1
|
D'Angelo V, Martinez C, Arreche N, Balaszczuk AM, del Carmen Fernández M, Burgos JI, Petroff MV, Fellet A. Thyroid hormone disorder and the heart: The role of cardiolipin in calcium handling. Exp Physiol 2023; 108:412-419. [PMID: 36651722 PMCID: PMC10103858 DOI: 10.1113/ep090817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023]
Abstract
NEW FINDINGS What is the central question of this study? Do alterations in thyroid status affect haemodynamic parameters and echocardiographic measurements in the rat postnatal heart, and calcium handling, contractility, relaxation and cardiolipin content in isolated rat cardiomyocytes? What is the main finding and its importance? An imbalance in phospholipids of the mitochondrial membrane such as cardiolipin is related to defects in mitochondrial function. T3 -dependent cardiolipin signals contribute to the maintenance of mitochondrial homeostasis and involve Ca2+ handling, this pathway being more important in hypothyroidism. ABSTRACT The objective of this study was to evaluate whether alterations in thyroid status affect (1) haemodynamic parameters and echocardiographic measurements in the rat postnatal heart, and (2) calcium handling, contractility, relaxation and cardiolipin content in isolated rat cardiomyocytes. Sprague-Dawley rats aged 2 months treated with T3 (hyperthyroid, 20 μg/100 g body weight) or 0.02% methimazole (hypothyroid, w/v) for 28 days. Heart function was evaluated by echocardiography. Measurements of mean arterial pressure (MAP), heart rate, Ca2+ transients, cardiomyocyte shortening, number of spontaneous contractions per minute and cardiolipin (CL) content were performed. Thyroid disorders were associated with changes in pacemaker activity without modifications of MAP. Thyroid disorder induced changes in left ventricular diameter which were correlated with modifications of cardiac contractility (altered cell shortening and sarcoplasmic reticulum Ca2+ content). Endocrine disorders altered cardiomyocyte relaxation (reduction in the time to 50% re-lengthening and the time to 50% Ca2+ decay). Thyroid disorder increased the number of spontaneous contractions per minute (an index of pro-arrhythmogenic behaviour). CL content was increased only in hypothyroid rats. Changes in CL content, CL composition and CL-protein interaction in mitochondria from hypothyroid animals are responsible for alterations of contractile and relaxation cardiac function. This mechanism may be not be involved in T3 -treated rats. Maintenance of euthyroidism is of crucial importance to preserve cardiac performance. An imbalance in relation to phospholipids of the mitochondrial membrane such as CL is related to defects in mitochondrial function. T3 -dependent CL signals contribute to the maintenance of mitochondrial homeostasis and involve Ca2+ handling, this pathway being more important in hypothyroidism.
Collapse
Affiliation(s)
- Valentina D'Angelo
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, IQUIMEFA‐CONICETCiudad Autónoma de Buenos AiresUniversidad de Buenos AiresBuenos AiresArgentina
| | - Candela Martinez
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, IQUIMEFA‐CONICETCiudad Autónoma de Buenos AiresUniversidad de Buenos AiresBuenos AiresArgentina
| | - Noelia Arreche
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, IQUIMEFA‐CONICETCiudad Autónoma de Buenos AiresUniversidad de Buenos AiresBuenos AiresArgentina
| | - Ana María Balaszczuk
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, IQUIMEFA‐CONICETCiudad Autónoma de Buenos AiresUniversidad de Buenos AiresBuenos AiresArgentina
| | - María del Carmen Fernández
- Cátedra de Biología Celular y MolecularFacultad de Farmacia y BioquímicaIQUIFIB‐CONICETCiudad Autónoma de Buenos AiresUniversidad de Buenos AiresBuenos AiresArgentina
| | - Juan Ignacio Burgos
- Centro de Investigaciones Cardiovasculares Horacio Cingolani. Facultad de Ciencias MédicasUniversidad Nacional de La PlataCONICETLa PlataArgentina
| | - Martin Vila Petroff
- Centro de Investigaciones Cardiovasculares Horacio Cingolani. Facultad de Ciencias MédicasUniversidad Nacional de La PlataCONICETLa PlataArgentina
| | - Andrea Fellet
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, IQUIMEFA‐CONICETCiudad Autónoma de Buenos AiresUniversidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
2
|
Danylovych Y, Danylovych H, Kosterin S. POSSIBLE IMPORTANCE OF ADENYLATE CYCLASE SIGNALING PATHWAY IN THE SYNTHESIS OF NITRIC OXIDE BY MYOMETRIUM MITOCHONDRIA. FIZIOLOHICHNYĬ ZHURNAL 2022; 68:33-39. [DOI: 10.15407/fz68.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
NO synthase activity (mtNOS) in uterine smooth muscle mitochondria under the action of the cAMP/protein kinase A signaling system modulators was studied. The experiments were performed on isolated mitochondria from rat myometrium using the NO-sensitive fluorescent probe DAF-FM-DA. NO synthesis in mitochondria was increased by adenylate cyclase activators NaHCO3 (30 mM) and forskolin (10 μM), as well as phosphodiesterase inhibitor caffeine (1 mM). The addition of ATP (0.5-5 mM) caused a slight increase in nitric oxide synthesis. The effect of ATP was enhanced in the presence of NaHCO3 and caffeine. The intensity of NO formation in mitochondria decreased by approximately 50 % in the case of inhibition of adenylate cyclase activity by the compound KH7 (25 μM). In the presence of the protein kinase A inhibitor PKI (10 nM) NO synthesis in mitochondria was also significantly reduced. When the constitutive NO-synthase inhibitor L-NAME (100 μM) was introduced into the incubation medium, the stimulating effect of the studied compounds on NO synthesis in mitochondria was not observed. These data suggests a possible dependence of mtNOS function on the activity of the cAMP/protein kinase A signaling system in smooth muscle mitochondria.
Collapse
|
3
|
Biochemical and molecular-physiological aspects of the nitric oxide action in the utera. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
4
|
Danylovych Y, Danylovych H, Kosterin S. ROLE OF POTASSIUM IONS IN NITRIC OXIDE BIOSYNTHESIS BY SMOOTH MUSCLE MITOCHONDRIA. FIZIOLOHICHNYĬ ZHURNAL 2021; 67:16-23. [DOI: 10.15407/fz67.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
The NO-synthase activity (mtNOS) in mitochondria of uterine smooth muscle was studied. The mitochondrial localization of NO synthesis in myocytes was proved using laser confocal microscopy method and specific fluorescent probes MitoTracker Orange (specific to mitochondria) and DAFFM (NO-sensitive fluorescent probe). It was demonstrated using flow cytometry that nitric oxide biosynthesis in isolated mytochondria decreased in the presence of a constitutive NOsynthase blocker 2-aminopyridine (100 μmol per l, 50% inhibition) and monoclonal antibodies (2.5 μg anti-Let m1 per 50 μg protein) against the H+-Ca2+-exchanger (Letm1 protein), but was’t sensitive to the mitochondrial permeability transition pore inhibitor cyclosporin A (5 μmol per l). A decrease of potassium ions concentration in the incubation medium and the presence of various types of potassium channel inhibitors significantly inhibited the NO-synthase reaction. We have concluded that potassium permeability of the inner mitochondrial membrane plays important role in the regulation of mtNOS activity.
Collapse
|
5
|
Baghcheghi Y, Mansouri S, Beheshti F, Shafei MN, Salmani H, Reisi P, Anaeigoudari A, Bideskan AE, Hosseini M. Neuroprotective and long term potentiation improving effects of vitamin E in juvenile hypothyroid rats. INT J VITAM NUTR RES 2020; 90:156-168. [DOI: 10.1024/0300-9831/a000533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract. Protective effects of vitamin E (Vit E) on long term potentiation (LTP) impairment, neuronal apoptosis and increase of nitric oxide (NO) metabolites in the hippocampus of juvenile rats were examined. The rats were grouped (n=13) as: (1) control; (2) hypothyroid (Hypo) and (3) Hypo-Vit E. Propylthiouracil (PTU) was given in drinking water (0.05%) during 6 weeks. Vit E (20 mg/ kg) was daily injected (IP). To evaluate synaptic plasticity, LTP from the CA1 area of the hippocampus followed by high frequency stimulation to the ipsilateral Schafer collateral pathway was carried out. The cortical and hippocampal tissues were then removed to measure NO metabolites. The brains of 5 animals in each group were removed for apoptosis study. The hypothyroidism status decreased the slope, 10–90% slope and amplitude of field excitatory post synaptic potential (fEPSP) compared to the control group (P<0.01–P<0.001). Injection of Vit E increased the slope, 10–90% slope and amplitude of the fEPSP in the Hypo-Vit E group in comparison to the Hypo group (P<0.05–P<0.01). TUNEL positive neurons and NO metabolites were higher in the hippocampus of the Hypo rats, as compared to those in the hippocampus of the control ones (P<0.001). Treatment of the Hypo rats by Vit E decreased apoptotic neurons (P<0.01–P<0.001) and NO metabolites (P<0.001) in the hippocampus compared to the Hypo rats. The results of the present study showed that Vit E prevented the LTP impairment and neuronal apoptosis in the hippocampus of juvenile hypothyroid rats.
Collapse
Affiliation(s)
- Yousef Baghcheghi
- Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somaieh Mansouri
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Naser Shafei
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossien Salmani
- Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | | | - Mahmoud Hosseini
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Pestoni JC, Klingeman Plati S, Valdivia Camacho OD, Fuse MA, Onatunde M, Sparrow NA, Karajannis MA, Fernández-Valle C, Franco MC. Peroxynitrite supports a metabolic reprogramming in merlin-deficient Schwann cells and promotes cell survival. J Biol Chem 2019; 294:11354-11368. [PMID: 31171721 PMCID: PMC6663865 DOI: 10.1074/jbc.ra118.007152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/31/2019] [Indexed: 12/22/2022] Open
Abstract
Neurofibromatosis type 2 (NF2) is an autosomal-dominant disorder characterized by the development of bilateral vestibular schwannomas. The NF2 gene encodes the tumor suppressor merlin, and loss of merlin activity promotes tumorigenesis and causes NF2. Cellular redox signaling has been implicated in different stages of tumor development. Among reactive nitrogen species, peroxynitrite is the most powerful oxidant produced by cells. We recently showed that peroxynitrite-mediated tyrosine nitration down-regulates mitochondrial metabolism in tumor cells. However, whether peroxynitrite supports a metabolic shift that could be exploited for therapeutic development is unknown. Here, we show that vestibular schwannomas from NF2 patients and human, merlin-deficient (MD) Schwann cells have high levels of endogenous tyrosine nitration, indicating production of peroxynitrite. Furthermore, scavenging or inhibiting peroxynitrite formation significantly and selectively decreased survival of human and mouse MD-Schwann cells. Using multiple complementary methods, we also found that merlin deficiency leads to a reprogramming of energy metabolism characterized by a peroxynitrite-dependent decrease of oxidative phosphorylation and increased glycolysis and glutaminolysis. In MD-Schwann cells, scavenging of peroxynitrite increased mitochondrial oxygen consumption and membrane potential, mediated by the up-regulation of the levels and activity of mitochondrial complex IV. This increase in mitochondrial activity correlated with a decrease in the glycolytic rate and glutamine dependence. This is the first demonstration of a peroxynitrite-dependent reprogramming of energy metabolism in tumor cells. Oxidized proteins constitute a novel target for therapeutic development not only for the treatment of NF2 schwannomas but also other tumors in which peroxynitrite plays a regulatory role.
Collapse
Affiliation(s)
- Jeanine C Pestoni
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, Oregon 97331
| | - Stephani Klingeman Plati
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Oliver D Valdivia Camacho
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, Oregon 97331
| | - Marisa A Fuse
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Maria Onatunde
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Nicklaus A Sparrow
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Matthias A Karajannis
- Department of Pediatrics and Otolaryngology, NYU Langone Health, New York, New York 10016
| | - Cristina Fernández-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Maria Clara Franco
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
7
|
Valdez LB, Zaobornyj T, Bandez MJ, López-Cepero JM, Boveris A, Navarro A. Complex I syndrome in striatum and frontal cortex in a rat model of Parkinson disease. Free Radic Biol Med 2019; 135:274-282. [PMID: 30862545 DOI: 10.1016/j.freeradbiomed.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction named complex I syndrome was observed in striatum mitochondria of rotenone treated rats (2 mg rotenone/kg, i. p., for 30 or 60 days) in an animal model of Parkinson disease. After 60 days of rotenone treatment, the animals showed: (a) 6-fold increased bradykinesia and 60% decreased locomotor activity; (b) 35-34% decreases in striatum O2 uptake and in state 3 mitochondrial respiration with malate-glutamate as substrate; (c) 43-57% diminished striatum complex I activity with 60-71% decreased striatum mitochondrial NOS activity, determined both as biochemical activity and as functional activity (by the NO inhibition of active respiration); (d) 34-40% increased rates of mitochondrial O2•- and H2O2 productions and 36-46% increased contents of the products of phospholipid peroxidation and of protein oxidation; and (e) 24% decreased striatum mitochondrial content, likely associated to decreased NO-dependent mitochondrial biogenesis. Intermediate values were observed after 30 days of rotenone treatment. Frontal cortex tissue and mitochondria showed similar but less marked changes. Rotenone-treated rats showed mitochondrial complex I syndrome associated with cellular oxidative stress in the dopaminergic brain areas of striatum and frontal cortex, a fact that describes the high sensitivity of mitochondrial complex I to inactivation by oxidative reactions.
Collapse
Affiliation(s)
- Laura B Valdez
- University of Buenos Aires, School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), Buenos Aires, Argentina.
| | - Tamara Zaobornyj
- University of Buenos Aires, School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), Buenos Aires, Argentina
| | - Manuel J Bandez
- University of Cadiz, School of Medicine, Department of Biochemistry and Molecular Biology, Cadiz, Spain
| | - José María López-Cepero
- University of Cadiz, School of Medicine, Department of Cell Biology and Histology, Cadiz, Spain
| | - Alberto Boveris
- University of Buenos Aires, School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), Buenos Aires, Argentina
| | - Ana Navarro
- University of Cadiz, School of Medicine, Department of Biochemistry and Molecular Biology, Cadiz, Spain
| |
Collapse
|
8
|
Zanatta AP, Gonçalves R, Zanatta L, de Oliveria GT, Ludwig Moraes AL, Zamoner A, Fernández-Dueñas V, Lanznaster D, Ciruela F, Tasca CI, Delalande C, Menegaz D, Mena Barreto Silva FR. New ionic targets of 3,3′,5′-triiodothyronine at the plasma membrane of rat Sertoli cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:748-759. [DOI: 10.1016/j.bbamem.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 11/26/2022]
|
9
|
Iglesias DE, Bombicino SS, Boveris A, Valdez LB. (+)-Catechin inhibits heart mitochondrial complex I and nitric oxide synthase: functional consequences on membrane potential and hydrogen peroxide production. Food Funct 2019; 10:2528-2537. [DOI: 10.1039/c8fo01843j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim was to study thein vitroeffect of nM to low μM concentration of (+)-catechin on the enzymatic activities of mitochondrial complex I and mtNOS, as well as the consequences on the membrane potential and H2O2production rate.
Collapse
Affiliation(s)
- Darío E. Iglesias
- University of Buenos Aires
- School of Pharmacy and Biochemistry
- Physical Chemistry Division
- Buenos Aires
- Argentina
| | - Silvina S. Bombicino
- University of Buenos Aires
- School of Pharmacy and Biochemistry
- Physical Chemistry Division
- Buenos Aires
- Argentina
| | - Alberto Boveris
- University of Buenos Aires
- School of Pharmacy and Biochemistry
- Physical Chemistry Division
- Buenos Aires
- Argentina
| | - Laura B. Valdez
- University of Buenos Aires
- School of Pharmacy and Biochemistry
- Physical Chemistry Division
- Buenos Aires
- Argentina
| |
Collapse
|
10
|
Tong Q, Xiang W, Ye H, Zhang H, Chen Y, Chen W, Liu C. T3 level may be a helpful marker to predict disease prognosis of acute central nervous system viral infections. Int J Neurosci 2018; 129:139-145. [PMID: 30102112 DOI: 10.1080/00207454.2018.1510833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
AIM OF THE STUDY Acute central nervous system viral infections are progressive and inflammatory diseases with inflammatory cells infiltrating into the central nervous system (CNS), and thyroid hormone (TH) level is associated with the oxidative and antioxidant status. Variations in oxidative stress and antioxidant status are related to the pathogenesis of inflammatory diseases. Our study aimed to investigate the possible correlation between viral infections in CNS and TH levels of thyroid stimulating hormone (TSH), free thyroxine (fT4) and free triiodothyronine (fT3). MATERIALS AND METHODS We measured serum concentrations of TSH, fT4, and fT3 in 206 individuals, including 59 viral meningitis (VM) patients, 60 viral encephalitis (VE) patients, and 87 healthy controls. RESULTS Our findings showed that VE and VM patients had lower levels of fT3 and higher levels of fT4 compared with healthy controls, whether male or female. Moreover, levels of TSH and fT3 in patients with viral infections in CNS were inversely correlated with disease prognosis measured by the Glasgow Outcome Scale. CONCLUSIONS Variations in TH level may represent the oxidative status and are surrogate biomarkers for disease prognosis of acute central nervous system viral infections.
Collapse
Affiliation(s)
- Qiaowen Tong
- a Department of Neurology , The Second Affiliated Hospital of Soochow University , Suzhou , China.,b Department of Neurology , Wenzhou People's Hospital , Wenzhou , China
| | - Weiwei Xiang
- c Department of Neurology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Hua Ye
- b Department of Neurology , Wenzhou People's Hospital , Wenzhou , China
| | - Hehui Zhang
- b Department of Neurology , Wenzhou People's Hospital , Wenzhou , China
| | - Yiyi Chen
- b Department of Neurology , Wenzhou People's Hospital , Wenzhou , China
| | - Weian Chen
- c Department of Neurology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Chunfeng Liu
- a Department of Neurology , The Second Affiliated Hospital of Soochow University , Suzhou , China
| |
Collapse
|
11
|
Nanoparticles in Medicine: A Focus on Vascular Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6231482. [PMID: 30356429 PMCID: PMC6178176 DOI: 10.1155/2018/6231482] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/26/2018] [Accepted: 08/19/2018] [Indexed: 01/16/2023]
Abstract
Nanotechnology has had a significant impact on medicine in recent years, its application being referred to as nanomedicine. Nanoparticles have certain properties with biomedical applications; however, in some situations, they have demonstrated cell toxicity, which has caused concern surrounding their clinical use. In this review, we focus on two aspects: first, we summarize the types of nanoparticles according to their chemical composition and the general characteristics of their use in medicine, and second, we review the applications of nanoparticles in vascular alteration, especially in endothelial dysfunction related to oxidative stress. This condition can lead to a reduction in nitric oxide (NO) bioavailability, consequently affecting vascular tone regulation and endothelial dysfunction, which is the first phase in the development of cardiovascular diseases. Therefore, nanoparticles with antioxidant properties may improve vascular dysfunction associated with hypertension, diabetes mellitus, or atherosclerosis.
Collapse
|
12
|
Xu K, Liu G, Fu C. The Tryptophan Pathway Targeting Antioxidant Capacity in the Placenta. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1054797. [PMID: 30140360 PMCID: PMC6081554 DOI: 10.1155/2018/1054797] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
Abstract
The placenta plays a vital role in fetal development during pregnancy. Dysfunction of the placenta can be caused by oxidative stress and can lead to abnormal fetal development. Preventing oxidative stress of the placenta is thus an important measure to ensure positive birth outcomes. Research shows that tryptophan and its metabolites can efficiently clean free radicals (including the reactive oxygen species and activated chlorine). Consequently, tryptophan and its metabolites are suggested to act as potent antioxidants in the placenta. However, the mechanism of these antioxidant properties in the placenta is still unknown. In this review, we summarize research on the antioxidant properties of tryptophan, tryptophan metabolites, and metabolic enzymes. Two predicted mechanisms of tryptophan's antioxidant properties are discussed. (1) Tryptophan could activate the phosphorylation of p62 after the activation of mTORC1; phosphorylated p62 then uncouples the interaction between Nrf2 and Keap1, and activated Nrf2 enters the nucleus to induce expressions of antioxidant proteins, thus improving cellular antioxidation. (2) 3-Hydroxyanthranilic acid, a tryptophan kynurenine pathway metabolite, changes conformation of Keap1, inducing the dissociation of Nrf2 and Keap1, activating Nrf2 to enter the nucleus and induce expressions of antioxidant proteins (such as HO-1), thereby enhancing cellular antioxidant capacity. These mechanisms may enrich the theory of how to apply tryptophan as an antioxidant during pregnancy, providing technical support for its use in regulating the pregnancy's redox status and enriching our understanding of amino acids' nutritional value.
Collapse
Affiliation(s)
- Kang Xu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Gang Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Chenxing Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients and Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, Hunan 410128, China
| |
Collapse
|
13
|
Romano RM, Bargi-Souza P, Brunetto EL, Goulart-Silva F, Salgado RM, Zorn TMT, Nunes MT. Triiodothyronine differentially modulates the LH and FSH synthesis and secretion in male rats. Endocrine 2018; 59:191-202. [PMID: 29210006 DOI: 10.1007/s12020-017-1487-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/27/2017] [Indexed: 11/24/2022]
Abstract
Hypothyroidism and thyrotoxicosis produce adverse effects in male reproduction by unknown mechanisms. We investigated whether triiodothyronine (T3) modulates luteinizing hormone (LH) and follicle stimulating hormone (FSH) synthesis/secretion, by inducing different thyroid states. In hypothyroidism, the content of Lhb and Fshb mRNAs was increased, while their association to ribosomes and the protein content were reduced and the serum LH and FSH concentrations were augmented and decreased, respectively. Thyrotoxicosis reduced Lhb mRNA and LH serum concentration, and increased Lhb mRNA translational rate. The Fshb mRNA content and its association to ribosomes were also increased, whereas FSH serum concentrations were comparable to euthyroid levels. Acute T3 treatment decreased the total content of Lhb and Fshb mRNAs, and increased their association to ribosomes, as well as the LHB and FSHB contents in secretory granules. This study shows that T3 acts on gonadotrophs, resulting in direct effects on LH and FSH synthesis/secretion of male rats, suggesting that some reproductive disorders observed in men may be associated with thyroid hormone imbalances.
Collapse
Affiliation(s)
- Renata Marino Romano
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, CEP 05508-000, Sao Paulo, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, CEP 05508-000, Sao Paulo, Brazil
| | - Erika Lia Brunetto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, CEP 05508-000, Sao Paulo, Brazil
| | - Francemilson Goulart-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, CEP 05508-000, Sao Paulo, Brazil
| | - Renato M Salgado
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, CEP 05508-000, Sao Paulo, Brazil
| | - Telma Maria Tenorio Zorn
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, CEP 05508-000, Sao Paulo, Brazil
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, CEP 05508-000, Sao Paulo, Brazil.
| |
Collapse
|
14
|
Bombicino SS, Iglesias DE, Rukavina-Mikusic IA, Buchholz B, Gelpi RJ, Boveris A, Valdez LB. Hydrogen peroxide, nitric oxide and ATP are molecules involved in cardiac mitochondrial biogenesis in Diabetes. Free Radic Biol Med 2017; 112:267-276. [PMID: 28756312 DOI: 10.1016/j.freeradbiomed.2017.07.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/12/2017] [Accepted: 07/25/2017] [Indexed: 01/21/2023]
Abstract
This study, in an experimental model of type I Diabetes Mellitus in rats, deals with the mitochondrial production rates and steady-state concentrations of H2O2 and NO, and ATP levels as part of a network of signaling molecules involved in heart mitochondrial biogenesis. Sustained hyperglycemia leads to a cardiac compromise against a work overload, in the absence of changes in resting cardiac performance and of heart hypertrophy. Diabetes was induced in male Wistar rats by a single dose of Streptozotocin (STZ, 60mg × kg-1, ip.). After 28 days of STZ-injection, rats were sacrificed and hearts were isolated. The mitochondrial mass (mg mitochondrial protein × g heart-1), determined through cytochrome oxidase activity ratio, was 47% higher in heart from diabetic than from control animals. Stereological analysis of cardiac tissue microphotographs showed an increase in the cytosolic volume occupied by mitochondria (30%) and in the number of mitochondria per unit area (52%), and a decrease in the mean area of each mitochondrion (23%) in diabetic respect to control rats. Additionally, an enhancement (76%) in PGC-1α expression was observed in cardiac tissue of diabetic animals. Moreover, heart mitochondrial H2O2 (127%) and NO (23%) productions and mtNOS expression (132%) were higher, while mitochondrial ATP production rate was lower (~ 40%), concomitantly with a partial-mitochondrial depolarization, in diabetic than in control rats. Changes in mitochondrial H2O2 and NO steady-state concentrations and an imbalance between cellular energy demand and mitochondrial energy transduction could be involved in the signaling pathways that lead to the novo synthesis of mitochondria. However, this compensatory mechanism triggered to restore the mitochondrial and tissue normal activities, did not lead to competent mitochondria capable of supplying the energetic demands in diabetic pathological conditions.
Collapse
Affiliation(s)
- Silvina S Bombicino
- University of Buenos Aires, School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL), Buenos Aires, Argentina
| | - Darío E Iglesias
- University of Buenos Aires, School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL), Buenos Aires, Argentina
| | - Ivana A Rukavina-Mikusic
- University of Buenos Aires, School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL), Buenos Aires, Argentina
| | - Bruno Buchholz
- University of Buenos Aires, Faculty of Medicine, Pathology Department, Cardiovascular Physiopathology Institute (INFICA), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL), Buenos Aires, Argentina
| | - Ricardo J Gelpi
- University of Buenos Aires, Faculty of Medicine, Pathology Department, Cardiovascular Physiopathology Institute (INFICA), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL), Buenos Aires, Argentina
| | - Alberto Boveris
- University of Buenos Aires, School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL), Buenos Aires, Argentina
| | - Laura B Valdez
- University of Buenos Aires, School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL), Buenos Aires, Argentina.
| |
Collapse
|
15
|
Ramdial K, Franco MC, Estevez AG. Cellular mechanisms of peroxynitrite-induced neuronal death. Brain Res Bull 2017; 133:4-11. [DOI: 10.1016/j.brainresbull.2017.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/21/2017] [Accepted: 05/12/2017] [Indexed: 12/13/2022]
|
16
|
Baghcheghi Y, Salmani H, Beheshti F, Hosseini M. Contribution of Brain Tissue Oxidative Damage in Hypothyroidism-associated Learning and Memory Impairments. Adv Biomed Res 2017; 6:59. [PMID: 28584813 PMCID: PMC5450450 DOI: 10.4103/2277-9175.206699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments.
Collapse
Affiliation(s)
- Yousef Baghcheghi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salmani
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Protective Effect of PPAR γ Agonists on Cerebellar Tissues Oxidative Damage in Hypothyroid Rats. Neurol Res Int 2016; 2016:1952561. [PMID: 28116157 PMCID: PMC5220477 DOI: 10.1155/2016/1952561] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/06/2016] [Accepted: 11/30/2016] [Indexed: 12/20/2022] Open
Abstract
The aim of the current study was to investigate the effects of peroxisome proliferator-activated receptor gamma (PPARγ) agonists on cerebellar tissues oxidative damage in hypothyroid rats. The animals included seven groups: group I (control), the animals received drinking water; group II, the animals received 0.05% propylthiouracil (PTU) in drinking water; besides PTU, the animals in groups III, IV, V, VI, and VII, were injected with 20 mg/kg vitamin E (Vit E), 10 or 20 mg/kg pioglitazone, and 2 or 4 mg/kg rosiglitazone, respectively. The animals were deeply anesthetized and the cerebellar tissues were removed for biochemical measurements. PTU administration reduced thiol content, superoxide dismutase (SOD), and catalase (CAT) activities in the cerebellar tissues while increasing malondialdehyde (MDA) and nitric oxide (NO) metabolites. Vit E, pioglitazone, and rosiglitazone increased thiol, SOD, and CAT in the cerebellar tissues while reducing MDA and NO metabolites. The results of present study showed that, similar to Vit E, both rosiglitazone and pioglitazone as PPARγ agonists exerted protective effects against cerebellar tissues oxidative damage in hypothyroid rats.
Collapse
|
18
|
Bombicino SS, Iglesias DE, Zaobornyj T, Boveris A, Valdez LB. Mitochondrial nitric oxide production supported by reverse electron transfer. Arch Biochem Biophys 2016; 607:8-19. [PMID: 27523732 DOI: 10.1016/j.abb.2016.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/17/2023]
Abstract
Heart phosphorylating electron transfer particles (ETPH) produced NO at 1.2 ± 0.1 nmol NO. min(-1) mg protein(-1) by the mtNOS catalyzed reaction. These particles showed a NAD(+) reductase activity of 64 ± 3 nmol min(-1) mg protein(-1) sustained by reverse electron transfer (RET) at expenses of ATP and succinate. The same particles, without NADPH and in conditions of RET produced 0.97 ± 0.07 nmol NO. min(-1) mg protein(-1). Rotenone inhibited NO production supported by RET measured in ETPH and in coupled mitochondria, but did not reduce the activity of recombinant nNOS, indicating that the inhibitory effect of rotenone on NO production is due to an electron flow inhibition and not to a direct action on mtNOS structure. NO production sustained by RET corresponds to 20% of the total amount of NO released from heart coupled mitochondria. A mitochondrial fraction enriched in complex I produced 1.7 ± 0.2 nmol NO. min(-1) mg protein(-1) and reacted with anti-75 kDa complex I subunit and anti-nNOS antibodies, suggesting that complex I and mtNOS are located contiguously. These data show that mitochondrial NO production can be supported by RET, and suggest that mtNOS is next to complex I, reaffirming the idea of a functional association between these proteins.
Collapse
Affiliation(s)
- Silvina S Bombicino
- Institute of Biochemistry and Molecular Medicine, Physical Chemistry Division, School of Pharmacy and Biochemistry, University of Buenos Aires (IBIMOL, UBA-CONICET), Junín 956, C1113AAD, Buenos Aires, Argentina.
| | - Darío E Iglesias
- Institute of Biochemistry and Molecular Medicine, Physical Chemistry Division, School of Pharmacy and Biochemistry, University of Buenos Aires (IBIMOL, UBA-CONICET), Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Tamara Zaobornyj
- Institute of Biochemistry and Molecular Medicine, Physical Chemistry Division, School of Pharmacy and Biochemistry, University of Buenos Aires (IBIMOL, UBA-CONICET), Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Alberto Boveris
- Institute of Biochemistry and Molecular Medicine, Physical Chemistry Division, School of Pharmacy and Biochemistry, University of Buenos Aires (IBIMOL, UBA-CONICET), Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Laura B Valdez
- Institute of Biochemistry and Molecular Medicine, Physical Chemistry Division, School of Pharmacy and Biochemistry, University of Buenos Aires (IBIMOL, UBA-CONICET), Junín 956, C1113AAD, Buenos Aires, Argentina
| |
Collapse
|
19
|
Ogonowski N, Piro G, Pessah D, Arreche N, Puchulu B, Balaszczuk AM, Fellet AL. Thyroid disorders and nitric oxide in cardiovascular adaptation to hypovolemia. J Endocrinol 2016; 230:185-95. [PMID: 27270898 DOI: 10.1530/joe-16-0203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/03/2016] [Indexed: 11/08/2022]
Abstract
This study aimed to investigate whether nitric oxide participates in the cardiovascular function and haemodynamic adaptation to acute haemorrhage in animals with thyroid disorders. Sprague-Dawley rats aged 2months old treated with T3 (hyper, 20μg/100g body weight) or 0.02% methimazole (hypo, w/v) during 28days were pre-treated with N(G) nitro-l-arginine methyl ester (L-NAME) and submitted to 20% blood loss. Heart function was evaluated by echocardiography. Measurements of arterial blood pressure, heart rate, nitric oxide synthase activity and protein levels were performed. We found that hypo decreased fractional shortening and ejection fraction and increased left ventricle internal diameter. Hyper decreased ventricle diameter and no changes in cardiac contractility. Haemorrhage elicited a hypotension of similar magnitude within 10min. Then, this parameter was stabilized at about 30-40min and maintained until finalized, 120min. L-NAME rats showed that the immediate hypotension would be independent of nitric oxide. Nitric oxide synthase inhibition blunted the changes of heart rate induced by blood loss. Hyper and hypo had lower atrial enzyme activity associated with a decreased enzyme isoform in hypo. In ventricle, hyper and hypo had a higher enzyme activity, which was not correlated with changes in protein levels. Haemorrhage induced an increased heart nitric oxide production. We concluded that thyroid disorders were associated with hypertrophic remodelling which impacted differently on cardiac function and its adaptation to a hypovolemia. Hypovolemia triggered a nitric oxide synthase activation modulating the heart function to maintain haemodynamic homeostasis. This involvement depends on a specific enzyme isoform, cardiac chamber and thyroid state.
Collapse
Affiliation(s)
- Natalia Ogonowski
- Department of PhysiologySchool of Pharmacy and Biochemistry, IQUIMEFA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Giselle Piro
- Department of PhysiologySchool of Pharmacy and Biochemistry, IQUIMEFA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Déborah Pessah
- Department of PhysiologySchool of Pharmacy and Biochemistry, IQUIMEFA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Noelia Arreche
- Department of PhysiologySchool of Pharmacy and Biochemistry, IQUIMEFA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Bernardita Puchulu
- Department of PhysiologySchool of Pharmacy and Biochemistry, IQUIMEFA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana M Balaszczuk
- Department of PhysiologySchool of Pharmacy and Biochemistry, IQUIMEFA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea L Fellet
- Department of PhysiologySchool of Pharmacy and Biochemistry, IQUIMEFA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
20
|
Peixoto E, Atorrasagasti C, Malvicini M, Fiore E, Rodriguez M, Garcia M, Finocchieto P, Poderoso JJ, Corrales F, Mazzolini G. SPARC gene deletion protects against toxic liver injury and is associated to an enhanced proliferative capacity and reduced oxidative stress response. Oncotarget 2016; 10:4169-4179. [PMID: 31289615 PMCID: PMC6609249 DOI: 10.18632/oncotarget.9456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/31/2016] [Indexed: 12/27/2022] Open
Abstract
SPARC, also known as osteonectin and BM-40, is a matricellular protein with a number of biological functions. Hepatic SPARC expression is induced in response to thioacetamide, bile-duct ligation, and acute injuries such as concanavalin A and lipopolysacharide (LPS)/D-galactosamine. We have previously demonstrated that the therapeutic inhibition of SPARC or SPARC gene deletion protected mice against liver injury. We investigated the mechanisms involved in the protective effect of SPARC inhibition in mice. We performed a proteome analysis of livers from SPARC+/+ and SPARC−/− mice chronically treated with thioacetamide. Catalase activity, carbonylation levels, oxidative stress response, and mitochondrial function were studied. Genomic analysis revealed that SPARC−/− mice had an increased expression of cell proliferation genes. Proteins involved in detoxification of reactive oxygen species such as catalase, peroxirredoxine-1, and glutathione-S-transferase P1 and Mu1 were highly expressed as evidenced by proteome analysis; hepatic catalase activity was increased in SPARC−/− mice. Oxidative stress response and carbonylation levels were lower in livers from SPARC−/− mice. Hepatic mitochondria showed lower levels of nitrogen reactive species in the SPARC−/− concanavalin A-treated mice. Mitochondrial morphology was preserved, and its complex activity reduced in SPARC−/− mice. In conclusion, our data suggest that the protection associated with SPARC gene deletion may be partially due to a higher proliferative capacity of hepatocytes and an enhanced oxidative stress defense in SPARC−/− mice after liver injury.
Collapse
Affiliation(s)
- Estanislao Peixoto
- Gene Therapy Laboratory, Instituto de Investigaciones Médicas Aplicadas-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - Catalina Atorrasagasti
- Gene Therapy Laboratory, Instituto de Investigaciones Médicas Aplicadas-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - Mariana Malvicini
- Gene Therapy Laboratory, Instituto de Investigaciones Médicas Aplicadas-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - Esteban Fiore
- Gene Therapy Laboratory, Instituto de Investigaciones Médicas Aplicadas-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - Marcelo Rodriguez
- Gene Therapy Laboratory, Instituto de Investigaciones Médicas Aplicadas-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - Mariana Garcia
- Gene Therapy Laboratory, Instituto de Investigaciones Médicas Aplicadas-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | | | | | | | - Guillermo Mazzolini
- Gene Therapy Laboratory, Instituto de Investigaciones Médicas Aplicadas-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| |
Collapse
|
21
|
Franco MC, Ricart KC, Gonzalez AS, Dennys CN, Nelson PA, Janes MS, Mehl RA, Landar A, Estévez AG. Nitration of Hsp90 on Tyrosine 33 Regulates Mitochondrial Metabolism. J Biol Chem 2015; 290:19055-66. [PMID: 26085096 PMCID: PMC4521030 DOI: 10.1074/jbc.m115.663278] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/12/2015] [Indexed: 11/06/2022] Open
Abstract
Peroxynitrite production and tyrosine nitration are present in several pathological conditions, including neurodegeneration, stroke, aging, and cancer. Nitration of the pro-survival chaperone heat shock protein 90 (Hsp90) in position 33 and 56 induces motor neuron death through a toxic gain-of-function. Here we show that nitrated Hsp90 regulates mitochondrial metabolism independently of the induction of cell death. In PC12 cells, a small fraction of nitrated Hsp90 was located on the mitochondrial outer membrane and down-regulated mitochondrial membrane potential, oxygen consumption, and ATP production. Neither endogenous Hsp90 present in the homogenate nor unmodified and fully active recombinant Hsp90 was able to compete with the nitrated protein for the binding to mitochondria. Moreover, endogenous or recombinant Hsp90 did not prevent the decrease in mitochondrial activity but supported nitrated Hsp90 mitochondrial gain-of-function. Nitrotyrosine in position 33, but not in any of the other four tyrosine residues prone to nitration in Hsp90, was sufficient to down-regulate mitochondrial activity. Thus, in addition to induction of cell death, nitrated Hsp90 can also regulate mitochondrial metabolism, suggesting that depending on the cell type, distinct Hsp90 nitration states regulate different aspects of cellular metabolism. This regulation of mitochondrial homeostasis by nitrated Hsp90 could be of particular relevance in cancer cells.
Collapse
Affiliation(s)
- Maria C Franco
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827,
| | - Karina C Ricart
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Analía S Gonzalez
- Laboratory of Oxygen Metabolism, University Hospital, University of Buenos Aires, Buenos Aires C1120AAR, Argentina
| | - Cassandra N Dennys
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Pascal A Nelson
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | | | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Aimee Landar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Alvaro G Estévez
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| |
Collapse
|
22
|
Vera S, Martínez R, Gormaz JG, Gajardo A, Galleguillos F, Rodrigo R. Novel relationships between oxidative stress and angiogenesis-related factors in sepsis: New biomarkers and therapies. Ann Med 2015; 47:289-300. [PMID: 25998489 DOI: 10.3109/07853890.2015.1029967] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sepsis is a systemic uncontrolled inflammatory response in the presence of an infection. It remains a major cause of morbidity and mortality in hospitalized patients. According to its severity, sepsis can progress to three different states: severe sepsis, septic shock, and multiple organ dysfunction syndrome, related to organ dysfunction and/or tissue hypoperfusion. Different processes underlie its pathophysiology; among them are oxidative stress, endothelial and mitochondrial dysfunction, and angiogenesis-related factors. However, no studies have integrated these elements in sepsis. The main difficulty in sepsis is its diagnosis. Currently, the potential of inflammatory biomarkers in septic patients remains weak. In this context, the research into new biomarkers is essential to aid with sepsis diagnosis and prognostication. Furthermore, even though the current management of severe forms of sepsis has been effective, morbimortality remains elevated. Therefore, it is essential to explore alternative approaches to therapy development. The aim of this review is to present an update of evidence supporting the role of oxidative stress and angiogenesis-related factors in the pathophysiology of the different forms of sepsis. It proposes a novel convergence between both elements in their role in the disease, and it will cover their utility as new diagnostic tools, predictors of outcome, and as novel therapeutic targets.
Collapse
Affiliation(s)
- Sergio Vera
- Laboratory of Oxidative Stress and Nephrotoxicity, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago , Chile
| | | | | | | | | | | |
Collapse
|
23
|
Yan W, Ji X, Shi J, Li G, Sang N. Acute nitrogen dioxide inhalation induces mitochondrial dysfunction in rat brain. ENVIRONMENTAL RESEARCH 2015; 138:416-424. [PMID: 25791864 DOI: 10.1016/j.envres.2015.02.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/13/2015] [Accepted: 02/21/2015] [Indexed: 06/04/2023]
Abstract
Recent epidemiological literatures imply that NO2 is a potential risk factor of neurological disorders. Whereas, the pathogenesis of various neurological diseases has been confirmed correlate to mitochondrial dysfunction, and mitochondria play the crucial roles in energy metabolism, free radicals production and apoptosis triggering in response to neuronal injury. Therefore, to clarify the possible mechanisms for NO2-induced neurotoxicity, in the present study, we investigated the possible effects of acute NO2 inhalation (5, 10 and 20mg/m(3) with 5h/day for 7 days) on energy metabolism and biogenesis in rat cortex, mainly including mitochondrial ultrastructure, mitochondrial membrane potential, cytochrome c oxidase activity, cytochrome c oxidase (CO) and ATP synthase subunits, ATP content, and transcription factors. The results showed that NO2 exposure induced mitochondrial morphological changes in rat cortex, and the alteration was coupled with the abnormality of mitochondrial energy metabolism, including decreased respiratory complexes, reduced ATP production and increased production of ROS. Also, increased ROS in turn caused mitochondrial membrane damage, energy production defect and mitochondrial biogenesis inhibition. It suggests the significantly damaged mitochondrial energy metabolism and impaired biogenesis in rat brain after NO2 exposure, and provides a new understanding of the pathophysiological mechanisms of NO2-induced neurological disorders.
Collapse
Affiliation(s)
- Wei Yan
- College of Environment and Resource, Research Center of Environment and Health, Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Jing Shi
- College of Environment and Resource, Research Center of Environment and Health, Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
24
|
Asker ME, Hassan WA, El-Kashlan AM. Experimentally induced hyperthyroidism influences oxidant and antioxidant status and impairs male gonadal functions in adult rats. Andrologia 2014; 47:644-54. [PMID: 25220112 DOI: 10.1111/and.12312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2014] [Indexed: 01/06/2023] Open
Abstract
The objective of the present experiment was to study the effect of hyperthyroidism on male gonadal functions and oxidant/antioxidant biomarkers in testis of adult rats. Induction of hyperthyroidism by L-thyroxine (L-T4, 300 μg kg(-1) body weight) treatment once daily for 3 or 8 weeks caused a decrease in body weight gain as well as in absolute genital sex organs weight. The epididymal sperm counts and their motility were significantly decreased in a time-dependent manner following L-T4 treatment. Significant decline in serum levels of luteinising hormone, follicle stimulating hormone and testosterone along with significant increase in serum estradiol level was observed in hyperthyroid rats compared with euthyroid ones. Significant increase in malondialdehyde and nitric oxide concentration associated with significant decrease in superoxide dismutase and catalase activity was also noticed following hyperthyroidism induction. Both reduced glutathione content and glutathione peroxidase activity were increased in hyperthyroid rats compared with control rats. Marked histopathological alterations were observed in testicular section of hyperthyroid rats. These results provide evidence that hypermetabolic state induced by excess level of thyroid hormones may be a causative factor for the impairment of testicular physiology as a consequence of oxidative stress.
Collapse
Affiliation(s)
- M E Asker
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - W A Hassan
- Hormone Evaluation Department, National Organization for Drug Control and Research, Giza, Egypt
| | - A M El-Kashlan
- Hormone Evaluation Department, National Organization for Drug Control and Research, Giza, Egypt
| |
Collapse
|
25
|
O-Uchi J, Ryu SY, Jhun BS, Hurst S, Sheu SS. Mitochondrial ion channels/transporters as sensors and regulators of cellular redox signaling. Antioxid Redox Signal 2014; 21:987-1006. [PMID: 24180309 PMCID: PMC4116125 DOI: 10.1089/ars.2013.5681] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Mitochondrial ion channels/transporters and the electron transport chain (ETC) serve as key sensors and regulators for cellular redox signaling, the production of reactive oxygen species (ROS) and nitrogen species (RNS) in mitochondria, and balancing cell survival and death. Although the functional and pharmacological characteristics of mitochondrial ion transport mechanisms have been extensively studied for several decades, the majority of the molecular identities that are responsible for these channels/transporters have remained a mystery until very recently. RECENT ADVANCES Recent breakthrough studies uncovered the molecular identities of the diverse array of major mitochondrial ion channels/transporters, including the mitochondrial Ca2+ uniporter pore, mitochondrial permeability transition pore, and mitochondrial ATP-sensitive K+ channel. This new information enables us to form detailed molecular and functional characterizations of mitochondrial ion channels/transporters and their roles in mitochondrial redox signaling. CRITICAL ISSUES Redox-mediated post-translational modifications of mitochondrial ion channels/transporters and ETC serve as key mechanisms for the spatiotemporal control of mitochondrial ROS/RNS generation. FUTURE DIRECTIONS Identification of detailed molecular mechanisms for redox-mediated regulation of mitochondrial ion channels will enable us to find novel therapeutic targets for many diseases that are associated with cellular redox signaling and mitochondrial ion channels/transporters.
Collapse
Affiliation(s)
- Jin O-Uchi
- 1 Department of Medicine, Center for Translational Medicine, Jefferson Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
26
|
Supplementation of T3 recovers hypothyroid rat liver cells from oxidatively damaged inner mitochondrial membrane leading to apoptosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:590897. [PMID: 24987693 PMCID: PMC4058501 DOI: 10.1155/2014/590897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/09/2014] [Indexed: 01/08/2023]
Abstract
Hypothyroidism is a growing medical concern. There are conflicting reports regarding the mechanism of oxidative stress in hypothyroidism. Mitochondrial oxidative stress is pivotal to thyroid dysfunction. The present study aimed to delineate the effects of hepatic inner mitochondrial membrane dysfunction as a consequence of 6-n-propyl-2-thiouracil-induced hypothyroidism in rats. Increased oxidative stress predominance in the submitochondrial particles (SMP) and altered antioxidant defenses in the mitochondrial matrix fraction correlated with hepatocyte apoptosis. In order to check whether the effects caused by hypothyroidism are reversed by T3, the above parameters were evaluated in a subset of T3-treated hypothyroid rats. Complex I activity was inhibited in hypothyroid SMP, whereas T3 supplementation upregulated electron transport chain complexes. Higher mitochondrial H2O2 levels in hypothyroidism due to reduced matrix GPx activity culminated in severe oxidative damage to membrane lipids. SMP and matrix proteins were stabilised in hypothyroidism but exhibited increased carbonylation after T3 administration. Glutathione content was higher in both. Hepatocyte apoptosis was evident in hypothyroid liver sections; T3 administration, on the other hand, exerted antiapoptotic and proproliferative effects. Hence, thyroid hormone level critically regulates functional integrity of hepatic mitochondria; hypothyroidism injures mitochondrial membrane lipids leading to hepatocyte apoptosis, which is substantially recovered upon T3 supplementation.
Collapse
|
27
|
Colombo G, Clerici M, Giustarini D, Portinaro NM, Aldini G, Rossi R, Milzani A, Dalle-Donne I. Pathophysiology of tobacco smoke exposure: recent insights from comparative and redox proteomics. MASS SPECTROMETRY REVIEWS 2014; 33:183-218. [PMID: 24272816 DOI: 10.1002/mas.21392] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 06/02/2023]
Abstract
First-hand and second-hand tobacco smoke are causally linked to a huge number of deaths and are responsible for a broad spectrum of pathologies such as cancer, cardiovascular, respiratory, and eye diseases as well as adverse effects on female reproductive function. Cigarette smoke is a complex mixture of thousands of different chemical species, which exert their negative effects on macromolecules and biochemical pathways, both directly and indirectly. Many compounds can act as oxidants, pro-inflammatory agents, carcinogens, or a combination of these. The redox behavior of cigarette smoke has many implications for smoke related diseases. Reactive oxygen and nitrogen species (both radicals and non-radicals), reactive carbonyl compounds, and other species may induce oxidative damage in almost all the biological macromolecules, compromising their structure and/or function. Different quantitative and redox proteomic approaches have been applied in vitro and in vivo to evaluate, respectively, changes in protein expression and specific oxidative protein modifications induced by exposure to cigarette smoke and are overviewed in this review. Many gel-based and gel-free proteomic techniques have already been used successfully to obtain clues about smoke effects on different proteins in cell cultures, animal models, and humans. The further implementation with other sensitive screening techniques could be useful to integrate the comprehension of cigarette smoke effects on human health. In particular, the redox proteomic approach may also help identify biomarkers of exposure to tobacco smoke useful for preventing these effects or potentially predictive of the onset and/or progression of smoking-induced diseases as well as potential targets for therapeutic strategies.
Collapse
Affiliation(s)
- Graziano Colombo
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gonzalez AS, Elguero ME, Finocchietto P, Holod S, Romorini L, Miriuka SG, Peralta JG, Poderoso JJ, Carreras MC. Abnormal mitochondrial fusion–fission balance contributes to the progression of experimental sepsis. Free Radic Res 2014; 48:769-83. [DOI: 10.3109/10715762.2014.906592] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
29
|
|
30
|
Sarati LI, Toblli JE, Martinez CR, Uceda A, Feldman M, Balaszczuk AM, Fellet AL. Nitric oxide and AQP2 in hypothyroid rats: a link between aging and water homeostasis. Metabolism 2013; 62:1287-95. [PMID: 23706747 DOI: 10.1016/j.metabol.2013.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 03/28/2013] [Accepted: 04/20/2013] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Hypothyroid state and aging are associated with impairment in water reabsorption and changes in aquaporin water channel type 2 (AQP2). Nitric oxide (NO) is involved in AQP2 trafficking to the apical plasma membrane in medullary collecting duct cells. The purpose of this study was to investigate whether aging and hypothyroidism alter renal function, and whether medullary NO and AQP2 are implicated in maintaining water homeostasis. MATERIALS/METHODS Sprague-Dawley rats aged 2 and 18months old were treated with 0.02% methimazole (w/v) during 28days. Renal function was examined and NO synthase (NOS) activity ([(14)C (U)]-L-arginine to [(14)C (U)]-L-citrulline assays), NOS, caveolin-1 and -3 and AQP2 protein levels were determined in medullary tissue (Western blot). Plasma membrane fraction and intracellular vesicle fraction of AQP2 were evaluated by Western blot and immunohistochemistry. RESULTS A divergent response was observed in hypothyroid rats: while young rats exhibited polyuria with decreased medullary NOS activity, adult rats exhibited a decrease in urine output with increased NOS activity. AQP2 was increased with hypothyroidism, but while young rats exhibited increased AQP2 in plasma membrane, adult rats did so in the cytosolic site. CONCLUSIONS Hypothyroidism contributes in a differential way to aging-induced changes in renal function, and medullary NO and AQP2 would be implicated in maintaining water homeostasis.
Collapse
Affiliation(s)
- Lorena I Sarati
- Department of Physiology, School of Pharmacy and Biochemistry, Universidad de Buenos Aires, IQUIMEFA-CONICET, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
31
|
Zhuravliova E, Barbakadze T, Jojua N, Zaalishvili E, Shanshiashvili L, Natsvlishvili N, Kalandadze I, Narmania N, Chogovadze I, Mikeladze D. Synaptic and non-synaptic mitochondria in hippocampus of adult rats differ in their sensitivity to hypothyroidism. Cell Mol Neurobiol 2012; 32:1311-21. [PMID: 22706894 DOI: 10.1007/s10571-012-9857-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/31/2012] [Indexed: 11/28/2022]
Abstract
Hypothyroidism in humans provokes various neuropsychiatric disorders, movement, and cognitive abnormalities that may greatly depend on the mitochondrial energy metabolism. Brain cells contain at least two major populations of mitochondria that include the non-synaptic mitochondria, which originate from neuronal and glial cell bodies (CM), and the synaptic (SM) mitochondria, which primarily originate from the nerve terminals. Several parameters of oxidative stress and other parameters in SM and CM fractions of hippocampus of adult rats were compared among euthyroid (control), hypothyroid (methimazol-treated), and thyroxine (T4)-treated hypothyroid states. nNOS translocation to CM was observed with concomitant increase of mtNOS's activity in hypothyroid rats. In parallel, oxidation of cytochrome c oxidase and production of peroxides with substrates of complex I (glutamate + malate) were enhanced in CM, whereas the activity of aconitase and mitochondrial membrane potential (ΔΨm) were decreased. Furthermore, the elevation of mitochondrial hexokinase activity in CM was also found. No differences in these parameters between control and hypothyroid animals were observed in SM. However, in contrast to CM, hypothyroidism increases the level of pro-apoptotic K-Ras and Bad in SM. Our results suggest that hypothyroidism induces moderate and reversible oxidative/nitrosative stress in hippocampal CM, leading to the compensatory elevation of hexokinase activity and aerobic glycolysis. Such adaptive activation in glycolytic metabolism does not occur in SM, suggesting that synaptic mitochondria differ in their sensitivity to the energetic disturbance in hypothyroid conditions.
Collapse
Affiliation(s)
- E Zhuravliova
- I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zaobornyj T, Ghafourifar P. Strategic localization of heart mitochondrial NOS: a review of the evidence. Am J Physiol Heart Circ Physiol 2012; 303:H1283-93. [PMID: 23023869 DOI: 10.1152/ajpheart.00674.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heart mitochondria play a central role in cell energy provision and in signaling. Nitric oxide (NO) is a free radical with primary regulatory functions in the heart and involved in a broad array of key processes in cardiac metabolism. Specific NO synthase (NOS) isoforms are confined to distinct locations in cardiomyocytes. The present article reviews the chemical reactions through which NO interacts with biomolecules and exerts some of its crucial roles. Specifically, the article discusses the reactions of NO with mitochondrial targets and the subcellular localization of NOS within the myocardium and analyzes the available data about heart mitochondrial NOS activity and identity. The article also describes the regulation of heart mtNOS by the distinctive mitochondrial environment by showing the effects of Ca(2+), O(2), l-arginine, mitochondrial transmembrane potential, and the metabolic states on heart mitochondrial NO production. The article depicts the effects of NO on heart function and highlights the relevance of NO production within mitochondria. Finally, the evidence on the functional implications of heart mitochondrial NOS is delineated with emphasis on chronic hypoxia and ischemia-reperfusion studies.
Collapse
Affiliation(s)
- Tamara Zaobornyj
- Laboratory of Free Radical Biology, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.
| | | |
Collapse
|
33
|
Sarati LI, Martinez CR, Artés N, Arreche N, López-Costa JJ, Balaszczuk AM, Fellet AL. Hypothyroidism: age-related influence on cardiovascular nitric oxide system in rats. Metabolism 2012; 61:1301-11. [PMID: 22424823 DOI: 10.1016/j.metabol.2012.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/24/2012] [Accepted: 01/31/2012] [Indexed: 11/20/2022]
Abstract
This study investigates whether changes in nitric oxide (NO) production participate in the cardiovascular manifestations of hypothyroidism and whether these changes are age-related. Sprague-Dawley rats aged 2 and 18 months old were treated with 0.02% methimazole (wt/vol) during 28 days. Left ventricular function was evaluated by echocardiography. Measurements of arterial blood pressure, heart rate, nitric oxide synthase (NOS) activity and NOS/caveolin-1 and -3 protein levels were performed. Hypothyroidism enhanced the age-related changes in heart function. Hypothyroid state decreased atrial NOS activity in both young and adult rats, associated with a reduction in protein levels of the three NOS isoforms in young animals and increased caveolin (cav) 1 expression in adult rats. Ventricle and aorta NOS activity increased in young and adult hypothyroid animals. In ventricle, changes in NOS activity were accompanied by an increase in inducible NOS isoform in young rats and by an increase in caveolins expression in adult rats. Greater aorta NOS activity level in young and in adult Hypo rats would derive from the inducible and the endothelial NOS isoform, respectively. Thyroid hormones would be one of the factors involved in the modulation of cardiovascular NO production and caveolin-1 and -3 tissue-specific abundance, regardless of age. Hypothyroidism appears to contribute in a differential way to aging-induced changes in the myocardium and aorta tissues. Low thyroid hormones levels would enhance the aging effect on the heart. Age-related changes in NO production participate in the cardiovascular manifestations of hypothyroidism.
Collapse
Affiliation(s)
- Lorena I Sarati
- Department of Physiology, School of Pharmacy and Biochemistry, Universidad de Buenos Aires, Buenos Aires, Argentina, IQUIMEFA-CONICET.
| | | | | | | | | | | | | |
Collapse
|
34
|
Qin G, Wang J, Huo Y, Yan H, Jiang C, Zhou J, Wang X, Sang N. Sulfur dioxide inhalation stimulated mitochondrial biogenesis in rat brains. Toxicology 2012; 300:67-74. [PMID: 22677886 DOI: 10.1016/j.tox.2012.05.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/20/2012] [Accepted: 05/28/2012] [Indexed: 11/15/2022]
Abstract
Sulfur dioxide (SO(2)) is a common environmental pollutant. Mitochondria play essential roles in energy metabolism, generation of reactive oxygen species, and regulation of apoptosis in response to neuronal brain injury. It is of interest to observe the effect of SO(2) on mitochondrial function in brain. In the present study, male Wistar rats were housed in exposure chambers and treated with 3.5, 7 and 14mg/m(3) SO(2) for 4h/day for 30days, while control rats were exposed to filtered air in the same condition. Mitochondrial membrane potential (MMP) was assessed in cerebral mitochondria using the lipophilic cationic probe JC-1. The amount of ATP was measured by the luciferinluciferase method. Analyses of mitochondrial replication and transcription were performed by real time PCR. The protein levels were detected using Western blotting. Our results showed that cerebral mtDNA content was markedly increased in rats after SO(2) exposure. Paralleling the change in mtDNA content, MMP, ATP content, MDA level, CO1 & 4 and ATP6 & 8 expression, and cytochrome c oxidase activity were increased in rat cortex after SO(2) inhalation. Moreover, mitochondrial biogenesis was accompanied by increased expression of NRF1 and TFAM, whereas PGC-1α was not changed. We report for the first time increased mitochondrial biogenesis in brain of rats exposed to SO(2), which might be an adaptive response to mitochondrial depletion by oxidant damage.
Collapse
Affiliation(s)
- Guohua Qin
- The College of Environmental Science and Resources, Shanxi University, Taiyuan, Shanxi 030006, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Is There a Link between Mitochondrial Reserve Respiratory Capacity and Aging? J Aging Res 2012; 2012:192503. [PMID: 22720157 PMCID: PMC3375017 DOI: 10.1155/2012/192503] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/11/2012] [Indexed: 12/21/2022] Open
Abstract
Oxidative phosphorylation is an indispensable resource of ATP in tissues with high requirement of energy. If the ATP demand is not met, studies suggest that this will lead to senescence and cell death in the affected tissue. The term reserve respiratory capacity or spare respiratory capacity is used to describe the amount of extra ATP that can be produced by oxidative phosphorylation in case of a sudden increase in energy demand. Depletion of the reserve respiratory capacity has been related to a range of pathologies affecting high energy requiring tissues. During aging of an organism, and as a result of mitochondrial dysfunctions, the efficiency of oxidative phosphorylation declines. Based on examples from the energy requiring tissues such as brain, heart, and skeletal muscle, we propose that the age-related decline of oxidative phosphorylation decreases the reserve respiratory capacity of the affected tissue, sensitizes the cells to surges in ATP demand, and increases the risk of resulting pathologies.
Collapse
|
36
|
Antico Arciuch VG, Elguero ME, Poderoso JJ, Carreras MC. Mitochondrial regulation of cell cycle and proliferation. Antioxid Redox Signal 2012; 16:1150-80. [PMID: 21967640 PMCID: PMC3315176 DOI: 10.1089/ars.2011.4085] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 01/01/2023]
Abstract
Eukaryotic mitochondria resulted from symbiotic incorporation of α-proteobacteria into ancient archaea species. During evolution, mitochondria lost most of the prokaryotic bacterial genes and only conserved a small fraction including those encoding 13 proteins of the respiratory chain. In this process, many functions were transferred to the host cells, but mitochondria gained a central role in the regulation of cell proliferation and apoptosis, and in the modulation of metabolism; accordingly, defective organelles contribute to cell transformation and cancer, diabetes, and neurodegenerative diseases. Most cell and transcriptional effects of mitochondria depend on the modulation of respiratory rate and on the production of hydrogen peroxide released into the cytosol. The mitochondrial oxidative rate has to remain depressed for cell proliferation; even in the presence of O₂, energy is preferentially obtained from increased glycolysis (Warburg effect). In response to stress signals, traffic of pro- and antiapoptotic mitochondrial proteins in the intermembrane space (B-cell lymphoma-extra large, Bcl-2-associated death promoter, Bcl-2 associated X-protein and cytochrome c) is modulated by the redox condition determined by mitochondrial O₂ utilization and mitochondrial nitric oxide metabolism. In this article, we highlight the traffic of the different canonical signaling pathways to mitochondria and the contributions of organelles to redox regulation of kinases. Finally, we analyze the dynamics of the mitochondrial population in cell cycle and apoptosis.
Collapse
Affiliation(s)
| | - María Eugenia Elguero
- Laboratory of Oxygen Metabolism, University of Buenos Aires, University Hospital, Buenos Aires, Argentina
| | - Juan José Poderoso
- Laboratory of Oxygen Metabolism, University of Buenos Aires, University Hospital, Buenos Aires, Argentina
- Department of Internal Medicine, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - María Cecilia Carreras
- Laboratory of Oxygen Metabolism, University of Buenos Aires, University Hospital, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
- Department of Clinical Biochemistry, INFIBIOC and School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
37
|
Endotoxemia impairs heart mitochondrial function by decreasing electron transfer, ATP synthesis and ATP content without affecting membrane potential. J Bioenerg Biomembr 2012; 44:243-52. [PMID: 22426814 DOI: 10.1007/s10863-012-9426-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/22/2012] [Indexed: 01/28/2023]
Abstract
Acute endotoxemia (LPS, 10 mg/kg ip, Sprague Dawley rats, 45 days old, 180 g) decreased the O₂ consumption of rat heart (1 mm³ tissue cubes) by 33% (from 4.69 to 3.11 μmol O₂/min. g tissue). Mitochondrial O₂ consumption and complex I activity were also decreased by 27% and 29%, respectively. Impaired respiration was associated to decreased ATP synthesis (from 417 to 168 nmol/min. mg protein) and ATP content (from 5.40 to 4.18 nmol ATP/mg protein), without affecting mitochondrial membrane potential. This scenario is accompanied by an increased production of O₂·⁻ and H₂O₂ due to complex I inhibition. The increased NO production, as shown by 38% increased mtNOS biochemical activity and 31% increased mtNOS functional activity, is expected to fuel an increased ONOO⁻ generation that is considered relevant in terms of the biochemical mechanism. Heart mitochondrial bioenergetic dysfunction with decreased O₂ uptake, ATP production and contents may indicate that preservation of mitochondrial function will prevent heart failure in endotoxemia.
Collapse
|
38
|
Finocchietto PV, Holod S, Barreyro F, Peralta JG, Alippe Y, Giovambattista A, Carreras MC, Poderoso JJ. Defective leptin-AMP-dependent kinase pathway induces nitric oxide release and contributes to mitochondrial dysfunction and obesity in ob/ob mice. Antioxid Redox Signal 2011; 15:2395-406. [PMID: 21529143 DOI: 10.1089/ars.2010.3857] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Obesity arises on defective neuroendocrine pathways that increase energy intake and reduce mitochondrial metabolism. In the metabolic syndrome, mitochondrial dysfunction accomplishes defects in fatty acid oxidation and reciprocal increase in triglyceride content with insulin resistance and hyperglycemia. Mitochondrial inhibition is attributed to reduced biogenesis, excessive fission, and low adipokine-AMP-activated protein kinase (AMPK) level, but lateness of the respiratory chain contributes to perturbations. Considering that nitric oxide (NO) binds cytochrome oxidase and inhibits respiration, we explored NO as a direct effector of mitochondrial dysfunction in the leptin-deficient ob/ob mice. RESULTS A remarkable three- to fourfold increase in neuronal nitric oxide synthase (nNOS) expression and activity was detected by western blot, citrulline assay, electronic and confocal microscopy, flow cytometry, and NO electrode sensor in mitochondria from ob/ob mice. High NO reduced oxygen uptake in ob/ob mitochondria by inhibition of complex IV and nitration of complex I. Low metabolic status restricted β-oxidation in obese mitochondria and displaced acetyl-CoA to fat synthesis; instead, small interference RNA nNOS caused a phenotype change with fat reduction in ob/ob adipocytes. INNOVATION We evidenced that leptin increases mitochondrial respiration and fat utilization by potentially inhibiting NO release. Accordingly, leptin administration to ob/ob mice prevented nNOS overexpression and mitochondrial dysfunction in vivo and rescued leptin-dependent effects by matrix NO reduction, whereas leptin-Ob-Rb disruption increased the formation of mitochondrial NO in control adipocytes. We demonstrated that in ob/ob, hypoleptinemia is associated with critically low mitochondrial p-AMPK and that, oppositely to p-Akt2, p-AMPK is a negative modulator of nNOS. CONCLUSION Thereby, defective leptin-AMPK pathway links mitochondrial NO to obesity with complex I syndrome and dysfunctional mitochondria.
Collapse
Affiliation(s)
- Paola V Finocchietto
- Laboratory of Oxygen Metabolism, University Hospital, University of Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Valdez LB, Zaobornyj T, Bombicino S, Iglesias DE, Boveris A, Donato M, D'Annunzio V, Buchholz B, Gelpi RJ. Complex I syndrome in myocardial stunning and the effect of adenosine. Free Radic Biol Med 2011; 51:1203-12. [PMID: 21723387 DOI: 10.1016/j.freeradbiomed.2011.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/24/2011] [Accepted: 06/06/2011] [Indexed: 11/27/2022]
Abstract
Isolated rabbit hearts were exposed to ischemia (I; 15 min) and reperfusion (R; 5-30 min) in a model of stunned myocardium. I/R decreased left-ventricle O(2) consumption (46%) and malate-glutamate-supported mitochondrial state 3 respiration (32%). Activity of complex I was 28% lower after I/R. The pattern observed for the decline in complex I activity was also observed for the reduction in mitochondrial nitric oxide synthase (mtNOS) biochemical (28%) and functional (50%) activities, in accordance with the reported physical and functional interactions between complex I and mtNOS. Malate-glutamate-supported state 4 H(2)O(2) production was increased by 78% after I/R. Rabbit heart Mn-SOD concentration in the mitochondrial matrix (7.4±0.7 μM) was not modified by I/R. Mitochondrial phospholipid oxidation products were increased by 42%, whereas protein oxidation was only slightly increased. I/R produced a marked (70%) enhancement in tyrosine nitration of the mitochondrial proteins. Adenosine attenuated postischemic ventricular dysfunction and protected the heart from the declines in O(2) consumption and in complex I and mtNOS activities and from the enhancement of mitochondrial phospholipid oxidation. Rabbit myocardial stunning is associated with a condition of dysfunctional mitochondria named "complex I syndrome." The beneficial effect of adenosine could be attributed to a better regulation of intracellular cardiomyocyte Ca(2+) concentration.
Collapse
Affiliation(s)
- Laura B Valdez
- Laboratory of Free Radical Biology, School of Pharmacy and Biochemistry, University of Buenos Aires, C1113AAD Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Martínez-Ruiz A, Cadenas S, Lamas S. Nitric oxide signaling: classical, less classical, and nonclassical mechanisms. Free Radic Biol Med 2011; 51:17-29. [PMID: 21549190 DOI: 10.1016/j.freeradbiomed.2011.04.010] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/10/2011] [Accepted: 04/04/2011] [Indexed: 12/20/2022]
Abstract
Although nitric oxide (NO) was identified more than 150 years ago and its effects were clinically tested in the form of nitroglycerine, it was not until the decades of 1970-1990 that it was described as a gaseous signal transducer. Since then, a canonical pathway linked to cyclic GMP (cGMP) as its quintessential effector has been established, but other modes of action have emerged and are now part of the common body of knowledge within the field. Classical (or canonical) signaling involves the selective activation of soluble guanylate cyclase, the generation of cGMP, and the activation of specific kinases (cGMP-dependent protein kinases) by this cyclic nucleotide. Nonclassical signaling alludes to the formation of NO-induced posttranslational modifications (PTMs), especially S-nitrosylation, S-glutathionylation, and tyrosine nitration. These PTMs are governed by specific biochemical mechanisms as well as by enzymatic systems. In addition, a less classical but equally important pathway is related to the interaction between NO and mitochondrial cytochrome c oxidase, which might have important implications for cell respiration and intermediary metabolism. Cross talk trespassing these necessarily artificial conceptual boundaries is progressively being identified and hence an integrated systems biology approach to the comprehension of NO function will probably emerge in the near future.
Collapse
Affiliation(s)
- Antonio Martínez-Ruiz
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | | | | |
Collapse
|
41
|
Membrane-initiated actions of thyroid hormones on the male reproductive system. Life Sci 2011; 89:507-14. [PMID: 21557952 DOI: 10.1016/j.lfs.2011.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/18/2011] [Accepted: 04/04/2011] [Indexed: 11/22/2022]
Abstract
The presence of specific nuclear receptors to thyroid hormones, described in prepubertal Sertoli cells, implies the existence of an early and critical influence of these hormones on testis development. Although the mechanism of action thyroid hormones has been classically established as a genomic action regulating testis development, our research group has demonstrated that these hormones exert several effects in Sertoli cells lacking nuclear receptor activation. These findings led to the identification of non-classical thyroid hormone binding elements in the plasma membrane of testicular cells. Through binding to these sites, thyroid hormones could exert nongenomic effects, including those on ion fluxes at the plasma membrane, on signal transduction via kinase pathways, on amino acid accumulation, on modulation of extracellular nucleotide levels and on vimentin cytoskeleton. The evidence of the participation of different K(+), Ca(2+) and Cl(-) channels in the mechanism of action of thyroid hormones, characterizes the plasma membrane as an important microenvironment able to coordinate strategic signal transduction pathways in rat testis. The physiological responses of the Sertoli cells to hormones are dependent on continuous cross-talking of different signal transduction pathways. Apparently, the choice of the signaling pathways to be activated after the interaction of the hormone with cell surface binding sites is directly related to the physiological action to be accomplished. Yet, the enormous complexity of the nongenomic actions of thyroid hormones implies that different specific binding sites located on the plasma membrane or in the cytosol are believed to initiate specific cell responses.
Collapse
|
42
|
Huang D, Lim S, Chua RYR, Shi H, Ng ML, Wong SH. A novel CARD containing splice-isoform of CIITA regulates nitric oxide synthesis in dendritic cells. Protein Cell 2011; 1:291-306. [PMID: 21203976 DOI: 10.1007/s13238-010-0039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 02/25/2010] [Indexed: 11/29/2022] Open
Abstract
MHC class II expression is controlled mainly at transcriptional level by class II transactivator (CIITA), which is a non-DNA binding coactivator and serves as a master control factor for MHC class II genes expression. Here, we describe the function of a novel splice-isoform of CIITA, DC-expressed caspase inhibitory isoform of CIITA (or DC-CASPIC), and we show that the expression of DCCASPIC in DC is upregulated upon lipopolysaccharides (LPS) induction. DC-CASPIC localizes to mitochondria, and protein-protein interaction study demonstrates that DC-CASPIC interacts with caspases and inhibits its activity in DC. Consistently, DC-CASPIC suppresses caspases-induced degradation of nitric oxide synthase-2 (NOS2) and subsequently promotes the synthesis of nitric oxide (NO). NO is an essential regulatory molecule that modulates the capability of DC in stimulating T cell proliferation/activation in vitro; hence, overexpression of DC-CASPIC in DC enhances this stimulation. Collectively, our findings reveal that DC-CASPIC is a key molecule that regulates caspases activity and NO synthesis in DC.
Collapse
Affiliation(s)
- Dachuan Huang
- Laboratory of Membrane Trafficking and Immunoregulation, Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, 5 Science Drive 2, Singapore 117597, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
43
|
Effects of rotenone and pyridaben on complex I electron transfer and on mitochondrial nitric oxide synthase functional activity. J Bioenerg Biomembr 2010; 42:405-12. [DOI: 10.1007/s10863-010-9309-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 08/29/2010] [Indexed: 12/14/2022]
|
44
|
Chattopadhyay S, Choudhury S, Roy A, Chainy GBN, Samanta L. T3 fails to restore mitochondrial thiol redox status altered by experimental hypothyroidism in rat testis. Gen Comp Endocrinol 2010; 169:39-47. [PMID: 20678500 DOI: 10.1016/j.ygcen.2010.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/07/2010] [Accepted: 07/21/2010] [Indexed: 12/30/2022]
Abstract
Oxidative stress impaired sperm function might lead to infertility. The objective of this study was to evaluate the effects of altered thyroid hormone levels on regulation of mitochondrial glutathione redox status and its dependent antioxidant defense system in adult rat testis and their correlation with testicular function. Adult male Wistar rats were rendered hypothyroid by administration of 6-n-propyl-2-thiouracil in drinking water for six weeks. At the end of the treatment period, a subset of the hypothyroid rats was treated with T(3) (20 μg/100g body weight/day for 3 days). Mitochondria were isolated from euthyroid, hypothyroid and hypothyroid+T(3)-treated rat testes, and sub-fractionated into sub-mitochondrial particles and matrix fractions. Mitochondrial respiration, oxidative stress indices and antioxidant defenses were assayed. The results were correlated with daily testicular sperm production and epididymal sperm viability. Increased pro-oxidant level and reduced antioxidant capacity rendered the hypothyroid mitochondria susceptible to oxidative injury. The extent of damage was more evident in the membrane fraction. This was reflected in higher degree of oxidative damages inflicted upon membrane lipids and proteins. While membrane proteins were more susceptible to carbonylation, thiol residue damage was evident in matrix fraction. Reduced levels of glutathione and ascorbate further weakened the antioxidant defenses and impaired testicular function. Hypothyroid condition disturbed intra-mitochondrial thiol redox status leading to testicular dysfunction. Hypothyroidism-induced oxidative stress condition could not be reversed with T(3) treatment.
Collapse
|
45
|
Desler C, Lykke A, Rasmussen LJ. The effect of mitochondrial dysfunction on cytosolic nucleotide metabolism. J Nucleic Acids 2010; 2010. [PMID: 20862377 PMCID: PMC2938461 DOI: 10.4061/2010/701518] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/19/2010] [Indexed: 12/13/2022] Open
Abstract
Several enzymes of the metabolic pathways responsible for metabolism of cytosolic ribonucleotides and deoxyribonucleotides are located in mitochondria. Studies described in this paper suggest dysfunction of the mitochondria to affect these metabolic pathways and limit the available levels of cytosolic ribonucleotides and deoxyribonucleotides, which in turn can result in aberrant RNA and DNA synthesis. Mitochondrial dysfunction has been linked to genomic instability, and it is possible that the limiting effect of mitochondrial dysfunction on the levels of nucleotides and resulting aberrant RNA and DNA synthesis in part can be responsible for this link. This paper summarizes the parts of the metabolic pathways responsible for nucleotide metabolism that can be affected by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Claus Desler
- Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | | |
Collapse
|
46
|
Song M, Kim YJ, Lee JN, Ryu JC. Genome-wide expression profiling of carbaryl and vinclozolin in human thyroid follicular carcinoma (FTC-238) cells. BIOCHIP JOURNAL 2010. [DOI: 10.1007/s13206-010-4201-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Nitric oxide: promoter or suppressor of programmed cell death? Protein Cell 2010; 1:133-42. [PMID: 21203983 DOI: 10.1007/s13238-010-0018-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 12/01/2009] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide (NO) is a short-lived gaseous free radical that predominantly functions as a messenger and effector molecule. It affects a variety of physiological processes, including programmed cell death (PCD) through cyclic guanosine monophosphate (cGMP)-dependent and - independent pathways. In this field, dominant discoveries are the diverse apoptosis networks in mammalian cells, which involve signals primarily via death receptors (extrinsic pathway) or the mitochondria (intrinsic pathway) that recruit caspases as effector molecules. In plants, PCD shares some similarities with animal cells, but NO is involved in PCD induction via interacting with pathways of phytohormones. NO has both promoting and suppressing effects on cell death, depending on a variety of factors, such as cell type, cellular redox status, and the flux and dose of local NO. In this article, we focus on how NO regulates the apoptotic signal cascade through protein S-nitrosylation and review the recent progress on mechanisms of PCD in both mammalian and plant cells.
Collapse
|
48
|
PTU-induced hypothyroidism modulates antioxidant defence status in the developing cerebellum. Int J Dev Neurosci 2010; 28:251-62. [PMID: 20123122 DOI: 10.1016/j.ijdevneu.2010.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 01/11/2010] [Accepted: 01/25/2010] [Indexed: 12/28/2022] Open
Abstract
The objective of the present study was to evaluate the effect of 6-n-propylthiouracil (PTU)-induced hypothyroidism on oxidative stress parameters, expression of antioxidant defence enzymes, cell proliferation and apoptosis in the developing cerebellum. PTU challenged neonates showed significant decrease in serum T(3) and T(4) levels and marked increase in TSH levels. Significantly elevated levels of cerebellar H(2)O(2) and lipid peroxidation were observed in 7 days old hypothyroid rats, along with increased activities of superoxide dismutase and glutathione peroxidase and decline in catalase activity. In 30 days old hypothyroid rats, a significant decline in cerebellar lipid peroxidation, superoxide dismutase and glutathione peroxidase activity and expression was observed along with an up-regulation in catalase activity and expression. Expression of antioxidant enzymes was studied by Western blot and semi-quantitative rt-PCR. A distinct increase in cell proliferation as indicated by proliferating cell nuclear antigen (PCNA) immunoreactivity was observed in the internal granular layer of cerebellum of 7 days old hypothyroid rats and significant drop in PCNA positive cells in the cerebellar molecular layer and internal granular layer of 30 days old PTU treated rats as compared to controls. In situ end labeling by TUNEL assay showed increased apoptosis in cerebellum of hypothyroid rats in comparison to controls. These results suggest that the antioxidant defence system of the developing cerebellum is sensitive to thyroid hormone deficiency and consequent alterations in oxidative stress status may play a role in regulation of cell proliferation of the cerebellum during neonatal brain development.
Collapse
|
49
|
Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT, Butterfield DA. Nitric oxide in cell survival: a janus molecule. Antioxid Redox Signal 2009; 11:2717-39. [PMID: 19558211 DOI: 10.1089/ars.2009.2721] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO), plays multiple roles in the nervous system. In addition to regulating proliferation, survival and differentiation of neurons, NO is involved in synaptic activity, neural plasticity, and memory function. Nitric oxide promotes survival and differentiation of neural cells and exerts long-lasting effects through regulation of transcription factors and modulation of gene expression. Signaling by reactive nitrogen species is carried out mainly by targeted modifications of critical cysteine residues in proteins, including S-nitrosylation and S-oxidation, as well as by lipid nitration. NO and other reactive nitrogen species are also involved in neuroinflammation and neurodegeneration, such as in Alzheimer disease, amyotrophic lateral sclerosis, Parkinson disease, multiple sclerosis, Friedreich ataxia, and Huntington disease. Susceptibility to NO and peroxynitrite exposure may depend on factors such as the intracellular reduced glutathione and cellular stress resistance signaling pathways. Thus, neurons, in contrast to astrocytes, appear particularly vulnerable to the effects of nitrosative stress. This article reviews the current understanding of the cytotoxic versus cytoprotective effects of NO in the central nervous system, highlighting the Janus-faced properties of this small molecule. The significance of NO in redox signaling and modulation of the adaptive cellular stress responses and its exciting future perspectives also are discussed.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Chemistry, Biochemistry and Molecular Biology Section, Faculty of Medicine, University of Catania , Catania, Italy.
| | | | | | | | | | | |
Collapse
|
50
|
Finocchietto PV, Franco MC, Holod S, Gonzalez AS, Converso DP, Antico Arciuch VG, Serra MP, Poderoso JJ, Carreras MC. Mitochondrial nitric oxide synthase: a masterpiece of metabolic adaptation, cell growth, transformation, and death. Exp Biol Med (Maywood) 2009; 234:1020-8. [PMID: 19546350 DOI: 10.3181/0902-mr-81] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are specialized organelles that control energy metabolism and also activate a multiplicity of pathways that modulate cell proliferation and mitochondrial biogenesis or, conversely, promote cell arrest and programmed cell death by a limited number of oxidative or nitrative reactions. Nitric oxide (NO) regulates oxygen uptake by reversible inhibition of cytochrome oxidase and the production of superoxide anion from the mitochondrial electron transfer chain. In this sense, NO produced by mtNOS will set the oxygen uptake level and contribute to oxidation-reduction reaction (redox)-dependent cell signaling. Modulation of translocation and activation of neuronal nitric oxide synthase (mtNOS activity) under different physiologic or pathologic conditions represents an adaptive response properly modulated to adjust mitochondria to different cell challenges.
Collapse
Affiliation(s)
- Paola V Finocchietto
- Laboratory of Oxygen Metabolism, University Hospital, 1120 Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|