1
|
Wight TN, Day AJ, Kang I, Harten IA, Kaber G, Briggs DC, Braun KR, Lemire JM, Kinsella MG, Hinek A, Merrilees MJ. V3: an enigmatic isoform of the proteoglycan versican. Am J Physiol Cell Physiol 2023; 325:C519-C537. [PMID: 37399500 PMCID: PMC10511178 DOI: 10.1152/ajpcell.00059.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/05/2023]
Abstract
V3 is an isoform of the extracellular matrix (ECM) proteoglycan (PG) versican generated through alternative splicing of the versican gene such that the two major exons coding for sequences in the protein core that support chondroitin sulfate (CS) glycosaminoglycan (GAG) chain attachment are excluded. Thus, versican V3 isoform carries no GAGs. A survey of PubMed reveals only 50 publications specifically on V3 versican, so it is a very understudied member of the versican family, partly because to date there are no antibodies that can distinguish V3 from the CS-carrying isoforms of versican, that is, to facilitate functional and mechanistic studies. However, a number of in vitro and in vivo studies have identified the expression of the V3 transcript during different phases of development and in disease, and selective overexpression of V3 has shown dramatic phenotypic effects in "gain and loss of function" studies in experimental models. Thus, we thought it would be useful and instructive to discuss the discovery, characterization, and the putative biological importance of the enigmatic V3 isoform of versican.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Anthony J Day
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Ingrid A Harten
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Gernot Kaber
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - David C Briggs
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Kathleen R Braun
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Joan M Lemire
- Department of Biology, Tufts University, Medford, Massachusetts, United States
| | - Michael G Kinsella
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Aleksander Hinek
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mervyn J Merrilees
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev 2023; 103:1899-1964. [PMID: 36656056 DOI: 10.1152/physrev.00019.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wan-Min Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Chen T, Cao F, Peng W, Wei R, Xu Q, Feng B, Wang J, Weng J, Wang M, Zhang X. Optimal regeneration and repair of critical size articular cartilage driven by endogenous CLECSF1. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Dinesh NEH, Campeau PM, Reinhardt DP. Fibronectin isoforms in skeletal development and associated disorders. Am J Physiol Cell Physiol 2022; 323:C536-C549. [PMID: 35759430 DOI: 10.1152/ajpcell.00226.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular matrix is an intricate and essential network of proteins and non-proteinaceous components that provide a conducive microenvironment for cells to regulate cell function, differentiation, and survival. Fibronectin is one key component in the extracellular matrix that participates in determining cell fate and function crucial for normal vertebrate development. Fibronectin undergoes time dependent expression patterns during stem cell differentiation, providing a unique stem cell niche. Mutations in fibronectin have been recently identified to cause a rare form of skeletal dysplasia with scoliosis and abnormal growth plates. Even though fibronectin has been extensively analyzed in developmental processes, the functional role and importance of this protein and its various isoforms in skeletal development remains less understood. This review attempts to provide a concise and critical overview of the role of fibronectin isoforms in cartilage and bone physiology and associated pathologies. This will facilitate a better understanding of the possible mechanisms through which fibronectin exerts its regulatory role on cellular differentiation during skeletal development. The review discusses the consequences of mutations in fibronectin leading to corner fracture type spondylometaphyseal dysplasia and presents a new outlook towards matrix-mediated molecular pathways in relation to therapeutic and clinical relevance.
Collapse
Affiliation(s)
- Neha E H Dinesh
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | | | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada.,Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
5
|
Abstract
Aggrecan (Acan) and versican (Vcan) are large chondroitin sulfate proteoglycans of the extracellular matrix. They share the same structural domains at both N and C-termini. The N-terminal G1 domain binds hyaluronan (HA), forms an HA-rich matrix, and regulates HA-mediated signaling. The C-terminal G3 domain binds other extracellular matrix molecules and forms a supramolecular structure that stores TGFb and BMPs and regulates their signaling. EGF-like motifs in the G3 domain may directly act like an EGF ligand. Both Acan and Vcan are present in cartilage, intervertebral disc, brain, heart, and aorta. Their localizations are essentially reciprocal. This review describes their structural domains, expression patterns and functions, and regulation of their expression.
Collapse
Affiliation(s)
- Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
6
|
Papadas A, Cicala A, Kraus SG, Arauz G, Tong A, Deming D, Asimakopoulos F. Versican in Tumor Progression, Tumor–Host Interactions, and Cancer Immunotherapy. BIOLOGY OF EXTRACELLULAR MATRIX 2022:93-118. [DOI: 10.1007/978-3-030-99708-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Timms KP, Maurice SB. Context-dependent bioactivity of versican fragments. Glycobiology 2021; 30:365-373. [PMID: 31651027 DOI: 10.1093/glycob/cwz090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 01/05/2023] Open
Abstract
Versican (VCAN) proteolysis and the accumulation of VCAN fragments occur in many developmental and disease processes, affecting extracellular matrix (ECM) structure and cell phenotype. Little is known about the significance of proteolysis and the roles of fragments, or how this ECM remodeling affects the microenvironment and phenotype of diseased cells. G1-DPEAAE fragments promote aspects of epithelial-mesenchymal transitioning in developing and diseased cells, resulting in cell migration. Enhanced proliferation and invasion of tumor and endothelial cells is directly associated with G1 domain deposition and G1-DPEAAE localization respectively. These tumorigenic and angiogenic roles could explain the disease exacerbating effect often associated with G1-containing fragments, however, the pathogenicity of G1 fragments depends entirely upon the context. Overall, VCAN fragments promote tumorigenesis and inflammation; however, the specific cleavage site, the extent of cleavage activity and the microenvironment in which cleavage occurs collectively determine how this pleiotropic molecule and its fragments influence cells.
Collapse
Affiliation(s)
- Katherine Payne Timms
- University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada
| | - Sean Bertram Maurice
- Northern Medical Program, University of Northern British Columbia, Dr. Donald Rix Northern Health Sciences Centre, 3333 University Way, Prince George, BC, V2N 4Z9, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, 2350 Health Sciences Mall Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
8
|
Stone RN, Frahs SM, Hardy MJ, Fujimoto A, Pu X, Keller-Peck C, Oxford JT. Decellularized Porcine Cartilage Scaffold; Validation of Decellularization and Evaluation of Biomarkers of Chondrogenesis. Int J Mol Sci 2021; 22:6241. [PMID: 34207917 PMCID: PMC8230108 DOI: 10.3390/ijms22126241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis is a major concern in the United States and worldwide. Current non-surgical and surgical approaches alleviate pain but show little evidence of cartilage restoration. Cell-based treatments may hold promise for the regeneration of hyaline cartilage-like tissue at the site of injury or wear. Cell-cell and cell-matrix interactions have been shown to drive cell differentiation pathways. Biomaterials for clinically relevant applications can be generated from decellularized porcine auricular cartilage. This material may represent a suitable scaffold on which to seed and grow chondrocytes to create new cartilage. In this study, we used decellularization techniques to create an extracellular matrix scaffold that supports chondrocyte cell attachment and growth in tissue culture conditions. Results presented here evaluate the decellularization process histologically and molecularly. We identified new and novel biomarker profiles that may aid future cartilage decellularization efforts. Additionally, the resulting scaffold was characterized using scanning electron microscopy, fluorescence microscopy, and proteomics. Cellular response to the decellularized scaffold was evaluated by quantitative real-time PCR for gene expression analysis.
Collapse
Affiliation(s)
- Roxanne N. Stone
- Interdisciplinary Studies Program, Boise State University, Boise, ID 83725, USA;
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
| | - Stephanie M. Frahs
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
| | - Makenna J. Hardy
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
| | - Akina Fujimoto
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
| | - Cynthia Keller-Peck
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
| | - Julia Thom Oxford
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
9
|
Chen Y, Lee K, Kawazoe N, Yang Y, Chen G. ECM scaffolds mimicking extracellular matrices of endochondral ossification for the regulation of mesenchymal stem cell differentiation. Acta Biomater 2020; 114:158-169. [PMID: 32738504 DOI: 10.1016/j.actbio.2020.07.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/02/2020] [Accepted: 07/26/2020] [Indexed: 12/11/2022]
Abstract
Endochondral ossification (ECO) is an important process of bone tissue development. During ECO, extracellular matrices (ECMs) are essential factors to control cell functions and induce bone regeneration. However, the exact role of ECO ECMs on stem cell differentiation remains elusive. In this study, ECM scaffolds were prepared to mimic the ECO-related ECM microenvironments and their effects on stem cell differentiation were compared. Four types of ECM scaffolds mimicking the ECMs of stem cells (SC), chondrogenic (CH), hypertrophic (HY) and osteogenic (OS) stages were prepared by controlling differentiation of human bone marrow-derived mesenchymal stem cells (MSCs) at different stages. Composition of the ECM scaffolds was dependent on the differentiation stage of MSCs. They showed different influence on osteogenic differentiation of MSCs. HY ECM scaffold had the most promotive effect on osteogenic differentiation of MSCs. CH ECM and OS ECM scaffolds showed moderate effect, while SC ECM scaffold had the lowest effect on osteogenic differentiation of MSCs. Their effects on chondrogenic or adipogenic differentiation were not significantly different. The results suggested that the engineered HY ECM scaffold had superior effect for osteogenic differentiation of MSCs. Statement of significance ECM scaffolds mimicking endochondral ossification-related ECM microenvironments are pivotal for elucidation of their roles in regulation of stem cell functions and bone tissue regeneration. This study offers a method to prepare ECM scaffolds that mimic the ECMs from cells at hypertrophic, osteogenic, chondrogenic and stem cell stages. Their composition and impacts on osteogenic differentiation of MSCs were compared. The hypertrophic ECM scaffold had the highest promotive effect on osteogenic differentiation of MSCs. The results advance our understanding about the role of ECO ECMs in regulation of stem cell functions and provide perspective for bone defect repair strategies.
Collapse
|
10
|
Harten IA, Kaber G, Agarwal KJ, Kang I, Ibarrientos SR, Workman G, Chan CK, Nivison MP, Nagy N, Braun KR, Kinsella MG, Merrilees MJ, Wight TN. The synthesis and secretion of versican isoform V3 by mammalian cells: A role for N-linked glycosylation. Matrix Biol 2020; 89:27-42. [PMID: 32001344 PMCID: PMC7282976 DOI: 10.1016/j.matbio.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 02/02/2023]
Abstract
Versican is a large extracellular matrix (ECM) chondroitin sulfate (CS) proteoglycan found in most soft tissues, which is encoded by the VCAN gene. At least four major isoforms (V0, V1, V2, and V3) are generated via alternative splicing. The isoforms of versican are expressed and accumulate in various tissues during development and disease, where they contribute to ECM structure, cell growth and migration, and immune regulation, among their many functions. While several studies have identified the mRNA transcript for the V3 isoform in a number of tissues, little is known about the synthesis, secretion, and targeting of the V3 protein. In this study, we used lentiviral generation of doxycycline-inducible rat V3 with a C-terminal tag in stable NIH 3T3 cell lines and demonstrated that V3 is processed through the classical secretory pathway. We further show that N-linked glycosylation is required for efficient secretion and solubility of the protein. By site-directed mutagenesis, we identified amino acids 57 and 330 as the active N-linked glycosylation sites on V3 when expressed in this cell type. Furthermore, exon deletion constructs of V3 revealed that exons 11-13, which code for portions of the carboxy region of the protein (G3 domain), are essential for V3 processing and secretion. Once secreted, the V3 protein associates with hyaluronan along the cell surface and within the surrounding ECM. These results establish critical parameters for the processing, solubility, and targeting of the V3 isoform by mammalian cells and establishes a role for V3 in the organization of hyaluronan.
Collapse
Affiliation(s)
- Ingrid A. Harten
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Gernot Kaber
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Kiran J. Agarwal
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | | | - Gail Workman
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Christina K. Chan
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Mary P. Nivison
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Nadine Nagy
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Kathleen R. Braun
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | | | - Mervyn J. Merrilees
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| |
Collapse
|
11
|
Anthwal N, Fenelon JC, Johnston SD, Renfree MB, Tucker AS. Transient role of the middle ear as a lower jaw support across mammals. eLife 2020; 9:e57860. [PMID: 32600529 PMCID: PMC7363448 DOI: 10.7554/elife.57860] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Mammals articulate their jaws using a novel joint between the dentary and squamosal bones. In eutherian mammals, this joint forms in the embryo, supporting feeding and vocalisation from birth. In contrast, marsupials and monotremes exhibit extreme altriciality and are born before the bones of the novel mammalian jaw joint form. These mammals need to rely on other mechanisms to allow them to feed. Here, we show that this vital function is carried out by the earlier developing, cartilaginous incus of the middle ear, abutting the cranial base to form a cranio-mandibular articulation. The nature of this articulation varies between monotremes and marsupials, with juvenile monotremes retaining a double articulation, similar to that of the fossil mammaliaform Morganucodon, while marsupials use a versican-rich matrix to stabilise the jaw against the cranial base. These findings provide novel insight into the evolution of mammals and the changing relationship between the jaw and ear.
Collapse
Affiliation(s)
- Neal Anthwal
- Centre for Craniofacial and Regenerative Biology, King's College LondonLondonUnited Kingdom
| | - Jane C Fenelon
- School of BioSciences, University of MelbourneVictoriaAustralia
| | - Stephen D Johnston
- School of Agriculture and Food Sciences, University of QueenslandGattonAustralia
| | | | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College LondonLondonUnited Kingdom
| |
Collapse
|
12
|
Chen Y, Lee K, Yang Y, Kawazoe N, Chen G. PLGA-collagen-ECM hybrid meshes mimicking stepwise osteogenesis and their influence on the osteogenic differentiation of hMSCs. Biofabrication 2020; 12:025027. [DOI: 10.1088/1758-5090/ab782b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Casanova MR, Reis RL, Martins A, Neves NM. Fibronectin Bound to a Fibrous Substrate Has Chondrogenic Induction Properties. Biomacromolecules 2020; 21:1368-1378. [DOI: 10.1021/acs.biomac.9b01546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marta R. Casanova
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal
| | - Albino Martins
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
14
|
Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV. Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem Rev 2018; 118:9152-9232. [PMID: 30204432 DOI: 10.1021/acs.chemrev.8b00354] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini 47100, Italy
| | - Stéphanie Baud
- Université de Reims Champagne-Ardenne, Laboratoire SiRMa, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster 48149, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, CNRS, UMR 5246, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne 69622, France
| | - Ralph D. Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| |
Collapse
|
15
|
Carrion B, Souzanchi MF, Wang VT, Tiruchinapally G, Shikanov A, Putnam AJ, Coleman RM. The Synergistic Effects of Matrix Stiffness and Composition on the Response of Chondroprogenitor Cells in a 3D Precondensation Microenvironment. Adv Healthc Mater 2016; 5:1192-202. [PMID: 26959641 DOI: 10.1002/adhm.201501017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/24/2016] [Indexed: 01/10/2023]
Abstract
Improve functional quality of cartilage tissue engineered from stem cells requires a better understanding of the functional evolution of native cartilage tissue. Therefore, a biosynthetic hydrogel was developed containing RGD, hyaluronic acid and/or type-I collagen conjugated to poly(ethylene glycol) acrylate to recapitulate the precondensation microenvironment of the developing limb. Conjugation of any combination of the three ligands did not alter the shear moduli or diffusion properties of the PEG hydrogels; thus, the influence of ligand composition on chondrogenesis could be investigated in the context of varying matrix stiffness. Gene expression of ligand receptors (CD44 and the b1-integrin) as well as markers of condensation (cell clustering and N-cadherin gene expression) and chondrogenesis (Col2a1 gene expression and sGAG production) by chondroprogenitor cells in this system were modulated by both matrix stiffness and ligand composition, with the highest gene expression occurring in softer hydrogels containing all three ligands. Cell proliferation in these 3D matrices for 7 d prior to chondrogenic induction increased the rate of sGAG production in a stiffness-dependent manner. This biosynthetic hydrogel supports the features of early limb-bud condensation and chondrogenesis and is a novel platform in which the influence of the matrix physicochemical properties on these processes can be elucidated.
Collapse
Affiliation(s)
- Bita Carrion
- Biomedical Engineering; University of Michigan; Ann Arbor 48109 USA
| | | | | | | | - Ariella Shikanov
- Biomedical Engineering; University of Michigan; Ann Arbor 48109 USA
| | - Andrew J. Putnam
- Biomedical Engineering; University of Michigan; Ann Arbor 48109 USA
| | - Rhima M. Coleman
- Biomedical Engineering; University of Michigan; Ann Arbor 48109 USA
- Mechanical Engineering; University of Michigan; Ann Arbor 48109 USA
| |
Collapse
|
16
|
Lam J, Clark EC, Fong ELS, Lee EJ, Lu S, Tabata Y, Mikos AG. Evaluation of cell-laden polyelectrolyte hydrogels incorporating poly(L-Lysine) for applications in cartilage tissue engineering. Biomaterials 2016; 83:332-46. [PMID: 26799859 PMCID: PMC4754156 DOI: 10.1016/j.biomaterials.2016.01.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/26/2015] [Accepted: 01/01/2016] [Indexed: 12/21/2022]
Abstract
To address the lack of reliable long-term solutions for cartilage injuries, strategies in tissue engineering are beginning to leverage developmental processes to spur tissue regeneration. This study focuses on the use of poly(L-lysine) (PLL), previously shown to up-regulate mesenchymal condensation during developmental skeletogenesis in vitro, as an early chondrogenic stimulant of mesenchymal stem cells (MSCs). We characterized the effect of PLL incorporation on the swelling and degradation of oligo(poly(ethylene) glycol) fumarate) (OPF)-based hydrogels as functions of PLL molecular weight and dosage. Furthermore, we investigated the effect of PLL incorporation on the chondrogenic gene expression of hydrogel-encapsulated MSCs. The incorporation of PLL resulted in early enhancements of type II collagen and aggrecan gene expression and type II/type I collagen expression ratios when compared to blank controls. The presentation of PLL to MSCs encapsulated in OPF hydrogels also enhanced N-cadherin gene expression under certain culture conditions, suggesting that PLL may induce the expression of condensation markers in synthetic hydrogel systems. In summary, PLL can function as an inductive factor that primes the cellular microenvironment for early chondrogenic gene expression but may require additional biochemical factors for the generation of fully functional chondrocytes.
Collapse
Affiliation(s)
- Johnny Lam
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Elisa C Clark
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Eliza L S Fong
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Esther J Lee
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Steven Lu
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute of Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
17
|
Kang I, Barth JL, Sproul EP, Yoon DW, Workman GA, Braun KR, Argraves WS, Wight TN. Expression of V3 Versican by Rat Arterial Smooth Muscle Cells Promotes Differentiated and Anti-inflammatory Phenotypes. J Biol Chem 2015; 290:21629-41. [PMID: 26152723 DOI: 10.1074/jbc.m115.657486] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Indexed: 01/03/2023] Open
Abstract
Arterial smooth muscle cells (ASMCs) undergo phenotypic changes during development and pathological processes in vivo and during cell culture in vitro. Our previous studies demonstrated that retrovirally mediated expression of the versican V3 splice variant (V3) by ASMCs retards cell proliferation and migration in vitro and reduces neointimal thickening and macrophage and lipid accumulation in animal models of vascular injury and atherosclerosis. However, the molecular pathways induced by V3 expression that are responsible for these changes are not yet clear. In this study, we employed a microarray approach to examine how expression of V3 induced changes in gene expression and the molecular pathways in rat ASMCs. We found that forced expression of V3 by ASMCs affected expression of 521 genes by more than 1.5-fold. Gene ontology analysis showed that components of the extracellular matrix were the most significantly affected by V3 expression. In addition, genes regulating the formation of the cytoskeleton, which also serve as markers of contractile smooth muscle cells (SMCs), were significantly up-regulated. In contrast, components of the complement system, chemokines, chemokine receptors, and transcription factors crucial for regulating inflammatory processes were among the genes most down-regulated. Consistently, we found that the level of myocardin, a key transcription factor promoting contractile SMC phenotype, was greatly increased, and the proinflammatory transcription factors NFκB1 and CCAAT/enhancer-binding protein β were significantly attenuated in V3-expressing SMCs. Overall, these findings demonstrate that V3 expression reprograms ASMCs promoting differentiated and anti-inflammatory phenotypes.
Collapse
Affiliation(s)
- Inkyung Kang
- From the Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101 and
| | - Jeremy L Barth
- the Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Erin P Sproul
- the Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Dong Won Yoon
- From the Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101 and
| | - Gail A Workman
- From the Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101 and
| | - Kathleen R Braun
- From the Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101 and
| | - W Scott Argraves
- the Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Thomas N Wight
- From the Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101 and
| |
Collapse
|
18
|
Cai R, Nakamoto T, Kawazoe N, Chen G. Influence of stepwise chondrogenesis-mimicking 3D extracellular matrix on chondrogenic differentiation of mesenchymal stem cells. Biomaterials 2015; 52:199-207. [PMID: 25818426 DOI: 10.1016/j.biomaterials.2015.02.033] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 01/06/2023]
Abstract
Extracellular matrix (ECM) has drawn a broad attention for preparation of tissue engineering scaffolds and stem cell study. ECM scaffolds stepwise mimicking development of tissues can provide useful models to investigate the interactions between stem cells and ECM during the process of tissue development. In this study, 3D stepwise chondrogenesis-mimicking ECM scaffolds were prepared from mesenchymal stem cells (MSCs) by controlling the stages of chondrogenic differentiation. ECM scaffolds mimicking the early stage and late stage of chondrogenesis were obtained when MSCs were cultured in the chondrogenic medium for 1 and 3 w, respectively. The ECM scaffolds had different compositions as shown by immunohistochemical analysis. Stem cell (SC)-ECM scaffold was rich in collagen I and biglycan. Early stage chondrogenesis-mimicking (CE)-ECM scaffold had moderate amount of collagen II and aggrecan while late stage chondrogenesis-mimicking (CL)-ECM scaffold were rich in collagen II and aggrecan. These three ECM scaffolds had different effects on chondrogenesis of MSCs. The CE-ECM scaffold facilitated chondrogenesis, however the CL-ECM scaffolds remarkably inhibited chondrogenesis of MSCs. These ECM scaffolds not only can provide new 3D ECM models to investigate the effects of ECM on MSCs functions, but also can be used as favorable ECM scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Rong Cai
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tomoko Nakamoto
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Naoki Kawazoe
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Guoping Chen
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
19
|
Iu J, Santerre JP, Kandel RA. Inner and Outer Annulus Fibrosus Cells Exhibit Differentiated Phenotypes and Yield Changes in Extracellular Matrix Protein Composition In Vitro on a Polycarbonate Urethane Scaffold. Tissue Eng Part A 2014; 20:3261-9. [DOI: 10.1089/ten.tea.2013.0777] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jonathan Iu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- BioEngineering of Skeletal Tissues Team, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - J. Paul Santerre
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Rita A. Kandel
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- BioEngineering of Skeletal Tissues Team, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
Singh P, Schwarzbauer JE. Fibronectin matrix assembly is essential for cell condensation during chondrogenesis. J Cell Sci 2014; 127:4420-8. [PMID: 25146392 DOI: 10.1242/jcs.150276] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal cell condensation is the initiating event in endochondral bone formation. Cell condensation is followed by differentiation into chondrocytes, which is accompanied by induction of chondrogenic gene expression. Gene mutations involved in chondrogenesis cause chondrodysplasias and other skeletal defects. Using mesenchymal stem cells (MSCs) in an in vitro chondrogenesis assay, we found that knockdown of the diastrophic dysplasia (DTD) sulfate transporter (DTDST, also known as SLC26A2), which is required for normal cartilage development, blocked cell condensation and caused a significant reduction in fibronectin matrix. Knockdown of fibronectin with small interfering RNAs (siRNAs) also blocked condensation. Fibrillar fibronectin matrix was detected prior to cell condensation, and its levels increased during and after condensation. Inhibition of fibronectin matrix assembly by use of the functional upstream domain (FUD) of adhesin F1 from Streptococcus pyogenes prevented cell condensation by MSCs and also by the chondrogenic cell line ATDC5. Our data show that cell condensation and induction of chondrogenesis depend on fibronectin matrix assembly and DTDST, and indicate that this transporter is required earlier in chondrogenesis than previously appreciated. They also raise the possibility that certain of the skeletal defects in DTD patients might derive from the link between DTDST, fibronectin matrix and condensation.
Collapse
Affiliation(s)
- Purva Singh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Jean E Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| |
Collapse
|
21
|
Microarray comparison of the gene expression profiles in the adult vs. embryonic day 14 rat liver. Biomed Rep 2014; 2:664-670. [PMID: 25054008 DOI: 10.3892/br.2014.303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/13/2014] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to identify the differentially-expressed genes of embryonic day 14 (ED 14) rat liver in comparison to adult rat liver, which may provide specific information for the investigation of the hepatogenesis mechanism. The gene expression profiles of ED 14 and adult rat livers were investigated using microarray analysis (the Illumina RatRef-12 Expression BeadChip). Quantitative polymerase chain reaction (qPCR) analyses were conducted to confirm the gene expression. There were 787 genes upregulated in the embryonic liver. Based on the gene ontology classification system, which was analyzed by the database for annotation, visualization and integrated discovery software, a number of the upregulated genes were categorized into the distinct and differentially-expressed functional groups, including metabolism pathway, cell cycle, transcription, signal transduction, purine metabolism, cell structure, transportation and apoptosis. qPCR analyses confirmed the gene expression. Eleven upregulated genes were found in the ED 14 rat liver, which may provide specific information for the understanding of the molecular mechanisms that control hepatogenesis. These overexpressed genes are potential markers for identifying hepatic progenitor cells.
Collapse
|
22
|
Nandadasa S, Foulcer S, Apte SS. The multiple, complex roles of versican and its proteolytic turnover by ADAMTS proteases during embryogenesis. Matrix Biol 2014; 35:34-41. [PMID: 24444773 DOI: 10.1016/j.matbio.2014.01.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 12/22/2022]
Abstract
Embryonic development is an exceptionally dynamic process, requiring a provisional extracellular matrix that is amenable to rapid remodeling, and proteolytic or non-proteolytic mechanisms that can remodel the major components of this matrix. Versican is a chondroitin-sulfate proteoglycan that forms highly hydrated complexes with hyaluronan and is widely distributed in the provisional matrix of mammalian embryos. It has been extensively studied in the context of cardiovascular morphogenesis, neural crest cell migration and skeletal development. Analysis of Vcan transgenic mice has established the requirement for versican in cardiac development and its role in skeletogenesis. The ADAMTS family includes several versican-degrading proteases that are active during remodeling of the embryonic provisional matrix, especially during sculpting of versican-rich tissues. Versican is cleaved at specific peptide bonds by ADAMTS proteases, and the cleavage products are detectable by neo-epitope antibodies. Myocardial compaction, closure of the secondary palate (in which neural crest derived cells participate), endocardial cushion remodeling, myogenesis and interdigital web regression are developmental contexts in which ADAMTS-mediated versican proteolysis has been identified as a crucial requirement. ADAMTS proteases are expressed coordinately and function cooperatively in many of these contexts. In addition to versican clearance, ADAMTS proteases generate a bioactive versican fragment containing the N-terminal G1 domain, which we have named versikine. This review promotes the view that the embryonic extracellular matrix has evolved not only to provide a permissive environment for embryo growth and morphogenesis, but through its dissolution to influence and regulate cellular processes.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Simon Foulcer
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Suneel S Apte
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
23
|
Rocha B, Calamia V, Casas V, Carrascal M, Blanco FJ, Ruiz-Romero C. Secretome Analysis of Human Mesenchymal Stem Cells Undergoing Chondrogenic Differentiation. J Proteome Res 2014; 13:1045-54. [DOI: 10.1021/pr401030n] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Beatriz Rocha
- Rheumatology Division,
ProteoRed/ISCIII Proteomics Group, INIBIC—Hospital Universitario
de A Coruña, C/Xubias 84, 15006-A Coruña, Spain
| | - Valentina Calamia
- Rheumatology Division,
ProteoRed/ISCIII Proteomics Group, INIBIC—Hospital Universitario
de A Coruña, C/Xubias 84, 15006-A Coruña, Spain
| | - Vanessa Casas
- CSIC/UAB Proteomics
Laboratory, Instituto de Investigaciones Biomédicas de Barcelona-Consejo
Superior de Investigaciones Científicas, 08193-Bellaterra, Spain
| | - Montserrat Carrascal
- CSIC/UAB Proteomics
Laboratory, Instituto de Investigaciones Biomédicas de Barcelona-Consejo
Superior de Investigaciones Científicas, 08193-Bellaterra, Spain
| | - Francisco J. Blanco
- Rheumatology Division,
ProteoRed/ISCIII Proteomics Group, INIBIC—Hospital Universitario
de A Coruña, C/Xubias 84, 15006-A Coruña, Spain
- RIER-RED
de Inflamación
y Enfermedades Reumáticas, INIBIC−CHUAC, 15006-A Coruña, Spain
| | - Cristina Ruiz-Romero
- Rheumatology Division,
ProteoRed/ISCIII Proteomics Group, INIBIC—Hospital Universitario
de A Coruña, C/Xubias 84, 15006-A Coruña, Spain
- CIBER-BBN Instituto
de Salud Carlos III, INIBIC−CHUAC, 15006-A Coruña, Spain
| |
Collapse
|
24
|
Versican and the regulation of cell phenotype in disease. Biochim Biophys Acta Gen Subj 2014; 1840:2441-51. [PMID: 24401530 DOI: 10.1016/j.bbagen.2013.12.028] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 12/23/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Versican is an extracellular matrix (ECM) proteoglycan that is present in the pericellular environment of most tissues and increases in many different diseases. Versican interacts with cells to influence the ability of cells to proliferate, migrate, adhere and assemble an ECM. SCOPE OF REVIEW The structure of the versican molecule is briefly reviewed and studies highlighting those factors that promote versican synthesis and degradation and their impact on cell phenotype in disease are discussed. Particular attention is given to vascular disease, but other diseases where versican is important are covered as well, most notably different forms of cancers. Attention is given to mechanisms(s) by which versican influences cell behaviors through either direct or indirect processes. Versican produced by either stromal cells or myeloid cells can have a major impact influencing immunity and inflammation. Finally, studies controlling versican accumulation that either delay or inhibit the progression of disease will be highlighted. MAJOR CONCLUSIONS Versican is one component of the ECM that can influence the ability of cells to proliferate, migrate, adhere, and remodel the ECM. Targeting versican as a way to control cell phenotype offers a novel approach in the treatment of disease. SIGNIFICANCE ECM molecules such as versican contribute to the structural integrity of tissues and interact with cells through direct and indirect means to regulate, in part, cellular events that form the basis of disease. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
|
25
|
Yoshitaka T, Kawai A, Miyaki S, Numoto K, Kikuta K, Ozaki T, Lotz M, Asahara H. Analysis of microRNAs expressions in chondrosarcoma. J Orthop Res 2013; 31:1992-8. [PMID: 23940002 PMCID: PMC3835201 DOI: 10.1002/jor.22457] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/08/2013] [Indexed: 02/04/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs capable of inhibiting gene expression post-transcriptionally and expression profiling can provide therapeutic targets and tools for cancer diagnosis. Chondrosarcoma is a mesenchymal tumor with unknown cause and differentiation status. Here, we profiled miRNA expression of chondrosarcoma, namely clinical samples from human conventional chondrosarcoma tissue, established chondrosarcoma cell lines, and primary non-tumorous adult articular chondrocytes, by miRNA array and quantitative real-time PCR. A wide variety of miRNAs were differently downregulated in chondrosarcoma compared to non-tumorous articular chondrocytes; 27 miRNAs: miR-10b, 23b, 24-1*, 27b, 100, 134, 136, 136*, 138, 181d, 186, 193b, 221*, 222, 335, 337-5p, 376a, 376a*, 376b, 376c, 377, 454, 495, 497, 505, 574-3p, and 660, were significantly downregulated in chondrosarcoma and only 2: miR-96 and 183, were upregulated. We further validated the expression levels of miRNAs by quantitative real-time PCR for miR-181a, let-7a, 100, 222, 136, 376a, and 335 in extended number of chondrosarcoma clinical samples. Among them, all except miR-181a were found to be significantly downregulated in chondrosarcoma derived samples. The findings provide potential diagnostic value and new molecular understanding of chondrosarcoma.
Collapse
Affiliation(s)
- Teruhito Yoshitaka
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akira Kawai
- Division of Orthopaedic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Shigeru Miyaki
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Kunihiko Numoto
- Division of Orthopaedic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Kazutaka Kikuta
- Division of Orthopaedic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Martin Lotz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Hiroshi Asahara
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, Tokyo, Japan,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA,Department of Systems Biomedicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
26
|
Kiani AA, Kazemi A, Halabian R, Mohammadipour M, Jahanian-Najafabadi A, Roudkenar MH. HIF-1α Confers Resistance to Induced Stress in Bone Marrow-derived Mesenchymal Stem Cells. Arch Med Res 2013; 44:185-93. [DOI: 10.1016/j.arcmed.2013.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/05/2013] [Indexed: 02/06/2023]
|
27
|
Time-dependent processes in stem cell-based tissue engineering of articular cartilage. Stem Cell Rev Rep 2012; 8:863-81. [PMID: 22016073 DOI: 10.1007/s12015-011-9328-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Articular cartilage (AC), situated in diarthrodial joints at the end of the long bones, is composed of a single cell type (chondrocytes) embedded in dense extracellular matrix comprised of collagens and proteoglycans. AC is avascular and alymphatic and is not innervated. At first glance, such a seemingly simple tissue appears to be an easy target for the rapidly developing field of tissue engineering. However, cartilage engineering has proven to be very challenging. We focus on time-dependent processes associated with the development of native cartilage starting from stem cells, and the modalities for utilizing these processes for tissue engineering of articular cartilage.
Collapse
|
28
|
Singh P, Schwarzbauer JE. Fibronectin and stem cell differentiation - lessons from chondrogenesis. J Cell Sci 2012; 125:3703-12. [PMID: 22976308 DOI: 10.1242/jcs.095786] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) is an intricate network of proteins that surrounds cells and has a central role in establishing an environment that is conducive to tissue-specific cell functions. In the case of stem cells, this environment is the stem cell niche, where ECM signals participate in cell fate decisions. In this Commentary, we describe how changes in ECM composition and mechanical properties can affect cell shape and stem cell differentiation. Using chondrogenic differentiation as a model, we examine the changes in the ECM that occur before and during mesenchymal stem cell differentiation. In particular, we focus on the main ECM protein fibronectin, its temporal expression pattern during chondrogenic differentiation, its potential effects on functions of differentiating chondrocytes, and how its interactions with other ECM components might affect cartilage development. Finally, we discuss data that support the possibility that the fibronectin matrix has an instructive role in directing cells through the condensation, proliferation and/or differentiation stages of cartilage formation.
Collapse
Affiliation(s)
- Purva Singh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
29
|
Mohammadzadeh M, Halabian R, Gharehbaghian A, Amirizadeh N, Jahanian-Najafabadi A, Roushandeh AM, Roudkenar MH. Nrf-2 overexpression in mesenchymal stem cells reduces oxidative stress-induced apoptosis and cytotoxicity. Cell Stress Chaperones 2012; 17:553-65. [PMID: 22362068 PMCID: PMC3535169 DOI: 10.1007/s12192-012-0331-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/05/2012] [Accepted: 02/07/2012] [Indexed: 02/05/2023] Open
Abstract
The most prominent capabilities of mesenchymal stem cells (MCSs) which make them promising for therapeutic applications are their capacity to endure and implant in the target tissue. However, the therapeutic applications of these cells are limited due to their early death within the first few days following transplantation. Therefore, to improve cell therapy efficacy, it is necessary to manipulate MSCs to resist severe stresses imposed by microenvironment. In this study, we manipulated MSCs to express a cytoprotective factor, nuclear factor erythroid-2 related factor 2 (Nrf2) to address this issue. Full-length human Nrf2 cDNA was isolated and TOPO cloned into TOPO cloning vector and then transferred to gateway adapted adenovirus expression vector by LR recombination reaction. Afterwards, the Nrf2 bearing recombinant virus was prepared in appropriate mammalian cell line and used to infect MSCs. The viability and apoptosis of the Nrf2 expressing MSCs were evaluated following hypoxic and oxidative stress conditions. Transient expression of Nrf2 by MSCs protected them against cell death and the apoptosis triggered by hypoxic and oxidative stress conditions. Nrf2 also enhanced the activity of SOD and HO-1. These findings could be used as a strategy for prevention of graft cell death in MSC-based cell therapy. It also indicates that management of cellular stress responses can be used for practical applications.
Collapse
Affiliation(s)
- Mohammad Mohammadzadeh
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, P.O. Box 14665-1157, Tehran, Iran
| | - Raheleh Halabian
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, P.O. Box 14665-1157, Tehran, Iran
| | - Ahmad Gharehbaghian
- />Medical Laboratory Sciences Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naser Amirizadeh
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, P.O. Box 14665-1157, Tehran, Iran
| | | | | | - Mehryar Habibi Roudkenar
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, P.O. Box 14665-1157, Tehran, Iran
| |
Collapse
|
30
|
Bioinspired nanofibers support chondrogenesis for articular cartilage repair. Proc Natl Acad Sci U S A 2012; 109:10012-7. [PMID: 22665791 DOI: 10.1073/pnas.1121605109] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Articular cartilage repair remains a significant and growing clinical challenge with the aging population. The native extracellular matrix (ECM) of articular cartilage is a 3D structure composed of proteinaceous fibers and a hydrogel ground substance that together provide the physical and biological cues to instruct cell behavior. Here we present fibrous scaffolds composed of poly(vinyl alcohol) and the biological cue chondroitin sulfate with fiber dimensions on the nanoscale for application to articular cartilage repair. The unique, low-density nature of the described nanofiber scaffolds allows for immediate cell infiltration for optimal tissue repair. The capacity for the scaffolds to facilitate cartilage-like tissue formation was evaluated in vitro. Compared with pellet cultures, the nanofiber scaffolds enhance chondrogenic differentiation of mesenchymal stems cells as indicated by increased ECM production and cartilage specific gene expression while also permitting cell proliferation. When implanted into rat osteochondral defects, acellular nanofiber scaffolds supported enhanced chondrogenesis marked by proteoglycan production minimally apparent in defects left empty. Furthermore, inclusion of chondroitin sulfate into the fibers enhanced cartilage-specific type II collagen synthesis in vitro and in vivo. By mimicking physical and biological cues of native ECM, the nanofiber scaffolds enhanced cartilaginous tissue formation, suggesting their potential utility for articular cartilage repair.
Collapse
|
31
|
Ganguly K, McRury ID, Goodwin PM, Morgan RE, Augé WK. Targeted In Situ Biosynthetic Transcriptional Activation in Native Surface-Level Human Articular Chondrocytes during Lesion Stabilization. Cartilage 2012; 3:141-55. [PMID: 26069627 PMCID: PMC4297128 DOI: 10.1177/1947603511426881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Safe articular cartilage lesion stabilization is an important early surgical intervention advance toward mitigating articular cartilage disease burden. While short-term chondrocyte viability and chondrosupportive matrix modification have been demonstrated within tissue contiguous to targeted removal of damaged articular cartilage, longer term tissue responses require evaluation to further clarify treatment efficacy. The purpose of this study was to examine surface chondrocyte responses within contiguous tissue after lesion stabilization. METHODS Nonablation radiofrequency lesion stabilization of human cartilage explants obtained during knee replacement was performed for surface fibrillation. Time-dependent chondrocyte viability, nuclear morphology and cell distribution, and temporal response kinetics of matrix and chaperone gene transcription indicative of differentiated chondrocyte function were evaluated in samples at intervals to 96 hours after treatment. RESULTS Subadjacent surface articular cartilage chondrocytes demonstrated continued viability for 96 hours after treatment, a lack of increased nuclear fragmentation or condensation, persistent nucleic acid production during incubation reflecting cellular assembly behavior, and transcriptional up-regulation of matrix and chaperone genes indicative of retained biosynthetic differentiated cell function. CONCLUSIONS The results of this study provide further evidence of treatment efficacy and suggest the possibility to manipulate or induce cellular function, thereby recruiting local chondrocytes to aid lesion recovery. Early surgical intervention may be viewed as a tissue rescue, allowing articular cartilage to continue displaying biological responses appropriate to its function rather than converting to a tissue ultimately governed by the degenerative material property responses of matrix failure. Early intervention may positively impact the late changes and reduce disease burden of damaged articular cartilage.
Collapse
Affiliation(s)
| | | | | | | | - Wayne K. Augé
- NuOrtho Surgical Inc., Fall River, MA, USA,Center for Orthopaedic and Sports Performance Research Inc., Santa Fe, NM, USA
| |
Collapse
|
32
|
Nagchowdhuri PS, Andrews KN, Robart S, Capehart AA. Versican knockdown reduces interzone area during early stages of chick synovial joint development. Anat Rec (Hoboken) 2011; 295:397-409. [PMID: 22190409 DOI: 10.1002/ar.21542] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 10/15/2011] [Indexed: 01/08/2023]
Abstract
Much has been learned regarding factors that specify joint placement, but less is known regarding how these molecular instructions are translated into functional joint tissues. Previous studies have shown that the matrix chondroitin sulfate proteoglycan, versican, exhibits a similar pattern of expression in the embryonic joint rudiment of chick and mouse suggesting conserved function during joint development. In this study, versican's importance in developing joints was investigated by specific inhibition of its expression in the early joint interzone, tissue that gives rise to articular cartilages and joint cavity. In ovo microinjection of adenoviral shRNA constructs into the HH25 chick wing was employed to silence endogenous versican protein in developing appendicular joints. Results showed statistically significant (12-14%) reduction of nonchondrogenic elbow joint interzone area in whole-mount specimens at HH36 in response to versican knockdown. Attenuated expression of key versican-associated molecules including hyaluronan, tenascin, CD44, and link protein was also noted by histochemical and immunohistochemical analysis. Versican knockdown also lowered collagen II expression in presumptive articular chondrocytes indicating possible delay in chondrogenesis. Results suggest that versican functions interactively with other matrix/cell surface molecules to facilitate establishment or maintenance of early joint interzone structure.
Collapse
Affiliation(s)
- Partha S Nagchowdhuri
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | | | | | | |
Collapse
|
33
|
Potential of exogenous cartilage proteoglycan as a new material for cartilage regeneration. INTERNATIONAL ORTHOPAEDICS 2011; 36:869-77. [PMID: 21837448 DOI: 10.1007/s00264-011-1335-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND Although proteoglycan (PG) is one of the major components of cartilage matrices, its biological function is not fully elucidated. METHODS The objectives of this study were to investigate the proliferation and differentiation of chondrocytes embedded in atelocollagen gel with exogenous cartilage PG (PG-atelocollagen gel) in vitro, and also to evaluate the repair of cartilage defects by PG-atelocollagen gel in vivo. In the in vitro study, rabbit chondrocytes were cultured in the PG-atelocollagen gel. Cell proliferation and mRNA expression levels were measured, and gels were histologically evaluated. In the in vivo study, cultured PG-atelocollagen gel containing chondrocytes were transplanted into full-thickness articular cartilage defects in rabbit knees, and evaluated macroscopically and histologically. RESULTS For the in vitro study, chondrocyte proliferation in 5.0 mg/ml PG-atelocollagen gel was enhanced, and the gene expression of Col2a1 and Aggrecan were decreased. In contrast, chondrocyte proliferation in 0.1 and 1.0 mg/ml PG-atelocollagen gel was not enhanced. The gene expression of Aggrecan in 0.1 and 1.0 mg/ml PG-atelocollagen gel was increased. For the in vivo study, the histological average total score of the 0.1 mg/ml PG-atelocollagen gel was significantly better than that of the group without PG. CONCLUSIONS Although the appropriate concentration of PG has not been defined, this study suggests the efficacy of PG for cartilage repair.
Collapse
|
34
|
Li J, Anemaet W, Diaz MA, Buchanan S, Tortorella M, Malfait AM, Mikecz K, Sandy JD, Plaas A. Knockout of ADAMTS5 does not eliminate cartilage aggrecanase activity but abrogates joint fibrosis and promotes cartilage aggrecan deposition in murine osteoarthritis models. J Orthop Res 2011; 29:516-22. [PMID: 21337391 DOI: 10.1002/jor.21215] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Accepted: 06/24/2010] [Indexed: 02/04/2023]
Abstract
To investigate the role of ADAMTS5 in murine osteoarthritis (OA), resulting from destabilization of the medial meniscus (DMM model) or from TGFb1 injection and enforced uphill treadmill running (TTR model). Wild-type (WT) and ADAMTS5-/- mice were subjected to either DMM or TTR and joints were evaluated for meniscal damage, cartilage changes, and fibrotic ingrowths from the joint margins. Cartilage lesions were quantified on an 8-point scoring system. Cartilage chondroitin sulfate (CS) content was evaluated by SafraninO staining and by quantitative electrophoresis (FACE). The abundance of aggrecan, versican, and specific aggrecanase-generated products was determined by Western analysis. Joint changes were similar for WT mice taken through either the DMM or the TTR model. ADAMTS5 ablation essentially eliminated cartilage erosion and fibrous overgrowth in both models. In the TTR model, ADAMTS5 ablation did not eliminate aggrecanase activity from the articular cartilage but blocked fibrosis and resulted in the accumulation of aggrecan in the articular cartilage. The cartilage protection provided by ADAMTS5 ablation in the mouse does not result from prevention of aggrecanase activity per se, but it appears to be due to a blockade of joint tissue fibrosis and a concomitant increase in cartilage aggrecan content.
Collapse
Affiliation(s)
- Jun Li
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Merrilees MJ, Beaumont BW, Braun KR, Thomas AC, Kang I, Hinek A, Passi A, Wight TN. Neointima formed by arterial smooth muscle cells expressing versican variant V3 is resistant to lipid and macrophage accumulation. Arterioscler Thromb Vasc Biol 2011; 31:1309-16. [PMID: 21441139 DOI: 10.1161/atvbaha.111.225573] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Extracellular matrix (ECM) of neointima formed following angioplasty contains elevated levels of versican, loosely arranged collagen, and fragmented deposits of elastin, features associated with lipid and macrophage accumulation. ECM with a low versican content, compact structure, and increased elastic fiber content can be achieved by expression of versican variant V3, which lacks chondroitin sulfate glycosaminoglycans. We hypothesized that V3-expressing arterial smooth muscle cells (ASMC) can be used to form a neointima resistant to lipid and macrophage accumulation associated with hypercholesterolemia. METHODS AND RESULTS ASMC transduced with V3 cDNA were seeded into ballooned rabbit carotid arteries, and animals were fed a chow diet for 4 weeks, followed by a cholesterol-enriched diet for 4 weeks, achieving plasma cholesterol levels of 20 to 25 mmol/L. V3 neointimae at 8 weeks were compact, multilayered, and elastin enriched. They were significantly thinner (57%) than control neointimae; contained significantly more elastin (118%), less collagen (22%), and less lipid (76%); and showed significantly reduced macrophage infiltration (85%). Mechanistic studies demonstrated that oxidized low-density lipoprotein stimulated the formation of a monocyte-binding ECM, which was inhibited in the presence of V3 expressing ASMC. CONCLUSION These results demonstrate that expression of V3 in vessel wall creates an elastin-rich neointimal matrix that in the presence of hyperlipidemia is resistant to lipid deposition and macrophage accumulation.
Collapse
Affiliation(s)
- Mervyn J Merrilees
- Department of Anatomy with Radiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Airik R, Trowe MO, Foik A, Farin HF, Petry M, Schuster-Gossler K, Schweizer M, Scherer G, Kist R, Kispert A. Hydroureternephrosis due to loss of Sox9-regulated smooth muscle cell differentiation of the ureteric mesenchyme. Hum Mol Genet 2010; 19:4918-29. [PMID: 20881014 DOI: 10.1093/hmg/ddq426] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Congenital ureter anomalies, including hydroureter, affect up to 1% of the newborn children. Despite the prevalence of these developmental abnormalities in young children, the underlying molecular causes are only poorly understood. Here, we show that the high mobility group domain transcription factor Sox9 plays an important role in ureter development in the mouse. Transient Sox9 expression was detected in the undifferentiated ureteric mesenchyme and inactivation of Sox9 in this domain resulted in strong proximal hydroureter formation due to functional obstruction. Loss of Sox9 did not affect condensation, proliferation and apoptosis of the undifferentiated mesenchyme, but perturbed cyto-differentiation into smooth muscle cells (SMCs). Expression of genes encoding extracellular matrix (ECM) components was strongly reduced, suggesting that deficiency in ECM composition and/or signaling may underlie the observed defects. Prolonged expression of Sox9 in the ureteric mesenchyme led to increased deposition of ECM components and SMC dispersal. Furthermore, Sox9 genetically interacts with the T-box transcription factor 18 gene (Tbx18) during ureter development at two levels--as a downstream mediator of Tbx18 function and in a converging pathway. Together, our results argue that obstructive uropathies in campomelic dysplasia patients that are heterozygous for mutations in and around SOX9 arise from a primary requirement of Sox9 in the development of the ureteric mesenchyme.
Collapse
Affiliation(s)
- Rannar Airik
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hudson KS, Andrews K, Early J, Mjaatvedt CH, Capehart AA. Versican G1 domain and V3 isoform overexpression results in increased chondrogenesis in the developing chick limb in ovo. Anat Rec (Hoboken) 2010; 293:1669-78. [PMID: 20730861 DOI: 10.1002/ar.21235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 07/02/2010] [Indexed: 11/09/2022]
Abstract
Previous work has shown that versican proteoglycan is highly expressed in the extracellular matrix of precartilage limb mesenchyme. Although much of versican's role in chondrogenesis has been attributed to its glycosaminoglycan complement, N- and C-terminal G1 and G3 domains of versican have been shown to possess distinct functions when expressed ectopically. This study was undertaken to test the hypothesis that overexpression of the versican G1 domain and short V3 isoform, comprised of only G1 and G3, in the chick wing in ovo would result in increased chondrogenesis, suggesting function for discrete versican domains in limb skeletal development. Recombinant adenoviruses encoding G1 and V3 proteins were microinjected into proximal HH19-25 chick wing buds which resulted in significant enlargement of humeral primordia at HH35. Enhanced cartilage deposition appeared due to increased chondrogenic aggregation as a result of recombinant G1 or V3 overexpression, further implicating versican in early stages of limb development.
Collapse
Affiliation(s)
- Karla S Hudson
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | | | | | | | | |
Collapse
|
38
|
Choocheep K, Hatano S, Takagi H, Watanabe H, Kimata K, Kongtawelert P, Watanabe H. Versican facilitates chondrocyte differentiation and regulates joint morphogenesis. J Biol Chem 2010; 285:21114-25. [PMID: 20404343 DOI: 10.1074/jbc.m109.096479] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Versican/PG-M is a large chondroitin sulfate proteoglycan in the extracellular matrix, which is transiently expressed in mesenchymal condensation areas during tissue morphogenesis. Here, we generated versican conditional knock-out mice Prx1-Cre/Vcan(flox/flox), in which Vcan is pruned out by site-specific Cre recombinase driven by the Prx1 promoter. Although Prx1-Cre/Vcan(flox/flox) mice are viable and fertile, they develop distorted digits. Histological analysis of newborn mice reveals hypertrophic chondrocytic nodules in cartilage, tilting of the joint, and a slight delay of chondrocyte differentiation in digits. By immunostaining, whereas the joint interzone of Prx1-Cre/Vcan(+/+) shows an accumulation of TGF-beta, concomitant with versican, that of Prx1-Cre/Vcan(flox/flox) without versican expression exhibits a decreased incorporation of TGF-beta. In a micromass culture system of mesenchymal cells from limb bud, whereas TGF-beta and versican are co-localized in the perinodular regions of developing cartilage in Prx1-Cre/Vcan(+/+), TGF-beta is widely distributed in Prx1-Cre/Vcan(flox/flox). These results suggest that versican facilitates chondrogenesis and joint morphogenesis, by localizing TGF-beta in the extracellular matrix and regulating its signaling.
Collapse
Affiliation(s)
- Kanyamas Choocheep
- Institute for Molecular Science of Medicine, Aichi Medical University, Karimata 21, Yazako, Nagakute, Aichi 480-1195, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Capehart AA. Proteolytic cleavage of versican during limb joint development. Anat Rec (Hoboken) 2010; 293:208-14. [PMID: 20101710 DOI: 10.1002/ar.21049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Versican is highly expressed in developing joint interzones during limb morphogenesis. This study was undertaken to examine whether proteolytic cleavage of versican occurs that could potentially impact its function during the process of embryonic synovial joint formation. Using an antibody to the DPEAAE neoepitope generated by ADAMTS proteolysis, versican amino terminal cleavage fragments were detected in joint interzones at 12-16 days post coitum (dpc). ADAMTS-1 localization overlapped that of DPEAAE-reactive versican fragments suggesting it as one possible protease activity involved in processing of versican in the interzone. Results show that increased cleavage of versican in the interzone accompanies cavitation and suggests that proteolytic modification of versican may be important during the process of synovial joint maturation.
Collapse
Affiliation(s)
- Anthony A Capehart
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA.
| |
Collapse
|
40
|
Kopesky PW, Vanderploeg EJ, Sandy JS, Kurz B, Grodzinsky AJ. Self-assembling peptide hydrogels modulate in vitro chondrogenesis of bovine bone marrow stromal cells. Tissue Eng Part A 2010; 16:465-77. [PMID: 19705959 PMCID: PMC2862611 DOI: 10.1089/ten.tea.2009.0158] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Accepted: 08/24/2009] [Indexed: 11/13/2022] Open
Abstract
Our objective was to test the hypothesis that self-assembling peptide hydrogel scaffolds provide cues that enhance the chondrogenic differentiation of bone marrow stromal cells (BMSCs). BMSCs were encapsulated within two unique peptide hydrogel sequences, and chondrogenesis was compared with that in agarose hydrogels. BMSCs in all three hydrogels underwent transforming growth factor-beta1-mediated chondrogenesis as demonstrated by comparable gene expression and biosynthesis of extracellular matrix molecules. Expression of an osteogenic marker was unchanged, and an adipogenic marker was suppressed by transforming growth factor-beta1 in all hydrogels. Cell proliferation occurred only in the peptide hydrogels, not in agarose, resulting in higher glycosaminoglycan content and more spatially uniform proteoglycan and collagen type II deposition. The G1-positive aggrecan produced in peptide hydrogels was predominantly the full-length species, whereas that in agarose was predominantly the aggrecanase product G1-NITEGE. Unique cell morphologies were observed for BMSCs in each peptide hydrogel sequence, with extensive cell-cell contact present for both, whereas BMSCs in agarose remained rounded over 21 days in culture. Differences in cell morphology within the two peptide scaffolds may be related to sequence-specific cell adhesion. Taken together, this study demonstrates that self-assembling peptide hydrogels enhance chondrogenesis compared with agarose as shown by extracellular matrix production, DNA content, and aggrecan molecular structure.
Collapse
Affiliation(s)
- Paul W. Kopesky
- Department of Biological Engineering, MIT, Cambridge, Massachusetts
| | | | - John S. Sandy
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | | | | |
Collapse
|
41
|
Matsumoto K. The Role of Hyaluronan in Cartilage. TRENDS GLYCOSCI GLYC 2010. [DOI: 10.4052/tigg.22.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Shukla S, Nair R, Rolle MW, Braun KR, Chan CK, Johnson PY, Wight TN, McDevitt TC. Synthesis and organization of hyaluronan and versican by embryonic stem cells undergoing embryoid body differentiation. J Histochem Cytochem 2009; 58:345-58. [PMID: 20026669 DOI: 10.1369/jhc.2009.954826] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Embryonic stem cells (ESCs) provide a convenient model to probe the molecular and cellular dynamics of developmental cell morphogenesis. ESC differentiation in vitro via embryoid bodies (EBs) recapitulates many aspects of early stages of development, including the epithelial-mesenchymal transition (EMT) of pluripotent cells into more differentiated progeny. Hyaluronan and versican are important extracellular mediators of EMT processes, yet the temporal expression and spatial distribution of these extracellular matrix (ECM) molecules during EB differentiation remains undefined. Thus, the objective of this study was to evaluate the synthesis and organization of hyaluronan and versican by using murine ESCs during EB differentiation. Hyaluronan and versican (V0 and V1 isoforms), visualized by immunohistochemistry and evaluated biochemically, accumulated within EBs during the course of differentiation. Interestingly, increasing amounts of a 70-kDa proteolytic fragment of versican were also detected over time, along with ADAMTS-1 and -5 protein expression. ESCs expressed each of the hyaluronan synthases (HAS) -1, -2, and -3 and versican splice variants (V0, V1, V2, and V3) throughout EB differentiation, but HAS-2, V0, and V1 were expressed at significantly increased levels at each time point examined. Hyaluronan and versican exhibited overlapping expression patterns within EBs in regions of low cell density, and versican expression was excluded from clusters of epithelial (cytokeratin-positive) cells but was enriched within the vicinity of mesenchymal (N-cadherin-positive) cells. These results indicate that hyaluronan and versican synthesized by ESCs within EB microenvironments are associated with EMT processes and furthermore suggest that endogenously produced ECM molecules play a role in ESC differentiation. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Shreya Shukla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
The growth and differentiation of mesenchymal stem and progenitor cells cultured on aligned collagen matrices. Biomaterials 2009; 30:5950-8. [DOI: 10.1016/j.biomaterials.2009.07.039] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 07/22/2009] [Indexed: 12/31/2022]
|
44
|
Ababneh KT, Al-Khateeb TH. Immunolocalization of proteoglycans in Meckel's cartilage of the rat. Open Dent J 2009; 3:177-83. [PMID: 19746167 PMCID: PMC2737126 DOI: 10.2174/1874210600903010177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/04/2009] [Accepted: 02/26/2009] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to investigate the presence and distribution of proteoglycans within Meckel’s cartilage of rat embryos. A standard indirect immunoperoxidase technique was used on paraffin sections of rat heads. Sections were incubated with monoclonal antibodies recognising core protein epitopes in the proteoglycans versican and CD44. Polyclonal antibodies localized the proteoglycans decorin, biglycan and lumican. Versican was expressed by chondrocytes, but very weekly by the extracellular matrix. Decorin was strongly expressed by both of chondrocytes and the ECM. Both of biglycan and lumican were moderately expressed by chondrocytes, but weakly by the extracellular matrix. CD44 was weakly expressed by chondrocytes only, without staining of the ECM. It is concluded that Meckel’s cartilage chondrocytes express the proteoglycans versican, decorin, biglycan, lumican and CD44 at variable levels during development in the rat. Such data are important for a greater understanding of the changes that take place during mandibular development. Further studies are needed to elucidate the exact role of proteoglycans during Meckel’s cartilage and mandibular organogenesis.
Collapse
Affiliation(s)
- Khansa Taha Ababneh
- Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | | |
Collapse
|
45
|
Norian JM, Malik M, Parker CY, Joseph D, Leppert PC, Segars JH, Catherino WH. Transforming growth factor beta3 regulates the versican variants in the extracellular matrix-rich uterine leiomyomas. Reprod Sci 2009; 16:1153-64. [PMID: 19700613 DOI: 10.1177/1933719109343310] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Uterine leiomyoma are common, benign tumors that are enriched in extracellular matrix. The tumors are characterized by a disoriented and loosely packed collagen fibril structure similar to other diseases with disrupted Transforming growth factor beta (TGF-beta) signaling. Here we characterized TGF-beta3 signaling and the expression patterns of the critical extracellular matrix component versican in leiomyoma and myometrial tissue and cell culture. We also demonstrate the regulation of the versican variants by TGF-beta3. Using leiomyoma and matched myometrium from 15 patients, messenger RNA (mRNA) from leiomyoma and myometrium was analyzed by semiquantitative real time reverse transcription-polymerase chain reaction (RT-PCR), while protein analysis was done by western blot. Transforming growth factor beta3 transcripts were increased 4-fold in leiomyoma versus matched myometrium. Phosphorylated-TGF-beta RII and phosphorylated-Smad 2/3 complex were greater in leiomyoma as documented by Western blot. The inhibitor Smad7 transcripts were decreased 0.44-fold. The glycosaminoglycan (GAG)-rich versican variants were elevated in leiomyoma versus myometrial tissue: specifically V0 (4.27 +/- 1.12) and V1 (2.01 +/- 0.27). Treatment of leiomyoma and myometrial cells with TGF-beta3 increased GAG-rich versican variant expression 7 to 12 fold. Neutralizing TGF-beta3 antibody decreased the expression of the GAG-rich versican variants 2 to 8 fold in leiomyoma cells. Taken together, the aberrant production of excessive and disorganized extracellular matrix that defines the leiomyoma phenotype involves the activation of the TGF-beta signaling pathway and excessive production of GAG-rich versican variants.
Collapse
Affiliation(s)
- John M Norian
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Kim D, Kim J, Kang SS, Jin EJ. Transforming growth factor-β3-induced Smad signaling regulates actin reorganization during chondrogenesis of chick leg bud mesenchymal cells. J Cell Biochem 2009; 107:622-9. [DOI: 10.1002/jcb.22191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
47
|
Quintana L, zur Nieden NI, Semino CE. Morphogenetic and regulatory mechanisms during developmental chondrogenesis: new paradigms for cartilage tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2009; 15:29-41. [PMID: 19063663 DOI: 10.1089/ten.teb.2008.0329] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cartilage is the first skeletal tissue to be formed during embryogenesis leading to the creation of all mature cartilages and bones, with the exception of the flat bones in the skull. Therefore, errors occurring during the process of chondrogenesis, the formation of cartilage, often lead to severe skeletal malformations such as dysplasias. There are hundreds of skeletal dysplasias, and the molecular genetic etiology of some remains more elusive than of others. Many efforts have aimed at understanding the morphogenetic event of chondrogenesis in normal individuals, of which the main morphogenetic and regulatory mechanisms will be reviewed here. For instance, many signaling molecules that guide chondrogenesis--for example, transforming growth factor-beta, bone morphogenetic proteins, fibroblast growth factors, and Wnts, as well as transcriptional regulators such as the Sox family--have already been identified. Moreover, extracellular matrix components also play an important role in this developmental event, as evidenced by the promotion of the chondrogenic potential of chondroprogenitor cells caused by collagen II and proteoglycans like versican. The growing evidence of the elements that control chondrogenesis and the increasing number of different sources of progenitor cells will, hopefully, help to create tissue engineering platforms that could overcome many developmental or degenerative diseases associated with cartilage defects.
Collapse
Affiliation(s)
- Lluís Quintana
- Tissue Engineering Division, Department of Bioengineering, IQS-Ramon Llull University, Barcelona, Spain
| | | | | |
Collapse
|
48
|
Suwan K, Choocheep K, Hatano S, Kongtawelert P, Kimata K, Watanabe H. Versican/PG-M Assembles Hyaluronan into Extracellular Matrix and Inhibits CD44-mediated Signaling toward Premature Senescence in Embryonic Fibroblasts. J Biol Chem 2009; 284:8596-604. [PMID: 19164294 DOI: 10.1074/jbc.m806927200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Versican/PG-M is a large chondroitin sulfate proteoglycan of the extracellular matrix which interacts with hyaluronan at the N-terminal G1 domain, composed of A, B, and B' subdomains. Recently, we generated knock-in mice Cspg2(Delta3/Delta3), whose versican, without the A subdomain, has decreased hyaluronan (HA) binding affinity, thereby exhibiting reduced deposition of versican in the extracellular matrix. Here, we show that the Cspg2(Delta3/Delta3) fibroblasts within 20 passages proliferate more slowly and acquire senescence. Whereas the extracellular matrix of the wild type fibroblasts exhibited a network structure of hyaluronan and versican, that of the Cspg2(Delta3/Delta3) fibroblasts exhibited approximately 35 and approximately 85% deposition of versican and HA, without such a structure. The Cspg2(Delta3/Delta3) fibroblasts showed a substantial increase of ERK1/2 phosphorylation and expression of senescence markers p53, p21, and p16. Treatment of wild type fibroblasts with hyaluronidase and exogenous hyaluronan enhanced ERK1/2 phosphorylation, and treatment with an anti-CD44 antibody that blocks HA-CD44 interaction inhibited the phosphorylation. These results demonstrate that versican is essential for matrix assembly involving hyaluronan and that diminished versican deposition increases free hyaluronan fragments that interact with CD44 and increase phosphorylation of ERK1/2, leading to cellular senescence.
Collapse
Affiliation(s)
- Keittisak Suwan
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Connelly JT, Wilson CG, Levenston ME. Characterization of proteoglycan production and processing by chondrocytes and BMSCs in tissue engineered constructs. Osteoarthritis Cartilage 2008; 16:1092-100. [PMID: 18294870 PMCID: PMC2605680 DOI: 10.1016/j.joca.2008.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 01/06/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The goal of this study was to characterize the proteoglycan (PG) production and processing by bone marrow stromal cells (BMSCs) within a tissue engineered construct. METHODS Bovine BMSCs and articular chondrocytes (ACs) were isolated from an immature calf, seeded into agarose gels, and cultured up to 32 days in the presence of TGF-beta1. The localization of various PGs was examined by immunofluorescence and histological staining. The role of proteolytic enzymes in construct development was further investigated by examining the effects of aggrecanase and MMP inhibitors on PG accumulation, aggrecan processing, and construct mechanics. RESULTS BMSCs developed a matrix rich in sulfated-glycosaminoglycans (sGAG) and full-length aggrecan, but had low levels of versican. The BMSC constructs had less collagen II and aggrecan compared to the AC constructs cultured under identical conditions. AC constructs also had high levels of pericellular collagen VI, while BMSCs had a pericellular matrix containing little collagen VI and greater levels of decorin, biglycan, and fibronectin. Treatment with the aggrecanase inhibitor did not affect sGAG accumulation or the dynamic moduli of the BMSC constructs. The MMP inhibitor slightly but significantly inhibited sGAG accumulation and lowered the dynamic moduli of BMSC constructs. CONCLUSIONS The results of this preliminary study indicate that long-term culture of BMSCs with TGF-beta1 promotes the development of an aggrecan-rich matrix characteristic of native articular cartilage; however, BMSCs accumulate significantly lower levels of sGAG and assemble distinct pericellular microenvironments compared to ACs. PG turnover does not appear to play a major role in the development of tissue engineered cartilage constructs by BMSCs.
Collapse
Affiliation(s)
- John T. Connelly
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Christopher G. Wilson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Marc E. Levenston
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332,Department of Mechanical Engineering, Stanford University, Stanford, CA 94305,Corresponding author: Marc E. Levenston, Ph.D., Associate Professor, Biomechanical Engineering, 233 Durand Building, Stanford University, Stanford, CA 94305-4038, 650.723.9464 (P),
| |
Collapse
|
50
|
Hamamura K, Zhang P, Yokota H. IGF2-driven PI3 kinase and TGFbeta signaling pathways in chondrogenesis. Cell Biol Int 2008; 32:1238-46. [PMID: 18675921 DOI: 10.1016/j.cellbi.2008.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 04/23/2008] [Accepted: 07/07/2008] [Indexed: 11/28/2022]
Abstract
Insulin-like growth factor-2 (IGF2) is essential for fetal development as well as maintenance of adult organs such as brain and liver. Although genetic polymorphisms of IGF2 are linked to cytoskeletal variations little is known about the mechanisms of IGF2 action in proliferation and differentiation of chondrocytes for skeletal growth. A genome-wide mRNA expression analysis using C28/I2 chondrocyte cells studied potential signaling pathways underlying the responses to IGF2. Microarray data predicted involvement of the phosphatidylinositol 3-kinase (PI3K) and transforming growth factor beta (TGFbeta) signaling pathways. Protein analyses revealed IGF2 administration activated phosphorylation of Akt and GSK3beta in the PI3K pathway. LY294002 (selective inhibitor of PI3K) blocked Akt phosphorylation and abolished IGF2-driven elevation of the mRNA levels of the proteoglycans, Aggrecan and Versican. LY294002 did not suppress upregulation of TGFbeta mRNA induced by IGF2, so IGF2 activates PI3K and TGFbeta pathways. IGF2-driven transcriptional activation of proteoglycan genes such as Aggrecan and Versican is mediated by the PI3K pathway.
Collapse
Affiliation(s)
- Kazunori Hamamura
- Department of Biomedical Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|