1
|
Bakker LM, Boulton ME, Różanowska MB. (Photo)toxicity of Partially Oxidized Docosahexaenoate and Its Effect on the Formation of Lipofuscin in Cultured Human Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2024; 13:1428. [PMID: 39594569 PMCID: PMC11591205 DOI: 10.3390/antiox13111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Docosahexaenoate is a cytoprotective ω-3 polyunsaturated lipid that is abundant in the retina and is essential for its function. Due to its six unsaturated double bonds, docosahexaenoate is highly susceptible to oxidation and the formation of products with photosensitizing properties. This study aimed to test on cultured human retinal pigment epithelial cells ARPE-19 the (photo)cytotoxic potential of partly oxidized docosahexaenoate and its effect on the formation of lipofuscin from phagocytosed photoreceptor outer segments (POSs). The results demonstrate that the cytoprotective effects of docosahexaenoate do not counteract the deleterious effects of its oxidation products, leading to the concentration-dependent loss of cell metabolic activity, which is exacerbated by concomitant exposure to visible light. Partly oxidized docosahexaenoate does not cause permeability of the cell plasma membrane but does cause apoptosis. While vitamin E can provide partial protection from the (photo)toxicity of partly oxidized docosahexaenoate, zeaxanthin undergoes rapid photodegradation and can exacerbate the (photo)toxicity. Feeding cells with POSs enriched in partly oxidized docosahexaenoate results in a greater accumulation of intracellular fluorescent lipofuscin than in cells fed POSs without the addition. In conclusion, partly oxidized docosahexaenoate increases the accumulation of lipofuscin-like intracellular deposits, is cytotoxic, and its toxicity increases during exposure to light. These effects may contribute to the increased progression of geographic atrophy observed after long-term supplementation with docosahexaenoate in age-related macular degeneration patients.
Collapse
Affiliation(s)
- Linda M. Bakker
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK;
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
2
|
Zhou W, He J, Shen G, Liu Y, Zhao P, Li J. TREM2-dependent activation of microglial cell protects photoreceptor cell during retinal degeneration via PPARγ and CD36. Cell Death Dis 2024; 15:623. [PMID: 39187498 PMCID: PMC11347571 DOI: 10.1038/s41419-024-07002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Retinal degeneration is a collection of devastating conditions with progressive loss of vision which often lead to blindness. Research on retinal microglial cells offers great therapeutic potential in deterring the progression of degeneration. This study explored the mechanisms underlying the TREM2-mediated protective function of activated microglial cells during retinal degeneration. N-methyl-N-nitrosourea (MNU)-induced retinal degeneration was established in C57BL/6 J (WT) and Trem2 knockout (Trem2-/-) mice. We discovered that MNU treatment led to the concurrent processes of photoreceptor apoptosis and microglia infiltration. A significant upregulation of disease-associated microglia signature genes was observed during photoreceptor degeneration. Following MNU treatment, Trem2-/- mice showed exacerbated photoreceptor cell death, decreased microglia migration and phagocytosis, reduced microglial PPARγ activation and CD36 expression. Pharmaceutical activation of PPARγ promoted microglial migration, ameliorated photoreceptor degeneration and restored CD36 expression in MNU-treated Trem2-/- mice. Inhibition of CD36 activity worsened photoreceptor degeneration in MNU-treated WT mice. Our findings suggested that the protective effect of microglia during retinal degeneration was dependent on Trem2 expression and carried out via the activation of PPARγ and the consequent upregulation of CD36 expression. Our study linked TREM2 signaling with PPARγ activation, and provided a potential therapeutic target for the management of retinal degeneration.
Collapse
Affiliation(s)
- Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jincan He
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guiyan Shen
- Institute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ya Liu
- Institute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
3
|
Mori R, Abe M, Saimoto Y, Shinto S, Jodai S, Tomomatsu M, Tazoe K, Ishida M, Enoki M, Kato N, Yamashita T, Itabashi Y, Nakanishi I, Ohkubo K, Kaidzu S, Tanito M, Matsuoka Y, Morimoto K, Yamada KI. Construction of a screening system for lipid-derived radical inhibitors and validation of hit compounds to target retinal and cerebrovascular diseases. Redox Biol 2024; 73:103186. [PMID: 38744193 PMCID: PMC11109892 DOI: 10.1016/j.redox.2024.103186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Recent studies have highlighted the indispensable role of oxidized lipids in inflammatory responses, cell death, and disease pathogenesis. Consequently, inhibitors targeting oxidized lipids, particularly lipid-derived radicals critical in lipid peroxidation, which are known as radical-trapping antioxidants (RTAs), have been actively pursued. We focused our investigation on nitroxide compounds that have rapid second-order reaction rate constants for reaction with lipid-derived radicals. A novel screening system was developed by employing competitive reactions between library compounds and a newly developed profluorescence nitroxide probe with lipid-derived radicals to identify RTA compounds. A PubMed search of the top hit compounds revealed their wide application as repositioned drugs. Notably, the inhibitory efficacy of methyldopa, selected from these compounds, against retinal damage and bilateral common carotid artery stenosis was confirmed in animal models. These findings underscore the efficacy of our screening system and suggest that it is an effective approach for the discovery of RTA compounds.
Collapse
Affiliation(s)
- Ryota Mori
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masami Abe
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuma Saimoto
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Saki Shinto
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Sara Jodai
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Manami Tomomatsu
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kaho Tazoe
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Minato Ishida
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masataka Enoki
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Nao Kato
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomohiro Yamashita
- Department of Drug Discovery Structural Biology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuki Itabashi
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Kei Ohkubo
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan; Institute for Advanced Co-Creation Studies, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Sachiko Kaidzu
- Department of Ophthalmology, Shimane University Faculty of Medicine, 89-1 Enya Izumo, Shimane, 693-8501, Japan
| | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, 89-1 Enya Izumo, Shimane, 693-8501, Japan
| | - Yuta Matsuoka
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazushi Morimoto
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ken-Ichi Yamada
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
4
|
Linetsky M, Mondal A, Liu SY, Hite AM, Enduri S, Cheng YS, Feijo B, Kang G, Arhin N, Zeng H, Laniak OR, Denker J, Salomon RG. Cysteinyl leukotriene-like metabolites are generated in retinal pigment epithelial cells through glutathionylation/reduction of an oxidatively truncated fragment of arachidonate. RESULTS IN CHEMISTRY 2023; 6:100995. [PMID: 38855016 PMCID: PMC11160973 DOI: 10.1016/j.rechem.2023.100995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
γ-Hydroxyalkenals, 4-hydroxynonenal (HNE) and phospholipid esters of 4-hydroxy-8-oxooctenoic acid (HOOA-PL), are produced from the alkyl and carboxyl termini of arachidonyl phospholipids by radical-induced oxidative cleavage. Metabolism of HNE by Michael addition of glutathione (GSH) followed by reduction of the aldehyde carbonyl produces a GSH derivative of 1,4-dihydroxynonane (DHN)-GSH. Analogous biochemistry was anticipated to produce a GSH derivative of 5,8-dihydroxyoctanoic acid (DHOA-GSH) that has structural and functional similarity to the cysteinyl leukotriene (LT)C4. We now report that exposure of human retinal pigment epithelial cells to CoCl2, an in vitro model of hypoxia-induced oxidative stress, generates DHOA-GSH and two products of its peptidolysis, DHOA-CysGly and DHOA-Cys that resemble LTD4 and LTE4. Identification of these metabolites was confirmed by unambiguous chemical syntheses that also provided a heavy isotope labeled quantitative standard 13C2 15N-DHOA-GSH. The availability of pure samples of these arachidonate metabolites will enable assessment of their biological activities, and testing the hypothesis that øLTs promote pathological inflammation by serving as LT receptor agonists. Because LT biosynthetic enzymes, e.g., 5-lipoxygenase, are not involved in the generation of øLTs in vivo, inhibitors of LT biosynthesis, e.g., Zileuton, are not expected to prevent the generation of øLTs. On the other hand, if øLTs are leukotriene receptor agonists, then the therapeutic effects of leukotriene receptor antagonist drugs, e.g., Montelukast, may include inhibition not only of LT-induced but also øLT-induced LT receptor activation and signaling.
Collapse
Affiliation(s)
- Mikhail Linetsky
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
- Department of Ophthalmology, Case Western Reserve University, Cleveland, OH 44106
| | - Anshula Mondal
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Si-Yang Liu
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Abby M Hite
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Shravani Enduri
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106
| | - Yu-Shiuan Cheng
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Beatriz Feijo
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106
| | - Graham Kang
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Nana Arhin
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Hong Zeng
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Olivia R Laniak
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | - John Denker
- Department of Ophthalmology, Case Western Reserve University, Cleveland, OH 44106
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
- Department of Ophthalmology, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
5
|
Lieffrig SA, Gyimesi G, Mao Y, Finnemann SC. Clearance phagocytosis by the retinal pigment epithelial during photoreceptor outer segment renewal: Molecular mechanisms and relation to retinal inflammation. Immunol Rev 2023; 319:81-99. [PMID: 37555340 PMCID: PMC10615845 DOI: 10.1111/imr.13264] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Mammalian photoreceptor outer segment renewal is a highly coordinated process that hinges on timed cell signaling between photoreceptor neurons and the adjacent retinal pigment epithelial (RPE). It is a strictly rhythmic, synchronized process that underlies in part circadian regulation. We highlight findings from recently developed methods that quantify distinct phases of outer segment renewal in retinal tissue. At light onset, outer segments expose the conserved "eat-me" signal phosphatidylserine exclusively at their distal, most aged tip. A coordinated two-receptor efferocytosis process follows, in which ligands bridge outer segment phosphatidylserine with the RPE receptors αvβ5 integrin, inducing cytosolic signaling toward Rac1 and focal adhesion kinase/MERTK, and with MERTK directly, additionally inhibiting RhoA/ROCK and thus enabling F-actin dynamics favoring outer segment fragment engulfment. Photoreceptors and RPE persist for life with each RPE cell in the eye servicing dozens of overlying photoreceptors. Thus, RPE cells phagocytose more often and process more material than any other cell type. Mutant mice with impaired outer segment renewal largely retain functional photoreceptors and retinal integrity. However, when anti-inflammatory signaling in the RPE via MERTK or the related TYRO3 is lacking, catastrophic inflammation leads to immune cell infiltration that swiftly destroys the retina causing blindness.
Collapse
Affiliation(s)
- Stephanie A. Lieffrig
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY
| | - Gavin Gyimesi
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY
| | | | - Silvia C. Finnemann
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY
| |
Collapse
|
6
|
Liang H, Wu Q, Guo XV, Chan L, Mao T, Stella C, Guilbaud A, Camperi J. Comprehensive Analysis of Photoreceptor Outer Segments: Flow Cytometry Characterization and Stress-Driven Impact on Retinal Pigment Epithelium Phagocytosis. Int J Mol Sci 2023; 24:12889. [PMID: 37629070 PMCID: PMC10454439 DOI: 10.3390/ijms241612889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Phagocytosis is one of the key functions of retinal pigment epithelium (RPE) cells, which maintain photoreceptor health by removing photoreceptor outer segments (POSs) that are regularly shed. A deficiency in RPE function to phagocytose POSs may lead to vision loss in inherited retinal diseases and eventually to age-related macular degeneration (AMD) with geographic atrophy. Significant progress has been made in the field of cell replacement therapy for AMD using stem-cell-derived RPE. To test their function, RPE cells are incubated with purified bovine POSs for the demonstration of efficient binding, internalization, and digestion of POSs. Here, we present an image-based method to measure phagocytosis activity by using POSs labeled with a pH-sensitive fluorescent dye, which has low fluorescence at neutral pH outside of the cell and high fluorescence at low pH inside the phagosome. Further, we introduce a unique flow-cytometry-based method for the characterization of POSs by measuring specific markers for POSs such as rhodopsin and opsin. Using this method, we demonstrated a comparable quality of several bovine POS isolation batches and a reliable assessment of POS quality on RPE phagocytosis assay performance when subjected to different stress conditions. This work provides new tools to characterize POSs and insight into RPE phagocytosis assay development for the functional evaluation of RPE cells in the field of cell replacement therapy.
Collapse
Affiliation(s)
- Haoqian Liang
- Cell Therapy Engineering and Development, Genentech, South San Francisco, CA 94080, USA; (H.L.); (Q.W.); (X.V.G.); (L.C.)
| | - Qiang Wu
- Cell Therapy Engineering and Development, Genentech, South San Francisco, CA 94080, USA; (H.L.); (Q.W.); (X.V.G.); (L.C.)
| | - Xinzheng Victor Guo
- Cell Therapy Engineering and Development, Genentech, South San Francisco, CA 94080, USA; (H.L.); (Q.W.); (X.V.G.); (L.C.)
| | - Linda Chan
- Cell Therapy Engineering and Development, Genentech, South San Francisco, CA 94080, USA; (H.L.); (Q.W.); (X.V.G.); (L.C.)
| | - Tin Mao
- Cell Therapy Engineering and Development, Genentech, South San Francisco, CA 94080, USA; (H.L.); (Q.W.); (X.V.G.); (L.C.)
| | - Cinzia Stella
- Protein Analytical Chemistry, Genentech, South San Francisco, CA 94080, USA;
| | - Axel Guilbaud
- Protein Analytical Chemistry, Genentech, South San Francisco, CA 94080, USA;
| | - Julien Camperi
- Cell Therapy Engineering and Development, Genentech, South San Francisco, CA 94080, USA; (H.L.); (Q.W.); (X.V.G.); (L.C.)
| |
Collapse
|
7
|
Markitantova Y, Simirskii V. Endogenous and Exogenous Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells: An Updated Antioxidant Perspective. Int J Mol Sci 2023; 24:10776. [PMID: 37445953 DOI: 10.3390/ijms241310776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The retinal pigment epithelium (RPE) performs a range of necessary functions within the neural layers of the retina and helps ensure vision. The regulation of pro-oxidative and antioxidant processes is the basis for maintaining RPE homeostasis and preventing retinal degenerative processes. Long-term stable changes in the redox balance under the influence of endogenous or exogenous factors can lead to oxidative stress (OS) and the development of a number of retinal pathologies associated with RPE dysfunction, and can eventually lead to vision loss. Reparative autophagy, ubiquitin-proteasome utilization, the repair of damaged proteins, and the maintenance of their conformational structure are important interrelated mechanisms of the endogenous defense system that protects against oxidative damage. Antioxidant protection of RPE cells is realized as a result of the activity of specific transcription factors, a large group of enzymes, chaperone proteins, etc., which form many signaling pathways in the RPE and the retina. Here, we discuss the role of the key components of the antioxidant defense system (ADS) in the cellular response of the RPE against OS. Understanding the role and interactions of OS mediators and the components of the ADS contributes to the formation of ideas about the subtle mechanisms in the regulation of RPE cellular functions and prospects for experimental approaches to restore RPE functions.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
8
|
Si Z, Zheng Y, Zhao J. The Role of Retinal Pigment Epithelial Cells in Age-Related Macular Degeneration: Phagocytosis and Autophagy. Biomolecules 2023; 13:901. [PMID: 37371481 DOI: 10.3390/biom13060901] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Age-related macular degeneration (AMD) causes vision loss in the elderly population. Dry AMD leads to the formation of Drusen, while wet AMD is characterized by cell proliferation and choroidal angiogenesis. The retinal pigment epithelium (RPE) plays a key role in AMD pathogenesis. In particular, helioreceptor renewal depends on outer segment phagocytosis of RPE cells, while RPE autophagy can protect cells from oxidative stress damage. However, when the oxidative stress burden is too high and homeostasis is disturbed, the phagocytosis and autophagy functions of RPE become damaged, leading to AMD development and progression. Hence, characterizing the roles of RPE cell phagocytosis and autophagy in the pathogenesis of AMD can inform the development of potential therapeutic targets to prevent irreversible RPE and photoreceptor cell death, thus protecting against AMD.
Collapse
Affiliation(s)
- Zhibo Si
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Jing Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
9
|
Polyunsaturated Lipids in the Light-Exposed and Prooxidant Retinal Environment. Antioxidants (Basel) 2023; 12:antiox12030617. [PMID: 36978865 PMCID: PMC10044808 DOI: 10.3390/antiox12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The retina is an oxidative stress-prone tissue due to high content of polyunsaturated lipids, exposure to visible light stimuli in the 400–480 nm range, and high oxygen availability provided by choroidal capillaries to support oxidative metabolism. Indeed, lipids’ peroxidation and their conversion into reactive species promoting inflammation have been reported and connected to retinal degenerations. Here, we review recent evidence showing how retinal polyunsaturated lipids, in addition to oxidative stress and damage, may counteract the inflammatory response triggered by blue light-activated carotenoid derivatives, enabling long-term retina operation despite its prooxidant environment. These two aspects of retinal polyunsaturated lipids require tight control over their synthesis to avoid overcoming their protective actions by an increase in lipid peroxidation due to oxidative stress. We review emerging evidence on different transcriptional control mechanisms operating in retinal cells to modulate polyunsaturated lipid synthesis over the life span, from the immature to the ageing retina. Finally, we discuss the antioxidant role of food nutrients such as xanthophylls and carotenoids that have been shown to empower retinal cells’ antioxidant responses and counteract the adverse impact of prooxidant stimuli on sight.
Collapse
|
10
|
Liver X Receptor Agonist Inhibits Oxidized Low-Density Lipoprotein Induced Choroidal Neovascularization via the NF-κB Signaling Pathway. J Clin Med 2023; 12:jcm12041674. [PMID: 36836210 PMCID: PMC9964355 DOI: 10.3390/jcm12041674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Age-related macular degeneration (AMD) is the most common blindness-causing disease among the elderly. Under oxidative stress, low-density lipoprotein in the outer layer of the retina is easily converted into oxidized low-density lipoprotein (OxLDL), which promotes the development of choroidal neovascularization (CNV), the main pathological change in wet AMD. Liver X receptor (LXR), a ligand-activated nuclear transcription factor, regulates various processes related to CNV, including lipid metabolism, cholesterol transport, inflammation, and angiogenesis. In this study, we evaluated the effects of the LXR agonist TO901317 (TO) on CNV. Our results demonstrated that the TO could inhibit OxLDL-induced CNV in mice as well as inflammation and angiogenesis in vitro. Using siRNA transfection in cells and Vldlr-/- mice, we further confirmed the inhibitory effects of TO against the inflammatory response and oxidative stress. Mechanistically, the LXR agonist reduces the inflammatory response via the nuclear translocation of NF-κB p65 in the pathway for NF-κB activation and by enhancing ABCG1-dependent lipid transportation. Therefore, an LXR agonist is a promising therapeutic candidate for AMD, especially for wet AMD.
Collapse
|
11
|
Yang R, Liu Q, Zhang M. The Past and Present Lives of the Intraocular Transmembrane Protein CD36. Cells 2022; 12:cells12010171. [PMID: 36611964 PMCID: PMC9818597 DOI: 10.3390/cells12010171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Cluster of differentiation 36 (CD36) belongs to the B2 receptors of the scavenger receptor class B family, which is comprised of single-chain secondary transmembrane glycoproteins. It is present in a variety of cell types, including monocytes, macrophages, microvascular endothelial cells, adipocytes, hepatocytes, platelets, skeletal muscle cells, kidney cells, cardiomyocytes, taste bud cells, and a variety of other cell types. CD36 can be localized on the cell surface, mitochondria, endoplasmic reticulum, and endosomes, playing a role in lipid accumulation, oxidative stress injury, apoptosis, and inflammatory signaling. Recent studies have found that CD36 is expressed in a variety of ocular cells, including retinal pigment epithelium (RPE), retinal microvascular endothelial cells, retinal ganglion cells (RGC), Müller cells, and photoreceptor cells, playing an important role in eye diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma. Therefore, a comprehensive understanding of CD36 function and downstream signaling pathways is of great significance for the prevention and treatment of eye diseases. This article reviews the molecular characteristics, distribution, and function of scavenger receptor CD36 and its role in ophthalmology in order to deepen the understanding of CD36 in eye diseases and provide new ideas for treatment strategies.
Collapse
Affiliation(s)
- Rucui Yang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Department of Ophthalmology, Shantou University Medical College, Shantou University, Shantou 515041, China
| | - Qingping Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| |
Collapse
|
12
|
The Effect of A2E on the Ca2+-PKC Signaling Pathway in Human RPE Cells Exposed to Blue Light. J Ophthalmol 2022; 2022:2233223. [PMID: 36304713 PMCID: PMC9596233 DOI: 10.1155/2022/2233223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Aims In a model of blue light-induced damage in N-retinylidene-N-retinylethanolamine (A2E)-loaded human retinal pigment epithelial (RPE) cells, we examined the effect of A2E on the calcium (Ca2+)-protein kinase C (PKC) signaling pathway. Methods Primary human RPE cells were cultured, and the cells in the 4th–6th passages were used in this study. The cells were divided into 5 groups: control cells (no A2E, no blue light), blue light-treated cells, blue light + chloroquine-treated cells, blue light + A2E-treated cells, and blue light + A2E + chloroquine-treated cells. The cells were first treated with chloroquine (15 μM for 12 h) and then loaded with A2E (25 μM for 2 h).The blue light intensity was 2000 ± 500 lux, and the duration was 6 h. After blue light exposure, the cells were cultured for 24 h. Fluo-3/AM staining was used to determine the level of cytoplasmic Ca2+, and the cells were photographed using a laser scanning confocal microscope to analyze the fluorescence intensity. The intracellular levels of inositol triphosphate (IP3) and diacylglycerol (DAG) were measured by enzyme-linked immunosorbent assay (ELISA). Intracellular PKC activity was measured with a nonradioactive nuclide assay. Results Among all cell groups, the levels of Ca2+, DAG, and IP3 were lowest in the control cells (P < 0.05). The Ca2+, DAG, and IP3 levels in the blue light + A2E-treated cells and blue light + chloroquine-treated cells were higher than those in the blue light-treated cells (P < 0.05). The Ca2+, DAG, and IP3 levels were highest in the blue light + A2E + chloroquine-treated group (P < 0.05). PKC activity was lowest in the control cells (P < 0.05). The PKC activity of the blue light + A2E-treated cells and blue light + chloroquine-treated cells was higher than that of the blue light-treated cells (P < 0.05), and the PKC activity of the blue light + A2E + chloroquine-treated cells was the highest (P < 0.05). Conclusion Blue light and A2E increased the levels of Ca2+, IP3, and DAG in human RPE cells and enhanced PKC activity, and blue light and A2E had a synergistic effect. Chloroquine further increased the levels of Ca2+, IP3, and DAG and PKC activity in RPE cells or A2E-loaded RPE cells exposed to blue light.
Collapse
|
13
|
Moran AL, Fehilly JD, Floss Jones D, Collery R, Kennedy BN. Regulation of the rhythmic diversity of daily photoreceptor outer segment phagocytosis in vivo. FASEB J 2022; 36:e22556. [PMID: 36165194 PMCID: PMC9828801 DOI: 10.1096/fj.202200990rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023]
Abstract
Outer segment phagocytosis (OSP) is a highly-regulated, biological process wherein photoreceptor outer segment (OS) tips are cyclically phagocytosed by the adjacent retinal pigment epithelium (RPE) cells. Often an overlooked retinal process, rhythmic OSP ensures the maintenance of healthy photoreceptors and vision. Daily, the photoreceptors renew OS at their base and the most distal, and likely oldest, OS tips, are phagocytosed by the RPE, preventing the accumulation of photo-oxidative compounds by breaking down phagocytosed OS tips and recycling useful components to the photoreceptors. Light changes often coincide with an escalation of OSP and within hours the phagosomes formed in each RPE cell are resolved. In the last two decades, individual molecular regulators were elucidated. Some of the molecular machinery used by RPE cells for OSP is highly similar to mechanisms used by other phagocytic cells for the clearance of apoptotic cells. Consequently, in the RPE, many molecular regulators of retinal phagocytosis have been elucidated. However, there is still a knowledge gap regarding the key regulators of physiological OSP in vivo between endogenous photoreceptors and the RPE. Understanding the regulation of OSP is of significant clinical interest as age-related macular degeneration (AMD) and inherited retinal diseases (IRD) are linked with altered OSP. Here, we review the in vivo timing of OSP peaks in selected species and focus on the reported in vivo environmental and molecular regulators of OSP.
Collapse
Affiliation(s)
- Ailis L. Moran
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland,UCD Conway InstituteUniversity College DublinDublinIreland
| | - John D. Fehilly
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland,UCD Conway InstituteUniversity College DublinDublinIreland
| | - Daniel Floss Jones
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland,UCD Conway InstituteUniversity College DublinDublinIreland
| | - Ross Collery
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWisconsinUSA,Department of Ophthalmology and Visual SciencesMedical College of Wisconsin Eye InstituteMilwaukeeWisconsinUSA
| | - Breandán N. Kennedy
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland,UCD Conway InstituteUniversity College DublinDublinIreland
| |
Collapse
|
14
|
Fu S, Deng Y, Zou K, Zhang S, Liu X, Liang Y. Flavonoids affect the endophytic bacterial community in Ginkgo biloba leaves with increasing altitude. FRONTIERS IN PLANT SCIENCE 2022; 13:982771. [PMID: 36035669 PMCID: PMC9410704 DOI: 10.3389/fpls.2022.982771] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 05/14/2023]
Abstract
Altitude affects plant growth and metabolism, but the effect of altitude on plant endophytic microorganisms is still unclear. In this study, we selected 16 Ginkgo biloba trees to study the response of leaves' endophytes to flavonoids and altitude (from 530 m to 1,310 m). HPLC results showed that flavonoids in Ginkgo biloba leaves increased by more than 150% with attitude rising from 530 m to 1,310 m, which revealed a positive correlation with altitude. Ginkgo biloba might regulate the increased flavonoids in leaves to resist the increasing light intensity. 16S rDNA sequencing results showed that the endophytic bacterial communities of Ginkgo biloba at different altitudes significantly differed. Ginkgo leaf endophytes' alpha diversity decreased with increasing flavonoids content and altitude. The increased flavonoids might increase the environmental pressure on endophytes and affect the endophytic community in Ginkgo biloba leaves. The bacterial network in Ginkgo biloba leaves became more complex with increasing altitude, which might be one of the strategies of leaf endophytes to cope with increasing flavonoids. Metagenomes results predicted with PICRUSt showed that the abundance of flavonoid biosynthesis and photosynthesis genes were significantly decreased with the increase of flavonoid contents. High flavonoid content in leaves appeared to inhibit microbial flavonoid synthesis. Our findings indicate that altitude can modulate microbial community structure through regulating plant metabolites, which is important to uncovering the interaction of microbes, host and the environment.
Collapse
Affiliation(s)
- Shaodong Fu
- School of Resource Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Yan Deng
- School of Resource Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Kai Zou
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, China
| | - Shuangfei Zhang
- School of Resource Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Xueduan Liu
- School of Resource Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Yili Liang
- School of Resource Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
15
|
Petan T, Manček-Keber M. Half is enough: Oxidized lysophospholipids as novel bioactive molecules. Free Radic Biol Med 2022; 188:351-362. [PMID: 35779690 DOI: 10.1016/j.freeradbiomed.2022.06.228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Studies in the last decade have established the roles of oxidized phospholipids as modulators of various cellular processes, from inflammation and immunity to cell death. Oxidized lysophospholipids, formed through the activity of phospholipases and oxidative enzymes and lacking an acyl chain in comparison with parent phospholipids, are now emerging as novel bioactive lipid mediators. Their detection and structural characterization have been limited in the past due to low amounts and the complexity of their biosynthetic and removal pathways, but recent studies have unequivocally demonstrated their formation under inflammatory conditions. The involvement of oxidized lysophospholipids in immune regulation classifies them as damage-associated molecular patterns (DAMPs), which can promote sterile inflammation and contribute to autoimmune and chronic diseases as well as aging-related diseases. Their signaling pathways are just beginning to be revealed. As the first publications indicate that oxidized lysophospholipids use the same receptors as pathogen-associated molecular patterns (PAMPs), it is likely that the inhibition of signaling pathways activated by oxidized lysophospholipids would affect innate immunity per se. On the other hand, inhibition or modulation of their enzymatic formation, which would not interfere with the response to pathogens, might be beneficial and is potentially a promising new field of research.
Collapse
Affiliation(s)
- Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia.
| | - Mateja Manček-Keber
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia.
| |
Collapse
|
16
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
17
|
Pinilla I, Maneu V, Campello L, Fernández-Sánchez L, Martínez-Gil N, Kutsyr O, Sánchez-Sáez X, Sánchez-Castillo C, Lax P, Cuenca N. Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants (Basel) 2022; 11:antiox11061086. [PMID: 35739983 PMCID: PMC9219848 DOI: 10.3390/antiox11061086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a large group of genetically and clinically heterogeneous diseases characterized by the progressive degeneration of the retina, ultimately leading to loss of visual function. Oxidative stress and inflammation play fundamental roles in the physiopathology of these diseases. Photoreceptor cell death induces an inflammatory state in the retina. The activation of several molecular pathways triggers different cellular responses to injury, including the activation of microglia to eliminate debris and recruit inflammatory cells from circulation. Therapeutical options for IRDs are currently limited, although a small number of patients have been successfully treated by gene therapy. Many other therapeutic strategies are being pursued to mitigate the deleterious effects of IRDs associated with oxidative metabolism and/or inflammation, including inhibiting reactive oxygen species’ accumulation and inflammatory responses, and blocking autophagy. Several compounds are being tested in clinical trials, generating great expectations for their implementation. The present review discusses the main death mechanisms that occur in IRDs and the latest therapies that are under investigation.
Collapse
Affiliation(s)
- Isabel Pinilla
- Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Department of Ophthalmology, Lozano Blesa, University Hospital, 50009 Zaragoza, Spain
- Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (I.P.); (V.M.)
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Correspondence: (I.P.); (V.M.)
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Laura Fernández-Sánchez
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
| | - Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Pedro Lax
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Nicolás Cuenca
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| |
Collapse
|
18
|
Rieu Q, Bougoüin A, Zagar Y, Chatagnon J, Hamieh A, Enderlin J, Huby T, Nandrot EF. Pleiotropic Roles of Scavenger Receptors in Circadian Retinal Phagocytosis: A New Function for Lysosomal SR-B2/LIMP-2 at the RPE Cell Surface. Int J Mol Sci 2022; 23:ijms23073445. [PMID: 35408805 PMCID: PMC8998831 DOI: 10.3390/ijms23073445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022] Open
Abstract
The retinal phagocytic machinery resembles the one used by macrophages to clear apoptotic cells. However, in the retina, the permanent contact between photoreceptor outer segments (POS) and retinal pigment epithelial (RPE) cells requires a tight control of this circadian machinery. In addition to the known receptors synchronizing POS internalization, several others are expressed by RPE cells. Notably, scavenger receptor CD36 has been shown to intervene in the internalization speed. We thus investigated members of the scavenger receptor family class A SR-AI and MARCO and class B CD36, SR-BI and SR-B2/LIMP-2 using immunoblotting, immunohisto- and immunocytochemistry, lipid raft flotation gradients, phagocytosis assays after siRNA/antibody inhibition, RT-qPCR and western blot analysis along the light:dark cycle. All receptors were expressed by RPE cell lines and tissues and colocalized with POS, except SR-BI. All receptors were associated with lipid rafts, and even more upon POS challenge. SR-B2/LIMP-2 inhibition suggested a role in the control of the internalization speed similar to CD36. In vivo, MARCO and CD36 displayed rhythmic gene and protein expression patterns concomitant with the phagocytic peak. Taken together, our results indicate that CD36 and SR-B2/LIMP-2 play a direct regulatory role in POS phagocytosis dynamics, while the others such as MARCO might participate in POS clearance by RPE cells either as co-receptors or via an indirect process.
Collapse
Affiliation(s)
- Quentin Rieu
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (Q.R.); (A.B.); (Y.Z.); (J.C.); (A.H.); (J.E.)
| | - Antoine Bougoüin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (Q.R.); (A.B.); (Y.Z.); (J.C.); (A.H.); (J.E.)
| | - Yvrick Zagar
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (Q.R.); (A.B.); (Y.Z.); (J.C.); (A.H.); (J.E.)
| | - Jonathan Chatagnon
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (Q.R.); (A.B.); (Y.Z.); (J.C.); (A.H.); (J.E.)
| | - Abdallah Hamieh
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (Q.R.); (A.B.); (Y.Z.); (J.C.); (A.H.); (J.E.)
| | - Julie Enderlin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (Q.R.); (A.B.); (Y.Z.); (J.C.); (A.H.); (J.E.)
| | - Thierry Huby
- Sorbonne Université, INSERM, UMR-S 1166, F-75013 Paris, France;
| | - Emeline F. Nandrot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (Q.R.); (A.B.); (Y.Z.); (J.C.); (A.H.); (J.E.)
- Correspondence: ; Tel.: +33-1-5346-2541; Fax: +33-1-5346-2602
| |
Collapse
|
19
|
Cockram TOJ, Dundee JM, Popescu AS, Brown GC. The Phagocytic Code Regulating Phagocytosis of Mammalian Cells. Front Immunol 2021; 12:629979. [PMID: 34177884 PMCID: PMC8220072 DOI: 10.3389/fimmu.2021.629979] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
Mammalian phagocytes can phagocytose (i.e. eat) other mammalian cells in the body if they display certain signals, and this phagocytosis plays fundamental roles in development, cell turnover, tissue homeostasis and disease prevention. To phagocytose the correct cells, phagocytes must discriminate which cells to eat using a 'phagocytic code' - a set of over 50 known phagocytic signals determining whether a cell is eaten or not - comprising find-me signals, eat-me signals, don't-eat-me signals and opsonins. Most opsonins require binding to eat-me signals - for example, the opsonins galectin-3, calreticulin and C1q bind asialoglycan eat-me signals on target cells - to induce phagocytosis. Some proteins act as 'self-opsonins', while others are 'negative opsonins' or 'phagocyte suppressants', inhibiting phagocytosis. We review known phagocytic signals here, both established and novel, and how they integrate to regulate phagocytosis of several mammalian targets - including excess cells in development, senescent and aged cells, infected cells, cancer cells, dead or dying cells, cell debris and neuronal synapses. Understanding the phagocytic code, and how it goes wrong, may enable novel therapies for multiple pathologies with too much or too little phagocytosis, such as: infectious disease, cancer, neurodegeneration, psychiatric disease, cardiovascular disease, ageing and auto-immune disease.
Collapse
Affiliation(s)
| | | | | | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Różanowska MB, Pawlak A, Różanowski B. Products of Docosahexaenoate Oxidation as Contributors to Photosensitising Properties of Retinal Lipofuscin. Int J Mol Sci 2021; 22:ijms22073525. [PMID: 33805370 PMCID: PMC8037991 DOI: 10.3390/ijms22073525] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Retinal lipofuscin which accumulates with age in the retinal pigment epithelium (RPE) is subjected to daily exposures to high fluxes of visible light and exhibits potent photosensitising properties; however, the molecules responsible for its photoreactivity remain unknown. Here, we demonstrate that autooxidation of docosahexaenoate (DHE) leads to the formation of products absorbing, in addition to UVB and UVA light, also visible light. The products of DHE oxidation exhibit potent photosensitising properties similar to photosensitising properties of lipofuscin, including generation of an excited triplet state with similar characteristics as the lipofuscin triplet state, and photosensitised formation of singlet oxygen and superoxide. The quantum yields of singlet oxygen and superoxide generation by oxidised DHE photoexcited with visible light are 2.4- and 3.6-fold higher, respectively, than for lipofuscin, which is consistent with the fact that lipofuscin contains some chromophores which do contribute to the absorption of light but not so much to its photosensitising properties. Importantly, the wavelength dependence of photooxidation induced by DHE oxidation products normalised to equal numbers of incident photons is also similar to that of lipofuscin—it steeply increases with decreasing wavelength. Altogether, our results demonstrate that products of DHE oxidation include potent photosensitiser(s) which are likely to contribute to lipofuscin photoreactivity.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff CF24 4HQ, Wales, UK
- Correspondence: ; Tel.: +44-292087-5057
| | - Anna Pawlak
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
| | | |
Collapse
|
21
|
Abstract
Cholesterol is a quantitatively and biologically significant constituent of all mammalian cell membrane, including those that comprise the retina. Retinal cholesterol homeostasis entails the interplay between de novo synthesis, uptake, intraretinal sterol transport, metabolism, and efflux. Defects in these complex processes are associated with several congenital and age-related disorders of the visual system. Herein, we provide an overview of the following topics: (a) cholesterol synthesis in the neural retina; (b) lipoprotein uptake and intraretinal sterol transport in the neural retina and the retinal pigment epithelium (RPE); (c) cholesterol efflux from the neural retina and the RPE; and (d) biology and pathobiology of defects in sterol synthesis and sterol oxidation in the neural retina and the RPE. We focus, in particular, on studies involving animal models of monogenic disorders pertinent to the above topics, as well as in vitro models using biochemical, metabolic, and omic approaches. We also identify current knowledge gaps and opportunities in the field that beg further research in this topic area.
Collapse
Affiliation(s)
- Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA.
| |
Collapse
|
22
|
Pan WW, Wubben TJ, Besirli CG. Photoreceptor metabolic reprogramming: current understanding and therapeutic implications. Commun Biol 2021; 4:245. [PMID: 33627778 PMCID: PMC7904922 DOI: 10.1038/s42003-021-01765-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Acquired and inherited retinal disorders are responsible for vision loss in an increasing proportion of individuals worldwide. Photoreceptor (PR) death is central to the vision loss individuals experience in these various retinal diseases. Unfortunately, there is a lack of treatment options to prevent PR loss, so an urgent unmet need exists for therapies that improve PR survival and ultimately, vision. The retina is one of the most energy demanding tissues in the body, and this is driven in large part by the metabolic needs of PRs. Recent studies suggest that disruption of nutrient availability and regulation of cell metabolism may be a unifying mechanism in PR death. Understanding retinal cell metabolism and how it is altered in disease has been identified as a priority area of research. The focus of this review is on the recent advances in the understanding of PR metabolism and how it is critical to reduction-oxidation (redox) balance, the outer retinal metabolic ecosystem, and retinal disease. The importance of these metabolic processes is just beginning to be realized and unraveling the metabolic and redox pathways integral to PR health may identify novel targets for neuroprotective strategies that prevent blindness in the heterogenous group of retinal disorders.
Collapse
Affiliation(s)
- Warren W Pan
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Thomas J Wubben
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Cheng YS, Linetsky M, Li H, Ayyash N, Gardella A, Salomon RG. 4-Hydroxy-7-oxo-5-heptenoic acid lactone can induce mitochondrial dysfunction in retinal pigmented epithelial cells. Free Radic Biol Med 2020; 160:719-733. [PMID: 32920040 PMCID: PMC7704664 DOI: 10.1016/j.freeradbiomed.2020.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 11/30/2022]
Abstract
Oxidation of docosahexaenoate (DHA)-containing phospholipids in the cell plasma membrane leads to release of the α,β-unsaturated aldehyde 4-hydroxy-7-oxo-5-heptenoic acid (HOHA) lactone which is capable of inducing retinal pigmented epithelial (RPE) cell dysfunction. Previously, HOHA lactone was shown to induce apoptosis and angiogenesis, and to activate the alternative complement pathway. RPE cells metabolize HOHA lactone through enzymatic conjugation with glutathione (GSH). Competing with this process is the adduction of HOHA lactone to protein lysyl residues generating 2-(ω-carboxyethyl)pyrrole (CEP) derivatives that have pathological relevance to age-related macular degeneration (AMD). We now find that HOHA lactone induces mitochondrial dysfunction. It decreases ATP levels, mitochondrial membrane potentials, enzymatic activities of mitochondrial complexes, depletes GSH and induces oxidative stress in RPE cells. The present study confirmed that pyridoxamine and other primary amines, which have been shown to scavenge γ-ketoaldehydes formed by carbohydrate or lipid peroxidation, are ineffective for scavenging the α,β-unsaturated aldehydes. Histidyl hydrazide (HH), that has both hydrazide and imidazole nucleophile functionalities, is an effective scavenger of HOHA lactone and it protects ARPE-19 cells against HOHA lactone-induced cytotoxicity. The HH α-amino group is not essential for this electrophile trapping activity. The Nα-acyl L-histidyl hydrazide derivatives with 2- to 7-carbon acyl groups with increasing lipophilicities are capable of maintaining the effectiveness of HH in protecting ARPE-19 cells against HOHA lactone toxicity, which potentially has therapeutic utility for treatment of age related eye diseases.
Collapse
Affiliation(s)
- Yu-Shiuan Cheng
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mikhail Linetsky
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Haoting Li
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Naji Ayyash
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Anthony Gardella
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
24
|
Nie J, Yang J, Wei Y, Wei X. The role of oxidized phospholipids in the development of disease. Mol Aspects Med 2020; 76:100909. [PMID: 33023753 DOI: 10.1016/j.mam.2020.100909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/29/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
Oxidized phospholipids (OxPLs), complex mixtures of phospholipid oxidation products generated during normal or pathological processes, are increasingly recognized to show bioactive effects on many cellular signalling pathways. There is a growing body of evidence showing that OxPLs play an important role in many diseases, so it is essential to define the specific role of OxPLs in different diseases for the design of disease therapies. In vastly diverse pathological processes, OxPLs act as pro-inflammatory agents and contribute to the progression of many diseases; in addition, they play a role in anti-inflammatory processes, promoting the dissipation of inflammation and inhibiting the progression of some diseases. In addition to participating in the regulation of inflammatory responses, OxPLs affect the occurrence and development of diseases through other pathways, such as apoptosis promotion. In this review, the different and even opposite effects of different OxPL molecular species are discussed. Furthermore, the specific effects of OxPLs in various diseases, as well as the receptor and cellular mechanisms involved, are summarized.
Collapse
Affiliation(s)
- Ji Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Respiration, First People's Hospital of Yunnan Province, Yunnan, 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China
| | - Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Samson F, He W, Sripathi SR, Patrick AT, Madu J, Chung H, Frost MC, Jee D, Gutsaeva DR, Jahng WJ. Dual Switch Mechanism of Erythropoietin as an Antiapoptotic and Pro-Angiogenic Determinant in the Retina. ACS OMEGA 2020; 5:21113-21126. [PMID: 32875248 PMCID: PMC7450639 DOI: 10.1021/acsomega.0c02763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/28/2020] [Indexed: 05/07/2023]
Abstract
Constant or intense light degenerates the retina and retinal pigment epithelial cells. Light generates reactive oxygen species and nitric oxide leading to initial reactions of retinal degeneration. Apoptosis is the primary mechanism of abnormal death of photoreceptors, retinal ganglion cells, or retinal pigment epithelium (RPE) in degenerative retinal diseases, including diabetic retinopathy and age-related macular degeneration. The current study evaluated the function of erythropoietin (EPO) on angiogenesis and apoptosis in the retina and RPE under oxidative stress. We determined the pro-angiogenic and antiapoptotic mechanism of EPO under stress conditions using a conditional EPO knockdown model using siRNA, EPO addition, proteomics, immunocytochemistry, and bioinformatic analysis. Our studies verified that EPO protected retinal cells from light-, hypoxia-, hyperoxia-, and hydrogen peroxide-induced apoptosis through caspase inhibition, whereas up-regulated angiogenic reactions through vascular endothelial growth factor (VEGF) and angiotensin pathway. We demonstrated that the EPO expression in the retina and subsequent serine/threonine/tyrosine kinase phosphorylations might be linked to oxidative stress response tightly to determining angiogenesis and apoptosis. Neuroprotective roles of EPO may involve the balance between antiapoptotic and pro-angiogenic signaling molecules, including BCL-xL, c-FOS, caspase-3, nitric oxide, angiotensin, and VEGF receptor. Our data indicate a new therapeutic application of EPO toward retinal degeneration based on the dual roles in apoptosis and angiogenesis at the molecular level under oxidative stress.
Collapse
Affiliation(s)
| | - Weilue He
- Department
of Biomedical Engineering, Michigan Technological
University, Houghton 49931, United States
| | - Srinivas R. Sripathi
- Department
of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Ambrose Teru Patrick
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| | - Joshua Madu
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| | - Hyewon Chung
- Department
of Ophthalmology, School of Medicine, Konkuk
University, Seoul 05030, Korea
| | - Megan C. Frost
- Department
of Biomedical Engineering, Michigan Technological
University, Houghton 49931, United States
| | - Donghyun Jee
- Division
of Vitreous and Retina, Department of Ophthalmology, St. Vincent’s
Hospital, College of Medicine, The Catholic
University of Korea, Suwon 16247, Korea
| | - Diana R. Gutsaeva
- Department
of Ophthalmology, Augusta University, Augusta, Georgia 30912, United States
| | - Wan Jin Jahng
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| |
Collapse
|
26
|
Markitantova YV, Simirskii VN. Role of the Redox System in Initiation of a Regenerative Response of Neural Eye Tissues in Vertebrates. Russ J Dev Biol 2020. [DOI: 10.1134/s106236042001004x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Lakkaraju A, Umapathy A, Tan LX, Daniele L, Philp NJ, Boesze-Battaglia K, Williams DS. The cell biology of the retinal pigment epithelium. Prog Retin Eye Res 2020; 78:100846. [PMID: 32105772 PMCID: PMC8941496 DOI: 10.1016/j.preteyeres.2020.100846] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023]
Abstract
The retinal pigment epithelium (RPE), a monolayer of post-mitotic polarized epithelial cells, strategically situated between the photoreceptors and the choroid, is the primary caretaker of photoreceptor health and function. Dysfunction of the RPE underlies many inherited and acquired diseases that cause permanent blindness. Decades of research have yielded valuable insight into the cell biology of the RPE. In recent years, new technologies such as live-cell imaging have resulted in major advancement in our understanding of areas such as the daily phagocytosis and clearance of photoreceptor outer segment tips, autophagy, endolysosome function, and the metabolic interplay between the RPE and photoreceptors. In this review, we aim to integrate these studies with an emphasis on appropriate models and techniques to investigate RPE cell biology and metabolism, and discuss how RPE cell biology informs our understanding of retinal disease.
Collapse
Affiliation(s)
- Aparna Lakkaraju
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Ankita Umapathy
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Li Xuan Tan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Daniele
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy J Philp
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David S Williams
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Lavalette S, Conart JB, Touhami S, Roubeix C, Houssier M, Augustin S, Raoul W, Combadière C, Febbraio M, Ong H, Chemtob S, Sahel JA, Delarasse C, Guillonneau X, Sennlaub F. CD36 Deficiency Inhibits Retinal Inflammation and Retinal Degeneration in Cx3cr1 Knockout Mice. Front Immunol 2020; 10:3032. [PMID: 31969887 PMCID: PMC6960398 DOI: 10.3389/fimmu.2019.03032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022] Open
Abstract
Background: CD36, a member of the class B scavenger receptor family, participates in Toll-like receptor signaling on mononuclear phagocytes (MP) and can promote sterile pathogenic inflammation. We here analyzed the effect of CD36 deficiency on retinal inflammation and photoreceptor degeneration, the hallmarks of age-related macular degeneration (AMD), that characterize Cx3cr1−/−mice. Methods: We analyzed subretinal MP accumulation, and cone- and rod-degeneration in light-challenged and aged, CD36 competent or deficient, hyper-inflammatory Cx3cr1−/− mice, using histology and immune-stained retinal flatmounts. Monocytes (Mo) were subretinally adoptively transferred to evaluate their elimination rate from the subretinal space and Interleukin 6 (IL-6) secretion from cultured Mo-derived cells (MdCs) of the different mouse strains were analyzed. Results: CD36 deficient Cx3cr1−/− mice were protected against age- and light-induced subretinal inflammation and associated cone and rod degeneration. CD36 deficiency in Cx3cr1−/− MPs inhibited their prolonged survival in the immune-suppressive subretinal space and reduced the exaggerated IL-6 secretion observed in Cx3cr1−/− MPs that we previously showed leads to increased subretinal MP survival. Conclusion:Cd36 deficiency significantly protected hyperinflammatory Cx3cr1−/− mice against subretinal MP accumulation and associated photoreceptor degeneration. The observed CD36-dependent induction of pro-inflammatory IL-6 might be at least partially responsible for the prolonged MP survival in the immune-suppressive environment and its pathological consequences on photoreceptor homeostasis.
Collapse
Affiliation(s)
- Sophie Lavalette
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | - Sara Touhami
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | - Marianne Houssier
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | - William Raoul
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.,Université de Tours, Inserm, N2C UMR 1069, Faculté de Médecine, Tours, France
| | - Christophe Combadière
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Maria Febbraio
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Huy Ong
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, Université de Montréal, Montreal, QC, Canada
| | - José-Alain Sahel
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Cécile Delarasse
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | - Florian Sennlaub
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| |
Collapse
|
29
|
Tomko N, Kluever M, Wu C, Zhu J, Wang Y, Salomon RG. 4-Hydroxy-7-oxo-5-heptenoic acid lactone is a potent inducer of brain cancer cell invasiveness that may contribute to the failure of anti-angiogenic therapies. Free Radic Biol Med 2020; 146:234-256. [PMID: 31715381 DOI: 10.1016/j.freeradbiomed.2019.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
Previously, we discovered that free radical-induced oxidative fragmentation of the docosahexaenoate ester of 2-lysophosphatidylcholine produces 4-hydroxy-7-oxo-5-heptenoic acid (HOHA) lactone that, in turn, promotes the migration and invasion of endothelial cells. This suggested that HOHA lactone might similarly promote migration and invasion of glioblastoma multiformae (GBM) brain cancer stem cells (CSCs). A bioinformatics analysis of clinical cancer genomic data revealed that matrix metalloproteinase (MMP)1 and three markers of oxidative stress - superoxide dismutase 2, NADPH oxidase 4, and carbonic anhydrase 9 - are upregulated in human mesenchymal GBM cancer tissue, and that MMP1 is positively correlated to all three of these oxidative stress markers. In addition, elevated levels of MMP1 are indicative of GBM invasion, while low levels of MMP1 indicate survival. We also explored the hypothesis that the transition from the proneural to the more aggressive mesenchymal phenotype, e.g., after treatment with an anti-angiogenic therapy, is promoted by the effects of lipid oxidation products on GBM CSCs. We found that low micromolar concentrations of HOHA lactone increase the cell migration velocity of cultured GBM CSCs, and induce the expression of MMP1 and two protein biomarkers of the proneural to mesenchymal transition (PMT): p65 NF-κβ and vimentin. Exposure of cultured GBM CSCs to HOHA lactone causes an increase in phosphorylation of mitogen-activated protein kinases and Akt kinases that are dependent on both protease-activated receptor 1 (PAR1) and MMP1 activity. We conclude that HOHA lactone promotes the PMT in GBM through the activation of PAR1 and MMP1. This contributes to a fatal flaw in antiangiogenic, chemo, and radiation therapies: they promote oxidative stress and the generation of HOHA lactone in the tumor that fosters a change from the proliferative proneural to the migratory mesenchymal GBM CSC phenotype that seeds new tumor growth. Inhibition of PAR1 and HOHA lactone are potential new therapeutic targets for impeding GBM tumor recurrence.
Collapse
Affiliation(s)
- Nicholas Tomko
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mark Kluever
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Chunying Wu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Junqing Zhu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yanming Wang
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
30
|
Sørensen NB. Subretinal surgery: functional and histological consequences of entry into the subretinal space. Acta Ophthalmol 2019; 97 Suppl A114:1-23. [PMID: 31709751 DOI: 10.1111/aos.14249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Gene-therapy, stem-cell transplantation and surgical robots hold the potential for treatment of currently untreatable retinal degenerative diseases. All of the techniques require entry into the subretinal space, which is a potential space located between the retina and the retinal pigment epithelium (RPE). Knowledge about obstacles and critical steps in relation to subretinal procedures is therefore needed. This thesis explores the functional and histological consequences of separation of the retina from the RPE, extensive RPE damage, a large cut in the retina (retinotomy) and RPE phagocytosis in a porcine model. METHODS Experiments were performed in 106 female domestic pigs of Danish landrace distributed over five studies. Under general anesthesia, different procedures for expansion of the subretinal space were conducted. Outcomes were visual function measured electrophysiologically with multifocal electroretinogram (mfERG) and retinal morphology examined histologically. Study I: The effect of anesthesia on mfERG was examined by repeated recordings for 3 hr in isoflurane or propofol anesthesia. Outcome was mfERG amplitude. Study II: Consequences of a large separation of the photoreceptors from the RPE were examined by injecting a perfluorocarbon-liquid (decalin) into the subretinal space. Two weeks after, in a second surgery, decalin was withdrawn. Outcomes were mfERG and histology 4 weeks after decalin injection. Study III: Extensive RPE damage was examined by expanding the subretinal space with saline and removing large sheets of RPE-cells through a retinotomy. Outcomes were mfERG and histology 2, 4 and 6 weeks after the procedure. Study IV: Consequences of a large retinotomy were examined by similar procedures as in Study III, but in study IV only a few RPE cells were removed. Outcomes were mfERG and histology 2 and 6 weeks after surgery. Study V: Clearance of the subretinal space was examined by injecting fluorescent latex beads of various sizes into the subretinal space. Outcome was histologic location of the beads at different time intervals after the procedure. RESULTS Study I: MfERG amplitudes decreased linearly as a function of time in propofol or isoflurane anesthesia. Duration of mfERG recording could be decreased without compromising quality, and thereby could time in anesthesia be reduced. Study II: MfERG and histology remained normal after reattachment of a large and 2-week long separation of the photoreceptors and RPE. Repeated entry into the subretinal space was well tolerated. Fluid injection into the subretinal space constitutes a risk of RPE-damage. Study III: Removal of large sheets of retinal pigment epithelial cells triggered a widespread rhegmatogenous-like retinal detachment resulting in visual loss. Study IV: A large retinotomy with limited damage of the RPE was well tolerated, and visual function was preserved. Study V: Subretinal latex beads up to 4 μm were phagocytosed by the RPE and passed into the sub-RPE space. Beads up to 2 μm travelled further through the Bruch's membrane and were found in the choroid, sclera and inside blood vessels. CONCLUSION A large expansion of the subretinal space, repeated entry, a large retinotomy and limited RPE damage is well tolerated and retinal function is preserved. Subretinal injection of fluid can damage the RPE and extensive RPE damage can induce a rhegmatogenous-like retinal detachment with loss of visual function. Foreign substances exit the subretinal space and can reach the systemic circulation.
Collapse
Affiliation(s)
- Nina Buus Sørensen
- Department of Ophthalmology Copenhagen University Hospital Rigshospitalet København Denmark
- Department of Neurology Zealand University Hospital Køge Denmark
| |
Collapse
|
31
|
Pawlowska E, Szczepanska J, Koskela A, Kaarniranta K, Blasiak J. Dietary Polyphenols in Age-Related Macular Degeneration: Protection against Oxidative Stress and Beyond. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9682318. [PMID: 31019656 PMCID: PMC6451822 DOI: 10.1155/2019/9682318] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/12/2019] [Indexed: 12/16/2022]
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease of the retina featured by degeneration and loss of photoreceptors and retinal pigment epithelium (RPE) cells with oxidative stress playing a role in its pathology. Although systematic reviews do not support the protective role of diet rich in antioxidants against AMD, dietary polyphenols (DPs) have been reported to have beneficial effects on vision. Some of them, such as quercetin and cyanidin-3-glucoside, can directly scavenge reactive oxygen species (ROS) due to the presence of two hydroxyl groups in their B ring structure. Apart from direct ROS scavenging, DPs can lower oxidative stress in several other pathways. Many DPs induce NRF2 (nuclear factor, erythroid 2-like 2) activation and expression of phase II enzymes that are under transcriptional control of this factor. DPs can inhibit A2E photooxidation in RPE cells, which is a source of oxidative stress. Anti-inflammatory action of DPs in RPE cells is associated with regulation of various interleukins and signaling pathways, including IL-6/JAK2 (Janus kinase 2)/STAT3. Some DPs can improve impaired cellular waste clearance, including AMD-specific deficient phagocytosis of the Aβ42 peptide and autophagy.
Collapse
Affiliation(s)
- Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland
| | - Ali Koskela
- Department of Ophthalmology, University of Eastern Finland, Kuopio 70211, Finland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio 70029, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio 70211, Finland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio 70029, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
32
|
Cai J, Zhang H, Zhang YF, Zhou Z, Wu S. MicroRNA-29 enhances autophagy and cleanses exogenous mutant αB-crystallin in retinal pigment epithelial cells. Exp Cell Res 2018; 374:231-248. [PMID: 30513336 DOI: 10.1016/j.yexcr.2018.11.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 01/09/2023]
Abstract
Retinal pigment epithelial cells (RPEs), a pigmented cell layer in the outer retina, are constantly exposed to photo-oxidative stress. Autophagy relieves the stress by removing oxidative protein adducts, protein aggregates, and damaged mitochondria. We previously found that miR-29 is downregulated in choroid/RPE tissue in a model of exudative age-related macular degeneration (AMD), suggesting that miR-29 deficiency may contribute to autophagy inhibition and AMD progression. Here we wanted to test whether overexpression of miR-29 in RPEs could enhance autophagy, thereby facilitating removal of drusen components. Indeed, overexpression of miR-29 in the RPEs increased autophagy, assessed by decreased protein levels of p62, increased lipid form of microtubule-associated protein light chain (LC3-II), and elevated autophagy flux. Furthermore, overexpression of miR-29 mitigated the formation of mutant αB-crystallin (R120G) protein aggregates. In probing the mechanism, we demonstrated that miR-29 post-transcriptionally repressed LAMPTOR1/p18 via targeting its 3'-UTRs of messenger RNA. MiR-29 overexpression and knockdown of LAMPTOR1/p18 led to limited mTORC1 recruitment to lysosomes and inhibition of mTORC1 activity. Altogether, miR-29 enhances autophagy which aids in removal of protein aggregates. These findings reveal a novel role of miR-29, which has the potential of being a therapeutic strategy for rescuing RPE degeneration in ocular disorders.
Collapse
Affiliation(s)
- Jingjing Cai
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, 325027, PR China.
| | - He Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, 325027, PR China
| | - Yun-Feng Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, 325027, PR China
| | - Zhonglou Zhou
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, 325027, PR China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, 325027, PR China.
| |
Collapse
|
33
|
Sørensen NB, Christiansen AT, Kjær TW, Klemp K, la Cour M, Heegaard S, Kiilgaard JF. Bruch's membrane allows unhindered passage of up to 2 μm latex beads in an in vivo porcine model. Exp Eye Res 2018; 180:1-7. [PMID: 30468719 DOI: 10.1016/j.exer.2018.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/06/2018] [Accepted: 11/19/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE It has been proposed that changes in the permeability of Bruch's membrane play a role in the pathogenesis of age-related macular degeneration (AMD). This paper investigates, in an in vivo porcine model, the migration of fluorescent latex beads across the Bruch's membrane after subretinal injection. METHODS Forty-one healthy eyes of 33 three-month-old domestic pigs received a subretinal injection of 0.5, 1.0, 2.0, or 4.0 μm fluorescent latex beads. Between three hours and five weeks after injection evaluations were performed with fundus photographs and histology. Fluorescent beads were identified in unstained histologic sections using the rhodamine filter with the light microscope. RESULTS The fluorescent latex beads relocated from the subretinal space. Intact beads up to 2.0 μm were found in the choroid, sclera, and extrascleral space. The smaller beads were also found inside choroidal and extrascleral blood vessels. In contrast, the larger beads of 4.0 μm did not pass the Bruch's membrane. CONCLUSION Subretinally implanted beads up to 2.0 μm pass the Bruch's membrane intact and cross the blood-ocular barrier. The intact beads are found in the choroid, sclera and inside blood vessels. The results give reason to consider the role of subretinal clearance and passage of Bruch's membrane in the development of AMD.
Collapse
Affiliation(s)
- Nina Buus Sørensen
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | | | | | - Kristian Klemp
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Morten la Cour
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Steffen Heegaard
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark; Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens Folke Kiilgaard
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
34
|
Light-induced generation and toxicity of docosahexaenoate-derived oxidation products in retinal pigmented epithelial cells. Exp Eye Res 2018; 181:325-345. [PMID: 30296412 DOI: 10.1016/j.exer.2018.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 12/11/2022]
Abstract
Oxidative cleavage of docosahexaenoate (DHA) in retinal pigmented epithelial (RPE) cells produces 4-hydroxy-7-oxohept-5-enoic acid (HOHA) esters of 2-lysophosphatidylcholine (PC). HOHA-PC spontaneously releases a membrane-permeant HOHA lactone that modifies primary amino groups of proteins and ethanolamine phospholipids to produce 2-(ω-carboxyethyl)pyrrole (CEP) derivatives. CEPs have significant pathological relevance to age-related macular degeneration (AMD) including activation of CEP-specific T-cells leading to inflammatory M1 polarization of macrophages in the retina involved in "dry AMD" and TLR2-dependent induction of angiogenesis that characterizes "wet AMD". RPE cells accumulate DHA from shed rod photoreceptor outer segments through phagocytosis and from plasma lipoproteins secreted by the liver through active uptake from the choriocapillaris. As a cell model of light-induced oxidative damage of DHA phospholipids in RPE cells, ARPE-19 cells were supplemented with DHA, with or without the lipofuscin fluorophore A2E. In this model, light exposure, in the absence of A2E, promoted the generation HOHA lactone-glutathione (GSH) adducts, depletion of intracellular GSH and a competing generation of CEPs. While DHA-rich RPE cells exhibit an inherent proclivity toward light-induced oxidative damage, photosensitization by A2E nearly doubled the amount of lipid oxidation and expanded the spectral range of photosensitivity to longer wavelengths. Exposure of ARPE-19 cells to 1 μM HOHA lactone for 24 h induced massive (50%) loss of lysosomal membrane integrity and caused loss of mitochondrial membrane potential. Using senescence-associated β-galactosidase (SA β-gal) staining that detects lysosomal β-galactosidase, we determined that exposure to HOHA lactone induces senescence in ARPE-19 cells. The present study shows that products of light-induced oxidative damage of DHA phospholipids in the absence of A2E can lead to RPE cell dysfunction. Therefore, their toxicity may be especially important in the early stages of AMD before RPE cells accumulate lipofuscin fluorophores.
Collapse
|
35
|
Kaarniranta K, Kajdanek J, Morawiec J, Pawlowska E, Blasiak J. PGC-1α Protects RPE Cells of the Aging Retina against Oxidative Stress-Induced Degeneration through the Regulation of Senescence and Mitochondrial Quality Control. The Significance for AMD Pathogenesis. Int J Mol Sci 2018; 19:ijms19082317. [PMID: 30087287 PMCID: PMC6121367 DOI: 10.3390/ijms19082317] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/18/2018] [Accepted: 08/05/2018] [Indexed: 02/07/2023] Open
Abstract
PGC-1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) is a transcriptional coactivator of many genes involved in energy management and mitochondrial biogenesis. PGC-1α expression is associated with cellular senescence, organismal aging, and many age-related diseases, including AMD (age-related macular degeneration), an important global issue concerning vision loss. We and others have developed a model of AMD pathogenesis, in which stress-induced senescence of retinal pigment epithelium (RPE) cells leads to AMD-related pathological changes. PGC-1α can decrease oxidative stress, a key factor of AMD pathogenesis related to senescence, through upregulation of antioxidant enzymes and DNA damage response. PGC-1α is an important regulator of VEGF (vascular endothelial growth factor), which is targeted in the therapy of wet AMD, the most devastating form of AMD. Dysfunction of mitochondria induces cellular senescence associated with AMD pathogenesis. PGC-1α can improve mitochondrial biogenesis and negatively regulate senescence, although this function of PGC-1α in AMD needs further studies. Post-translational modifications of PGC-1α by AMPK (AMP kinase) and SIRT1 (sirtuin 1) are crucial for its activation and important in AMD pathogenesis.
Collapse
Affiliation(s)
- Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70211 Kuopio, Finland.
- Department of Ophthalmology, Kuopio University Hospital, 70029 Kuopio, Finland.
| | - Jakub Kajdanek
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Jan Morawiec
- Department of General and Colorectal Surgery, Medical University of Lodz, Pl. Hallera 1, 90-647 Lodz, Poland.
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
36
|
Letelier J, Bovolenta P, Martínez-Morales JR. The pigmented epithelium, a bright partner against photoreceptor degeneration. J Neurogenet 2017; 31:203-215. [PMID: 29113536 DOI: 10.1080/01677063.2017.1395876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sight depends on the intimate association between photoreceptors and pigment epithelial cells. The evolutionary origin of this cellular tandem can be traced back to the emergence of bilateral animals, at least 450 million years ago, as they define the minimal unit of the ancestral prototypic eye. Phototransduction is a demanding process from the energetic and homeostatic points of view, and not surprisingly photoreceptive cells are particularly susceptible to damage and degeneration. Here, we will examine the different ancillary roles that the pigmented cells play in the physiology and homeostasis of photoreceptors, linking each one of these processes to the most common hereditary retinal diseases. We will discuss the challenges and opportunities of recent therapeutic advances based on cell and gene replacement. The transition from animal models to clinical trials will be addressed for each one of the different therapeutic strategies with a special focus on those depending on retinal-pigmented epithelial cells. Finally, we will discuss the potential impact of combining CRISPR technologies with gene and cell therapy approaches, which - in the frame of the personalized medicine revolution - may constitute a leap forward in the treatment of retinal dystrophies.
Collapse
Affiliation(s)
- Joaquín Letelier
- a Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA) , Seville , Spain
| | - Paola Bovolenta
- b Centro de Biología Molecular "Severo Ochoa," (CSIC/UAM) and CIBERER, ISCIII , Madrid , Spain
| | | |
Collapse
|
37
|
Bochkov V, Gesslbauer B, Mauerhofer C, Philippova M, Erne P, Oskolkova OV. Pleiotropic effects of oxidized phospholipids. Free Radic Biol Med 2017; 111:6-24. [PMID: 28027924 DOI: 10.1016/j.freeradbiomed.2016.12.034] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
Abstract
Oxidized phospholipids (OxPLs) are increasingly recognized to play a role in a variety of normal and pathological states. OxPLs were implicated in regulation of inflammation, thrombosis, angiogenesis, endothelial barrier function, immune tolerance and other important processes. Rapidly accumulating evidence suggests that OxPLs are biomarkers of atherosclerosis and other pathologies. In addition, successful application of experimental drugs based on structural scaffold of OxPLs in animal models of inflammation was recently reported. This review briefly summarizes current knowledge on generation, methods of quantification and biological activities of OxPLs. Furthermore, receptor and cellular mechanisms of these effects are discussed. The goal of the review is to give a broad overview of this class of lipid mediators inducing pleiotropic biological effects.
Collapse
Affiliation(s)
- Valery Bochkov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria.
| | - Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria
| | - Christina Mauerhofer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria
| | - Maria Philippova
- Signaling Laboratory, Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Paul Erne
- Signaling Laboratory, Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Olga V Oskolkova
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria.
| |
Collapse
|
38
|
Gnanaguru G, Choi AR, Amarnani D, D'Amore PA. Oxidized Lipoprotein Uptake Through the CD36 Receptor Activates the NLRP3 Inflammasome in Human Retinal Pigment Epithelial Cells. Invest Ophthalmol Vis Sci 2017; 57:4704-12. [PMID: 27607416 PMCID: PMC5024668 DOI: 10.1167/iovs.15-18663] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Purpose Accumulation of oxidized phospholipids/lipoproteins with age is suggested to contribute to the pathogenesis of AMD. We investigated the effect of oxidized LDL (ox-LDL) on human RPE cells. Methods Primary human fetal RPE (hf-RPE) and ARPE-19 cells were treated with different doses of LDL or ox-LDL. Assessment of cell death was measured by lactate dehydrogenase release into the conditioned media. Barrier function of RPE was assayed by measuring transepithelial resistance. Lysosomal accumulation of ox-LDL was determined by immunostaining. Expression of CD36 was determined by RT-PCR; protein blot and function was examined by receptor blocking. NLRP3 inflammasome activation was assessed by RT-PCR, protein blot, caspase-1 fluorescent probe assay, and inhibitor assays. Results Treatment with ox-LDL, but not LDL, for 48 hours caused significant increase in hf-RPE and ARPE-19 (P < 0.001) cell death. Oxidized LDL treatment of hf-RPE cells resulted in a significant decrease in transepithelial resistance (P < 0.001 at 24 hours and P < 0.01 at 48 hours) relative to LDL-treated and control cells. Internalized ox-LDL was targeted to RPE lysosomes. Uptake of ox-LDL but not LDL significantly increased CD36 protein and mRNA levels by more than 2-fold. Reverse transcription PCR, protein blot, and caspase-1 fluorescent probe assay revealed that ox-LDL treatment induced NLRP3 inflammasome when compared with LDL treatment and control. Inhibition of NLRP3 activation using 10 μM isoliquiritigenin significantly (P < 0.001) inhibited ox-LDL induced cytotoxicity. Conclusions These data are consistent with the concept that ox-LDL play a role in the pathogenesis of AMD by NLRP3 inflammasome activation. Suppression of NLRP3 inflammasome activation could attenuate RPE degeneration and AMD progression.
Collapse
Affiliation(s)
- Gopalan Gnanaguru
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, Massachusetts, United States 2Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Ariel R Choi
- Program in Liberal Medical Education, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States
| | - Dhanesh Amarnani
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, Massachusetts, United States 2Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Patricia A D'Amore
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, Massachusetts, United States 2Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States 4Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
39
|
The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res 2017; 60:201-218. [PMID: 28336424 DOI: 10.1016/j.preteyeres.2017.03.002] [Citation(s) in RCA: 515] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023]
Abstract
The retinal pigment epithelium (RPE) is a highly specialized, unique epithelial cell that interacts with photoreceptors on its apical side and with Bruch's membrane and the choriocapillaris on its basal side. Due to vital functions that keep photoreceptors healthy, the RPE is essential for maintaining vision. With aging and the accumulated effects of environmental stresses, the RPE can become dysfunctional and die. This degeneration plays a central role in age-related macular degeneration (AMD) pathobiology, the leading cause of blindness among the elderly in western societies. Oxidative stress and inflammation have both physiological and potentially pathological roles in RPE degeneration. Given the central role of the RPE, this review will focus on the impact of oxidative stress and inflammation on the RPE with AMD pathobiology. Physiological sources of oxidative stress as well as unique sources from photo-oxidative stress, the phagocytosis of photoreceptor outer segments, and modifiable factors such as cigarette smoking and high fat diet ingestion that can convert oxidative stress into a pathological role, and the negative impact of impairing the cytoprotective roles of mitochondrial dynamics and the Nrf2 signaling system on RPE health in AMD will be discussed. Likewise, the response by the innate immune system to an inciting trigger, and the potential role of local RPE production of inflammation, as well as a potential role for damage by inflammation with chronicity if the inciting trigger is not neutralized, will be debated.
Collapse
|
40
|
Peng RM, Hong J, Jin Y, Sun YZ, Sun YQ, Zhang P. Mertk gene expression and photoreceptor outer segment phagocytosis by cultured rat bone marrow mesenchymal stem cells. Mol Vis 2017; 23:8-19. [PMID: 28210098 PMCID: PMC5287449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 01/26/2017] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BM-MSCs) are multipotential stem cells that have been used for a broad spectrum of indications. Several investigations have used BM-MSCs to promote photoreceptor survival and suggested that BM-MSCs are a potential source of cell replacement therapy for some forms of retinal degeneration. PURPOSE To investigate the expression of the MER proto-oncogene, tyrosine kinase (Mertk), involved in the disruption of RPE phagocytosis and the onset of autosomal recessive retinitis pigmentosa in rat BM-MSCs and to compare phagocytosis of the photoreceptor outer segment (POS) by BM-MSCs and RPE cells in vitro. METHODS MSCs were isolated from the bone marrow of Brown Norway rats. Reverse transcription-PCR (RT-PCR) and western blot analyses were used to examine the expression of Mertk. The phagocytized POS was detected with double fluorescent labeling, transmission electron microscopy, and scanning electron microscopy. RESULTS Mertk expression did not differ among the first three passages of BM-MSCs. Mertk gene expression was greater in the BM-MSCs than the RPE cells. Mertk protein expression in the BM-MSCs was similar to that in the RPE cells in the primary passage and was greater than that in the RPE cells in the other two passages. BM-MSCs at the first three passages phagocytized the POS more strongly than the RPE cells. The process of BM-MSC phagocytosis was similar to that of the RPE cells. CONCLUSIONS BM-MSCs may be an effective cell source for treating retinal degeneration in terms of phagocytosis of the POS.
Collapse
Affiliation(s)
- Rong-mei Peng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| | - Ying Jin
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| | - Yu-zhao Sun
- Department of Ophthalmology, China Medical University, the First Affiliated Hospital, Shenyang, China
| | - Yi-qian Sun
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| | - Pei Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| |
Collapse
|
41
|
Salomon RG. Carboxyethylpyrroles: From Hypothesis to the Discovery of Biologically Active Natural Products. Chem Res Toxicol 2016; 30:105-113. [PMID: 27750413 DOI: 10.1021/acs.chemrestox.6b00304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our research on the roles of lipid oxidation in human disease is guided by chemical intuition. For example, we postulated that 2-(ω-carboxyethyl)pyrrole (CEP) derivatives of primary amines would be produced through covalent adduction of a γ-hydroxyalkenal generated, in turn, through oxidative fragmentation of docosahexaenoates. Our studies confirmed the natural occurrence of this chemistry, and the biological activities of these natural products and their extensive involvements in human physiology (wound healing) and pathology (age-related macular degeneration, autism, atherosclerosis, sickle cell disease, and tumor growth) continue to emerge. This perspective recounts these discoveries and proposes new frontiers where further developments are likely. Perhaps more significantly, it depicts an effective chemistry-based approach to the discovery of novel biochemistry.
Collapse
Affiliation(s)
- Robert G Salomon
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
42
|
Woo HJ, Yu C, Kumar K, Gold B, Reifman J. Genotype distribution-based inference of collective effects in genome-wide association studies: insights to age-related macular degeneration disease mechanism. BMC Genomics 2016; 17:695. [PMID: 27576376 PMCID: PMC5006276 DOI: 10.1186/s12864-016-2871-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 07/01/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Genome-wide association studies provide important insights to the genetic component of disease risks. However, an existing challenge is how to incorporate collective effects of interactions beyond the level of independent single nucleotide polymorphism (SNP) tests. While methods considering each SNP pair separately have provided insights, a large portion of expected heritability may reside in higher-order interaction effects. RESULTS We describe an inference approach (discrete discriminant analysis; DDA) designed to probe collective interactions while treating both genotypes and phenotypes as random variables. The genotype distributions in case and control groups are modeled separately based on empirical allele frequency and covariance data, whose differences yield disease risk parameters. We compared pairwise tests and collective inference methods, the latter based both on DDA and logistic regression. Analyses using simulated data demonstrated that significantly higher sensitivity and specificity can be achieved with collective inference in comparison to pairwise tests, and with DDA in comparison to logistic regression. Using age-related macular degeneration (AMD) data, we demonstrated two possible applications of DDA. In the first application, a genome-wide SNP set is reduced into a small number (∼100) of variants via filtering and SNP pairs with significant interactions are identified. We found that interactions between SNPs with highest AMD association were epigenetically active in the liver, adipocytes, and mesenchymal stem cells. In the other application, multiple groups of SNPs were formed from the genome-wide data and their relative strengths of association were compared using cross-validation. This analysis allowed us to discover novel collections of loci for which interactions between SNPs play significant roles in their disease association. In particular, we considered pathway-based groups of SNPs containing up to ∼10, 000 variants in each group. In addition to pathways related to complement activation, our collective inference pointed to pathway groups involved in phospholipid synthesis, oxidative stress, and apoptosis, consistent with the AMD pathogenesis mechanism where the dysfunction of retinal pigment epithelium cells plays central roles. CONCLUSIONS The simultaneous inference of collective interaction effects within a set of SNPs has the potential to reveal novel aspects of disease association.
Collapse
Affiliation(s)
- Hyung Jun Woo
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, USA
| | - Chenggang Yu
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, USA
| | - Kamal Kumar
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, USA
| | - Bert Gold
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland, USA
| | - Jaques Reifman
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, USA.
| |
Collapse
|
43
|
Tian B, Maidana DE, Dib B, Miller JB, Bouzika P, Miller JW, Vavvas DG, Lin H. miR-17-3p Exacerbates Oxidative Damage in Human Retinal Pigment Epithelial Cells. PLoS One 2016; 11:e0160887. [PMID: 27505139 PMCID: PMC4978424 DOI: 10.1371/journal.pone.0160887] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress has been shown to contribute to the development of age-related macular degeneration (AMD). MicroRNAs (miRNA) are small non-coding RNA molecules that function in RNA silencing and post-transcriptional regulation of gene expression. We showed miR-17-3p to be elevated in macular RPE cells from AMD patients and in ARPE-19 cells under oxidative stress. Transfection of miR-17-3p mimic in ARPE-19 induced cell death and exacerbated oxidative lethality that was alleviated by miR-17-3p inhibitor. The expression of antioxidant enzymes manganese superoxide dismutase (MnSOD) and thioredoxin reductase-2 (TrxR2) were suppressed by miR-17-3p mimic and reversed by miR-17-3p inhibitor. These results suggest miR-17-3p aggravates oxidative damage-induced cell death in human RPE cells, while miR-17-3p inhibitor acts as a potential protector against oxidative stress by regulating the expression of antioxidant enzymes.
Collapse
Affiliation(s)
- Bo Tian
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Daniel E. Maidana
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Bernard Dib
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - John B. Miller
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Peggy Bouzika
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Joan W. Miller
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Demetrios G. Vavvas
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
- * E-mail: (HL); (DGV)
| | - Haijiang Lin
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
- * E-mail: (HL); (DGV)
| |
Collapse
|
44
|
Handa JT, Cano M, Wang L, Datta S, Liu T. Lipids, oxidized lipids, oxidation-specific epitopes, and Age-related Macular Degeneration. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:430-440. [PMID: 27480216 DOI: 10.1016/j.bbalip.2016.07.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/25/2022]
Abstract
Age-related Macular Degeneration (AMD) is the leading cause of blindness among the elderly in western societies. While antioxidant micronutrient treatment is available for intermediate non-neovascular disease, and effective anti-vascular endothelial growth factor treatment is available for neovascular disease, treatment for early AMD is lacking due to an incomplete understanding of the early molecular events. The role of lipids, which accumulate in the macula, and their oxidation, has emerged as an important factor in disease development. These oxidized lipids can either directly contribute to tissue injury or react with amine on proteins to form oxidation-specific epitopes, which can induce an innate immune response. If inadequately neutralized, the inflammatory response from these epitopes can incite tissue injury during disease development. This review explores how the accumulation of lipids, their oxidation, and the ensuing inflammatory response might contribute to the pathogenesis of AMD. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder .
Collapse
Affiliation(s)
- James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| | - Marisol Cano
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| | - Lei Wang
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| | - Sayantan Datta
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| | - Tongyun Liu
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| |
Collapse
|
45
|
Wang H, Linetsky M, Guo J, Yu AO, Salomon RG. Metabolism of 4-Hydroxy-7-oxo-5-heptenoic Acid (HOHA) Lactone by Retinal Pigmented Epithelial Cells. Chem Res Toxicol 2016; 29:1198-210. [PMID: 27355557 DOI: 10.1021/acs.chemrestox.6b00153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
4-Hydroxy-7-oxo-5-heptenic acid (HOHA)-lactone is a biologically active oxidative truncation product released (t1/2 = 30 min at 37 °C) by nonenzymatic transesterification/deacylation from docosahexaenoate lipids. We now report that HOHA-lactone readily diffuses into retinal pigmented epithelial (RPE) cells where it is metabolized. A reduced glutathione (GSH) Michael adduct of HOHA-lactone is the most prominent metabolite detected by LC-MS in both the extracellular medium and cell lysates. This molecule appeared inside of ARPE-19 cells within seconds after exposure to HOHA-lactone. The intracellular level reached a maximum concentration at 30 min and then decreased with concomitant increases in its level in the extracellular medium, thus revealing a unidirectional export of the reduced GSH-HOHA-lactone adduct from the cytosol to extracellular medium. This metabolism is likely to modulate the involvement of HOHA-lactone in the pathogenesis of human diseases. HOHA-lactone is biologically active, e.g., low concentrations (0.1-1 μM) induce secretion of vascular endothelial growth factor (VEGF) from ARPE-19 cells. HOHA-lactone is also a precursor of 2-(ω-carboxyethyl)pyrrole (CEP) derivatives of primary amino groups in proteins and ethanolamine phospholipids that have significant pathological and physiological relevance to age-related macular degeneration (AMD), cancer, and wound healing. Both HOHA-lactone and the derived CEP can contribute to the angiogenesis that defines the neovascular "wet" form of AMD and that promotes the growth of tumors. While GSH depletion can increase the lethality of radiotherapy, because it will impair the metabolism of HOHA-lactone, the present study suggests that GSH depletion will also increase levels of HOHA-lactone and CEP that may promote recurrence of tumor growth.
Collapse
Affiliation(s)
- Hua Wang
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Mikhail Linetsky
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Junhong Guo
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Annabelle O Yu
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
46
|
Abstract
Ageing, infections and inflammation result in oxidative stress that can irreversibly damage cellular structures. The oxidative damage of lipids in membranes or lipoproteins is one of these deleterious consequences that not only alters lipid function but also leads to the formation of neo-self epitopes - oxidation-specific epitopes (OSEs) - which are present on dying cells and damaged proteins. OSEs represent endogenous damage-associated molecular patterns that are recognized by pattern recognition receptors and the proteins of the innate immune system, and thereby enable the host to sense and remove dangerous biological waste and to maintain homeostasis. If this system is dysfunctional or overwhelmed, the accumulation of OSEs can trigger chronic inflammation and the development of diseases, such as atherosclerosis and age-related macular degeneration. Understanding the molecular components and mechanisms that are involved in this process will help to identify individuals with an increased risk of developing chronic inflammation, and will also help to indicate novel modes of therapeutic intervention.
Collapse
|
47
|
Endogenous Generation of Singlet Oxygen and Ozone in Human and Animal Tissues: Mechanisms, Biological Significance, and Influence of Dietary Components. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2398573. [PMID: 27042259 PMCID: PMC4799824 DOI: 10.1155/2016/2398573] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/08/2016] [Indexed: 12/18/2022]
Abstract
Recent studies have shown that exposing antibodies or amino acids to singlet oxygen results in the formation of ozone (or an ozone-like oxidant) and hydrogen peroxide and that human neutrophils produce both singlet oxygen and ozone during bacterial killing. There is also mounting evidence that endogenous singlet oxygen production may be a common occurrence in cells through various mechanisms. Thus, the ozone-producing combination of singlet oxygen and amino acids might be a common cellular occurrence. This paper reviews the potential pathways of formation of singlet oxygen and ozone in vivo and also proposes some new pathways for singlet oxygen formation. Physiological consequences of the endogenous formation of these oxidants in human tissues are discussed, as well as examples of how dietary factors may promote or inhibit their generation and activity.
Collapse
|
48
|
Abstract
Scavenger receptors constitute a large family of evolutionally conserved protein molecules that are structurally and functionally diverse. Although scavenger receptors were originally identified based on their capacity to scavenge modified lipoproteins, these molecules have been shown to recognize and bind to a broad spectrum of ligands, including modified and unmodified host-derived molecules or microbial components. As a major subset of innate pattern recognition receptors, scavenger receptors are mainly expressed on myeloid cells and function in a wide range of biological processes, such as endocytosis, adhesion, lipid transport, antigen presentation, and pathogen clearance. In addition to playing a crucial role in maintenance of host homeostasis, scavenger receptors have been implicated in the pathogenesis of a number of diseases, e.g., atherosclerosis, neurodegeneration, or metabolic disorders. Emerging evidence has begun to reveal these receptor molecules as important regulators of tumor behavior and host immune responses to cancer. This review summarizes our current understanding on the newly identified, distinct functions of scavenger receptors in cancer biology and immunology. The potential of scavenger receptors as diagnostic biomarkers and novel targets for therapeutic interventions to treat malignancies is also highlighted.
Collapse
Affiliation(s)
- Xiaofei Yu
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - John R Subjeck
- Department of Cellular Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA.
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
49
|
Guo F, Ding Y, Caberoy N, Alvarado G, Wang F, Chen R, Li W. ABCF1 extrinsically regulates retinal pigment epithelial cell phagocytosis. Mol Biol Cell 2015; 26:2311-20. [PMID: 25904329 PMCID: PMC4462947 DOI: 10.1091/mbc.e14-09-1343] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 04/14/2015] [Indexed: 12/24/2022] Open
Abstract
Intracellular ABCF1 is identified and characterized as a new ligand to extrinsically stimulate retinal pigment epithelial cell phagocytosis. A new approach developed in this study is broadly applicable to many other phagocytes and will enable systematic elucidation of their ligands to broaden understanding of extrinsic regulation and cargo recognition. Phagocytosis of shed photoreceptor outer segments (POSs) by retinal pigment epithelial (RPE) cells is critical to retinal homeostasis and shares many conserved signaling pathways with other phagocytes, including extrinsic regulations. Phagocytotic ligands are the key to cargo recognition, engulfment initiation, and activity regulation. In this study, we identified intracellular protein ATP-binding cassette subfamily F member 1 (ABCF1) as a novel RPE phagocytotic ligand by a new approach of functional screening. ABCF1 was independently verified to extrinsically promote phagocytosis of shed POSs by D407 RPE cells. This finding was further corroborated with primary RPE cells and RPE explants. Internalized POS vesicles were colocalized with a phagosome marker, suggesting that ABCF1-mediated engulfment is through a phagocytic pathway. ABCF1 was released from apoptotic cells and selectively bound to shed POS vesicles and apoptotic cells, possibly via externalized phosphatidylserine. ABCF1 is predominantly expressed in POSs and colocalized with the POS marker rhodopsin, providing geographical convenience for regulation of RPE phagocytosis. Collectively these results suggest that ABCF1 is released from and binds to shed POSs in an autocrine manner to facilitate RPE phagocytosis through a conserved pathway. Furthermore, the new approach is broadly applicable to many other phagocytes and will enable systematic elucidation of their ligands to understand extrinsic regulation and cargo recognition.
Collapse
Affiliation(s)
- Feiye Guo
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL 33136
| | - Ying Ding
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL 33136
| | - Nora Caberoy
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154
| | - Gabriela Alvarado
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL 33136
| | - Feng Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Wei Li
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL 33136
| |
Collapse
|
50
|
Handa JT, Tagami M, Ebrahimi K, Leibundgut G, Janiak A, Witztum JL, Tsimikas S. Lipoprotein(A) with An Intact Lysine Binding Site Protects the Retina From an Age-Related Macular Degeneration Phenotype in Mice (An American Ophthalmological Society Thesis). TRANSACTIONS OF THE AMERICAN OPHTHALMOLOGICAL SOCIETY 2015; 113:T5. [PMID: 26538774 PMCID: PMC4601905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
PURPOSE To test the hypothesis that the accumulation of oxidized phospholipids (OxPL) in the macula is toxic to the retina unless neutralized by a variety of mechanisms, including binding by lipoprotein(a) [Lp(a)], which is composed of apolipoprotein(a) [apo(a)] and apolipoprotein B-100 (apoB). METHODS Human maculas and eyes from two Lp(a) transgenic murine models were subjected to morphologic, ultrastructural, and immunohistochemical analysis. "Wild-type Lp(a)" mice, which express human apoB-100 and apo(a) that contains oxidized phospholipid, and "mutant LBS(-) Lp(a)" mice with a defective apo(a) lysine binding site (LBS) for oxidized phospholipid binding, were fed a chow or high-fat diet for 2 to 12 months. Oxidized phospholipid-containing lipoproteins were detected by immunoreactivity to E06, a murine monoclonal antibody binding to the phosphocholine headgroup of oxidized, but not native, phospholipids. RESULTS Oxidized phospholipids, apo(a), and apoB accumulate in maculas, including drusen, of age-related macular degeneration (AMD) samples and age-matched controls. Lp(a) mice fed a high-fat diet developed age-related changes. However, mutant LBS(-) Lp(a) mice fed a high-fat diet developed retinal pigment epithelial cell degeneration and drusen. These changes were associated with increased OxPL, decreased antioxidant defenses, increased complement, and decreased complement regulators. CONCLUSIONS Human maculas accumulate Lp(a) and OxPL. Mutant LBS(-) Lp(a) mice, lacking the ability to bind E06-detectable oxidized phospholipid, develop AMD-like changes. The ability of Lp(a) to bind E06-detectable OxPL may play a protective role in AMD.
Collapse
Affiliation(s)
- James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Mizuki Tagami
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Katayoon Ebrahimi
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Gregor Leibundgut
- Department of Medicine, University of California at San Diego, La Jolla, California
| | - Anna Janiak
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Joseph L Witztum
- Department of Medicine, University of California at San Diego, La Jolla, California
| | - Sotirios Tsimikas
- Department of Medicine, University of California at San Diego, La Jolla, California
| |
Collapse
|