1
|
Jeanne F, Pilet S, Klett D, Combarnous Y, Bernay B, Dufour S, Favrel P, Sourdaine P. Characterization of gonadotropins and their receptors in a chondrichthyan, Scyliorhinus canicula, fills a gap in the understanding of their coevolution. Gen Comp Endocrinol 2024; 358:114614. [PMID: 39326529 DOI: 10.1016/j.ygcen.2024.114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
In Gnathostomes, reproduction is mainly controlled by the hypothalamic-pituitary-gonadal (HPG) axis, with the involvement of the pituitary gonadotropic hormones (GTH), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which activate their cognate receptors, FSHR and LHR, expressed in gonads. Each GTH consists of a common α subunit and of a specific FSHβ or LHβ subunit. Chondrichthyes (holocephalans and elasmobranchs) is a sister group of bony vertebrates. This position is highly favorable for the understanding of the evolution of endocrine regulations of reproduction among gnathostomes. Surprisingly, the characterization of gonadotropins and their receptors is still limited in chondrichthyes. In the present study, GTH and GTHR sequences have been identified from several chondrichthyan genomes, and their primary structures were analyzed relative to human orthologs. 3D models of GTH/GTHR interaction were built, highlighting the importance of the receptor hinge region for ligand recognition. Functional hormone-receptor interactions have been studied in HEK cells using the small-spotted catshark (Scyliorhinus canicula) recombinant proteins and showed that LHR was specifically activated by LH whereas FSHR was activated by both FSH and LH. Expression profiles of GTHs and their receptors were explored by real-time PCR, in situ hybridization and immunohistochemistry during spermatogenesis, along the male genital tract and other tissues, as well as in some female tissues for comparison. Tissue-expression analyses showed that the highest levels were observed for fshr transcripts in testis and ovary and for lhr in specific extragonadal tissues. The two receptors were expressed at all stages of spermatogenesis by both germ cells and somatic cells, including undifferentiated spermatogonia, spermatocytes, spermatids, somatic precursors and Sertoli cells; differentiated Leydig cells being absent in the testis of S. canicula. Receptors were also expressed by the lymphomyeloid epigonal tissue and the testicular tubules. These results, suggest a wide range of gonadotropin-regulated functions in Elasmobranchs, as well as functional redundancy during spermatogenesis. These extended functions are discussed in an evolutionary context in which the specificity of gonadotropin signaling must have contributed to the evolution of gonadal cells' morphology and function.
Collapse
Affiliation(s)
- Fabian Jeanne
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| | - Stanislas Pilet
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| | - Danièle Klett
- INRAE, CNRS, UMR Physiologie de la Reproduction & des Comportements, 37380 Nouzilly, France
| | - Yves Combarnous
- INRAE, CNRS, UMR Physiologie de la Reproduction & des Comportements, 37380 Nouzilly, France
| | - Benoît Bernay
- Université de Caen Normandie - Plateforme PROTEOGEN, US EMerode, 14032 Caen cedex 5, France
| | - Sylvie Dufour
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| | - Pascal Favrel
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| | - Pascal Sourdaine
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France.
| |
Collapse
|
2
|
Maginnis MS. β-arrestins and G protein-coupled receptor kinases in viral entry: A graphical review. Cell Signal 2023; 102:110558. [PMID: 36509265 PMCID: PMC9811579 DOI: 10.1016/j.cellsig.2022.110558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Viruses rely on host-cell machinery in order to invade host cells and carry out a successful infection. G-protein coupled receptor (GPCR)-mediated signaling pathways are master regulators of cellular physiological processing and are an attractive target for viruses to rewire cells during infection. In particular, the GPCR-associated scaffolding proteins β-arrestins and GPCR signaling effectors G-protein receptor kinases (GRKs) have been identified as key cellular factors that mediate viral entry and orchestrate signaling pathways that reprogram cells for viral replication. Interestingly, a broad range of viruses have been identified to activate and/or require GPCR-mediated pathways for infection, including polyomaviruses, flaviviruses, influenza virus, and SARS-CoV-2, demonstrating that these viruses may have conserved mechanisms of host-cell invasion. Thus, GPCR-mediated pathways highlight an attractive target for the development of broad antiviral therapies.
Collapse
Affiliation(s)
- Melissa S Maginnis
- Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, United States of America; Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, ME 04469, United States of America.
| |
Collapse
|
3
|
Stäubert C, Wozniak M, Dupuis N, Laschet C, Pillaiyar T, Hanson J. Superconserved receptors expressed in the brain: Expression, function, motifs and evolution of an orphan receptor family. Pharmacol Ther 2022; 240:108217. [PMID: 35644261 DOI: 10.1016/j.pharmthera.2022.108217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022]
Abstract
GPR27, GPR85 and GPR173 constitute a small family of G protein-coupled receptors (GPCR) that share the distinctive characteristics of being highly conserved throughout vertebrate evolution and predominantly expressed in the brain. Accordingly, they have been coined as "Superconserved Receptors Expressed in the Brain" (SREB), although their expression profile is more complex than what was originally thought. SREBs have no known validated endogenous ligands and are thus labeled as "orphan" receptors. The investigation of this particular category of uncharacterized receptors holds great promise both in terms of physiology and drug development. In the largest GPCR family, the Rhodopsin-like or Class A, around 100 receptors are considered orphans. Because GPCRs are the most successful source of drug targets, the discovery of a novel function or ligand most likely will lead to significant breakthroughs for the discovery of innovative therapies. The high level of conservation is one of the characteristic features of the SREBs. We propose herein a detailed analysis of the putative evolutionary origin of this family. We highlight the properties that distinguish SREBs from other rhodopsin-like GPCRs. We present the current evidence for these receptors downstream signaling pathways and functions. We discuss the pharmacological challenge for the identification of natural or synthetic ligands of orphan receptors like SREBs. The different SREB-related scientific questions are presented with a highlight on what should be addressed in the near future, including the confirmation of published evidence and their validation as drug targets. In particular, we discuss in which pathological conditions these receptors may be of great relevance to solve unmet medical needs.
Collapse
Affiliation(s)
- Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany.
| | - Monika Wozniak
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Nadine Dupuis
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Céline Laschet
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium; Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium.
| |
Collapse
|
4
|
Taghert PH. The incidence of candidate binding sites for β-arrestin in Drosophila neuropeptide GPCRs. PLoS One 2022; 17:e0275410. [PMID: 36318573 PMCID: PMC9624432 DOI: 10.1371/journal.pone.0275410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/14/2022] [Indexed: 01/24/2023] Open
Abstract
To support studies of neuropeptide neuromodulation, I have studied beta-arrestin binding sites (BBS's) by evaluating the incidence of BBS sequences among the C terminal tails (CTs) of each of the 49 Drosophila melanogaster neuropeptide GPCRs. BBS were identified by matches with a prediction derived from structural analysis of rhodopsin:arrestin and vasopressin receptor: arrestin complexes [1]. To increase the rigor of the identification, I determined the conservation of BBS sequences between two long-diverged species D. melanogaster and D. virilis. There is great diversity in the profile of BBS's in this group of GPCRs. I present evidence for conserved BBS's in a majority of the Drosophila neuropeptide GPCRs; notably some have no conserved BBS sequences. In addition, certain GPCRs display numerous conserved compound BBS's, and many GPCRs display BBS-like sequences in their intracellular loop (ICL) domains as well. Finally, 20 of the neuropeptide GPCRs are expressed as protein isoforms that vary in their CT domains. BBS profiles are typically different across related isoforms suggesting a need to diversify and regulate the extent and nature of GPCR:arrestin interactions. This work provides the initial basis to initiate future in vivo, genetic analyses in Drosophila to evaluate the roles of arrestins in neuropeptide GPCR desensitization, trafficking and signaling.
Collapse
Affiliation(s)
- Paul H. Taghert
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
5
|
Hegron A, Huh E, Deupi X, Sokrat B, Gao W, Le Gouill C, Canouil M, Boissel M, Charpentier G, Roussel R, Balkau B, Froguel P, Plouffe B, Bonnefond A, Lichtarge O, Jockers R, Bouvier M. Identification of Key Regions Mediating Human Melatonin Type 1 Receptor Functional Selectivity Revealed by Natural Variants. ACS Pharmacol Transl Sci 2021; 4:1614-1627. [PMID: 34661078 PMCID: PMC8507577 DOI: 10.1021/acsptsci.1c00157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 11/30/2022]
Abstract
Melatonin is a hormone mainly produced by the pineal gland and MT1 is one of the two G protein-coupled receptors (GPCRs) mediating its action. Despite an increasing number of available GPCR crystal structures, the molecular mechanism of activation of a large number of receptors, including MT1, remains poorly understood. The purpose of this study is to elucidate the structural elements involved in the process of MT1's activation using naturally occurring variants affecting its function. Thirty-six nonsynonymous variants, including 34 rare ones, were identified in MTNR1A (encoding MT1) from a cohort of 8687 individuals and their signaling profiles were characterized using Bioluminescence Resonance Energy Transfer-based sensors probing 11 different signaling pathways. Computational analysis of the experimental data allowed us to group the variants in clusters according to their signaling profiles and to analyze the position of each variant in the context of the three-dimensional structure of MT1 to link functional selectivity to structure. MT1 variant signaling profiles revealed three clusters characterized by (1) wild-type-like variants, (2) variants with selective defect of βarrestin-2 recruitment, and (3) severely defective variants on all pathways. Our structural analysis allows us to identify important regions for βarrestin-2 recruitment as well as for Gα12 and Gα15 activation. In addition to identifying MT1 domains differentially controlling the activation of the various signaling effectors, this study illustrates how natural variants can be used as tools to study the molecular mechanisms of receptor activation.
Collapse
Affiliation(s)
- Alan Hegron
- Université
de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
- Department
of Biochemistry and Molecular Medicine, University de Montréal, Montreal, Quebec, H3T 1J4 Canada
- Institute
for Research in Immunology and Cancer, University
of Montreal, Montreal, Quebec, H3T 1J4 Canada
| | - Eunna Huh
- Department
of Pharmacology and Chemical Biology, Baylor
College of Medicine, Houston, Texas 77030, United States of America
| | - Xavier Deupi
- Laboratory
of Biomolecular Research, Paul Scherrer
Institute (PSI), 5232 Villigen, Switzerland
- Condensed
Matter Theory group, Paul Scherrer Institute
(PSI), 5232 Villigen, Switzerland
| | - Badr Sokrat
- Department
of Biochemistry and Molecular Medicine, University de Montréal, Montreal, Quebec, H3T 1J4 Canada
- Institute
for Research in Immunology and Cancer, University
of Montreal, Montreal, Quebec, H3T 1J4 Canada
| | - Wenwen Gao
- Université
de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Christian Le Gouill
- Institute
for Research in Immunology and Cancer, University
of Montreal, Montreal, Quebec, H3T 1J4 Canada
| | - Mickaël Canouil
- Inserm
UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, 59000, France
- University
of Lille, Lille University
Hospital, Lille, 59000, France
| | - Mathilde Boissel
- Inserm
UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, 59000, France
- University
of Lille, Lille University
Hospital, Lille, 59000, France
| | - Guillaume Charpentier
- Centre d’Étude et de Recherche pour l’Intensification
du Traitement du Diabète, 91000, Evry, France
| | - Ronan Roussel
- Department
of Diabetology Endocrinology Nutrition, Hôpital Bichat, DHU FIRE, Assistance Publique Hôpitaux
de Paris, 75004 Paris, France
- Inserm U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- UFR de Médecine, University Paris
Diderot, Sorbonne Paris Cité, 75006 Paris, France
| | - Beverley Balkau
- Inserm U1018, Center for Research in Epidemiology and Population
Health, 94805 Villejuif, France
- University
Paris-Saclay, University Paris-Sud, 94270 Villejuif, France
| | - Philippe Froguel
- Inserm
UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, 59000, France
- University
of Lille, Lille University
Hospital, Lille, 59000, France
- Department
of Metabolism, Imperial College London, London, W12 0NN, United Kingdom
| | - Bianca Plouffe
- Department
of Biochemistry and Molecular Medicine, University de Montréal, Montreal, Quebec, H3T 1J4 Canada
- Institute
for Research in Immunology and Cancer, University
of Montreal, Montreal, Quebec, H3T 1J4 Canada
| | - Amélie Bonnefond
- Inserm
UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, 59000, France
- University
of Lille, Lille University
Hospital, Lille, 59000, France
- Department
of Metabolism, Imperial College London, London, W12 0NN, United Kingdom
| | - Olivier Lichtarge
- Department
of Pharmacology and Chemical Biology, Baylor
College of Medicine, Houston, Texas 77030, United States of America
- Department
of Molecular and Human Genetics, Baylor
College of Medicine, Houston, Texas 77030, United States
| | - Ralf Jockers
- Université
de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Michel Bouvier
- Department
of Biochemistry and Molecular Medicine, University de Montréal, Montreal, Quebec, H3T 1J4 Canada
- Institute
for Research in Immunology and Cancer, University
of Montreal, Montreal, Quebec, H3T 1J4 Canada
| |
Collapse
|
6
|
Wanka L, Behr V, Beck-Sickinger AG. Arrestin-dependent internalization of rhodopsin-like G protein-coupled receptors. Biol Chem 2021; 403:133-149. [PMID: 34036761 DOI: 10.1515/hsz-2021-0128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/28/2021] [Indexed: 01/14/2023]
Abstract
The internalization of G protein-coupled receptors (GPCRs) is an important mechanism regulating the signal strength and limiting the opportunity of receptor activation. Based on the importance of GPCRs, the detailed knowledge about the regulation of signal transduction is crucial. Here, current knowledge about the agonist-induced, arrestin-dependent internalization process of rhodopsin-like GPCRs is reviewed. Arrestins are conserved molecules that act as key players within the internalization process of many GPCRs. Based on highly conserved structural characteristics within the rhodopsin-like GPCRs, the identification of arrestin interaction sites in model systems can be compared and used for the investigation of internalization processes of other receptors. The increasing understanding of this essential regulation mechanism of receptors can be used for drug development targeting rhodopsin-like GPCRs. Here, we focus on the neuropeptide Y receptor family, as these receptors transmit various physiological processes such as food intake, energy homeostasis, and regulation of emotional behavior, and are further involved in pathophysiological processes like cancer, obesity and mood disorders. Hence, this receptor family represents an interesting target for the development of novel therapeutics requiring the understanding of the regulatory mechanisms influencing receptor mediated signaling.
Collapse
Affiliation(s)
- Lizzy Wanka
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Victoria Behr
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| |
Collapse
|
7
|
GRK2 mediates β-arrestin interactions with 5-HT 2 receptors for JC polyomavirus endocytosis. J Virol 2021; 95:JVI.02139-20. [PMID: 33441347 PMCID: PMC8092707 DOI: 10.1128/jvi.02139-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
JC polyomavirus (JCPyV) infects the majority of the population, establishing a lifelong, asymptomatic infection in the kidney of healthy individuals. People that become severely immunocompromised may experience JCPyV reactivation, which can cause progressive multifocal leukoencephalopathy (PML), a neurodegenerative disease. Due to a lack of therapeutic options, PML results in fatality or significant debilitation among affected individuals. Cellular internalization of JCPyV is mediated by serotonin 5-hydroxytryptamine subfamily 2 receptors (5-HT2Rs) via clathrin-mediated endocytosis. The JCPyV entry process requires the clathrin-scaffolding proteins β-arrestin, adaptor protein 2 (AP2), and dynamin. Further, a β-arrestin interacting domain, the Ala-Ser-Lys (ASK) motif, within the C-terminus of 5-HT2AR is important for JCPyV internalization and infection. Interestingly, 5-HT2R subtypes A, B, and C equally support JCPyV entry and infection, and all subtypes contain an ASK motif, suggesting a conserved mechanism for viral entry. However, the role of the 5-HT2R ASK motifs and the activation of β-arrestin-associated proteins during internalization has not been fully elucidated. Through mutagenesis, the ASK motifs within 5-HT2BR and 5-HT2CR were identified as critical for JCPyV internalization and infectivity. Further, utilizing biochemical pulldown techniques, mutagenesis of the ASK motifs in 5-HT2BR and 5-HT2CR resulted in reduced β-arrestin binding. Utilizing small-molecule chemical inhibitors and RNA interference, G-protein receptor kinase 2 (GRK2) was determined to be required for JCPyV internalization and infection by mediating interactions between β-arrestin and the ASK motif of 5-HT2Rs. These findings demonstrate that GRK2 and β-arrestin interactions with 5-HT2Rs are critical for JCPyV entry by clathrin-mediated endocytosis and resultant infection.IMPORTANCE As intracellular parasites, viruses require a host cell to replicate and cause disease. Therefore, virus-host interactions contribute to viral pathogenesis. JC polyomavirus (JCPyV) infects most of the population, establishing a lifelong asymptomatic infection within the kidney. Under conditions of severe immunosuppression JCPyV may spread to the central nervous system, causing the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). Individuals living with HIV or undergoing immunomodulatory therapies are at risk for developing PML. The mechanisms of how JCPyV uses specific receptors on the surface of host cells to initiate internalization and infection is a poorly understood process. We have further identified cellular proteins involved in JCPyV internalization and infection and elucidated their specific interactions that are responsible for activation of receptors. Collectively, these findings illuminate how viruses usurp cellular receptors during infection, contributing to current development efforts for therapeutic options for the treatment or prevention of PML.
Collapse
|
8
|
Mayberry CL, Maginnis MS. Taking the Scenic Route: Polyomaviruses Utilize Multiple Pathways to Reach the Same Destination. Viruses 2020; 12:v12101168. [PMID: 33076363 PMCID: PMC7602598 DOI: 10.3390/v12101168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/02/2023] Open
Abstract
Members of the Polyomaviridae family differ in their host range, pathogenesis, and disease severity. To date, some of the most studied polyomaviruses include human JC, BK, and Merkel cell polyomavirus and non-human subspecies murine and simian virus 40 (SV40) polyomavirus. Although dichotomies in host range and pathogenesis exist, overlapping features of the infectious cycle illuminate the similarities within this virus family. Of particular interest to human health, JC, BK, and Merkel cell polyomavirus have all been linked to critical, often fatal, illnesses, emphasizing the importance of understanding the underlying viral infections that result in the onset of these diseases. As there are significant overlaps in the capacity of polyomaviruses to cause disease in their respective hosts, recent advancements in characterizing the infectious life cycle of non-human murine and SV40 polyomaviruses are key to understanding diseases caused by their human counterparts. This review focuses on the molecular mechanisms by which different polyomaviruses hijack cellular processes to attach to host cells, internalize, traffic within the cytoplasm, and disassemble within the endoplasmic reticulum (ER), prior to delivery to the nucleus for viral replication. Unraveling the fundamental processes that facilitate polyomavirus infection provides deeper insight into the conserved mechanisms of the infectious process shared within this virus family, while also highlighting critical unique viral features.
Collapse
Affiliation(s)
- Colleen L. Mayberry
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA;
| | - Melissa S. Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA;
- Graduate School in Biomedical Sciences and Engineering, The University of Maine, Orono, ME 04469, USA
- Correspondence:
| |
Collapse
|
9
|
Abstract
During menopausal transition, decreased level of estrogen brings a number of physiological problems and hormonal changes. In this study, promoter methylation of RANKL and FSHR genes were identified in 30 premenopausal and 35 postmenopausal women using methylation-specific high resolution melting (MS-HRM) analysis. The statistical analyses and their association with patient characteristics were performed by Pearson χ2 and Fisher's exact test (p <0.05). The methylated RANKL gene was detected in 16 postmenopausal cases, and 12 (75.0%) of the RANKL methylated cases had hot flashes (p = 0.024). The methylated FSHR gene was detected in 18 postmenopausal cases, and 13 (75.0%) of the methylated cases had hot flashes (p = 0.028). In vitro studies demonstrated the association between RANKL expression, FSH level and hot flashes in the mouse. Although lack of epigenetic studies in this field proves our results crucial and therefore, our results showed magnitude of epigenetic profiles of Turkish Cypriot post-menopausal women. This was the first study which has investigated the RANKL and FSHR methylation and their relationship with hot flashes in postmenopausal women.
Collapse
|
10
|
Assetta B, Morris-Love J, Gee GV, Atkinson AL, O'Hara BA, Maginnis MS, Haley SA, Atwood WJ. Genetic and Functional Dissection of the Role of Individual 5-HT 2 Receptors as Entry Receptors for JC Polyomavirus. Cell Rep 2020; 27:1960-1966.e6. [PMID: 31091436 PMCID: PMC6544161 DOI: 10.1016/j.celrep.2019.04.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/13/2019] [Accepted: 04/15/2019] [Indexed: 11/26/2022] Open
Abstract
JC polyomavirus (JCPyV) is a ubiquitous human pathogen that causes progressive multifocal leukoencephalopathy (PML). The entry receptors for JCPyV belong to the 5-hydroxytryptamine 2 receptor (5-HT2R) family, but how individual members of the family function to facilitate infection is not known. We used proximity ligation assay (PLA) to determine that JCPyV interacts with each of the 5-HT2 receptors (5-HT2Rs) in a narrow window of time during entry. We used CRISPR-Cas9 to randomly introduce stop codons in the gene for each receptor and discovered that the second intracellular loop of each was necessary for infection. This loop contains a motif possibly involved in receptor internalization by β-arrestin. Mutation of this motif and small interfering RNA (siRNA) knockdown of β-arrestin recapitulated the results of our CRISPR-Cas9 screen, showing that this motif is critical. Our results have implications for the role these receptors play in virus infection and for their normal functioning as receptors for serotonin. 5-HT2 receptors are important for infection of cells by JC virus (JCPyV). Assetta et al. show that JCPyV interacts transiently with each of three 5-HT2 receptors during entry and pinpoint a critical role for a proline in the second intracellular loop of each receptor in facilitating virus infection.
Collapse
Affiliation(s)
- Benedetta Assetta
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Jenna Morris-Love
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA; Graduate Program in Pathobiology, Brown University, Providence, RI, USA
| | - Gretchen V Gee
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Abigail L Atkinson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Bethany A O'Hara
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Melissa S Maginnis
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Sheila A Haley
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Walter J Atwood
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
11
|
Establishing and regulating the composition of cilia for signal transduction. Nat Rev Mol Cell Biol 2020; 20:389-405. [PMID: 30948801 DOI: 10.1038/s41580-019-0116-4] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The primary cilium is a hair-like surface-exposed organelle of the eukaryotic cell that decodes a variety of signals - such as odorants, light and Hedgehog morphogens - by altering the local concentrations and activities of signalling proteins. Signalling within the cilium is conveyed through a diverse array of second messengers, including conventional signalling molecules (such as cAMP) and some unusual intermediates (such as sterols). Diffusion barriers at the ciliary base establish the unique composition of this signalling compartment, and cilia adapt their proteome to signalling demands through regulated protein trafficking. Much progress has been made on the molecular understanding of regulated ciliary trafficking, which encompasses not only exchanges between the cilium and the rest of the cell but also the shedding of signalling factors into extracellular vesicles.
Collapse
|
12
|
Abstract
Primary cilia project in a single copy from the surface of most vertebrate cell types; they detect and transmit extracellular cues to regulate diverse cellular processes during development and to maintain tissue homeostasis. The sensory capacity of primary cilia relies on the coordinated trafficking and temporal localization of specific receptors and associated signal transduction modules in the cilium. The canonical Hedgehog (HH) pathway, for example, is a bona fide ciliary signalling system that regulates cell fate and self-renewal in development and tissue homeostasis. Specific receptors and associated signal transduction proteins can also localize to primary cilia in a cell type-dependent manner; available evidence suggests that the ciliary constellation of these proteins can temporally change to allow the cell to adapt to specific developmental and homeostatic cues. Consistent with important roles for primary cilia in signalling, mutations that lead to their dysfunction underlie a pleiotropic group of diseases and syndromic disorders termed ciliopathies, which affect many different tissues and organs of the body. In this Review, we highlight central mechanisms by which primary cilia coordinate HH, G protein-coupled receptor, WNT, receptor tyrosine kinase and transforming growth factor-β (TGFβ)/bone morphogenetic protein (BMP) signalling and illustrate how defects in the balanced output of ciliary signalling events are coupled to developmental disorders and disease progression.
Collapse
|
13
|
Patrussi L, Capitani N, Baldari CT. Abnormalities in chemokine receptor recycling in chronic lymphocytic leukemia. Cell Mol Life Sci 2019; 76:3249-3261. [PMID: 30830241 PMCID: PMC11105227 DOI: 10.1007/s00018-019-03058-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/12/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022]
Abstract
In addition to their modulation through de novo expression and degradation, surface levels of chemokine receptors are tuned by their ligand-dependent recycling to the plasma membrane, which ensures that engaged receptors become rapidly available for further rounds of signaling. Dysregulation of this process contributes to the pathogenesis of chronic lymphocytic leukemia (CLL) by enhancing surface expression of chemokine receptors, thereby favoring leukemic cell accumulation in the protective niche of lymphoid organs. In this review, we summarize our current understanding of the process of chemokine receptor recycling, focusing on the impact of its dysregulation in CLL.
Collapse
Affiliation(s)
- Laura Patrussi
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - Nagaja Capitani
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
14
|
Toth K, Nagi K, Slosky LM, Rochelle L, Ray C, Kaur S, Shenoy SK, Caron MG, Barak LS. Encoding the β-Arrestin Trafficking Fate of Ghrelin Receptor GHSR1a: C-Tail-Independent Molecular Determinants in GPCRs. ACS Pharmacol Transl Sci 2019; 2:230-246. [PMID: 32259059 DOI: 10.1021/acsptsci.9b00018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Indexed: 12/14/2022]
Abstract
G-protein-coupled receptors (GPCRs) can bias signaling through distinct biochemical pathways that originate from G-protein/receptor and β-arrestin/receptor complexes. Receptor conformations supporting β-arrestin engagement depend on multiple receptor determinants. Using ghrelin receptor GHR1a, we demonstrate by bioluminescence resonance energy transfer and fluorescence microscopy a critical role for its second intracellular loop 2 (ICL2) domain in stabilizing β-arrestin/GHSR1a core interactions and determining receptor trafficking fate. We validate our findings in ICL2 gain- and loss-of-function experiments assessing β-arrestin and ubiquitin-dependent internalization of the CC chemokine receptor, CCR1. Like all CC and CXC subfamily chemokine receptors, CCR1 lacks a critical proline residue found in the ICL2 consensus domain of rhodopsin-family GPCRs. Our study indicates that ICL2, C-tail determinants, and the orthosteric binding pocket that regulates β-arrestin/receptor complex stability are sufficient to encode a broad repertoire of the trafficking fates observed for rhodopsin-family GPCRs, suggesting they provide the essential elements for regulating a large fraction of β-arrestin signaling bias.
Collapse
Affiliation(s)
- Krisztian Toth
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States.,Pharmaceutical Sciences, Campbell University, Buies Creek, North Carolina 27506, United States
| | - Karim Nagi
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States.,College of Medicine, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Lauren M Slosky
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Lauren Rochelle
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Caroline Ray
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Suneet Kaur
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Sudha K Shenoy
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States.,Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Marc G Caron
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States.,Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States.,Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Larry S Barak
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
15
|
Wanka L, Babilon S, Kaiser A, Mörl K, Beck-Sickinger AG. Different mode of arrestin-3 binding at the human Y 1 and Y 2 receptor. Cell Signal 2018; 50:58-71. [DOI: 10.1016/j.cellsig.2018.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 01/04/2023]
|
16
|
Deussing JM, Chen A. The Corticotropin-Releasing Factor Family: Physiology of the Stress Response. Physiol Rev 2018; 98:2225-2286. [DOI: 10.1152/physrev.00042.2017] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The physiological stress response is responsible for the maintenance of homeostasis in the presence of real or perceived challenges. In this function, the brain activates adaptive responses that involve numerous neural circuits and effector molecules to adapt to the current and future demands. A maladaptive stress response has been linked to the etiology of a variety of disorders, such as anxiety and mood disorders, eating disorders, and the metabolic syndrome. The neuropeptide corticotropin-releasing factor (CRF) and its relatives, the urocortins 1–3, in concert with their receptors (CRFR1, CRFR2), have emerged as central components of the physiological stress response. This central peptidergic system impinges on a broad spectrum of physiological processes that are the basis for successful adaptation and concomitantly integrate autonomic, neuroendocrine, and behavioral stress responses. This review focuses on the physiology of CRF-related peptides and their cognate receptors with the aim of providing a comprehensive up-to-date overview of the field. We describe the major molecular features covering aspects of gene expression and regulation, structural properties, and molecular interactions, as well as mechanisms of signal transduction and their surveillance. In addition, we discuss the large body of published experimental studies focusing on state-of-the-art genetic approaches with high temporal and spatial precision, which collectively aimed to dissect the contribution of CRF-related ligands and receptors to different levels of the stress response. We discuss the controversies in the field and unravel knowledge gaps that might pave the way for future research directions and open up novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jan M. Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
17
|
Nataraja S, Sriraman V, Palmer S. Allosteric Regulation of the Follicle-Stimulating Hormone Receptor. Endocrinology 2018; 159:2704-2716. [PMID: 29800292 DOI: 10.1210/en.2018-00317] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/16/2018] [Indexed: 01/08/2023]
Abstract
Follicle-stimulating hormone receptor (FSHR) belongs to the leucine-rich repeat family of the G protein-coupled receptor (LGR), which includes the glycoprotein hormone receptors luteinizing hormone receptor, thyrotropin receptor, and other LGRs 4, 5, 6, and 7. FSH is the key regulator of folliculogenesis in females and spermatogenesis in males. FSH elicits its physiological response through its cognate receptor on the cell surface. Binding of the hormone FSH to its receptor FSHR brings about conformational changes in the receptor that are transduced through the transmembrane domain to the intracellular region, where the downstream effector interaction takes place, leading to activation of the downstream signaling cascade. Identification of small molecules that could activate or antagonize FSHR provided interesting tools to study the signal transduction mechanism of the receptor. However, because of the nature of the ligand-receptor interaction of FSH-FSHR, which contains multiple sites in the extracellular binding domain, most of the small-molecule modulators of FSHR are unable to bind to the orthosteric site of the receptors. Rather they modulate receptor activation through allosteric sites in the transmembrane region. This review will discuss allosteric modulation of FSHR primarily through the discovery of small-molecule modulators, focusing on current data on the status of development and the utility of these as tools to better understand signaling mechanisms.
Collapse
|
18
|
Storme J, Cannaert A, Van Craenenbroeck K, Stove CP. Molecular dissection of the human A 3 adenosine receptor coupling with β-arrestin2. Biochem Pharmacol 2018; 148:298-307. [PMID: 29309765 DOI: 10.1016/j.bcp.2018.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023]
Abstract
Besides classical G protein coupling, G protein-coupled receptors (GPCRs) are nowadays well known to show significant signalling via other adaptor proteins, such as β-arrestin2 (βarr2). The elucidation of the molecular mechanism of the GPCR-βarr2 interaction is a prerequisite for the structure-activity based design of biased ligands, which introduces a new chapter in drug discovery. The general mechanism of the interaction is believed to rely on phosphorylation sites, exposed upon agonist binding. However, it is not known whether this mechanism is universal throughout the GPCR family or if GPCR-specific patterns are involved. In recent years, promising orally active agonists for the human A3 adenosine receptor (A3AR), a GPCR highly expressed in inflammatory and cancer cells, have been evaluated in clinical trials for the treatment of rheumatoid arthritis, psoriasis, and hepatocellular carcinoma. In this study, the effect of cytoplasmic modifications of the A3AR on βarr2 recruitment was evaluated in transiently transfected HEK293T cells, using a live-cell split-reporter system (NanoBit®, Promega), based on the structural complementation of NanoLuc luciferase, allowing real-time βarr2 monitoring. The A3AR-selective reference agonist 2-Cl-IB-MECA yielded a robust, concentration dependent (5 nM-1 µM) recruitment of βarr2 (logEC50: -7.798 ± 0.076). The role of putative phosphorylation sites, located in the C-terminal part and cytoplasmic loops, and the role of the 'DRY' motif was evaluated. It was shown that the A3AR C-terminus was dispensable for βarr2 recruitment. This contrasts with studies in the past for the rat A3AR, which pointed at crucial C-terminal phosphorylation sites. When combining truncation of the A3AR with modification of the 'DRY' motif to 'AAY', the βarr2 recruitment was drastically reduced. Recruitment could be partly rescued by back-mutation to 'NQY', or by extending the C-terminus again. In conclusion, other parts of the human A3AR, either cytosolic or exposed upon receptor activation, rather than the C-terminus alone, are responsible for βarr2 recruitment in a complementary or synergistic way.
Collapse
Affiliation(s)
- Jolien Storme
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kathleen Van Craenenbroeck
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
19
|
Madariaga-Mazón A, Marmolejo-Valencia AF, Li Y, Toll L, Houghten RA, Martinez-Mayorga K. Mu-Opioid receptor biased ligands: A safer and painless discovery of analgesics? Drug Discov Today 2017; 22:1719-1729. [PMID: 28743488 DOI: 10.1016/j.drudis.2017.07.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/24/2017] [Accepted: 07/07/2017] [Indexed: 12/19/2022]
Abstract
Biased activation of G-protein-coupled receptors (GPCRs) is shifting drug discovery efforts and appears promising for the development of safer drugs. The most effective analgesics to treat acute pain are agonists of the μ opioid receptor (μ-OR), a member of the GPCR superfamily. However, the analgesic use of opioid drugs, such as morphine, is hindered by adverse effects. Only a few μ-OR agonists have been reported to selectively activate the Gi over β-arrestin signaling pathway, resulting in lower gastrointestinal dysfunction and respiratory suppression. Here, we discuss the strategies that led to the development of biased μ-OR agonists, and potential areas for improvement, with an emphasis on structural aspects of the ligand-receptor recognition process.
Collapse
Affiliation(s)
- Abraham Madariaga-Mazón
- Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City 04510, Mexico
| | - Andrés F Marmolejo-Valencia
- Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City 04510, Mexico
| | - Yangmei Li
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Lawrence Toll
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Richard A Houghten
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Karina Martinez-Mayorga
- Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City 04510, Mexico.
| |
Collapse
|
20
|
Ranjan R, Dwivedi H, Baidya M, Kumar M, Shukla AK. Novel Structural Insights into GPCR-β-Arrestin Interaction and Signaling. Trends Cell Biol 2017; 27:851-862. [PMID: 28651823 DOI: 10.1016/j.tcb.2017.05.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/25/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) are major signal recognition and transmission units in the plasma membrane. The interaction of activated and phosphorylated GPCRs with the multifunctional adaptor proteins β-arrestins (βarrs) is crucial for regulation of their signaling and functional outcomes. Over the past few years, a range of structural, biochemical, and cellular studies have revealed novel insights into GPCR-βarr interaction and signaling. Some of these findings have come as a surprise and therefore have the potential to significantly refine the conceptual framework of the GPCR-βarr system. Here we discuss these recent advances with particular emphasis on biphasic GPCR-βarr interaction, the formation of GPCR-G-protein-βarr supercomplexes, and receptor-specific conformational signatures in βarrs. We also underline the emerging research areas that are likely to be at the center stage of investigations in the coming years.
Collapse
Affiliation(s)
- Ravi Ranjan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Hemlata Dwivedi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Mithu Baidya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Mohit Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| |
Collapse
|
21
|
Nager AR, Goldstein JS, Herranz-Pérez V, Portran D, Ye F, Garcia-Verdugo JM, Nachury MV. An Actin Network Dispatches Ciliary GPCRs into Extracellular Vesicles to Modulate Signaling. Cell 2016; 168:252-263.e14. [PMID: 28017328 DOI: 10.1016/j.cell.2016.11.036] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 09/14/2016] [Accepted: 11/17/2016] [Indexed: 12/13/2022]
Abstract
Signaling receptors dynamically exit cilia upon activation of signaling pathways such as Hedgehog. Here, we find that when activated G protein-coupled receptors (GPCRs) fail to undergo BBSome-mediated retrieval from cilia back into the cell, these GPCRs concentrate into membranous buds at the tips of cilia before release into extracellular vesicles named ectosomes. Unexpectedly, actin and the actin regulators drebrin and myosin 6 mediate ectosome release from the tip of cilia. Mirroring signal-dependent retrieval, signal-dependent ectocytosis is a selective and effective process that removes activated signaling molecules from cilia. Congruently, ectocytosis compensates for BBSome defects as ectocytic removal of GPR161, a negative regulator of Hedgehog signaling, permits the appropriate transduction of Hedgehog signals in Bbs mutants. Finally, ciliary receptors that lack retrieval determinants such as the anorexigenic GPCR NPY2R undergo signal-dependent ectocytosis in wild-type cells. Our data show that signal-dependent ectocytosis regulates ciliary signaling in physiological and pathological contexts.
Collapse
Affiliation(s)
- Andrew R Nager
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Jaclyn S Goldstein
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Vicente Herranz-Pérez
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universitat de València, CIBERNED, 46980 Valencia, Spain; Unidad Mixta de Esclerosis Múltiple y Neurorregeneración, IIS Hospital La Fe-UVEG, 46026 Valencia, Spain
| | - Didier Portran
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Fan Ye
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Jose Manuel Garcia-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universitat de València, CIBERNED, 46980 Valencia, Spain; Unidad Mixta de Esclerosis Múltiple y Neurorregeneración, IIS Hospital La Fe-UVEG, 46026 Valencia, Spain
| | - Maxence V Nachury
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA.
| |
Collapse
|
22
|
Kumari P, Srivastava A, Banerjee R, Ghosh E, Gupta P, Ranjan R, Chen X, Gupta B, Gupta C, Jaiman D, Shukla AK. Functional competence of a partially engaged GPCR-β-arrestin complex. Nat Commun 2016; 7:13416. [PMID: 27827372 PMCID: PMC5105198 DOI: 10.1038/ncomms13416] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/30/2016] [Indexed: 12/28/2022] Open
Abstract
G Protein-coupled receptors (GPCRs) constitute the largest family of cell surface receptors and drug targets. GPCR signalling and desensitization is critically regulated by β-arrestins (βarr). GPCR-βarr interaction is biphasic where the phosphorylated carboxyl terminus of GPCRs docks to the N-domain of βarr first and then seven transmembrane core of the receptor engages with βarr. It is currently unknown whether fully engaged GPCR-βarr complex is essential for functional outcomes or partially engaged complex can also be functionally competent. Here we assemble partially and fully engaged complexes of a chimeric β2V2R with βarr1, and discover that the core interaction is dispensable for receptor endocytosis, ERK MAP kinase binding and activation. Furthermore, we observe that carvedilol, a βarr biased ligand, does not promote detectable engagement between βarr1 and the receptor core. These findings uncover a previously unknown aspect of GPCR-βarr interaction and provide novel insights into GPCR signalling and regulatory paradigms.
Collapse
Affiliation(s)
- Punita Kumari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ashish Srivastava
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ramanuj Banerjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Eshan Ghosh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Pragya Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ravi Ranjan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Xin Chen
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Bhagyashri Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Charu Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Deepika Jaiman
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Arun K. Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
23
|
Smith JS, Rajagopal S. The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors. J Biol Chem 2016; 291:8969-77. [PMID: 26984408 DOI: 10.1074/jbc.r115.713313] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The β-arrestins (βarrs) are versatile, multifunctional adapter proteins that are best known for their ability to desensitize G protein-coupled receptors (GPCRs), but also regulate a diverse array of cellular functions. To signal in such a complex fashion, βarrs adopt multiple conformations and are regulated at multiple levels to differentially activate downstream pathways. Recent structural studies have demonstrated that βarrs have a conserved structure and activation mechanism, with plasticity of their structural fold, allowing them to adopt a wide array of conformations. Novel roles for βarrs continue to be identified, demonstrating the importance of these dynamic regulators of cellular signaling.
Collapse
Affiliation(s)
| | - Sudarshan Rajagopal
- From the Departments of Biochemistry and Medicine, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
24
|
Snyder JC, Pack TF, Rochelle LK, Chakraborty SK, Zhang M, Eaton AW, Bai Y, Ernst LA, Barak LS, Waggoner AS, Caron MG. A rapid and affordable screening platform for membrane protein trafficking. BMC Biol 2015; 13:107. [PMID: 26678094 PMCID: PMC4683952 DOI: 10.1186/s12915-015-0216-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/02/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Membrane proteins regulate a diversity of physiological processes and are the most successful class of targets in drug discovery. However, the number of targets adequately explored in chemical space and the limited resources available for screening are significant problems shared by drug-discovery centers and small laboratories. Therefore, a low-cost and universally applicable screen for membrane protein trafficking was developed. RESULTS This high-throughput screen (HTS), termed IRFAP-HTS, utilizes the recently described MarsCy1-fluorogen activating protein and the near-infrared and membrane impermeant fluorogen SCi1. The cell surface expression of MarsCy1 epitope-tagged receptors can be visualized by simple addition of SCi1. User-friendly, rapid, and quantitative detection occurs on a standard infrared western-blotting scanner. The reliability and robustness of IRFAP-HTS was validated by confirming human vasopressin-2 receptor and dopamine receptor-2 trafficking in response to agonist or antagonist. The IRFAP-HTS screen was deployed against the leucine-rich G protein-coupled receptor-5 (Lgr5). Lgr5 is expressed in stem cells, modulates Wnt/ß-catenin signaling, and is therefore a promising drug target. However, small molecule modulators have yet to be reported. The constitutive internalization of Lgr5 appears to be one primary mode through which its function is regulated. Therefore, IRFAP-HTS was utilized to screen 11,258 FDA-approved and drug-like small molecules for those that antagonize Lgr5 internalization. Glucocorticoids were found to potently increase Lgr5 expression at the plasma membrane. CONCLUSION The IRFAP-HTS platform provides a versatile solution for screening more targets with fewer resources. Using only a standard western-blotting scanner, we were able to screen 5,000 compounds per hour in a robust and quantitative assay. Multi-purposing standardly available laboratory equipment eliminates the need for idiosyncratic and more expensive high-content imaging systems. The modular and user-friendly IRFAP-HTS is a significant departure from current screening platforms. Small laboratories will have unprecedented access to a robust and reliable screening platform and will no longer be limited by the esoteric nature of assay development, data acquisition, and post-screening analysis. The discovery of glucocorticoids as modulators for Lgr5 trafficking confirms that IRFAP-HTS can accelerate drug-discovery and drug-repurposing for even the most obscure targets.
Collapse
Affiliation(s)
- Joshua C Snyder
- Departments of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Thomas F Pack
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Lauren K Rochelle
- Departments of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Subhasish K Chakraborty
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Ming Zhang
- Department of Biology, Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Andrew W Eaton
- Departments of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yushi Bai
- Departments of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Lauren A Ernst
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Larry S Barak
- Departments of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Alan S Waggoner
- Department of Biology, Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Marc G Caron
- Departments of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA. .,Departments of Medicine and Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
25
|
Madziva MT, Mkhize NN, Flanagan CA, Katz AA. The carboxy-terminal tail or the intracellular loop 3 is required for β-arrestin-dependent internalization of a mammalian type II GnRH receptor. Mol Cell Endocrinol 2015; 411:187-97. [PMID: 25957085 DOI: 10.1016/j.mce.2015.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/08/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
The type II GnRH receptor (GnRH-R2) in contrast to mammalian type I GnRH receptor (GnRH-R1) has a cytosolic carboxy-terminal tail. We investigated the role of β-arrestin 1 in GnRH-R2-mediated signalling and mapped the regions in GnRH-R2 required for recruitment of β-arrestin, employing internalization assays. We show that GnRH-R2 activation of ERK is dependent on β-arrestin and protein kinase C. Appending the tail of GnRH-R2 to GnRH-R1 enabled GRK- and β-arrestin-dependent internalization of the chimaeric receptor. Surprisingly, carboxy-terminally truncated GnRH-R2 retained β-arrestin and GRK-dependent internalization, suggesting that β-arrestin interacts with additional elements of GnRH-R2. Mutating serine and threonine or basic residues of intracellular loop 3 did not abolish β-arrestin 1-dependent internalization but a receptor lacking these basic residues and the carboxy-terminus showed no β-arrestin 1-dependent internalization. Our results suggest that basic residues at the amino-terminal end of intracellular loop 3 or the carboxy-terminal tail are required for β-arrestin dependent internalization.
Collapse
Affiliation(s)
- Michael T Madziva
- Medical Research Council Research Unit for Receptor Biology, Institute of Infectious Disease and Molecular Medicine and Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa; School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Medical School, 7 York Road, Parktown 2193, Johannesburg, South Africa
| | - Nonhlanhla N Mkhize
- Medical Research Council Research Unit for Receptor Biology, Institute of Infectious Disease and Molecular Medicine and Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Colleen A Flanagan
- Medical Research Council Research Unit for Receptor Biology, Institute of Infectious Disease and Molecular Medicine and Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa; School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Medical School, 7 York Road, Parktown 2193, Johannesburg, South Africa
| | - Arieh A Katz
- Medical Research Council Research Unit for Receptor Biology, Institute of Infectious Disease and Molecular Medicine and Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa.
| |
Collapse
|
26
|
Bourquard T, Landomiel F, Reiter E, Crépieux P, Ritchie DW, Azé J, Poupon A. Unraveling the molecular architecture of a G protein-coupled receptor/β-arrestin/Erk module complex. Sci Rep 2015; 5:10760. [PMID: 26030356 PMCID: PMC4649906 DOI: 10.1038/srep10760] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/26/2015] [Indexed: 12/22/2022] Open
Abstract
β-arrestins serve as signaling scaffolds downstream of G protein-coupled receptors, and thus play a crucial role in a plethora of cellular processes. Although it is largely accepted that the ability of β-arrestins to interact simultaneously with many protein partners is key in G protein-independent signaling of GPCRs, only the precise knowledge of these multimeric arrangements will allow a full understanding of the dynamics of these interactions and their functional consequences. However, current experimental procedures for the determination of the three-dimensional structures of protein-protein complexes are not well adapted to analyze these short-lived, multi-component assemblies. We propose a model of the receptor/β-arrestin/Erk1 signaling module, which is consistent with most of the available experimental data. Moreover, for the β-arrestin/Raf1 and the β-arrestin/ERK interactions, we have used the model to design interfering peptides and shown that they compete with both partners, hereby demonstrating the validity of the predicted interaction regions.
Collapse
Affiliation(s)
- Thomas Bourquard
- 1] BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, 37041 Tours, France; IFCE, Nouzilly, F-37380 France [2] INRIA Nancy, 615 Rue du Jardin Botanique, Villers-lès-Nancy, 54600 France
| | - Flavie Landomiel
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, 37041 Tours, France; IFCE, Nouzilly, F-37380 France
| | - Eric Reiter
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, 37041 Tours, France; IFCE, Nouzilly, F-37380 France
| | - Pascale Crépieux
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, 37041 Tours, France; IFCE, Nouzilly, F-37380 France
| | - David W Ritchie
- INRIA Nancy, 615 Rue du Jardin Botanique, Villers-lès-Nancy, 54600 France
| | - Jérôme Azé
- Bioinformatics group - AMIB INRIA - Laboratoire de Recherche en Informatique, Université Paris-Sud, Orsay, 91405 France
| | - Anne Poupon
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, 37041 Tours, France; IFCE, Nouzilly, F-37380 France
| |
Collapse
|
27
|
Yang L, Zheng J, Xiong Y, Meng R, Ma Q, Liu H, Shen H, Zheng S, Wang S, He J. Regulation of β2-adrenergic receptor cell surface expression by interaction with cystic fibrosis transmembrane conductance regulator-associated ligand (CAL). Amino Acids 2015; 47:1455-64. [PMID: 25876703 DOI: 10.1007/s00726-015-1965-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
Abstract
The beta-2 adrenergic receptor (β2AR), a member of GPCR, can activate multiple signaling pathways and is an important treatment target for cardiac failure. However, the molecular mechanism about β2AR signaling regulation is not fully understood. In this study, we found that cystic fibrosis transmembrane conductance regulator-associated ligand (CAL) overexpression reduced β2AR-mediated extracellular signal-regulated kinase-1/2 (ERK1/2) activation. Further study identified CAL as a novel binding partner of β2AR. CAL is associated with β2AR mainly via the third intracellular loop (ICL3) of receptor and the coiled-coil domains of CAL, which is distinct from CAL/β1AR interaction mediated by the carboxyl terminal (CT) of β1AR and PDZ domain of CAL. CAL overexpression retarded β2AR expression in Golgi apparatus and reduced the receptor expression in plasma membrane.
Collapse
Affiliation(s)
- Longyan Yang
- Department of Biochemistry and Molecular Biology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mörl K, Beck-Sickinger AG. Intracellular Trafficking of Neuropeptide Y Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:73-96. [PMID: 26055055 DOI: 10.1016/bs.pmbts.2015.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The multireceptor multiligand system of neuropeptide Y receptors and their ligands is involved in the regulation of a multitude of physiological and pathophysiological processes. Specific expression patterns, ligand-binding modes, and signaling properties contribute to the complex network regulating distinct cellular responses. Intracellular trafficking processes are important key steps that are regulated in context with accessory proteins. These proteins exert their influence by interacting directly or indirectly with the receptors, causing modification of the receptors, or operating as scaffolds for the assembly of larger signaling complexes. On the intracellular receptor faces, sequence-specific motifs have been identified that play an important role in this process. Interestingly, it is also possible to influence the receptor internalization by modification of the peptide ligand.
Collapse
Affiliation(s)
- Karin Mörl
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Leipzig, Germany.
| | - Annette G Beck-Sickinger
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
29
|
Gyombolai P, Tóth AD, Tímár D, Turu G, Hunyady L. Mutations in the 'DRY' motif of the CB1 cannabinoid receptor result in biased receptor variants. J Mol Endocrinol 2015; 54:75-89. [PMID: 25510402 DOI: 10.1530/jme-14-0219] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The role of the highly conserved 'DRY' motif in the signaling of the CB1 cannabinoid receptor (CB1R) was investigated by inducing single-, double-, and triple-alanine mutations into this site of the receptor. We found that the CB1R-R3.50A mutant displays a partial decrease in its ability to activate heterotrimeric Go proteins (∼80% of WT CB1R (CB1R-WT)). Moreover, this mutant showed an enhanced basal β-arrestin2 (β-arr2) recruitment. More strikingly, the double-mutant CB1R-D3.49A/R3.50A was biased toward β-arrs, as it gained a robustly increased β-arr1 and β-arr2 recruitment ability compared with the WT receptor, while its G-protein activation was decreased. In contrast, the double-mutant CB1R-R3.50A/Y3.51A proved to be G-protein-biased, as it was practically unable to recruit β-arrs in response to agonist stimulus, while still activating G-proteins, although at a reduced level (∼70% of CB1R-WT). Agonist-induced ERK1/2 activation of the CB1R mutants showed a good correlation with their β-arr recruitment ability but not with their G-protein activation or inhibition of cAMP accumulation. Our results suggest that G-protein activation and β-arr binding of the CB1R are mediated by distinct receptor conformations, and the conserved 'DRY' motif plays different roles in the stabilization of these conformations, thus mediating both G-protein- and β-arr-mediated functions of CB1R.
Collapse
Affiliation(s)
- Pál Gyombolai
- Department of PhysiologyFaculty of Medicine, Semmelweis University, PO Box 259, H-1444 Budapest, HungaryMTA-SE Laboratory of Molecular PhysiologyHungarian Academy of Sciences and Semmelweis University, Budapest, Hungary Department of PhysiologyFaculty of Medicine, Semmelweis University, PO Box 259, H-1444 Budapest, HungaryMTA-SE Laboratory of Molecular PhysiologyHungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - András D Tóth
- Department of PhysiologyFaculty of Medicine, Semmelweis University, PO Box 259, H-1444 Budapest, HungaryMTA-SE Laboratory of Molecular PhysiologyHungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Dániel Tímár
- Department of PhysiologyFaculty of Medicine, Semmelweis University, PO Box 259, H-1444 Budapest, HungaryMTA-SE Laboratory of Molecular PhysiologyHungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Gábor Turu
- Department of PhysiologyFaculty of Medicine, Semmelweis University, PO Box 259, H-1444 Budapest, HungaryMTA-SE Laboratory of Molecular PhysiologyHungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Department of PhysiologyFaculty of Medicine, Semmelweis University, PO Box 259, H-1444 Budapest, HungaryMTA-SE Laboratory of Molecular PhysiologyHungarian Academy of Sciences and Semmelweis University, Budapest, Hungary Department of PhysiologyFaculty of Medicine, Semmelweis University, PO Box 259, H-1444 Budapest, HungaryMTA-SE Laboratory of Molecular PhysiologyHungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
30
|
Abstract
The melanocortin 3 receptor (MC3R) regulates several physiological functions, including feed efficiency, nutrient partitioning, fasting response, natriuresis, and immune reactions. Naturally occurring mutations in the MC3R gene have been shown to be associated with increased adiposity and lung diseases such as tuberculosis and cystic fibrosis. The DRY motif at the cytoplasmic end of transmembrane domain 3 (TM3) and the second intracellular loop 2 (ICL2) are known to be important for receptor function in several G protein-coupled receptors (GPCRs). To gain a better understanding of the functions of this domain in MC3R, we performed alanine-scanning mutagenesis on 18 residues. We showed that alanine mutation of 11 residues reduced the maximal binding and maximal cAMP production stimulated by agonists. Mutation of two residues did not change maximal binding but resulted in impaired signaling in the Gs-cAMP pathway. Mutation of five residues impaired signaling in the ERK1/2 pathway. We have also shown that alanine mutants of seven residues that were defective in the cAMP pathway were not defective in the ERK1/2 pathway, demonstrating biased signaling. In summary, we demonstrated that the cytoplasmic end of TM3 and the ICL2 were critical for MC3R function. We also reported for the first time biased signaling in MC3R.
Collapse
Affiliation(s)
- Hui Huang
- Department of AnatomyPhysiology and Pharmacology, College of Veterinary Medicine, Auburn University, 212 Greene Hall, Auburn, Alabama 36849, USA
| | - Ya-Xiong Tao
- Department of AnatomyPhysiology and Pharmacology, College of Veterinary Medicine, Auburn University, 212 Greene Hall, Auburn, Alabama 36849, USA
| |
Collapse
|
31
|
Perez-Aguilar JM, Shan J, LeVine M, Khelashvili G, Weinstein H. A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2. J Am Chem Soc 2014; 136:16044-54. [PMID: 25314362 PMCID: PMC4235374 DOI: 10.1021/ja508394x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Indexed: 01/16/2023]
Abstract
With recent progress in determination of G protein-coupled receptor (GPCR) structure with crystallography, a variety of other experimental approaches (e.g., NMR spectroscopy, fluorescent-based assays, mass spectrometry techniques) are also being used to characterize state-specific and ligand-specific conformational states. MD simulations offer a powerful complementary approach to elucidate the dynamic features associated with ligand-specific GPCR conformations. To shed light on the conformational elements and dynamics of the important aspect of GPCR functional selectivity, we carried out unbiased microsecond-length MD simulations of the human serotonin 2A receptor (5-HT(2A)R) in the absence of ligand and bound to four distinct serotonergic agonists. The 5-HT(2A)R is a suitable system to study the structural features involved in the ligand-dependent conformational heterogeneity of GPCRs because it is well-characterized experimentally and exhibits a strong agonist-specific phenotype in that some 5-HT(2A)R agonists induce LSD-like hallucinations, while others lack this psychoactive property entirely. Here we report evidence for structural and dynamic differences in 5-HT(2A)R interacting with such pharmacologically distinct ligands, hallucinogens, and nonhallucinogens obtained from all-atom MD simulations. Differential ligand binding contacts were identified for structurally similar hallucinogens and nonhallucinogens and found to correspond to different conformations in the intracellular loop 2 (ICL2). From the different ICL2 conformations, functional selective phenotypes are suggested through effects on dimerization and/or distinct direct interaction with effector proteins. The findings are presented in the context of currently proposed hallucinogenesis mechanisms, and ICL2 is proposed as a fine-tuning selective switch that can differentiates modes of 5-HT(2A)R activation.
Collapse
Affiliation(s)
- Jose Manuel Perez-Aguilar
- Department
of Physiology and Biophysics and The HRH Prince Alwaleed Bin Talal
Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York 10065, United States
| | - Jufang Shan
- Department
of Physiology and Biophysics and The HRH Prince Alwaleed Bin Talal
Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York 10065, United States
| | - Michael
V. LeVine
- Department
of Physiology and Biophysics and The HRH Prince Alwaleed Bin Talal
Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York 10065, United States
| | - George Khelashvili
- Department
of Physiology and Biophysics and The HRH Prince Alwaleed Bin Talal
Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York 10065, United States
| | - Harel Weinstein
- Department
of Physiology and Biophysics and The HRH Prince Alwaleed Bin Talal
Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York 10065, United States
| |
Collapse
|
32
|
Balakumar P, Jagadeesh G. Structural determinants for binding, activation, and functional selectivity of the angiotensin AT1 receptor. J Mol Endocrinol 2014; 53:R71-92. [PMID: 25013233 DOI: 10.1530/jme-14-0125] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The renin-angiotensin system (RAS) plays an important role in the pathophysiology of cardiovascular disorders. Pharmacologic interventions targeting the RAS cascade have led to the discovery of renin inhibitors, angiotensin-converting enzyme inhibitors, and AT(1) receptor blockers (ARBs) to treat hypertension and some cardiovascular and renal disorders. Mutagenesis and modeling studies have revealed that differential functional outcomes are the results of multiple active states conformed by the AT(1) receptor upon interaction with angiotensin II (Ang II). The binding of agonist is dependent on both extracellular and intramembrane regions of the receptor molecule, and as a consequence occupies more extensive area of the receptor than a non-peptide antagonist. Both agonist and antagonist bind to the same intramembrane regions to interfere with each other's binding to exhibit competitive, surmountable interaction. The nature of interactions with the amino acids in the receptor is different for each of the ARBs given the small differences in the molecular structure between drugs. AT(1) receptors attain different conformation states after binding various Ang II analogues, resulting in variable responses through activation of multiple signaling pathways. These include both classical and non-classical pathways mediated through growth factor receptor transactivations, and provide cross-communication between downstream signaling molecules. The structural requirements for AT(1) receptors to activate extracellular signal-regulated kinases 1 and 2 through G proteins, or G protein-independently through β-arrestin, are different. We review the structural and functional characteristics of Ang II and its analogs and antagonists, and their interaction with amino acid residues in the AT(1) receptor.
Collapse
Affiliation(s)
- Pitchai Balakumar
- Pharmacology UnitFaculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, MalaysiaDivision of Cardiovascular and Renal ProductsCenter for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Gowraganahalli Jagadeesh
- Pharmacology UnitFaculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, MalaysiaDivision of Cardiovascular and Renal ProductsCenter for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, USA
| |
Collapse
|
33
|
Evron T, Peterson SM, Urs NM, Bai Y, Rochelle LK, Caron MG, Barak LS. G Protein and β-arrestin signaling bias at the ghrelin receptor. J Biol Chem 2014; 289:33442-55. [PMID: 25261469 DOI: 10.1074/jbc.m114.581397] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The G protein-coupled ghrelin receptor GHSR1a is a potential pharmacological target for treating obesity and addiction because of the critical role ghrelin plays in energy homeostasis and dopamine-dependent reward. GHSR1a enhances growth hormone release, appetite, and dopamine signaling through G(q/11), G(i/o), and G(12/13) as well as β-arrestin-based scaffolds. However, the contribution of individual G protein and β-arrestin pathways to the diverse physiological responses mediated by ghrelin remains unknown. To characterize whether a signaling bias occurs for GHSR1a, we investigated ghrelin signaling in a number of cell-based assays, including Ca(2+) mobilization, serum response factor response element, stress fiber formation, ERK1/2 phosphorylation, and β-arrestin translocation, utilizing intracellular second loop and C-tail mutants of GHSR1a. We observed that GHSR1a and β-arrestin rapidly form metastable plasma membrane complexes following exposure to an agonist, but replacement of the GHSR1a C-tail by the tail of the vasopressin 2 receptor greatly stabilizes them, producing complexes observable on the plasma membrane and also in endocytic vesicles. Mutations of the contiguous conserved amino acids Pro-148 and Leu-149 in the GHSR1a intracellular second loop generate receptors with a strong bias to G protein and β-arrestin, respectively, supporting a role for conformation-dependent signaling bias in the wild-type receptor. Our results demonstrate more balance in GHSR1a-mediated ERK signaling from G proteins and β-arrestin but uncover an important role for β-arrestin in RhoA activation and stress fiber formation. These findings suggest an avenue for modulating drug abuse-associated changes in synaptic plasticity via GHSR1a and indicate the development of GHSR1a-biased ligands as a promising strategy for selectively targeting downstream signaling events.
Collapse
Affiliation(s)
| | | | | | - Yushi Bai
- From the Departments of Cell Biology
| | | | - Marc G Caron
- From the Departments of Cell Biology, Neurobiology, and Medicine, Duke University, Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
34
|
Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nat Commun 2014; 5:4801. [PMID: 25205354 PMCID: PMC4199108 DOI: 10.1038/ncomms5801] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/24/2014] [Indexed: 01/18/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) transmit extracellular signals to activate intracellular heterotrimeric G proteins (Gαβγ) and arrestins. For G protein signalling, the Gα C-terminus (GαCT) binds to a cytoplasmic crevice of the receptor that opens upon activation. A consensus motif is shared among GαCT from the Gi/Gt family and the ‘finger loop’ region (ArrFL1–4) of all four arrestins. Here we present a 2.75 Å crystal structure of ArrFL-1, a peptide analogue of the finger loop of rod photoreceptor arrestin, in complex with the prototypical GPCR rhodopsin. Functional binding of ArrFL to the receptor was confirmed by ultraviolet-visible absorption spectroscopy, competitive binding assays and Fourier transform infrared spectroscopy. For both GαCT and ArrFL, binding to the receptor crevice induces a similar reverse turn structure, although significant structural differences are seen at the rim of the binding crevice. Our results reflect both the common receptor-binding interface and the divergent biological functions of G proteins and arrestins. G-protein-coupled receptors (GPCRs) transmit signals through intracellular heterotrimeric G proteins and arrestins. Here, Szczepek et al. present the structure of a common binding interface for Gα and arrestin on rhodopsin to shed light on key interactions that mediate transduction of specific signals through a single GPCR.
Collapse
|
35
|
Sbai O, Monnier C, Dodé C, Pin JP, Hardelin JP, Rondard P. Biased signaling through G-protein-coupled PROKR2 receptors harboring missense mutations. FASEB J 2014; 28:3734-44. [PMID: 24830383 DOI: 10.1096/fj.13-243402] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Various missense mutations in the gene coding for prokineticin receptor 2 (PROKR2), a G-protein-coupled receptor, have been identified in patients with Kallmann syndrome. However, the functional consequences of these mutations on the different signaling pathways of this receptor have not been studied. We first showed that the wild-type PROKR2 can activate different G-protein subtypes (Gq, Gs, and Gi/o) and recruit β-arrestins in transfected HEK-293 cells. We then examined, for each of these signaling pathways, the effects of 9 mutations that did not significantly impair cell surface targeting or ligand binding of the receptor. Four mutant receptors showing defective Gq signaling (R85C, R85H, R164Q, and V331M) could still recruit β-arrestins on ligand activation, which may cause biased signaling in vivo. Conversely, the R80C receptor could activate the 3 types of G proteins but could not recruit β-arrestins. Finally, the R268C receptor could recruit β-arrestins and activate the Gq and Gs signaling pathways but could not activate the Gi/o signaling pathway. Our results validate the concept that mutations in the genes encoding membrane receptors can bias downstream signaling in various ways, possibly leading to pathogenic and, perhaps in some cases, protective (e.g., R268C) effects.
Collapse
Affiliation(s)
- Oualid Sbai
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U661, Montpellier, France; Université Montpellier 1 and 2, Montpellier, France
| | - Carine Monnier
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U661, Montpellier, France; Université Montpellier 1 and 2, Montpellier, France
| | - Catherine Dodé
- EA7331, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris-Descartes, Paris, France; and
| | - Jean-Philippe Pin
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U661, Montpellier, France; Université Montpellier 1 and 2, Montpellier, France
| | - Jean-Pierre Hardelin
- INSERM Unité Mixte de Recherche en Santé (UMRS) 1120, Département Neuroscience, Institut Pasteur, Paris, France
| | - Philippe Rondard
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U661, Montpellier, France; Université Montpellier 1 and 2, Montpellier, France;
| |
Collapse
|
36
|
Abstract
G-protein-coupled receptors (GPCRs) are the primary interaction partners for arrestins. The visual arrestins, arrestin1 and arrestin4, physiologically bind to only very few receptors, i.e., rhodopsin and the color opsins, respectively. In contrast, the ubiquitously expressed nonvisual variants β-arrestin1 and 2 bind to a large number of receptors in a fairly nonspecific manner. This binding requires two triggers, agonist activation and receptor phosphorylation by a G-protein-coupled receptor kinase (GRK). These two triggers are mediated by two different regions of the arrestins, the "phosphorylation sensor" in the core of the protein and a less well-defined "activation sensor." Binding appears to occur mostly in a 1:1 stoichiometry, involving the N-terminal domain of GPCRs, but in addition a second GPCR may loosely bind to the C-terminal domain when active receptors are abundant.Arrestin binding initially uncouples GPCRs from their G-proteins. It stabilizes receptors in an active conformation and also induces a conformational change in the arrestins that involves a rotation of the two domains relative to each other plus changes in the polar core. This conformational change appears to permit the interaction with further downstream proteins. The latter interaction, demonstrated mostly for β-arrestins, triggers receptor internalization as well as a number of nonclassical signaling pathways.Open questions concern the exact stoichiometry of the interaction, possible specificity with regard to the type of agonist and of GRK involved, selective regulation of downstream signaling (=biased signaling), and the options to use these mechanisms as therapeutic targets.
Collapse
Affiliation(s)
- Martin J Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany,
| | | |
Collapse
|
37
|
Snyder JC, Rochelle LK, Barak LS, Caron MG. The stem cell-expressed receptor Lgr5 possesses canonical and functionally active molecular determinants critical to β-arrestin-2 recruitment. PLoS One 2013; 8:e84476. [PMID: 24386388 PMCID: PMC3873998 DOI: 10.1371/journal.pone.0084476] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/14/2013] [Indexed: 01/08/2023] Open
Abstract
Lgr5 is a membrane protein related to G protein-coupled receptors (GPCR)s whose expression identifies stem cells in multiple tissues and is strongly correlated with cancer. Despite the recent identification of endogenous ligands for Lgr5, its mode of signaling remains enigmatic. The ability to couple to G proteins and βarrestins are classical molecular behaviors of GPCRs that have yet to be observed for Lgr5. Therefore, the goal of this study was to determine if Lgr5 can engage a classical GPCR behavior and elucidate the molecular determinants of this process. Structural analysis of Lgr5 revealed several motifs consistent with its ability to recruit βarr2. Among them, a "SSS" serine cluster located at amino acid position 873-875 within the C-terminal tail (C-tail), is in a region consistent with other GPCRs that bind βarr2 with high-affinity. To test its functionality, a ligand-independent βarr2 translocation assay was implemented. We show that Lgr5 recruits βarr2 and that the "SSS" amino acids (873-875) are absolutely critical to this process. We also demonstrate that for full efficacy, this cluster requires other Lgr5 C-tail serines that were previously shown to be important for constitutive and βarr2 independent internalization of Lgr5. These data are proof of principle that a classical GPCR behavior can be manifested by Lgr5. The existence of alternative ligands or missing effectors of Lgr5 that scaffold this classical GPCR behavior and the downstream signaling pathways engaged should be considered. Characterizing Lgr5 signaling will be invaluable for assessing its role in tissue maintenance, repair, and disease.
Collapse
Affiliation(s)
- Joshua C. Snyder
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Lauren K. Rochelle
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Larry S. Barak
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marc G. Caron
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
38
|
Barak LS, Bai Y, Snyder JC, Wang J, Chen W, Caron MG. Triphenylmethane dye activation of beta-arrestin. Biochemistry 2013; 52:5403-14. [PMID: 23865508 PMCID: PMC3744129 DOI: 10.1021/bi400217r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Arrestins regulate G protein-coupled receptor signaling as competitive inhibitors and protein adaptors. Low molecular weight biased ligands that bind receptors and discriminate between the G protein dependent arm and β-arrestin, clathrin-associated arm of receptor signaling are considered therapeutically valuable as a result of this distinctive pharmacological behavior. Other than receptor agonists, compounds that activate β-arrestins are not available. We show that within minutes of exposure to the cationic triphenylmethane dyes malachite green and brilliant green, tissue culture cells recruit β-arrestins to clathrin scaffolds in a receptor-activation independent manner. In the presence of these compounds, G protein signaling is inhibited, ERK and GSK3β signaling are preserved, and the recruitment of the beta2-adaptin, AP2 adaptor complex to clathrin as well as transferrin internalization is reduced. Moreover, malachite green binds β-arrestin2-GFP coated immunotrap beads relative to GFP only coated beads. Triphenylmethane dyes are FDA approved for topical use on newborns as components of triple-dye preparations and are not approved but used effectively as aqueous antibiotics in fish husbandry. As possible carcinogens, their chronic ingestion in food preparations, particularly through farmed fish, is discouraged in the U.S. and Europe. Our results indicate triphenylmethane dyes as a result of novel pharmacology may have additional roles as β-arrestin/clathrin pathway signaling modulators in both pharmacology research and clinical therapy.
Collapse
Affiliation(s)
- Larry S Barak
- Departments of Cell Biology, Duke University, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Hauger RL, Olivares-Reyes JA, Braun S, Hernandez-Aranda J, Hudson CC, Gutknecht E, Dautzenberg FM, Oakley RH. Desensitization of human CRF2(a) receptor signaling governed by agonist potency and βarrestin2 recruitment. ACTA ACUST UNITED AC 2013; 186:62-76. [PMID: 23820308 DOI: 10.1016/j.regpep.2013.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 04/18/2013] [Accepted: 06/20/2013] [Indexed: 01/04/2023]
Abstract
The primary goal was to determine agonist-specific regulation of CRF2(a) receptor function. Exposure of human retinoblastoma Y79 cells to selective (UCN2, UCN3 or stresscopins) and non-selective (UCN1 or sauvagine) agonists prominently desensitized CRF2(a) receptors in a rapid, concentration-dependent manner. A considerably slower rate and smaller magnitude of desensitization developed in response to the weak agonist CRF. CRF1 receptor desensitization stimulated by CRF, cortagine or stressin1-A had no effect on CRF2(a) receptor cyclic AMP signaling. Conversely, desensitization of CRF2(a) receptors by UCN2 or UCN3 did not cross-desensitize Gs-coupled CRF1 receptor signaling. In transfected HEK293 cells, activation of CRF2(a) receptors by UCN2, UCN3 or CRF resulted in receptor phosphorylation and internalization proportional to agonist potency. Neither protein kinase A nor casein kinases mediated CRF2(a) receptor phosphorylation or desensitization. Exposure of HEK293 or U2OS cells to UCN2 or UCN3 (100nM) produced strong βarrestin2 translocation and colocalization with membrane CRF2(a) receptors while CRF (1μM) generated only weak βarrestin2 recruitment. βarrestin2 did not internalize with the receptor, however, indicating that transient CRF2(a) receptor-arrestin complexes dissociate at or near the cell membrane. Since deletion of the βarrestin2 gene upregulated Gs-coupled CRF2(a) receptor signaling in MEF cells, a βarrestin2 mechanism restrains Gs-coupled CRF2(a) receptor signaling activated by urocortins. We further conclude that the rate and extent of homologous CRF2(a) receptor desensitization are governed by agonist-specific mechanisms affecting GRK phosphorylation, βarrestin2 recruitment, and internalization thereby producing unique signal transduction profiles that differentially affect the stress response.
Collapse
Affiliation(s)
- Richard L Hauger
- Center of Excellence for Stress and Mental Health, San Diego VA Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA; Department of Psychiatry, School of Medicine, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zheng C, Chen L, Chen X, He X, Yang J, Shi Y, Zhou N. The second intracellular loop of the human cannabinoid CB2 receptor governs G protein coupling in coordination with the carboxyl terminal domain. PLoS One 2013; 8:e63262. [PMID: 23667597 PMCID: PMC3646771 DOI: 10.1371/journal.pone.0063262] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 04/01/2013] [Indexed: 11/18/2022] Open
Abstract
The major effects of cannabinoids and endocannabinoids are mediated via two G protein-coupled receptors, CB1 and CB2, elucidation of the mechanism and structural determinants of the CB2 receptor coupling with G proteins will have a significant impact on drug discovery. In the present study, we systematically investigated the role of the intracellular loops in the interaction of the CB2 receptor with G proteins using chimeric receptors alongside the characterization of cAMP accumulation and ERK1/2 phosphorylation. We provided evidence that ICL2 was significantly involved in G protein coupling in coordination with the C-terminal end. Moreover, a single alanine substitution of the Pro-139 in the CB2 receptor that corresponds to Leu-222 in the CB1 receptor resulted in a moderate impairment in the inhibition of cAMP accumulation, whereas mutants P139F, P139M and P139L were able to couple to the Gs protein in a CRE-driven luciferase assay. With the ERK activation experiments, we further found that P139L has the ability to activate ERK through both Gi- and Gs-mediated pathways. Our findings defined an essential role of the second intracellular loop of the CB2 receptor in coordination with the C-terminal tail in G protein coupling and receptor activation.
Collapse
MESH Headings
- Adenylyl Cyclase Inhibitors
- Adenylyl Cyclases/metabolism
- Amino Acid Sequence
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Enzyme Activation/drug effects
- Extracellular Signal-Regulated MAP Kinases/metabolism
- GTP-Binding Proteins/metabolism
- HEK293 Cells
- Humans
- Molecular Sequence Data
- Mutant Proteins/chemistry
- Mutant Proteins/metabolism
- Proline/metabolism
- Protein Binding/drug effects
- Protein Kinase Inhibitors/pharmacology
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptor, Cannabinoid, CB1/chemistry
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/chemistry
- Receptor, Cannabinoid, CB2/metabolism
- Recombinant Proteins/metabolism
- Signal Transduction/drug effects
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Congxia Zheng
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Art, Zhejiang International Studies University, Hangzhou, Zhejiang, China
| | - Linjie Chen
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaopan Chen
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaobai He
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingwen Yang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
41
|
Hajjhussein H, Gardner LA, Fujii N, Anderson NM, Bahouth SW. The hydrophobic amino acid cluster at the cytoplasmic end of transmembrane helix III modulates the coupling of the β(1)-adrenergic receptor to G(s). J Recept Signal Transduct Res 2013; 33:79-88. [PMID: 23351074 DOI: 10.3109/10799893.2012.759590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract A cluster of hydrophobic amino acids at the cytoplasmic end of trans-membranal helix III (TM-III) is a common feature among class-A of G protein-coupled receptors (GPCR). We mutagenized alanine 159(3.53) to glutamic acid and isoleucine160(3.54) to arginine (A159E/I160R) in TM-III of the human β(1)-adrenergic receptor (β(1)-AR) to disrupt the function of the hydrophobic cluster. Structurally, the combined mutations of A159E/I160R caused an almost 90° tilt in the rotation of Arg156(3.50) in the E/DRY motif of TM-III and displaced Tyr166(3.60) in intracellular loop 2. The A159E/I160R β(1)-AR was uncoupled from G(s) as determined by cyclic AMP/adenylyl cyclase assays and by FRET-based proximity measurements between the β(1)-AR and G(s)α. Isoproterenol induced β-arrestin trafficking in cells expressing both the wild-type β(1)-AR and the A159E/I160R β(1)-AR. Isoproterenol markedly increased the phosphorylation of ERK1/2 in cells expressing the WT β(1)-AR and this effect was dependent on the activation of the G(s)-cyclic AMP-dependent protein kinase → Rap → B-raf axis. However, in cells bearing the A159E/I160R β(1)-AR, isoproterenol failed to increase the phosphorylation of ERK(1/2). These results indicate that mutations in the G(s)α-binding pocket of the GPCR interfered with receptor coupling to G(s) and with its downstream signaling cascades.
Collapse
Affiliation(s)
- Hassan Hajjhussein
- Department of Pharmacology, The University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
42
|
Woad KJ, Prendergast D, Winship IM, Shelling AN. FSH receptor gene variants are rarely associated with premature ovarian failure. Reprod Biomed Online 2013; 26:396-9. [PMID: 23419799 DOI: 10.1016/j.rbmo.2013.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 11/30/2022]
Abstract
FSH receptor (FSHR) gene variants have been associated with premature ovarian failure (POF). Genomic DNA from New Zealand women with POF (n=80) and control women (n=80) was screened for variants in FSHR exons 7 and 10. FSHR exon 7 variants, including the c.566C>T Finnish founder mutation (p.Ala189Val), were not detected. Previously reported FSHR exon 10 polymorphisms were identified in both groups with similar allelic distributions. A novel heterozygous FSHR exon 10 variant c.1411A>T, p.Ile471Phe was observed in one woman with a family history of POF, but not her affected siblings. It is concluded that variants in exons 7 and 10 of FSHR are not frequently associated with the development of POF in the New Zealand population.
Collapse
Affiliation(s)
- Kathryn J Woad
- Discipline of Oncology, University of Auckland, Auckland, New Zealand.
| | | | | | | |
Collapse
|
43
|
Farrell MS, Roth BL. Pharmacosynthetics: Reimagining the pharmacogenetic approach. Brain Res 2012; 1511:6-20. [PMID: 23063887 DOI: 10.1016/j.brainres.2012.09.043] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/28/2012] [Accepted: 09/30/2012] [Indexed: 02/06/2023]
Abstract
Pharmacology, in its broadest interpretation, is defined as the study of the interaction between physiological entities and drugs. In modern neuropsychopharmacology, this interaction is viewed as the drug itself on one side and signal transducer (receptor), the signal transduction cascade (effector proteins, second messengers), the cellular response (transcriptional regulation, activity modulation), the organ response (brain circuitry modulation), and, finally, the whole organism response (behavior) on the other. In other words, pharmacology has structured itself around the idea that the exogenous molecule (the drug) encodes a "signal" leading to everything on the other side including, in extreme renditions, a physiological response. The inference is that engaging a particular signal transduction pathway in a defined cell type leads inexorably to a prototypic physiological response. Thus, for instance, serotonergic activation of 5-HT(2A) receptors in rat aortic smooth muscle cells leads to an increase in intracellular Ca(++) (via IP₃ release) and smooth muscle contraction (Roth et al., 1986). Here, we suggest that the invention of synthetic ligand--GPCR pairs (aka DREADDs, RASSLS, 'pharmacogenetics') permits the study of pharmacology using a shifted equation: more of the signal transduction elements moved to the left and, subsequently, under experimental control. For the purposes of disambiguation and to clarify this new interpretation as a creation of pharmacological manipulation, we present the term pharmacosynthetics to describe what has heretofore been called pharmacogenetics or chemicogenetics. This review discusses this new interpretation and reviews recent applications of the technology and considerations of the approach. This article is part of a Special Issue entitled Optogenetics (7th BRES).
Collapse
Affiliation(s)
- Martilias S Farrell
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
44
|
Valentin-Hansen L, Groenen M, Nygaard R, Frimurer TM, Holliday ND, Schwartz TW. The arginine of the DRY motif in transmembrane segment III functions as a balancing micro-switch in the activation of the β2-adrenergic receptor. J Biol Chem 2012; 287:31973-82. [PMID: 22843684 DOI: 10.1074/jbc.m112.348565] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent high resolution x-ray structures of the β2-adrenergic receptor confirmed a close salt-bridge interaction between the suspected micro-switch residue ArgIII:26 (Arg3.50) and the neighboring AspIII:25 (Asp3.49). However, neither the expected "ionic lock" interactions between ArgIII:26 and GluVI:-06 (Glu6.30) in the inactive conformation nor the interaction with TyrV:24 (Tyr5.58) in the active conformation were observed in the x-ray structures. Here we find through molecular dynamics simulations, after removal of the stabilizing T4 lysozyme, that the expected salt bridge between ArgIII:26 and GluVI:-06 does form relatively easily in the inactive receptor conformation. Moreover, mutational analysis of GluVI:-06 in TM-VI and the neighboring AspIII:25 in TM-III demonstrated that these two residues do function as locks for the inactive receptor conformation as we observed increased G(s) signaling, arrestin mobilization, and internalization upon alanine substitutions. Conversely, TyrV:24 appears to play a role in stabilizing the active receptor conformation as loss of function of G(s) signaling, arrestin mobilization, and receptor internalization was observed upon alanine substitution of TyrV:24. The loss of function of the TyrV:24 mutant could partly be rescued by alanine substitution of either AspIII:25 or GluVI:-06 in the double mutants. Surprisingly, removal of the side chain of the ArgIII:26 micro-switch itself had no effect on G(s) signaling and internalization and only reduced arrestin mobilization slightly. It is suggested that ArgIII:26 is equally important for stabilizing the inactive and the active conformation through interaction with key residues in TM-III, -V, and -VI, but that the ArgIII:26 micro-switch residue itself apparently is not essential for the actual G protein activation.
Collapse
Affiliation(s)
- Louise Valentin-Hansen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, the Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
45
|
Ligands and signaling proteins govern the conformational landscape explored by a G protein-coupled receptor. Proc Natl Acad Sci U S A 2012; 109:8304-9. [PMID: 22573814 DOI: 10.1073/pnas.1119881109] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynamic character of G protein-coupled receptors is essential to their function. However, the details of how ligands stabilize a particular conformation to selectively activate a signaling pathway and how signaling proteins affect this conformational repertoire remain unclear. Using a prototypical peptide-activated class A G protein-coupled receptor (GPCR), the ghrelin receptor, reconstituted as a monomer into lipid discs and labeled with a fluorescent conformational reporter, we demonstrate that ligand efficacy and functional selectivity are directly related to different receptor conformations. Of importance, our data bring direct evidence that distinct effector proteins affect the conformational landscape of the ghrelin receptor in different ways. Whereas G proteins affect the balance between active and inactive receptor substates in favor of the active state, agonist-induced arrestin recruitment is accompanied by a marked change in the structural features of the receptor that adopt a conformation different from that observed in the absence of arrestin. In contrast to G proteins and arrestins, μ-AP2 has no significant effect on the organization of the transmembrane core of the receptor. Such a modulation of a GPCR conformational landscape by pharmacologically distinct ligands and effectors provides insights into the structural bases that decisively affect ligand efficacy and subsequent biological responses. This is also likely to have major implications for the design of drugs activating specific GPCR-associated signaling pathways.
Collapse
|
46
|
Kilpatrick LE, Briddon SJ, Holliday ND. Fluorescence correlation spectroscopy, combined with bimolecular fluorescence complementation, reveals the effects of β-arrestin complexes and endocytic targeting on the membrane mobility of neuropeptide Y receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1068-81. [PMID: 22487268 PMCID: PMC3793875 DOI: 10.1016/j.bbamcr.2012.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 01/22/2023]
Abstract
Fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analysis are powerful ways to study mobility and stoichiometry of G protein coupled receptor complexes, within microdomains of single living cells. However, relating these properties to molecular mechanisms can be challenging. We investigated the influence of β-arrestin adaptors and endocytosis mechanisms on plasma membrane diffusion and particle brightness of GFP-tagged neuropeptide Y (NPY) receptors. A novel GFP-based bimolecular fluorescence complementation (BiFC) system also identified Y1 receptor-β-arrestin complexes. Diffusion co-efficients (D) for Y1 and Y2-GFP receptors in HEK293 cell plasma membranes were 2.22 and 2.15 × 10− 9 cm2 s− 1 respectively. At a concentration which promoted only Y1 receptor endocytosis, NPY treatment reduced Y1-GFP motility (D 1.48 × 10− 9 cm2 s− 1), but did not alter diffusion characteristics of the Y2-GFP receptor. Agonist induced changes in Y1 receptor motility were inhibited by mutations (6A) which prevented β-arrestin recruitment and internalisation; conversely they became apparent in a Y2 receptor mutant with increased β-arrestin affinity. NPY treatment also increased Y1 receptor-GFP particle brightness, changes which indicated receptor clustering, and which were abolished by the 6A mutation. The importance of β-arrestin recruitment for these effects was illustrated by reduced lateral mobility (D 1.20–1.33 × 10− 9 cm2 s− 1) of Y1 receptor-β-arrestin BiFC complexes. Thus NPY-induced changes in Y receptor motility and brightness reflect early events surrounding arrestin dependent endocytosis at the plasma membrane, results supported by a novel combined BiFC/FCS approach to detect the underlying receptor-β-arrestin signalling complex.
Collapse
Affiliation(s)
- Laura E Kilpatrick
- Cell Signaling Research Group, School of Biomedical Sciences, University of Nottingham, the Medical School, Queen's Medical Centre, Nottingham, UK
| | | | | |
Collapse
|
47
|
Kanwal S, Nishat S, Khan MI. Docking of human rhodopsin mutant (Gly90→Asp) with beta-arrestin and cyanidin 3-rutinoside to cure night blindness. Bioinformation 2012; 8:128-33. [PMID: 22368384 PMCID: PMC3283884 DOI: 10.6026/97320630008128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 01/17/2012] [Indexed: 11/25/2022] Open
Abstract
MOTIVATION Rhodopsin is a visual pigment present in rod cells of retina. It belongs to GPCR family and involves photoisomerization of 11-cis-retinal to all-trans-retinal isomers, conformational changes in rhodopsin and signal transduction cascade to generate a nerve impulse. This signaling pathway has been targeted to eliminate the effect of a mutation (Gly90→Asp) responsible for abnormal activation of G-protein without retinal conformations in the absence of light leading to congenital night blindness. A theoretical model of rhodopsin with induced mutation has been deliberated in order to find potential ligands which can offset this mutational effect. The binding interactions between the target mutated rhodopsin model and potential ligands have been predicted with the help of molecular docking. The results indicated strong functional benefits of ligands as an inhibitor and an agonist for mutated rhodopsin model. Therefore, we propose a new visual cascade model which can initiate the normal signaling of rhodopsin mutant with the help of proposed ligands and can provide a hope for vision in future.
Collapse
Affiliation(s)
- Shagufta Kanwal
- Department of Bioinformatics and Biotechnology, International Islamic University, Women Campus, Sector H-10, Islamabad, Pakistan
| | - Sumaira Nishat
- Department of Bioinformatics and Biotechnology, International Islamic University, Women Campus, Sector H-10, Islamabad, Pakistan
| | - Muhammad Irfan Khan
- Department of Bioinformatics and Biotechnology, International Islamic University, Women Campus, Sector H-10, Islamabad, Pakistan
| |
Collapse
|
48
|
Watson SJ, Brown AJH, Holliday ND. Differential signaling by splice variants of the human free fatty acid receptor GPR120. Mol Pharmacol 2012; 81:631-42. [PMID: 22282525 DOI: 10.1124/mol.111.077388] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
GPR120 is a long-chain fatty acid receptor that stimulates incretin hormone release from colonic endocrine cells and is implicated in macrophage and adipocyte function. The functional consequences of long (L) and short (S) human GPR120 splice variants, which differ by insertion of 16 amino acids in the third intracellular loop, are currently unknown. Here we compare signaling and intracellular trafficking of GPR120S and GPR120L receptors, using calcium mobilization and dynamic mass redistribution (DMR) assays, together with quantitative imaging measurements of β-arrestin2 association and receptor internalization. FLAG- or SNAP-tagged GPR120S receptors elicited both intracellular calcium mobilization and DMR responses in human embryonic kidney 293 cells, when stimulated with oleic acid, myristic acid, or the agonist 4-[[(3-phenoxyphenyl)methyl]amino]benzenepropanoic acid (GW9508). Responses were insensitive to pertussis toxin, but increases in intracellular calcium were attenuated by 2-aminoethoxydiphenyl borate, an inhibitor of store inositol trisphosphate receptors. Despite equivalent cell surface expression of SNAP-tagged GPR120L receptors, no specific calcium or DMR responses were observed in cells transfected with this isoform. However, agonist-stimulated GPR120S and GPR120L receptors both recruited β-arrestin2 and underwent robust internalization, with similar agonist potencies in each case. After oleic acid-induced internalization, neither GPR120 isoform recycled rapidly to the cell surface. In both cases, confocal microscopy indicated receptor targeting to lysosomal compartments. Thus, the third intracellular loop insertion in GPR120L prevents G protein-dependent intracellular calcium and DMR responses, but this receptor isoform remains functionally coupled to the β-arrestin pathway, providing one of the first examples of a native β-arrestin-biased receptor.
Collapse
Affiliation(s)
- Sarah-Jane Watson
- Cell Signalling Research Group, School of Biomedical Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | | |
Collapse
|
49
|
Kahsai AW, Xiao K, Rajagopal S, Ahn S, Shukla AK, Sun J, Oas TG, Lefkowitz RJ. Multiple ligand-specific conformations of the β2-adrenergic receptor. Nat Chem Biol 2011; 7:692-700. [PMID: 21857662 DOI: 10.1038/nchembio.634] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 06/28/2011] [Indexed: 01/03/2023]
Abstract
Seven-transmembrane receptors (7TMRs), also called G protein-coupled receptors (GPCRs), represent the largest class of drug targets, and they can signal through several distinct mechanisms including those mediated by G proteins and the multifunctional adaptor proteins β-arrestins. Moreover, several receptor ligands with differential efficacies toward these distinct signaling pathways have been identified. However, the structural basis and mechanism underlying this 'biased agonism' remains largely unknown. Here, we develop a quantitative mass spectrometry strategy that measures specific reactivities of individual side chains to investigate dynamic conformational changes in the β(2)-adrenergic receptor occupied by nine functionally distinct ligands. Unexpectedly, only a minority of residues showed reactivity patterns consistent with classical agonism, whereas the majority showed distinct patterns of reactivity even between functionally similar ligands. These findings demonstrate, contrary to two-state models for receptor activity, that there is significant variability in receptor conformations induced by different ligands, which has significant implications for the design of new therapeutic agents.
Collapse
Affiliation(s)
- Alem W Kahsai
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Shenoy SK, Lefkowitz RJ. β-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 2011; 32:521-33. [PMID: 21680031 DOI: 10.1016/j.tips.2011.05.002] [Citation(s) in RCA: 552] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 01/14/2023]
Abstract
β-Arrestins function as endocytic adaptors and mediate trafficking of a variety of cell-surface receptors, including seven-transmembrane receptors (7TMRs). In the case of 7TMRs, β-arrestins carry out these tasks while simultaneously inhibiting upstream G-protein-dependent signaling and promoting alternate downstream signaling pathways. The mechanisms by which β-arrestins interact with a continuously expanding ensemble of protein partners and perform their multiple functions including trafficking and signaling are currently being uncovered. Molecular changes at the level of protein conformation as well as post-translational modifications of β-arrestins probably form the basis for their dynamic interactions during receptor trafficking and signaling. It is becoming increasingly evident that β-arrestins, originally discovered as 7TMR adaptor proteins, indeed have much broader and more versatile roles in maintaining cellular homeostasis. In this review paper, we assess the traditional and novel functions of β-arrestins and discuss the molecular attributes that might facilitate multiple interactions in regulating cell signaling and receptor trafficking.
Collapse
Affiliation(s)
- Sudha K Shenoy
- Department of Medicine, Duke University Medical Center, Box 3821, Durham, NC 27710, USA.
| | | |
Collapse
|