosystèmes Pastoraux et de Valorization des Plantes SpontanéesInstitut des Régions AridesUniversité de GabèsMédenineTunisie
| |
Collapse
|
8
|
Wang X, Chan YS, Wong K, Yoshitake R, Sadava D, Synold TW, Frankel P, Twardowski PW, Lau C, Chen S. Mechanism-Driven and Clinically Focused Development of Botanical Foods as Multitarget Anticancer Medicine: Collective Perspectives and Insights from Preclinical Studies, IND Applications and Early-Phase Clinical Trials. Cancers (Basel) 2023; 15:701. [PMID: 36765659 PMCID: PMC9913787 DOI: 10.3390/cancers15030701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Cancer progression and mortality remain challenging because of current obstacles and limitations in cancer treatment. Continuous efforts are being made to explore complementary and alternative approaches to alleviate the suffering of cancer patients. Epidemiological and nutritional studies have indicated that consuming botanical foods is linked to a lower risk of cancer incidence and/or improved cancer prognosis after diagnosis. From these observations, a variety of preclinical and clinical studies have been carried out to evaluate the potential of botanical food products as anticancer medicines. Unfortunately, many investigations have been poorly designed, and encouraging preclinical results have not been translated into clinical success. Botanical products contain a wide variety of chemicals, making them more difficult to study than traditional drugs. In this review, with the consideration of the regulatory framework of the USFDA, we share our collective experiences and lessons learned from 20 years of defining anticancer foods, focusing on the critical aspects of preclinical studies that are required for an IND application, as well as the checkpoints needed for early-phase clinical trials. We recommend a developmental pipeline that is based on mechanisms and clinical considerations.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Yin S. Chan
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Kelly Wong
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Ryohei Yoshitake
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - David Sadava
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Timothy W. Synold
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Paul Frankel
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Przemyslaw W. Twardowski
- Department of Urologic Oncology, Saint John’s Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | - Clayton Lau
- Department of Surgery, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Shiuan Chen
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| |
Collapse
|
9
|
Guan F, Ding Y, He Y, Li L, Yang X, Wang C, Hu M. Involvement of adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 in diallyl trisulfide-induced cytotoxicity in hepatocellular carcinoma cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:457-468. [PMID: 36302621 PMCID: PMC9614402 DOI: 10.4196/kjpp.2022.26.6.457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
It has been demonstrated that APPL1 (adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1) is involved in the regulation of several growth-related signaling pathways and thus closely associated with the development and progression of some cancers. Diallyl trisulfide (DAT), a garlic-derived bioactive compound, exerts selective cytotoxicity to various human cancer cells through interfering with pro-survival signaling pathways. However, whether and how DAT affects survival of human hepatocellular carcinoma (HCC) cells remain unclear. Herein, we tested the hypothesis of the involvement of APPL1 in DAT-induced cytotoxicity in HCC HepG2 cells. We found that Lys 63 (K63)-linked polyubiquitination of APPL1 was significantly decreased whereas phosphorylation of APPL1 at serine residues remained unchanged in DAT-treated HepG2 cells. Compared with wild-type APPL1, overexpression of APPL1 K63R mutant dramatically increased cell apoptosis and mitigated cell survival, along with a reduction of phosphorylation of STAT3, Akt, and Erk1/2. In addition, DAT administration markedly reduced protein levels of intracellular TNF receptor-associated factor 6 (TRAF6). Genetic inhibition of TRAF6 decreased K63-linked polyubiquitination of APPL1. Moreover, the cytotoxicity impacts of DAT on HepG2 cells were greatly attenuated by overexpression of wild-type APPL1. Taken together, these results suggest that APPL1 polyubiquitination probably mediates the inhibitory effects of DAT on survival of HepG2 cells by modulating STAT3, Akt, and Erk1/2 pathways.
Collapse
Affiliation(s)
- Feng Guan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Youming Ding
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yikang He
- Tongji Medical College Huazhong University of Science and Technology, School of Nursing, Wuhan 430030, China
| | - Lu Li
- Department of Pathology and Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Xinyu Yang
- Department of Pathology and Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Changhua Wang
- Department of Pathology and Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China,Correspondence Changhua Wang, E-mail:
| | - Mingbai Hu
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China,Mingbai Hu, E-mail:
| |
Collapse
|
10
|
Imane B, Laila B, Fouzia H, Ismail G, Ahmed E, Kaoutar B, Mohamed EM, Samira E, Jamila B. Chemical characterization, antiproliferative activity and molecular docking of bioactive compounds from brown algae Fucus spiralis. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Marni R, Kundrapu DB, Chakraborti A, Malla R. Insight into drug sensitizing effect of diallyl disulfide and diallyl trisulfide from Allium sativum L. on paclitaxel-resistant triple-negative breast cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115452. [PMID: 35690339 DOI: 10.1016/j.jep.2022.115452] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ayurvedic practitioners and herbal healers in India and China have extensively used garlic (Allium sativum L.) to treat cancers. Diallyl disulfide (DADS) and diallyl trisulfide (DATS) are major volatile organosulfur phytochemical constituents found in garlic. AIM OF THE STUDY To find new insight into the drug sensitizing effect of DADS and DATS on paclitaxel (PTX)-resistant triple-negative breast cancer cells (TNBC/PR). MATERIALS AND METHODS This study estimates the non-toxic concentration of DADS and DATS against normal healthy breast epithelial cell line (MCF-12A) by using a trypan blue viability assay. Also, it evaluates the effect of DADS and DATS on the sensitization of established stable TNBC/PR cell clones (MDA-MB 231 PR and MDA-MB 468 PR) by MTT, BrdU incorporation, intracellular ROS, cell cycle, and apoptosis assays. RESULTS The results show that DADS and DATS are non-cytotoxicity against MCF-12A cells. Nevertheless, DADS and DATS have shown significantly high cytotoxicity against MDA-MB 231 PR and MDA-MB 468 PR cells. They also inhibited PTX-resistant cell proliferation by blocking the cell cycle. Further, they induced apoptosis by activation of caspase 3 and 9. N-acetyl cysteine pre-treatment inhibited DADS and DATS-induced intracellular ROS release. In silico study shows that DADS and DATS interact with a large extracellular loop (LEL) of CD151 with a binding energy of -4.0 kcal/mol and transmembrane domain (TM) with a binding affinity of 11.7 and 13.6 kcal/mol, respectively. They also inhibited the surface expression of CD151 in TNBC/PR cells. CONCLUSION This study implies that DADS and DATS could be considered for sensitizing drug-resistant breast cancers.
Collapse
Affiliation(s)
- Rakshmitha Marni
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, A.P, India.
| | - Durga Bhavani Kundrapu
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, A.P, India.
| | | | - RamaRao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, A.P, India.
| |
Collapse
|
12
|
Rahman MM, Sarker MT, Alam Tumpa MA, Yamin M, Islam T, Park MN, Islam MR, Rauf A, Sharma R, Cavalu S, Kim B. Exploring the recent trends in perturbing the cellular signaling pathways in cancer by natural products. Front Pharmacol 2022; 13:950109. [PMID: 36160435 PMCID: PMC9498834 DOI: 10.3389/fphar.2022.950109] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is commonly thought to be the product of irregular cell division. According to the World Health Organization (WHO), cancer is the major cause of death globally. Nature offers an abundant supply of bioactive compounds with high therapeutic efficacy. Anticancer effects have been studied in a variety of phytochemicals found in nature. When Food and Drug Administration (FDA)-approved anticancer drugs are combined with natural compounds, the effectiveness improves. Several agents have already progressed to clinical trials based on these promising results of natural compounds against various cancer forms. Natural compounds prevent cancer cell proliferation, development, and metastasis by inducing cell cycle arrest, activating intrinsic and extrinsic apoptosis pathways, generating reactive oxygen species (ROS), and down-regulating activated signaling pathways. These natural chemicals are known to affect numerous important cellular signaling pathways, such as NF-B, MAPK, Wnt, Notch, Akt, p53, AR, ER, and many others, to cause cell death signals and induce apoptosis in pre-cancerous or cancer cells without harming normal cells. As a result, non-toxic “natural drugs” taken from nature’s bounty could be effective for the prevention of tumor progression and/or therapy of human malignancies, either alone or in combination with conventional treatments. Natural compounds have also been shown in preclinical studies to improve the sensitivity of resistant cancers to currently available chemotherapy agents. To summarize, preclinical and clinical findings against cancer indicate that natural-sourced compounds have promising anticancer efficacy. The vital purpose of these studies is to target cellular signaling pathways in cancer by natural compounds.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Taslim Sarker
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mst. Afroza Alam Tumpa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Yamin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Tamanna Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Pakistan
- *Correspondence: Abdur Rauf, ; Bonglee Kim,
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Abdur Rauf, ; Bonglee Kim,
| |
Collapse
|
13
|
Tian Y, Ge Z, Xu M, Ge X, Zhao M, Ding F, Yin J, Wang X, You Y, Shi Z, Qian X. Diallyl trisulfide sensitizes radiation therapy on glioblastoma through directly targeting thioredoxin 1. Free Radic Biol Med 2022; 189:157-168. [PMID: 35921994 DOI: 10.1016/j.freeradbiomed.2022.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
Abstract
Radiotherapy is a standard-of-care treatment approach for glioblastoma (GBM) patients, but therapeutic resistance to radiotherapy remains a major challenge. Here we demonstrate that diallyl trisulfide (DATS) directly conjugates with cysteine (C) 32 and C35 (C32/35) residues of thioredoxin 1 (Trx1) through Michael addition reactions. Due to localizing in activity center of Trx1, the conjugation between DATS and C32/35 results in inhibition of Trx1 activity, therefore disturbing thioredoxin system and leading to accumulated levels of reactive oxygen species (ROS). High levels of Trx1 expression are correlated with poor prognosis of glioma patients. Notably, we reveal that DATS synergistically enhances irradiation (IR)-induced ROS accumulation, apoptosis, DNA damage, as well as inhibition of tumor growth of GBM cells. These findings highlight the potential benefits of DATS in sensitizing radiotherapy of GBM patients.
Collapse
Affiliation(s)
- Yangyang Tian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Zehe Ge
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Miao Xu
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xin Ge
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Mengjie Zhao
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Neuro-Psychiatric Institute, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Fangshu Ding
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jianxing Yin
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xiuxing Wang
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; National Health Commission Key Laboratory of Antibody Technologies, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yongping You
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhumei Shi
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Xu Qian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
14
|
Zhou Y, Li X, Luo W, Zhu J, Zhao J, Wang M, Sang L, Chang B, Wang B. Allicin in Digestive System Cancer: From Biological Effects to Clinical Treatment. Front Pharmacol 2022; 13:903259. [PMID: 35770084 PMCID: PMC9234177 DOI: 10.3389/fphar.2022.903259] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Allicin is the main active ingredient in freshly-crushed garlic and some other allium plants, and its anticancer effect on cancers of digestive system has been confirmed in many studies. The aim of this review is to summarize epidemiological studies and in vitro and in vivo investigations on the anticancer effects of allicin and its secondary metabolites, as well as their biological functions. In epidemiological studies of esophageal cancer, liver cancer, pancreatic cancer, and biliary tract cancer, the anticancer effect of garlic has been confirmed consistently. However, the results obtained from epidemiological studies in gastric cancer and colon cancer are inconsistent. In vitro studies demonstrated that allicin and its secondary metabolites play an antitumor role by inhibiting tumor cell proliferation, inducing apoptosis, controlling tumor invasion and metastasis, decreasing angiogenesis, suppressing Helicobacter pylori, enhancing the efficacy of chemotherapeutic drugs, and reducing the damage caused by chemotherapeutic drugs. In vivo studies further demonstrate that allicin and its secondary metabolites inhibit cancers of the digestive system. This review describes the mechanisms against cancers of digestive system and therapeutic potential of allicin and its secondary metabolites.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
- The Second Clinical College, China Medical University, Shenyang, China
| | - Xingxuan Li
- The Second Clinical College, China Medical University, Shenyang, China
| | - Wenyu Luo
- The Second Clinical College, China Medical University, Shenyang, China
| | - Junfeng Zhu
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jingwen Zhao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mengyao Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lixuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Bing Chang,
| | - Bingyuan Wang
- Department of Geriatric Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Alrumaihi F, Khan MA, Babiker AY, Alsaweed M, Azam F, Allemailem KS, Almatroudi AA, Ahamad SR, Alsugoor MH, Alharbi KN, Almansour NM, Khan A. Lipid-Based Nanoparticle Formulation of Diallyl Trisulfide Chemosensitizes the Growth Inhibitory Activity of Doxorubicin in Colorectal Cancer Model: A Novel In Vitro, In Vivo and In Silico Analysis. Molecules 2022; 27:molecules27072192. [PMID: 35408590 PMCID: PMC9000458 DOI: 10.3390/molecules27072192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
Garlic’s main bioactive organosulfur component, diallyl trisulfide (DATS), has been widely investigated in cancer models. However, DATS is not suitable for clinical use due to its low solubility. The current study seeks to improve DATS bioavailability and assess its chemopreventive and chemosensitizing properties in an AOM-induced colorectal cancer model. The polyethylene glycol coated Distearoylphosphatidylcholine/Cholesterol (DSPC/Chol) comprising DATS-loaded DATSL and doxorubicin (DOXO)-encapsulated DOXL liposomes was prepared and characterized. The changes in the sensitivity of DATS and DOXO by DATSL and DOXL were evaluated in RKO and HT-29 colon cancer cells. The synergistic effect of DATSL and DOXL was studied by cell proliferation assay in the combinations of IC10, IC25, and IC35 of DATSL with the IC10 of DOXL. AOM, DATSL, and DOXL were administered to different groups of mice for a period of 21 weeks. The data exhibited ~93% and ~46% entrapment efficiency of DATSL and DOXL, respectively. The size of sham liposomes was 110.5 nm, whereas DATSL and DOXL were 135.5 nm and 169 nm, respectively. DATSL and DOXL exhibited significant sensitivity in the cell proliferation experiment, lowering their IC50 doses by more than 8- and 14-fold, respectively. However, the DATSL IC10, IC25, and IC35 showed escalating chemosensitivity, and treated the cells in combination with DOXL IC10. Analysis of histopathological, cancer marker enzymes, and antioxidant enzymes revealed that the high dose of DATSL pretreatment and DOXL chemotherapy is highly effective in inhibiting AOM-induced colon cancer promotion. The combination of DATSL and DOXL indicated promise as a colorectal cancer treatment in this study. Intermolecular interactions of DATS and DOXO against numerous cancer targets by molecular docking indicated MMP-9 as the most favourable target for DATS exhibiting binding energy of −4.6 kcal/mol. So far, this is the first research to demonstrate the chemopreventive as well as chemosensitizing potential of DATSL in an animal model of colorectal cancer.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.); (K.S.A.); (A.A.A.); (K.N.A.)
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.); (K.S.A.); (A.A.A.); (K.N.A.)
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia;
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.); (K.S.A.); (A.A.A.); (K.N.A.)
| | - Ahmad A. Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.); (K.S.A.); (A.A.A.); (K.N.A.)
| | - Syed Rizwan Ahamad
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mahdi H. Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia;
| | - Khloud Nawaf Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.); (K.S.A.); (A.A.A.); (K.N.A.)
| | - Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia;
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
- Correspondence: ; Tel.: +966-590038460; Fax: +966-63801628
| |
Collapse
|
16
|
Alam A, Al Arif Jahan A, Bari MS, Khandokar L, Mahmud MH, Junaid M, Chowdhury MS, Khan MF, Seidel V, Haque MA. Allium vegetables: Traditional uses, phytoconstituents, and beneficial effects in inflammation and cancer. Crit Rev Food Sci Nutr 2022; 63:6580-6614. [PMID: 35170391 DOI: 10.1080/10408398.2022.2036094] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The genus Allium comprises of at least 918 species; the majority grown for dietary and medicinal purposes. This review describes the traditional uses, phytoconstituents, anti-inflammatory and anticancer activity, and safety profile of six main species, namely Allium sativum L. (garlic), Allium cepa L. (onions), Allium ampeloprasum L. (leek), Allium fistulosum L. (scallion), Allium schoenoprasum L. (chives) and Allium tuberosum Rottler (garlic chives). These species contain at least 260 phytoconstituents; mainly volatile compounds-including 63 organosulfur molecules-, saponins, flavonoids, anthocyanins, phenolic compounds, amino acids, organic acids, fatty acids, steroids, vitamins and nucleosides. They have prominent in vitro anti-inflammatory activity, and in vivo replications of such results have been achieved for all except for A. schoenoprasum. They also exert cytotoxicity against different cancer cell lines. Several anticancer phytoconstituents have been characterized from all except for A. fistulosum. Organosulfur constituents, saponins and flavonoid glycosides have demonstrated anti-inflammatory and anticancer activity. Extensive work has been conducted mainly on the anti-inflammatory and anticancer activity of A. sativum and A. cepa. The presence of anti-inflammatory and anticancer constituents in these two species suggests that similar bioactive constituents could be found in other species. This provides future avenues for identifying new Allium-derived anti-inflammatory and anticancer agents.
Collapse
Affiliation(s)
- Ashraful Alam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Abdullah Al Arif Jahan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Md Sazzadul Bari
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Md Hasan Mahmud
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Muhammed Junaid
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | | | - Mohammad Forhad Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Md Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| |
Collapse
|
17
|
Lu Y, Zhang M, Huang D. Dietary Organosulfur-Containing Compounds and Their Health-Promotion Mechanisms. Annu Rev Food Sci Technol 2022; 13:287-313. [DOI: 10.1146/annurev-food-052720-010127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary organosulfur-containing compounds (DOSCs) in fruits, vegetables, and edible mushrooms may hold the key to the health-promotion benefits of these foods. Yet their action mechanisms are not clear, partially due to their high reactivity, which leads to the formation of complex compounds during postharvest processing. Among postharvest processing methods, thermal treatment is the most common way to process these edible plants rich in DOSCs, which undergo complex degradation pathways with the generation of numerous derivatives over a short time. At low temperatures, DOSCs are biotransformed slowly during fermentation to different metabolites (e.g., thiols, sulfides, peptides), whose distinctive biological activity remains largely unexplored. In this review, we discuss the bioavailability of DOSCs in human digestion before illustrating their potential mechanisms for health promotion related to cardiovascular health, cancer chemoprevention, and anti-inflammatory and antimicrobial activities. In particular, it is interesting that different DOSCs react with glutathione or cysteine, leading to the slow release of hydrogen sulfide (H2S), which has broad bioactivity in chronic disease prevention. In addition, DOSCs may interact with protein thiol groups of different protein targets of importance related to inflammation and phase II enzyme upregulation, among other action pathways critical for health promotion. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yuyun Lu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Molan Zhang
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Dejian Huang
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Jiangsu, China
| |
Collapse
|
18
|
Garlic constituents for cancer prevention and therapy: From phytochemistry to novel formulations. Pharmacol Res 2021; 175:105837. [PMID: 34450316 DOI: 10.1016/j.phrs.2021.105837] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Garlic (Allium sativum L.) is one of the oldest plants cultivated for its dietary and medicinal values. This incredible plant is endowed with various pharmacological attributes, such as antimicrobial, antiarthritic, antithrombotic, antitumor, hypoglycemic, and hypolipidemic activities. Among the various beneficial pharmacological effects of garlic, the anticancer activity is presumably the most studied. The consumption of garlic provides strong protection against cancer risk. Taking into account the multi-targeted actions and absence of considerable toxicity, a few active metabolites of garlic are probably to play crucial roles in the killing of cancerous cells. Garlic contains several bioactive molecules with anticancer actions and these include diallyl trisulfide, allicin, diallyl disulfide, diallyl sulfide, and allyl mercaptan. The effects of various garlic-derived products, their phytoconstituents and nanoformulations have been evaluated against skin, prostate, ovarian, breast, gastric, colorectal, oral, liver, and pancreatic cancers. Garlic extract, its phytocompounds and their nanoformulations have been shown to inhibit the different stages of cancer, including initiation, promotion, and progression. Besides, these bioactive metabolites alter the peroxidation of lipid, activity of nitric oxide synthetase, nuclear factor-κB, epidermal growth factor receptor, and protein kinase C, cell cycle, and survival signaling. The current comprehensive review portrays the functions of garlic, its bioactive constituents and nanoformulations against several types of cancers and explores the possibility of developing these agents as anticancer pharmaceuticals.
Collapse
|
19
|
Miura A, Ikeda A, Abe M, Seo K, Watanabe T, Ozaki-Masuzawa Y, Hosono T, Seki T. Diallyl Trisulfide Prevents Obesity and Decreases miRNA-335 Expression in Adipose Tissue in a Diet-Induced Obesity Rat Model. Mol Nutr Food Res 2021; 65:e2001199. [PMID: 34014027 DOI: 10.1002/mnfr.202001199] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/19/2021] [Indexed: 01/03/2023]
Abstract
SCOPE Diallyl trisulfide (DATS), an organosulfur compound generates in crushed garlic, has various beneficial health effects. A growing body of evidence indicates that miRNAs are involved in the pathology of lifestyle diseases including obesity. The anti-obesogenic effect of garlic is previously reported; however, the effects of DATS on obesity, and the relationship between garlic compounds and the involvement of miRNA remains unclear. Here, the anti-obesogenic activity of DATS and the potential role of miRNA in a diet-induced obesity rat model are investigated. METHODS AND RESULTS Oral administration of DATS suppressed body and white adipose tissue (WAT) weight gain in rats fed a high-fat diet compared with vehicle-administered rats. DATS lowered the plasma and liver triglyceride levels in obese rats, and decreased lipogenic mRNA levels including those of Srebp1c, Fasn, and Scd1 in the liver. DATS also suppressed de novo lipogenesis in the liver. Transcriptomic analyses of miRNA and mRNA in the epididymal WAT of obese rats using microarrays revealed that DATS decreased miRNA-335 expression and normalized the obesity-related mRNA transcriptomic signatures in epididymal WAT. CONCLUSION The potent anti-obesogenic effects of DATS and its possible mechanism of action was clearly demonstrated in this study.
Collapse
Affiliation(s)
- Atsushi Miura
- General Research Institute, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ayana Ikeda
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Marina Abe
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kiki Seo
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takahiro Watanabe
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yori Ozaki-Masuzawa
- Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takashi Hosono
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
- Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Taiichiro Seki
- General Research Institute, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
- Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|
20
|
Lu X, Wang C, Zhao M, Wu J, Niu Z, Zhang X, Simal-Gandara J, Süntar I, Jafari SM, Qiao X, Tang X, Han Z, Xiao J, Ningyang L. Improving the bioavailability and bioactivity of garlic bioactive compounds via nanotechnology. Crit Rev Food Sci Nutr 2021; 62:8467-8496. [PMID: 34058922 DOI: 10.1080/10408398.2021.1929058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This review highlights main bioactive compounds and important biological functions especially anticancer effects of the garlic. In addition, we review current literature on the stability and bioavailability of garlic components. Finally, this review aims to provide a potential strategy for using nanotechnology to increase the stability and solubility of garlic components, providing guidelines for the qualities of garlic products to improve their absorption and prevent their early degradation, and extend their circulation time in the body. The application of nanotechnology to improve the bioavailability and targeting of garlic compounds are expected to provide a theoretical basis for the functional components of garlic to treat human health. We review the improvement of bioavailability and bioactivity of garlic bioactive compounds via nanotechnology, which could promisingly overcome the limitations of conventional garlic products, and would be used to prevent and treat cancer and other diseases in the near future.
Collapse
Affiliation(s)
- Xiaoming Lu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chaofan Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Meng Zhao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jinxiang Wu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhonglu Niu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xueli Zhang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Ourense, Spain
| | - Ipek Süntar
- Deparment of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara, Turkey
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Xuguang Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiaozhen Tang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhenlin Han
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Ourense, Spain.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Li Ningyang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
21
|
Sarvizadeh M, Hasanpour O, Naderi Ghale-Noie Z, Mollazadeh S, Rezaei M, Pourghadamyari H, Masoud Khooy M, Aschner M, Khan H, Rezaei N, Shojaie L, Mirzaei H. Allicin and Digestive System Cancers: From Chemical Structure to Its Therapeutic Opportunities. Front Oncol 2021; 11:650256. [PMID: 33987085 PMCID: PMC8111078 DOI: 10.3389/fonc.2021.650256] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
Digestive system cancer tumors are one of the major causes of cancer-related fatalities; the vast majority of them are colorectal or gastric malignancies. Epidemiological evidence confirmed that allium-containing food, such as garlic, reduces the risk of developing malignancies. Among all compounds in garlic, allicin has been most researched, as it contains sulfur and produces many second degradation compounds, such as sulfur dioxide, diallyl sulfide (DAS), diallyl trisulfide (DATS), and diallyl disulfide (DADS) in the presence of enzymatic reactions in gastric juice. These substances have shown anti-inflammatory, antidiabetic, antihypertensive, antifungal, antiviral, antibacterial, and anticancer efficacy, including gastrointestinal (GI) cancers, leukemia, and skin cancers. Herein, we summarize the therapeutic potential of allicin in the treatment of GI cancers.
Collapse
Affiliation(s)
- Mahshad Sarvizadeh
- Nutrition and Endocrine Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Hasanpour
- School of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Rezaei
- Department of Diabetes, Obesity and Metabolism, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Nima Rezaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Layla Shojaie
- Department of Medicine, Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
22
|
Farhat Z, Hershberger PA, Freudenheim JL, Mammen MJ, Hageman Blair R, Aga DS, Mu L. Types of garlic and their anticancer and antioxidant activity: a review of the epidemiologic and experimental evidence. Eur J Nutr 2021; 60:3585-3609. [PMID: 33543365 DOI: 10.1007/s00394-021-02482-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Garlic, an Allium vegetable, contains rich flavonoids organosulfur compounds (OSCs) that have potent anticancer properties. The aim of the review is to provide an overview of the different types of garlic, their active compounds, and the potential anticancer benefits with a focus on antioxidant activity. Animal and cell line studies have provided convincing evidence that garlic and its organosulfur compounds inhibit carcinogenesis through a number of events including induction of apoptosis, inhibiting cellular proliferation, scavenging radical oxygen species (ROS), increasing the activities of enzymes such as glutathione S-transferase, and reducing tumor size. Epidemiological studies showed compelling evidence that garlic consumption is associated with decreased risk of colorectal cancer, but inconsistent evidence for stomach, breast, and prostate cancers. Studies also suggest that the presence and potency of garlic OSCs varies with respect to the preparation and form of garlic. Further epidemiological studies with information on garlic form consumed or preparation methods and molecular studies regarding its antioxidant mechanisms, such as increasing enzymatic and nonenzymatic antioxidants levels, are warranted.
Collapse
Affiliation(s)
- Zeinab Farhat
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, Buffalo, NY, USA
| | - Pamela A Hershberger
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, Buffalo, NY, USA
| | - Manoj J Mammen
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, The State University of New York (SUNY) at Buffalo, Buffalo, NY, USA
| | - Rachael Hageman Blair
- Department of Biostatistics, University at Buffalo, The State University of New York (SUNY) at Buffalo, Buffalo, NY, USA
| | - Diana S Aga
- Department of Chemistry, College of Arts and Sciences, The State University of New York (SUNY) at Buffalo, Buffalo, NY, USA
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
23
|
Tocmo R, Veenstra J, Huang Y, Johnson JJ. Covalent Modification of Proteins by Plant-Derived Natural Products: Proteomic Approaches and Biological Impacts. Proteomics 2021; 21:e1900386. [PMID: 32949481 PMCID: PMC8494383 DOI: 10.1002/pmic.201900386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/22/2020] [Indexed: 01/01/2023]
Abstract
Plant-derived natural products (NPs) with electrophilic functional groups engage various subsets of the proteome via covalent modification of nucleophilic cysteine residues. This electrophile-nucleophile interaction can change protein conformation, alter protein function, and modulate their biological action. The biological significance of these covalent protein modifications in health and disease is increasingly recognized. One way to understand covalent NP-protein interactions is to utilize traditional proteomics and modern mass spectrometry (MS)-based proteomic strategies. These strategies have proven effective in uncovering specific NP protein targets and are critical first steps that allow for a much deeper understanding of the ability of NPs to modulate cellular processes. Here, plant-derived NPs that covalently modify proteins are reviewed, the biological significance of these covalent modifications, and the different proteomic strategies that have been employed to study these NP-protein interactions.
Collapse
Affiliation(s)
- Restituto Tocmo
- Department of Pharmacy Practice, University of Illinois-Chicago, 833 South Wood Street, Chicago, Illinois, United States of America
| | - Jacob Veenstra
- Department of Pharmacy Practice, University of Illinois-Chicago, 833 South Wood Street, Chicago, Illinois, United States of America
| | - Yunying Huang
- Department of Pharmacy Practice, University of Illinois-Chicago, 833 South Wood Street, Chicago, Illinois, United States of America
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Harbour Road, Guangzhou, Guangdong 510700, P.R. China
| | - Jeremy James Johnson
- Department of Pharmacy Practice, University of Illinois-Chicago, 833 South Wood Street, Chicago, Illinois, United States of America
| |
Collapse
|
24
|
De Greef D, Barton EM, Sandberg EN, Croley CR, Pumarol J, Wong TL, Das N, Bishayee A. Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Semin Cancer Biol 2020; 73:219-264. [PMID: 33301861 DOI: 10.1016/j.semcancer.2020.11.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Vegetables of the Allium genus, such as garlic (Allium sativum L.), onions, shallots, leaks, and chives, have been used for many years for food consumption and for medicinal purposes. Historical medical texts have indicated the therapeutic applications of garlic as an antitumor, laxative, diuretic, antibacterial and antifungal agent. Specifically, garlic's antitumor abilities have been traced back 3500 years as a chemotherapeutic agent used in Egypt. Other beneficial effects of garlic consumption include lowering blood pressure, blood cholesterol, sugar and lipids. The processing and aging of garlic result in the production of non-toxic organosulfur by-products. These sulfur-containing compounds, such as allicin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, alliin, S-allylcysteine, and S-allylmercaptocysteine, impact various stages of carcinogenesis. The anticancer mechanisms of action of these garlic-derived phytochemicals include altering mitochondrial permeability, inhibiting angiogenesis, enhancing antioxidative and proapoptotic properties, and regulating cell proliferation. All these effects of garlic's sulfur-compounds have been demonstrated in various human cancers. The intent of this literature research is to explore the potential of garlic-derived products and bioactive organosulfur compounds as cancer chemopreventive and chemotherapeutic agents. This investigation employs criteria for systematic review and critically analyzes published in vitro, in vivo and clinical studies. Concerns and limitations that have arisen in past studies regarding standards of measurement, bioavailability, and method of delivery are addressed. Overall, it is hoped that through this systematic and comprehensive review, future researchers can be acquainted with the updated data assembled on anticancer properties of garlic and its phytoconstituents.
Collapse
Affiliation(s)
| | - Emily M Barton
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Elise N Sandberg
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | | | - Joshua Pumarol
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Tin Lok Wong
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799 155, Tripura, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
25
|
Hitchcock JK, Mkwanazi N, Barnett C, Graham LM, Katz AA, Hunter R, Schäfer G, Kaschula CH. The Garlic Compound Z-Ajoene, S-Thiolates COX2 and STAT3 and Dampens the Inflammatory Response in RAW264.7 Macrophages. Mol Nutr Food Res 2020; 65:e2000854. [PMID: 33274836 DOI: 10.1002/mnfr.202000854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/15/2020] [Indexed: 01/05/2023]
Abstract
SCOPE Garlic (Allium sativum) has been used for centuries as a prophylactic and therapeutic medicinal agent to control inflammation-associated pathologies. To investigate the underlying mechanisms, an in vitro inflammatory model is established using RAW264.7 murine macrophages exposed to low-doses of lipopolysaccharide (LPS) in the presence of garlic compounds allicin and Z-ajoene (ZA), mimicking regular garlic consumption. METHODS AND RESULTS Both allicin and Z-ajoene dampen both transcript and protein expression of the pro-inflammatory cytokines IL1β, IL6, and IL12β, and upregulate the expression of the anti-inflammatory cytokine IL10. Protein arrays of selected secreted inflammatory mediators confirm that Z-ajoene has a pronounced down-regulatory effect on LPS-induced inflammatory cytokines and chemokines. Many of these proteins are known targets of the transcription factor signal transducer and activator of transcription 3 (STAT3); and indeed, Z-ajoene or its analogue dansyl-ajoene is found to decrease phosphorylation and nuclear translocation of STAT3, and to covalently modify the protein by S-thiolation at Cys108, Cys367, and Cys687. Z-Ajoene dose-dependently and non-competitively inhibit the activity of cyclooxygenase 2 (COX2), possibly attributed to S-thiolation at Cys9 and Cys299. CONCLUSION The characterization of Z-ajoene's activity of targeting and covalently modifying STAT3 and COX2, both important regulators of inflammation, may contribute to the health benefits of regular dietary garlic consumption.
Collapse
Affiliation(s)
- Jessica K Hitchcock
- Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Nonkululeko Mkwanazi
- Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Christopher Barnett
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Lisa M Graham
- Department of Biomedical Sciences, Cape Peninsula University of Technology, Bellville, 7530, South Africa
| | - Arieh A Katz
- Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Roger Hunter
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Georgia Schäfer
- Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa
- International Centre for Genetic Engineering and Biotechnology, Observatory, Cape Town, 7925, South Africa
| | - Catherine H Kaschula
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
26
|
Gojon G, Morales GA. SG1002 and Catenated Divalent Organic Sulfur Compounds as Promising Hydrogen Sulfide Prodrugs. Antioxid Redox Signal 2020; 33:1010-1045. [PMID: 32370538 PMCID: PMC7578191 DOI: 10.1089/ars.2020.8060] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Significance: Sulfur has a critical role in protein structure/function and redox status/signaling in all living organisms. Although hydrogen sulfide (H2S) and sulfane sulfur (SS) are now recognized as central players in physiology and pathophysiology, the full scope and depth of sulfur metabolome's impact on human health and healthy longevity has been vastly underestimated and is only starting to be grasped. Since many pathological conditions have been related to abnormally low levels of H2S/SS in blood and/or tissues, and are amenable to treatment by H2S supplementation, development of safe and efficacious H2S donors deserves to be undertaken with a sense of urgency; these prodrugs also hold the promise of becoming widely used for disease prevention and as antiaging agents. Recent Advances: Supramolecular tuning of the properties of well-known molecules comprising chains of sulfur atoms (diallyl trisulfide [DATS], S8) was shown to lead to improved donors such as DATS-loaded polymeric nanoparticles and SG1002. Encouraging results in animal models have been obtained with SG1002 in heart failure, atherosclerosis, ischemic damage, and Duchenne muscular dystrophy; with TC-2153 in Alzheimer's disease, schizophrenia, age-related memory decline, fragile X syndrome, and cocaine addiction; and with DATS in brain, colon, gastric, and breast cancer. Critical Issues: Mode-of-action studies on allyl polysulfides, benzyl polysulfides, ajoene, and 12 ring-substituted organic disulfides and thiosulfonates led several groups of researchers to conclude that the anticancer effect of these compounds is not mediated by H2S and is only modulated by reactive oxygen species, and that their central model of action is selective protein S-thiolation. Future Directions: SG1002 is likely to emerge as the H2S donor of choice for acquiring knowledge on this gasotransmitter's effects in animal models, on account of its unique ability to efficiently generate H2S without byproducts and in a slow and sustained mode that is dose independent and enzyme independent. Efficient tuning of H2S donation characteristics of DATS, dibenzyl trisulfide, and other hydrophobic H2S prodrugs for both oral and parenteral administration will be achieved not only by conventional structural modification of a lead molecule but also through the new "supramolecular tuning" paradigm.
Collapse
|
27
|
Bolton SG, Pluth MD. Modified cyclodextrins solubilize elemental sulfur in water and enable biological sulfane sulfur delivery. Chem Sci 2020; 11:11777-11784. [PMID: 34123204 PMCID: PMC8162768 DOI: 10.1039/d0sc04137h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
An important form of biological sulfur is sulfane sulfur, or S0, which is found in polysulfide and persulfide compounds as well as in elemental sulfur. Sulfane sulfur, often in the form of S8, functions as a key energy source in the metabolic processes of thermophilic Archaean organisms found in sulfur-rich environments and can be metabolized both aerobically and anaerobically by different archaeons. Despite this importance, S8 has a low solubility in water (∼19 nM), raising questions of how it can be made chemically accessible in complex environments. Motivated by prior crystallographic data showing S8 binding to hydrophobic motifs in filamentous glycoproteins from the sulfur reducing Staphylothermus marinus anaerobe, we demonstrate that simple macrocyclic hydrophobic motifs, such as 2-hydroxypropyl β-cyclodextrin (2HPβ), are sufficient to solubilize S8 at concentrations up to 2.0 ± 0.2 mM in aqueous solution. We demonstrate that the solubilized S8 can be reduced with the common reductant tris(2-carboxyethyl)phosphine (TCEP) and reacts with thiols to generate H2S. The thiol-mediated conversion of 2HPβ/S8 to H2S ranges from 80% to quantitative efficiency for Cys and glutathione (GSH). Moreover, we demonstrate that 2HPβ can catalyze the Cys-mediated reduction of S8 to H2S in water. Adding to the biological relevance of the developed systems, we demonstrate that treatment of Raw 264.7 macrophage cells with the 2HPβ/S8 complex prior to LPS stimulation decreases NO2 - levels, which is consistent with known activities of bioavailable H2S and sulfane sulfur. Taken together, these investigations provide a new strategy for delivering H2S and sulfane sulfur in complex systems and more importantly provide new insights into the chemical accessibility and storage of S0 and S8 in biological environments.
Collapse
Affiliation(s)
- Sarah G Bolton
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon Eugene OR 97403 USA
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon Eugene OR 97403 USA
| |
Collapse
|
28
|
Choromanska A, Kulbacka J, Saczko J, Surowiak P. Effect of diallyl disulfide and garlic oil on different human astrocytoma cell lines. Biomed Rep 2020; 13:32. [PMID: 32802329 PMCID: PMC7412714 DOI: 10.3892/br.2020.1339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/30/2020] [Indexed: 01/14/2023] Open
Abstract
Gliomas are a group of malignant brain tumors. Despite significant efforts to optimize treatment options for patients with high-grade glioma, the prognosis of the overwhelming majority of patients remain poor. This bleak prognosis despite treatment of the glioma, is partly due to the tendency of therapeutics to diffusely penetrate into the neighboring brain tissues, but also due to the innate resistance of these tumors to chemotherapy and radiation. Garlic contains water-soluble and oil-soluble sulfur compounds. The oil-soluble compounds, including diallyl sulfide, diallyl disulfide (DADS), diallyl trisulfide and ajoene, are more effective potential anti-cancer treatments than the water-soluble compounds. There are several studies examining the effects of oil-soluble compounds on various types of cancer cells, although, to the best of our knowledge, there are no studies examining the effects of these compounds on glioma cells. The aim of the present study was to investigate the potential anti-glioma properties of DAD and garlic oil on proliferation and induction of apoptosis in four different types of glioma cell lines representative of different grades of the disease. The results showed that garlic oil exhibits favorable anti-cancer potential towards gliomas of various degrees of differentiation.
Collapse
Affiliation(s)
- Anna Choromanska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Pawel Surowiak
- Department of Histology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
29
|
Almatroodi SA, Alsahli MA, Almatroudi A, Rahmani AH. Garlic and its Active Compounds: A Potential Candidate in The Prevention of Cancer by Modulating Various Cell Signalling Pathways. Anticancer Agents Med Chem 2020; 19:1314-1324. [PMID: 30963982 DOI: 10.2174/1871520619666190409100955] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/07/2019] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cancer is a multi-factorial disease including alterations in the cell signalling pathways. Currently, several drugs are in use to treat cancer but such drugs show negative side effects on normal cells and cause severe toxicity. METHODS The current research is mainly focused on medicinal plants with potential therapeutic efficacy in the treatment of cancer without any adverse effects on normal cells. In this regard, garlic and its active compounds including diallyl sulfide, diallyl trisulfide, ajoene, and allicin have been established to suppress the growth of cancer and killing of cancer cells. RESULT The review focuses on garlic and its active compounds chemopreventive effect through modulating various cell signalling pathways. Additionally, garlic and its active compound were established to induce cell cycle arrest at the G0/G1 phase and G2/M phases in cancer cells, increase the expression of tumor suppressor genes, inhibit the angiogenesis process, induction of apoptosis and modulation of various other genetic pathways. CONCLUSION This review sketches the diverse chemopreventive activities of garlic and their active ingredients in the management of cancer mainly focusing on cell signalling pathways.
Collapse
Affiliation(s)
- Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Arshad H Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
30
|
Głowacka U, Brzozowski T, Magierowski M. Synergisms, Discrepancies and Interactions between Hydrogen Sulfide and Carbon Monoxide in the Gastrointestinal and Digestive System Physiology, Pathophysiology and Pharmacology. Biomolecules 2020; 10:biom10030445. [PMID: 32183095 PMCID: PMC7175135 DOI: 10.3390/biom10030445] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Endogenous gas transmitters, hydrogen sulfide (H2S), carbon monoxide (CO) and nitric oxide (NO) are important signaling molecules known to exert multiple biological functions. In recent years, the role of H2S, CO and NO in regulation of cardiovascular, neuronal and digestive systems physiology and pathophysiology has been emphasized. Possible link between these gaseous mediators and multiple diseases as well as potential therapeutic applications has attracted great attention from biomedical scientists working in many fields of biomedicine. Thus, various pharmacological tools with ability to release CO or H2S were developed and implemented in experimental animal in vivo and in vitro models of many disorders and preliminary human studies. This review was designed to review signaling functions, similarities, dissimilarities and a possible cross-talk between H2S and CO produced endogenously or released from chemical donors, with special emphasis on gastrointestinal digestive system pathologies prevention and treatment.
Collapse
|
31
|
Hosono T, Sato A, Nakaguchi N, Ozaki-Masuzawa Y, Seki T. Diallyl Trisulfide Inhibits Platelet Aggregation through the Modification of Sulfhydryl Groups. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1571-1578. [PMID: 31927886 DOI: 10.1021/acs.jafc.9b05557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Diallyl trisulfide (DATS) is a secondary metabolite of allicin, a volatile organosulfur flavoring compound generated by the crushing of garlic. These compounds have various medicinal effects such as antiplatelet activity. In this study, we demonstrated for the first time the cellular mechanism involved in the inhibition of platelet aggregation by DATS and dipropyl trisulfide (DPTS), which is a saturated analogue of DATS. Washed murine platelets were incubated with these sulfides, and platelet aggregation was evaluated by light transmission aggregometry. The amount of reaction products produced by DATS, DPTS, and glutathione (GSH) was measured using liquid chromatography-mass spectrometry. Compared with DPTS, DATS potently inhibited platelet aggregation induced by thrombin, U46619, and collagen. N-Ethylmaleimide (NEM), which is commonly used to modify sulfhydryl groups, also suppressed platelet aggregation. The reactivity of DATS with GSH was higher than that of DPTS. These data suggested that DATS inhibited platelet aggregation through the reaction of sulfhydryl groups.
Collapse
Affiliation(s)
- Takashi Hosono
- Department of Applied Life Sciences , Nihon University Graduate School of Bioresource Sciences , Fujisawa , Kanagawa 252-0880 , Japan
- Department of Chemistry and Life Science , Nihon University Collage of Bioresource Sciences , Fujisawa , Kanagawa 252-0880 , Japan
| | - Asuka Sato
- Department of Applied Life Sciences , Nihon University Graduate School of Bioresource Sciences , Fujisawa , Kanagawa 252-0880 , Japan
| | - Natsumi Nakaguchi
- Department of Applied Life Sciences , Nihon University Graduate School of Bioresource Sciences , Fujisawa , Kanagawa 252-0880 , Japan
| | - Yori Ozaki-Masuzawa
- Department of Chemistry and Life Science , Nihon University Collage of Bioresource Sciences , Fujisawa , Kanagawa 252-0880 , Japan
| | - Taiichiro Seki
- Department of Applied Life Sciences , Nihon University Graduate School of Bioresource Sciences , Fujisawa , Kanagawa 252-0880 , Japan
- Department of Chemistry and Life Science , Nihon University Collage of Bioresource Sciences , Fujisawa , Kanagawa 252-0880 , Japan
| |
Collapse
|
32
|
Kanamori Y, Via LD, Macone A, Canettieri G, Greco A, Toninello A, Agostinelli E. Aged garlic extract and its constituent, S-allyl-L-cysteine, induce the apoptosis of neuroblastoma cancer cells due to mitochondrial membrane depolarization. Exp Ther Med 2019; 19:1511-1521. [PMID: 32010332 PMCID: PMC6966145 DOI: 10.3892/etm.2019.8383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
Aged garlic extract (AGE) has been demonstrated to have therapeutic properties in tumors; however its mechanisms of action have not yet been fully elucidated. A previous study revealed that AGE exerts an anti-proliferative effect on a panel of both sensitive [wild-type (WT)] and multidrug-resistant (MDR) human cancer cells. Following treatment of the cells with AGE, cytofluorimetric analysis revealed the occurrence of dose-dependent mitochondrial membrane depolarization (MMD). In this study, in order to further clarify the mechanisms of action of AGE, the effects of AGE on mitochondria isolated from rat liver mitochondria (RLM) were also examined. AGE induced an effect on the components of the electrochemical gradient (ΔµH+), mitochondrial membrane potential (ΔΨm) and mitochondrial electrochemical gradient (ΔpHm). The mitochondrial membrane dysfunctions of RLM induced by AGE, namely the decrease in both membrane potential and chemical gradient were associated with a higher oxidation of both the endogenous glutathione and pyridine nucleotide content. To confirm the anti-proliferative effects of AGE, experiments were performed on the human neuroblastoma (NB) cancer cells, SJ-N-KP and the MYCN-amplified IMR5 cells, using its derivative S-allyl-L-cysteine (SAC), with the aim of providing evidence of the anticancer activity of this compound and its possible molecular mechanism as regards the induction of cytotoxicity. Following treatment of the cells with SAC at 20 mM, cell viability was determined by MTT assay and apoptosis was detected by flow cytometry, using Annexin V-FITC labeling. The percentages of cells undergoing apoptosis was found to be 48.0% in the SJ-N-KP and 50.1% in the IMR5 cells. By cytofluorimetric analysis, it was suggested that the target of SAC are the mitochondria. Mitochondrial activity was examined by labeling the cells with the probe, 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylimidacarbocyanine iodide (JC-1). Following treatment with SAC at 50 mM, both NB cell lines exhibited a marked increase in MMD. On the whole, the findings of this study indicate that both natural products, AGE and SAC, cause cytotoxicity to tumor cells via the induction of mitochondrial permeability transition (MPT).
Collapse
Affiliation(s)
- Yuta Kanamori
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, I-00185 Rome, Italy
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, I-35131 Padua, Italy
| | - Alberto Macone
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, I-00185 Rome, Italy
| | - Gianluca Canettieri
- Pasteur Laboratory, Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy.,International Polyamines Foundation-ONLUS, I-00159 Rome, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, I-00161 Rome, Italy
| | - Antonio Toninello
- International Polyamines Foundation-ONLUS, I-00159 Rome, Italy.,Department of Biomedical Sciences, University of Padua, I-35131 Padua, Italy
| | - Enzo Agostinelli
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, I-00185 Rome, Italy.,International Polyamines Foundation-ONLUS, I-00159 Rome, Italy
| |
Collapse
|
33
|
Kagawa Y, Ozaki-Masuzawa Y, Hosono T, Seki T. Garlic oil suppresses high-fat diet induced obesity in rats through the upregulation of UCP-1 and the enhancement of energy expenditure. Exp Ther Med 2019; 19:1536-1540. [PMID: 32010335 PMCID: PMC6966189 DOI: 10.3892/etm.2019.8386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022] Open
Abstract
Garlic (Allium sativum L.) has long been used as a medicinal food. Indeed, garlic and its constituents have been shown to possess potent regulatory activities in bodily functions, including blood coagulation, lipid metabolism, immunity and xenobiotic metabolism. In this study, we aimed to examine the anti-obesity effects of garlic oil and to elucidate the possible underlying mechanisms. For this purpose, garlic oil (GO; 80 mg/kg body weight, p.o.) or corn oil alone as a vehicle-control were administered to male Sprague-Dawley rats every other day for 10 weeks. The results revealed that GO administration significantly reduced body weight gain and white adipose tissue (WAT) mass, which had been increased by feeding on the AIN-76-based high-fat diet (60% kcal fat). Expired gas analysis was performed at 9 weeks following the GO administration to calculate fuel oxidation. GO administration enhanced O2 consumption during the dark period (at night) and increased energy expenditure through fat oxidation during the light period (daytime); however, carbohydrate oxidation remained unaltered. Western blot analysis revealed that GO administration increased UCP1 protein expression in brown adipose tissue (BAT). On the whole, the findings of this study indicated that GO suppressed body weight gain and WAT mass in the rat model of high-fat diet-induced obesity by increasing UCP1 expression and by enhancing fat oxidation and energy expenditure.
Collapse
Affiliation(s)
- Yuki Kagawa
- Department of Applied Life Science, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa 252-0880, Japan
| | - Yori Ozaki-Masuzawa
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Takashi Hosono
- Department of Applied Life Science, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa 252-0880, Japan.,Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Taiichiro Seki
- Department of Applied Life Science, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa 252-0880, Japan.,Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
34
|
Tocmo R, Parkin K. S-1-propenylmercaptocysteine protects murine hepatocytes against oxidative stress via persulfidation of Keap1 and activation of Nrf2. Free Radic Biol Med 2019; 143:164-175. [PMID: 31349040 DOI: 10.1016/j.freeradbiomed.2019.07.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
The onion-derived metabolite, S-1-propenylmercaptocysteine (CySSPe), protects against oxidative stress and exhibits anti-inflammatory effects by modulating cellular redox homeostasis. We sought to establish whether CySSPe activates nuclear factor erythroid 2-related factor 2 (Nrf2) and whether activation of Nrf2 by CySSPe involves modification of the Kelch-like ECH-associated protein-1 (Keap1) to manifest these effects. We found that CySSPe stabilized Nrf2 protein and facilitated nuclear translocation to induce expression of antioxidant enzymes, including NQO1, HO-1, and GCL. Moreover, CySSPe attenuated tert-butyl hydroperoxide-induced cytotoxicity and dose-dependently inhibited reactive oxygen species production. Silencing experiments using Nrf2-siRNA confirmed that CySSPe conferred protection against oxidative stress by activating Nrf2. CySSPe enhanced cellular pool of reduced glutathione (GSH) and improved GSH:GSSG ratio. Pretreatment of cells with l-buthionine-S,R-sulfoximine (BSO) confirmed that CySSPe increases de novo synthesis of GSH by upregulating expression of the GSH-synthesizing enzyme GCL. Treatment of cells with CySSPe elevated hydrogen sulfide (H2S) production. Inhibition of H2S-synthesizing enzymes, cystathionine-gamma-lyase (CSE) and cystathionine-beta-synthase (CBS), by pretreating cells with propargylglycine (PAG) and oxyaminoacetic acid (AOAA) revealed that H2S production was partially dependent on a CSE/CBS-catalyzed β-elimination reaction with CySSPe that likely produced 1-propenyl persulfide (RSSH). Depleting cells of their GSH pool by exposure to BSO and diethylmaleate attenuated H2S production, suggesting a GSH-dependent formation of H2S, likely via the reduction of RSSH by GSH. Finally, treatment of cells with CySSPe persulfidated Keap1, which may be the mechanism involved for the stabilization of Nrf2 by CySSPe. Taken together, our results showed that attenuation of oxidative stress by CySSPe is associated with its ability to produce H2S or RSSH, which persulfidates Keap1 and activates Nrf2 signaling. This study provides insights on the potential of CySSPe as an onion-derived dietary agent that modulates redox homeostasis and combats oxidative stress.
Collapse
Affiliation(s)
- Restituto Tocmo
- Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI, 53706, USA.
| | - Kirk Parkin
- Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI, 53706, USA
| |
Collapse
|
35
|
Yamaguchi Y, Honma R, Yazaki T, Shibuya T, Sakaguchi T, Uto-Kondo H, Kumagai H. Sulfuric Odor Precursor S-Allyl-l-Cysteine Sulfoxide in Garlic Induces Detoxifying Enzymes and Prevents Hepatic Injury. Antioxidants (Basel) 2019; 8:antiox8090385. [PMID: 31509980 PMCID: PMC6769545 DOI: 10.3390/antiox8090385] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 12/24/2022] Open
Abstract
S-Allyl-l-cysteine sulfoxide (ACSO) is a precursor of garlic-odor compounds like diallyl disulfide (DADS) and diallyl trisulfide (DATS) known as bioactive components. ACSO has suitable properties as a food material because it is water-soluble, odorless, tasteless and rich in bulbs of fresh garlic. The present study was conducted to examine the preventive effect of ACSO on hepatic injury induced by CCl4 in rats. ACSO, its analogs and garlic-odor compounds were each orally administered via gavage for five consecutive days before inducing hepatic injury. Then, biomarkers for hepatic injury and antioxidative state were measured. Furthermore, we evaluated the absorption and metabolism of ACSO in the small intestine of rats and NF-E2-related factor 2 (Nrf2) nuclear translocation by ACSO using HepG2 cells. As a result, ACSO, DADS and DATS significantly suppressed the increases in biomarkers for hepatic injury such as the activities of aspartate transaminase (AST), alanine transaminase (ALT) and lactate dehydrogenase (LDH), and decreases in antioxidative potency such as glutathione (GSH) level and the activities of glutathione S-transferase (GST) and glutathione peroxidase (GPx). We also found ACSO was absorbed into the portal vein from the small intestine but partially metabolized to DADS probably in the small intestine. In in vitro study, ACSO induced Nrf2 nuclear translocation in HepG2 cells, which is recognized as an initial trigger to induce antioxidative and detoxifying enzymes. Taken together, orally administered ACSO probably reached the liver and induced antioxidative and detoxifying enzymes by Nrf2 nuclear translocation, resulting in prevention of hepatic injury. DADS produced by the metabolism of ACSO in the small intestine might also have contributed to the prevention of hepatic injury. These results suggest potential use of ACSO in functional foods that prevent hepatic injury and other diseases caused by reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Yusuke Yamaguchi
- Department of Chemistry and Life Science, Nihon University, 1866 Kameino, Fujisawa-shi 252-0880, Japan.
| | - Ryosuke Honma
- Department of Chemistry and Life Science, Nihon University, 1866 Kameino, Fujisawa-shi 252-0880, Japan.
| | - Tomoaki Yazaki
- Department of Chemistry and Life Science, Nihon University, 1866 Kameino, Fujisawa-shi 252-0880, Japan.
| | - Takeshi Shibuya
- Department of Chemistry and Life Science, Nihon University, 1866 Kameino, Fujisawa-shi 252-0880, Japan.
| | - Tomoya Sakaguchi
- Department of Chemistry and Life Science, Nihon University, 1866 Kameino, Fujisawa-shi 252-0880, Japan.
| | - Harumi Uto-Kondo
- Department of Bioscience in Daily Life, Nihon University, 1866 Kameino, Fujisawa-shi 252-0880, Japan.
| | - Hitomi Kumagai
- Department of Chemistry and Life Science, Nihon University, 1866 Kameino, Fujisawa-shi 252-0880, Japan.
| |
Collapse
|
36
|
Antimicrobial garlic-derived diallyl polysulfanes: Interactions with biological thiols in Bacillus subtilis. Biochim Biophys Acta Gen Subj 2019; 1863:1050-1058. [DOI: 10.1016/j.bbagen.2019.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022]
|
37
|
Kaschula CH, Tuveri R, Ngarande E, Dzobo K, Barnett C, Kusza DA, Graham LM, Katz AA, Rafudeen MS, Parker MI, Hunter R, Schäfer G. The garlic compound ajoene covalently binds vimentin, disrupts the vimentin network and exerts anti-metastatic activity in cancer cells. BMC Cancer 2019; 19:248. [PMID: 30894168 PMCID: PMC6425727 DOI: 10.1186/s12885-019-5388-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/20/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Garlic has been used for centuries for its flavour and health promoting properties that include protection against cancer. The vinyl disulfide-sulfoxide ajoene is one of the phytochemicals found in crushed cloves, hypothesised to act by S-thiolating reactive cysteines in target proteins. METHODS Using our fluorescently labelled ajoene analogue called dansyl-ajoene, ajoene's protein targets in MDA-MB-231 breast cancer cells were tagged and separated by 2D electrophoresis. A predominant band was identified by MALDI-TOF MS/MS to be vimentin. Target validation experiments were performed using pure recombinant vimentin protein. Computational modelling of vimentin bound to ajoene was performed using Schrödinger and pKa calculations by Epik software. Cytotoxicity of ajoene in MDA-MB-231 and HeLa cells was measured by the MTT assay. The vimentin filament network was visualised in ajoene-treated and non-treated cells by immunofluorescence and vimentin protein expression was determined by immunoblot. The invasion and migration activity was measured by wound healing and transwell assays using wildtype cells and cells in which the vimentin protein had been transiently knocked down by siRNA or overexpressed. RESULTS The dominant protein tagged by dansyl-ajoene was identified to be the 57 kDa protein vimentin. The vimentin target was validated to reveal that ajoene and dansyl-ajoene covalently bind to recombinant vimentin via a disulfide linkage at Cys-328. Computational modelling showed Cys-328 to be exposed at the termini of the vimentin tetramer. Treatment of MDA-MB-231 or HeLa cells with a non-cytotoxic concentration of ajoene caused the vimentin filament network to condense; and to increase vimentin protein expression. Ajoene inhibited the invasion and migration of both cancer cell lines which was found to be dependent on the presence of vimentin. Vimentin overexpression caused cells to become more migratory, an effect that was completely rescued by ajoene. CONCLUSIONS The garlic-derived phytochemical ajoene targets and covalently modifies vimentin in cancer cells by S-thiolating Cys-328. This interaction results in the disruption of the vimentin filament network and contributes to the anti-metastatic activity of ajoene in cancer cells.
Collapse
Affiliation(s)
- Catherine H. Kaschula
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, 7600 South Africa
| | - Rosanna Tuveri
- Department of Biomedical Science, University of Cagliari, 09042 Monserrato, Italy
| | - Ellen Ngarande
- Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925 South Africa
| | - Kevin Dzobo
- Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925 South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), UCT Medical Campus, Anzio Rd, Observatory, Cape Town, 7925 South Africa
| | - Christopher Barnett
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700 South Africa
| | - Daniel A. Kusza
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700 South Africa
| | - Lisa M. Graham
- Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925 South Africa
| | - Arieh A. Katz
- Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925 South Africa
| | - Mohamed Suhail Rafudeen
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7700 South Africa
| | - M. Iqbal Parker
- Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925 South Africa
| | - Roger Hunter
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700 South Africa
| | - Georgia Schäfer
- Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925 South Africa
| |
Collapse
|
38
|
Liang JJ, Li HR, Chen Y, Zhang C, Chen DG, Liang ZC, Shi YQ, Zhang LL, Xin L, Zhao DB. Diallyl Trisulfide can induce fibroblast-like synovial apoptosis and has a therapeutic effect on collagen-induced arthritis in mice via blocking NF-κB and Wnt pathways. Int Immunopharmacol 2019; 71:132-138. [PMID: 30897500 DOI: 10.1016/j.intimp.2019.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Diallyl Trisulfide (DATS) is an organosulfur compound extracted from garlic bulb, and exerts cardioprotective, anti-inflammatory, antioxidant, antimicrobial and anticancer effects. But its role in the pathogenesis of rheumatoid arthritis (RA) is unknown. Here we explored the influence of DATS on human fibroblast-like synoviocytes (FLS) isolated from RA patients and a mouse model of collagen-induced arthritis (CIA) and the underlying mechanism. METHODS RA-FLS were cultured and treated with different concentrations of DATS. The CCK8 assay was used to assess cell proliferation while cell apoptosis was detected by flow cytometry and western blot. The IL-8, IL-6 and IL-1β levels were determined using RT-qPCR and ELISA assay. The expression of proteins of the NF-κB and Wnt pathways were measured using western blot. Furthermore, the effect of DATS was also explored in vivo using the collagen-induced arthritis mouse model. The Th17/Treg pattern obtain from cells of spleen of collagen-induced arthritis mouse model was detected by flow cytometry. RESULTS Our results showed that DATS could decrease cell viability and introduce apoptosis in RA-FLS. Furthermore, DATS significantly attenuated the production of key inflammatory cytokines induced by RA-FLS cells following treatment with tumor necrosis α (TNF-α) at a concentration of 100 μM or higher. This was due to its inhibitory effect on the NF-κB and Wnt pathway signaling in RA-FLS. Additionally, DATS decreased the production of inflammatory cytokines and regulated the immune function by restoring the balance between Th17 and Treg in CIA mouse model. CONCLUSIONS In conclusion, DATS may serve as a potential curative agent for RA.
Collapse
Affiliation(s)
- Jing Jing Liang
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University/Naval Medical University, Shanghai, China; Department of Endocrinology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Hao Ran Li
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University/Naval Medical University, Shanghai, China
| | - Yong Chen
- Department of Plastic and Reconstructive Surgery, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Chen Zhang
- Department of Joint Bone Disease Surgery, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Da Gui Chen
- Second Military Medical University/Naval Medical University, Shanghai, China
| | - Zhi Chao Liang
- Department of Joint Bone Disease Surgery, Guanghua Hospital, Shanghai, China
| | - Ye Qing Shi
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University/Naval Medical University, Shanghai, China
| | - Lan Ling Zhang
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University/Naval Medical University, Shanghai, China
| | - Lei Xin
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University/Naval Medical University, Shanghai, China
| | - Dong Bao Zhao
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University/Naval Medical University, Shanghai, China.
| |
Collapse
|
39
|
Kim HJ, Kang S, Kim DY, You S, Park D, Oh SC, Lee DH. Diallyl disulfide (DADS) boosts TRAIL-Mediated apoptosis in colorectal cancer cells by inhibiting Bcl-2. Food Chem Toxicol 2019; 125:354-360. [DOI: 10.1016/j.fct.2019.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 01/25/2023]
|
40
|
Chen C, Cai J, Liu SQ, Qiu GL, Wu XG, Zhang W, Chen C, Qi WL, Wu Y, Liu ZB. Comparative study on the composition of four different varieties of garlic. PeerJ 2019; 7:e6442. [PMID: 30809446 PMCID: PMC6387757 DOI: 10.7717/peerj.6442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/13/2019] [Indexed: 11/20/2022] Open
Abstract
Garlic is used as a medicinal seasoning worldwide. The aim of this work was to compare four varieties of garlic: ‘Taicangbaipi’, ‘Ershuizao’, ‘Hongqixing’, and ‘Single-clove’; among them, ‘Ershuizao’ and ‘Hongqixing’ are unique to the Sichuan Province of China. Firstly, soluble sugar, starch, and the protein content of the garlic were analysed. There was more soluble sugar in ‘Single-clove’, total starch in ‘Hongqixing’, and protein content in ‘Ershuizao’ relative to the other three varieties, respectively. Gas chromatography–mass spectrometry analysis showed that ‘Ershuizao’ and ‘Hongqixing’ contained high levels of 5-hydroxymethylfurfural, which has antitumor, antioxidant, and cytoprotective effects. Indeed, the extracts from these two types of garlic were more effective at inhibiting tumour growth than that from the others. Moreover, the sulphide content and antimicrobial effects of ‘Ershuizao’ and ‘Hongqixing’ garlic were also higher than those of the other two types of garlic. In addition, changes observed in the membrane permeability and protein leakage suggest that the antimicrobial activity of the ‘Ershuizao’ and ‘Hongqixing’ extracts may be due to the destruction of the structural integrity of the cell membranes, leading to cell death.
Collapse
Affiliation(s)
- Cun Chen
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, PR China
| | - Jing Cai
- West China School of Pharmacy, Sichuan University, Chengdu, PR China
| | - Song-Qing Liu
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, PR China
| | - Guo-Liang Qiu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Xiao-Gang Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, PR China
| | - Wei Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, PR China
| | - Cheng Chen
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, PR China
| | - Wei-Liang Qi
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, PR China
| | - Yong Wu
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, PR China
| | - Zhi-Bin Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| |
Collapse
|
41
|
Bolton SG, Cerda MM, Gilbert AK, Pluth MD. Effects of sulfane sulfur content in benzyl polysulfides on thiol-triggered H 2S release and cell proliferation. Free Radic Biol Med 2019; 131:393-398. [PMID: 30579781 PMCID: PMC6347403 DOI: 10.1016/j.freeradbiomed.2018.12.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/30/2022]
Abstract
Investigations into hydrogen sulfide (H2S) signaling pathways have demonstrated both the generation and importance of persulfides, which are reactive sulfur species that contain both reduced and oxidized sulfur. These observations have led researchers to suggest that oxidized sulfur species, including sulfane sulfur (S0), are responsible for many of the physiological phenomena initially attributed to H2S. A common method of introducing S0 to biological systems is the administration of organic polysulfides, such as diallyl trisulfide (DATS). However, prior reports have demonstrated that commercially-available DATS often contains a mixture of polysulfides, and furthermore a lack of structure-activity relationships for organic polysulfides has limited our overall understanding of different polysulfides and their function in biological systems. Advancing our interests in the chemical biology of reactive sulfur species including H2S and S0, we report here our investigations into the rates and quantities of H2S release from a series of synthetic, pure benzyl polysulfides, ranging from monosulfide to tetrasulfide. We demonstrate that H2S is only released from the trisulfide and tetrasulfide, and that this release requires thiol-mediated reduction in the presence of cysteine or reduced glutathione. Additionally, we demonstrate the different effects of trisulfides and tetrasulfides on cell proliferation in murine epithelial bEnd.3 cells.
Collapse
Affiliation(s)
- Sarah G Bolton
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Matthew M Cerda
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Annie K Gilbert
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
42
|
Tang Q, Ren H, Yan L, Quan X, Xia H, Luo H. Diallyl trisulfide regulates rat colonic smooth muscle contractions by inhibiting L-type calcium channel currents. J Pharmacol Sci 2018; 137:299-304. [PMID: 30098911 DOI: 10.1016/j.jphs.2018.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023] Open
Abstract
Diallyl trisulfide (DATS) is an active organosulfide component of allicin and has several beneficial effects, including antimicrobial, antioxidant, cardioprotective and anticancer effects. Few studies have shown the modulatory effect of DATS on L-type calcium channels in rat colonic smooth muscle cells and colonic motility. To investigate the modulatory effect of DATS on L-type calcium channels in rat colonic smooth muscle and colonic contraction, L-type calcium channel currents were recorded, and colonic contractility in longitudinal and circular smooth muscle strips was measured. DATS attenuated L-type calcium channel currents without affecting steady-state activation or inactivation kinetics and inhibited the spontaneous contractions of both longitudinal and circular smooth muscle strips dose-dependently. In conclusion, DATS has an inhibitory effect on the contractions of colonic muscle strips that is related to its regulation of L-type calcium channels.
Collapse
Affiliation(s)
- Qincai Tang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei Province, China; Hubei Key Laboratory of Digestive System Disease, 430060, Wuhan, Hubei Province, China.
| | - Haixia Ren
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei Province, China; Hubei Key Laboratory of Digestive System Disease, 430060, Wuhan, Hubei Province, China
| | - Lin Yan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei Province, China; Hubei Key Laboratory of Digestive System Disease, 430060, Wuhan, Hubei Province, China
| | - Xiaojing Quan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China
| | - Hong Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei Province, China; Hubei Key Laboratory of Digestive System Disease, 430060, Wuhan, Hubei Province, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei Province, China; Hubei Key Laboratory of Digestive System Disease, 430060, Wuhan, Hubei Province, China.
| |
Collapse
|
43
|
Ohkubo S, Dalla Via L, Grancara S, Kanamori Y, García-Argáez AN, Canettieri G, Arcari P, Toninello A, Agostinelli E. The antioxidant, aged garlic extract, exerts cytotoxic effects on wild-type and multidrug-resistant human cancer cells by altering mitochondrial permeability. Int J Oncol 2018; 53:1257-1268. [PMID: 29956777 DOI: 10.3892/ijo.2018.4452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/16/2018] [Indexed: 11/06/2022] Open
Abstract
Aged garlic extract (AGE) has been shown to possess therapeutic properties in cancer; however its mechanisms of action are unclear. In this study, we demonstrate by MTT assay that AGE exerts an anti-proliferative effect on a panel of both sensitive and multidrug-resistant (MDR) human cancer cell lines and enhances the effects of hyperthermia (42˚C) on M14 melanoma cells. The evaluation of the mitochondrial activity in whole cancer cells treated with AGE, performed by cytofluorimetric analysis in the presence of the lipophilic cationic fluorochrome JC-1, revealed the occurrence of dose-dependent mitochondrial membrane depolarization. Membrane potential was measured by the TPP+ selective electrode. In order to shed light on its mechanisms of action, the effects of AGE on isolated rat liver mitochondria were also examined. In this regard, AGE induced a mitochondrial membrane hyperpolarization of approximately 15 mV through a mechanism that was similar to that observed with the ionophores, nigericin or salinomycin, by activating an exchange between endogenous K+ with exogenous H+. The prolonged incubation of the mitochondria with AGE induced depolarization and matrix swelling, indicative of mitochondrial permeability transition induction that, however, occurs through a different mechanism from the well-known one. In particular, the transition pore opening induced by AGE was due to the rearrangement of the mitochondrial membranes following the increased activity of the K+/H+ exchanger. On the whole, the findings of this study indicate that AGE exerts cytotoxic effects on cancer cells by altering mitochondrial permeability. In particular, AGE in the mitochondria activates K+/H+ exchanger, causes oxidative stress and induces mitochondrial permeability transition (MPT).
Collapse
Affiliation(s)
- Shinji Ohkubo
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, I-00185 Rome, Italy
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, I-35131 Padua, Italy
| | - Silvia Grancara
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, I-00185 Rome, Italy
| | - Yuta Kanamori
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, I-00185 Rome, Italy
| | - Aída Nelly García-Argáez
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, I-35131 Padua, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine - Sapienza University of Rome, 00161 Rome, Italy
| | - Paolo Arcari
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80138 Naples, Italy
| | - Antonio Toninello
- Department of Biomedical Sciences, University of Padua, I-35131 Padua, Italy
| | - Enzo Agostinelli
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, I-00185 Rome, Italy
| |
Collapse
|
44
|
Natural scaffolds in anticancer therapy and precision medicine. Biotechnol Adv 2018; 36:1563-1585. [PMID: 29729870 DOI: 10.1016/j.biotechadv.2018.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/08/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022]
Abstract
The diversity of natural compounds is essential for their mechanism of action. The source, structures and structure activity relationship of natural compounds contributed to the development of new classes of chemotherapy agents for over 40 years. The availability of combinatorial chemistry and high-throughput screening has fueled the challenge to identify novel compounds that mimic nature's chemistry and to predict their macromolecular targets. Combining conventional and targeted therapies helped to successfully overcome drug resistance and prolong disease-free survival. Here, we aim to provide an overview of preclinical investigated natural compounds alone and in combination to further improve personalization of cancer treatment.
Collapse
|
45
|
Rescigno T, Tecce MF, Capasso A. Protective and Restorative Effects of Nutrients and Phytochemicals. Open Biochem J 2018; 12:46-64. [PMID: 29760813 PMCID: PMC5906970 DOI: 10.2174/1874091x01812010046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022] Open
Abstract
Intoroduction: Dietary intake fundamentally provides reintegration of energy and essential nutrients to human organisms. However, its qualitative and quantitative composition strongly affects individual’s health, possibly being either a preventive or a risk factor. It was shown that nutritional status resulting from long-term exposition to specific diet formulations can outstandingly reduce incidences of most common and most important diseases of the developed world, such as cardiovascular and neoplastic diseases. Diet formulations result from different food combinations which bring specific nutrient molecules. Numerous molecules, mostly but not exclusively from vegetal foods, have been characterized among nutritional components as being particularly responsible for diet capabilities to exert risk reduction. These “bioactive nutrients” are able to produce effects which go beyond basic reintegration tasks, i.e. energetic and/or structural, but are specifically pharmacologically active within pathophysiological pathways related to many diseases, being able to selectively affect processes such as cell proliferation, apoptosis, inflammation, differentiation, angiogenesis, DNA repair and carcinogens activation. Conclusion: The present review was aimed to know the molecular mechanisms and pathways of activity of bioactive molecules; which will firstly allow search for optimal food composition and intake, and then use them as possible therapeutical targets and/or diagnostics. Also, the present review discussed the therapeutic effect of both nutrients and phytochemicals.
Collapse
Affiliation(s)
- Tania Rescigno
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Mario F Tecce
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Anna Capasso
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| |
Collapse
|
46
|
Bansal M, Singh N, Pal S, Dev I, Ansari KM. Chemopreventive Role of Dietary Phytochemicals in Colorectal Cancer. ADVANCES IN MOLECULAR TOXICOLOGY 2018. [DOI: 10.1016/b978-0-444-64199-1.00004-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Natural compounds and combination therapy in colorectal cancer treatment. Eur J Med Chem 2018; 144:582-594. [DOI: 10.1016/j.ejmech.2017.12.039] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022]
|
48
|
Bhattacherjee D, Basu C, Bhardwaj Q, Mal S, Sahu S, Sur R, Bhabak KP. Design, Synthesis and Anti-Cancer Activities of Benzyl Analogues of Garlic-Derived Diallyl Disulfide (DADS) and the Corresponding Diselenides. ChemistrySelect 2017. [DOI: 10.1002/slct.201700499] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Debojit Bhattacherjee
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati 781039, Assam India
- Centre for the Environment; Indian Institute of Technology Guwahati; Guwahati 781039, Assam India
- Department of Chemistry; Presidency University; Kolkata 700073 India
| | - Chitra Basu
- Department of Biophysics, Molecular Biology and Bioinformatics; University of Calcutta; Kolkata- 700 009 India
| | - Queen Bhardwaj
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati 781039, Assam India
| | - Sourav Mal
- Department of Chemistry; Presidency University; Kolkata 700073 India
| | - Subhajit Sahu
- Department of Chemistry; Presidency University; Kolkata 700073 India
| | - Runa Sur
- Department of Biophysics, Molecular Biology and Bioinformatics; University of Calcutta; Kolkata- 700 009 India
| | - Krishna P. Bhabak
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati 781039, Assam India
- Centre for the Environment; Indian Institute of Technology Guwahati; Guwahati 781039, Assam India
- Department of Chemistry; Presidency University; Kolkata 700073 India
| |
Collapse
|
49
|
Puccinelli MT, Stan SD. Dietary Bioactive Diallyl Trisulfide in Cancer Prevention and Treatment. Int J Mol Sci 2017; 18:ijms18081645. [PMID: 28788092 PMCID: PMC5578035 DOI: 10.3390/ijms18081645] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023] Open
Abstract
Bioactive dietary agents have been shown to regulate multiple cancer hallmark pathways. Epidemiologic studies have linked consumption of Allium vegetables, such as garlic and onions, to decreased incidence of cancer. Diallyl trisulfide (DATS), a bioactive compound derived from Allium vegetables, has been investigated as an anti-cancer and chemopreventive agent. Preclinical studies provide ample evidence that DATS regulates multiple cancer hallmark pathways including cell cycle, apoptosis, angiogenesis, invasion, and metastasis. DATS has been shown to arrest cancer cells at multiple stages of the cell cycle with the G2/M arrest being the most widely reported. Additionally, increased pro-apoptotic capacity as a result of regulating intrinsic and extrinsic apoptotic pathway components has been widely reported following DATS treatment. Invasion, migration, and angiogenesis represent emerging targets of DATS and support its anti-cancer properties. This review summarizes DATS mechanisms of action as an anti-cancer and chemopreventive agent. These studies provide rationale for future investigation into its use as a cancer chemopreventive agent.
Collapse
Affiliation(s)
- Michael T Puccinelli
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Silvia D Stan
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
- Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA.
| |
Collapse
|
50
|
Tüchler M, Holler S, Schachner JA, Belaj F, Mösch-Zanetti NC. Unusual C-N Coupling Reactivity of Thiopyridazines: Efficient Synthesis of Iron Diorganotrisulfide Complexes. Inorg Chem 2017; 56:8159-8165. [PMID: 28654286 DOI: 10.1021/acs.inorgchem.7b00865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction of iron(II) triflate with 6-tert-butyl-3-thiopyridazine (PnH) and 4-methyl-6-tert-butyl-3-thiopyridazine (MePnH) respectively led to iron bis(diorganotrisulfide) complexes [Fe(RPnS3PnR)2](OTf)2 [R = H (1a) and Me (2a)]. The corresponding perchlorate complexes were prepared by using the iron(II) chloride precursor and the subsequent addition of 2 equiv of NaClO4, giving [Fe(RPnS3PnR)2](ClO4)2 [R = H (1b) and Me (2b)]. The compounds were fully characterized including single-crystal X-ray diffraction analysis. All four compounds exhibit nearly perfect octahedral geometries with an iron center coordinated by four nitrogen atoms from two RPnS3PnR ligands and by two sulfur atoms of the central atom in the S3 unit. The diamagnetic complexes exhibit unusually high redox potentials for the Fe2+/3+ couple at E1/2 = 1.15 V (for 1a and 1b) and 1.08 V (for 2a and 2b) versus Fc/Fc+, respectively, as determined by cyclic voltammetry. Furthermore, the source of the extra sulfur atom within the S3 unit was elucidated by isolation of C-N-coupled pyridazinylthiopyridazine products.
Collapse
Affiliation(s)
- Michael Tüchler
- Institute of Chemistry, University of Graz , Schubertstrasse 1, 8010 Graz, Austria
| | - Stefan Holler
- Institute of Chemistry, University of Graz , Schubertstrasse 1, 8010 Graz, Austria
| | - Jörg A Schachner
- Institute of Chemistry, University of Graz , Schubertstrasse 1, 8010 Graz, Austria
| | - Ferdinand Belaj
- Institute of Chemistry, University of Graz , Schubertstrasse 1, 8010 Graz, Austria
| | | |
Collapse
|