1
|
Margaret MS, Melrose J. Impaired instructive and protective barrier functions of the endothelial cell glycocalyx pericellular matrix is impacted in COVID-19 disease. J Cell Mol Med 2024; 28:e70033. [PMID: 39180511 PMCID: PMC11344469 DOI: 10.1111/jcmm.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 08/26/2024] Open
Abstract
The aim of this study was to review the roles of endothelial cells in normal tissue function and to show how COVID-19 disease impacts on endothelial cell properties that lead to much of its associated symptomatology. This places the endothelial cell as a prominent cell type to target therapeutically in the treatment of this disorder. Advances in glycosaminoglycan analytical techniques and functional glycomics have improved glycosaminoglycan mimetics development, providing agents that can more appropriately target various aspects of the behaviour of the endothelial cell in-situ and have also provided polymers with potential to prevent viral infection. Thus, promising approaches are being developed to combat COVID-19 disease and the plethora of symptoms this disease produces. Glycosaminoglycan mimetics that improve endothelial glycocalyx boundary functions have promising properties in the prevention of viral infection, improve endothelial cell function and have disease-modifying potential. Endothelial cell integrity, forming tight junctions in cerebral cell populations in the blood-brain barrier, prevents the exposure of the central nervous system to circulating toxins and harmful chemicals, which may contribute to the troublesome brain fogging phenomena reported in cognitive processing in long COVID disease.
Collapse
Affiliation(s)
- M. Smith Margaret
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Northern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Arthropharm Australia Pharmaceuticals Pty LtdBondi JunctionSydneyNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Northern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
- Sydney Medical SchoolNorthern, The University of SydneySydneyNew South WalesAustralia
- Faculty of Medicine and HealthThe University of Sydney, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| |
Collapse
|
2
|
Zheng S, An S, Luo Y, Vithran DTA, Yang S, Lu B, Deng Z, Li Y. HYBID in osteoarthritis: Potential target for disease progression. Biomed Pharmacother 2023; 165:115043. [PMID: 37364478 DOI: 10.1016/j.biopha.2023.115043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
HYBID is a new hyaluronan-degrading enzyme and exists in various cells of the human body. Recently, HYBID was found to over-express in the osteoarthritic chondrocytes and fibroblast-like synoviocytes. According to these researches, high level of HYBID is significantly correlated with cartilage degeneration in joints and hyaluronic acid degradation in synovial fluid. In addition, HYBID can affect inflammatory cytokine secretion, cartilage and synovium fibrosis, synovial hyperplasia via multiple signaling pathways, thereby exacerbating osteoarthritis. Based on the existing research of HYBID in osteoarthritis, HYBID can break the metabolic balance of HA in joints through the degradation ability independent of HYALs/CD44 system and furthermore affect cartilage structure and mechanotransduction of chondrocytes. In particular, in addition to HYBID itself being able to trigger some signaling pathways, we believe that low-molecular-weight hyaluronan produced by excess degradation can also stimulate some disease-promoting signaling pathways by replacing high-molecular-weight hyaluronan in joints. The specific role of HYBID in osteoarthritis is gradually revealed, and the discovery of HYBID raises the new way to treat osteoarthritis. In this review, the expression and basic functions of HYBID in joints were summarized, and reveal potential role of HYBID as a key target in treatment for osteoarthritis.
Collapse
Affiliation(s)
- Shengyuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Senbo An
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Luo
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Djandan Tadum Arthur Vithran
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shaoqu Yang
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Melrose J. Hyaluronan hydrates and compartmentalises the CNS/PNS extracellular matrix and provides niche environments conducive to the optimisation of neuronal activity. J Neurochem 2023; 166:637-653. [PMID: 37492973 DOI: 10.1111/jnc.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The central nervous system/peripheral nervous system (CNS/PNS) extracellular matrix is a dynamic and highly interactive space-filling, cell-supportive, matrix-stabilising, hydrating entity that creates and maintains tissue compartments to facilitate regional ionic micro-environments and micro-gradients that promote optimal neural cellular activity. The CNS/PNS does not contain large supportive collagenous and elastic fibrillar networks but is dominated by a high glycosaminoglycan content, predominantly hyaluronan (HA) and collagen is restricted to the brain microvasculature, blood-brain barrier, neuromuscular junction and meninges dura, arachnoid and pia mater. Chondroitin sulphate-rich proteoglycans (lecticans) interactive with HA have stabilising roles in perineuronal nets and contribute to neural plasticity, memory and cognitive processes. Hyaluronan also interacts with sialoproteoglycan associated with cones and rods (SPACRCAN) to stabilise the interphotoreceptor matrix and has protective properties that ensure photoreceptor viability and function is maintained. HA also regulates myelination/re-myelination in neural networks. HA fragmentation has been observed in white matter injury, multiple sclerosis, and traumatic brain injury. HA fragments (2 × 105 Da) regulate oligodendrocyte precursor cell maturation, myelination/remyelination, and interact with TLR4 to initiate signalling cascades that mediate myelin basic protein transcription. HA and its fragments have regulatory roles over myelination which ensure high axonal neurotransduction rates are maintained in neural networks. Glioma is a particularly invasive brain tumour with extremely high mortality rates. HA, CD44 and RHAMM (receptor for HA-mediated motility) HA receptors are highly expressed in this tumour. Conventional anti-glioma drug treatments have been largely ineffective and surgical removal is normally not an option. CD44 and RHAMM glioma HA receptors can potentially be used to target gliomas with PEP-1, a cell-penetrating HA-binding peptide. PEP-1 can be conjugated to a therapeutic drug; such drug conjugates have successfully treated dense non-operative tumours in other tissues, therefore similar applications warrant exploration as potential anti-glioma treatments.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
4
|
Menezes R, Vincent R, Osorno L, Hu P, Arinzeh TL. Biomaterials and tissue engineering approaches using glycosaminoglycans for tissue repair: Lessons learned from the native extracellular matrix. Acta Biomater 2023; 163:210-227. [PMID: 36182056 PMCID: PMC10043054 DOI: 10.1016/j.actbio.2022.09.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 01/30/2023]
Abstract
Glycosaminoglycans (GAGs) are an important component of the extracellular matrix as they influence cell behavior and have been sought for tissue regeneration, biomaterials, and drug delivery applications. GAGs are known to interact with growth factors and other bioactive molecules and impact tissue mechanics. This review provides an overview of native GAGs, their structure, and properties, specifically their interaction with proteins, their effect on cell behavior, and their mechanical role in the ECM. GAGs' function in the extracellular environment is still being understood however, promising studies have led to the development of medical devices and therapies. Native GAGs, including hyaluronic acid, chondroitin sulfate, and heparin, have been widely explored in tissue engineering and biomaterial approaches for tissue repair or replacement. This review focuses on orthopaedic and wound healing applications. The use of GAGs in these applications have had significant advances leading to clinical use. Promising studies using GAG mimetics and future directions are also discussed. STATEMENT OF SIGNIFICANCE: Glycosaminoglycans (GAGs) are an important component of the native extracellular matrix and have shown promise in medical devices and therapies. This review emphasizes the structure and properties of native GAGs, their role in the ECM providing biochemical and mechanical cues that influence cell behavior, and their use in tissue regeneration and biomaterial approaches for orthopaedic and wound healing applications.
Collapse
Affiliation(s)
- Roseline Menezes
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Richard Vincent
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Laura Osorno
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Phillip Hu
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Treena Livingston Arinzeh
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States; Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States.
| |
Collapse
|
5
|
Lierova A, Kasparova J, Filipova A, Cizkova J, Pekarova L, Korecka L, Mannova N, Bilkova Z, Sinkorova Z. Hyaluronic Acid: Known for Almost a Century, but Still in Vogue. Pharmaceutics 2022; 14:838. [PMID: 35456670 PMCID: PMC9029726 DOI: 10.3390/pharmaceutics14040838] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Hyaluronic acid (HA) has a special position among glycosaminoglycans. As a major component of the extracellular matrix (ECM). This simple, unbranched polysaccharide is involved in the regulation of various biological cell processes, whether under physiological conditions or in cases of cell damage. This review summarizes the history of this molecule's study, its distinctive metabolic pathway in the body, its unique properties, and current information regarding its interaction partners. Our main goal, however, is to intensively investigate whether this relatively simple polymer may find applications in protecting against ionizing radiation (IR) or for therapy in cases of radiation-induced damage. After exposure to IR, acute and belated damage develops in each tissue depending upon the dose received and the cellular composition of a given organ. A common feature of all organ damage is a distinct change in composition and structure of the ECM. In particular, the important role of HA was shown in lung tissue and the variability of this flexible molecule in the complex mechanism of radiation-induced lung injuries. Moreover, HA is also involved in intermediating cell behavior during morphogenesis and in tissue repair during inflammation, injury, and would healing. The possibility of using the HA polymer to affect or treat radiation tissue damage may point to the missing gaps in the responsible mechanisms in the onset of this disease. Therefore, in this article, we will also focus on obtaining answers from current knowledge and the results of studies as to whether hyaluronic acid can also find application in radiation science.
Collapse
Affiliation(s)
- Anna Lierova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Jitka Kasparova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Alzbeta Filipova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Jana Cizkova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Lenka Pekarova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Lucie Korecka
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Nikola Mannova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Zuzana Sinkorova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| |
Collapse
|
6
|
Johnson LA, Jackson DG. Hyaluronan and Its Receptors: Key Mediators of Immune Cell Entry and Trafficking in the Lymphatic System. Cells 2021; 10:cells10082061. [PMID: 34440831 PMCID: PMC8393520 DOI: 10.3390/cells10082061] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023] Open
Abstract
Entry to the afferent lymphatics marks the first committed step for immune cell migration from tissues to draining lymph nodes both for the generation of immune responses and for timely resolution of tissue inflammation. This critical process occurs primarily at specialised discontinuous junctions in initial lymphatic capillaries, directed by chemokines released from lymphatic endothelium and orchestrated by adhesion between lymphatic receptors and their immune cell ligands. Prominent amongst the latter is the large glycosaminoglycan hyaluronan (HA) that can form a bulky glycocalyx on the surface of certain tissue-migrating leucocytes and whose engagement with its key lymphatic receptor LYVE-1 mediates docking and entry of dendritic cells to afferent lymphatics. Here we outline the latest insights into the molecular mechanisms by which the HA glycocalyx together with LYVE-1 and the related leucocyte receptor CD44 co-operate in immune cell entry, and how the process is facilitated by the unusual character of LYVE-1 • HA-binding interactions. In addition, we describe how pro-inflammatory breakdown products of HA may also contribute to lymphatic entry by transducing signals through LYVE-1 for lymphangiogenesis and increased junctional permeability. Lastly, we outline some future perspectives and highlight the LYVE-1 • HA axis as a potential target for immunotherapy.
Collapse
|
7
|
Cowman MK, Shortt C, Arora S, Fu Y, Villavieja J, Rathore J, Huang X, Rakshit T, Jung GI, Kirsch T. Role of Hyaluronan in Inflammatory Effects on Human Articular Chondrocytes. Inflammation 2020; 42:1808-1820. [PMID: 31243649 PMCID: PMC6719336 DOI: 10.1007/s10753-019-01043-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hyaluronan (HA) fragments have been proposed to elicit defensive or pro-inflammatory responses in many cell types. For articular chondrocytes in an inflammatory environment, studies have failed to reach consensus on the endogenous production or effects of added HA fragments. The present study was undertaken to resolve this discrepancy. Cultured primary human articular chondrocytes were exposed to the inflammatory cytokine IL-1β, and then tested for changes in HA content/size in conditioned medium, and for the expression of genes important in HA binding/signaling or metabolism, and in other catabolic/anabolic responses. Changes in gene expression caused by enzymatic degradation of endogenous HA, or addition of exogenous HA fragments, were examined. IL-1β increased the mRNA levels for HA synthases HAS2/HAS3 and for the HA-binding proteins CD44 and TSG-6. mRNA levels for TLR4 and RHAMM were very low and were little affected by IL-1β. mRNA levels for catabolic markers were increased, while type II collagen (α1(II)) and aggrecan were decreased. HA concentration in the conditioned medium was increased, but the HA was not degraded. Treatment with recombinant hyaluronidase or addition of low endotoxin HA fragments did not elicit pro-inflammatory responses. Our findings showed that HA fragments were not produced by IL-1β-stimulated human articular chondrocytes in the absence of other sources of reactive oxygen or nitrogen species, and that exogenous HA fragments from oligosaccharides up to about 40 kDa in molecular mass were not pro-inflammatory agents for human articular chondrocytes, probably due to low expression of TLR4 and RHAMM in these cells.
Collapse
Affiliation(s)
- Mary K Cowman
- Department of Biomedical Engineering, New York University Tandon School of Engineering, 433 First Avenue, room 910, New York, NY, 10010, USA. .,Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA. .,Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, New York, NY, USA.
| | - Claire Shortt
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA
| | - Shivani Arora
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, New York, NY, USA
| | - Yuhong Fu
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, New York, NY, USA
| | - Jemma Villavieja
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, New York, NY, USA
| | - Jai Rathore
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, New York, NY, USA
| | - Xiayun Huang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, New York, NY, USA
| | - Tatini Rakshit
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, New York, NY, USA
| | - Gyu Ik Jung
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, New York, NY, USA
| | - Thorsten Kirsch
- Department of Biomedical Engineering, New York University Tandon School of Engineering, 433 First Avenue, room 910, New York, NY, 10010, USA.,Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
8
|
Shortt C, Luyt LG, Turley EA, Cowman MK, Kirsch T. A Hyaluronan-binding Peptide (P15-1) Reduces Inflammatory and Catabolic Events in IL-1β-treated Human Articular Chondrocytes. Sci Rep 2020; 10:1441. [PMID: 31996703 PMCID: PMC6989647 DOI: 10.1038/s41598-020-57586-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/03/2020] [Indexed: 01/01/2023] Open
Abstract
Inflammation plays a critical role in osteoarthritis (OA). It stimulates catabolic events in articular chondrocytes and prevents chondrogenic precursor cells from repairing cartilage lesions, leading to accelerated cartilage degradation. Therefore, the identification of novel factors that reduce catabolic events in chondrocytes and enhances chondrogenic differentiation of precursor cells in an inflammatory environment may provide novel therapeutic strategies for the treatment of OA. The goal of this study was to determine whether a hyaluronan (HA)-binding peptide (P15-1), via interacting with high molecular weight (HMW)HA can enhance the anti-inflammatory properties of HMWHA and decrease catabolic events in interleukin-1beta (IL-1β)-treated human articular chondrocytes. Treatment with P15-1 decreased catabolic events and stimulated anabolic events in articular chondrocytes cultured in an inflammatory environment. P15-1 pre-mixed with HMWHA was more effective in inhibiting catabolic events and stimulating anabolic events than P15-1 or HMWHA alone. Our findings suggest that P15-1 together with HMWHA inhibits catabolic events in articular chondrocytes via the inhibition of p38 mitogen-activated protein kinases (MAPK) and increasing the thickness of the pericellular matrix (PCM) around chondrocytes thereby decreasing catabolic signaling. Finally, conditioned medium from IL-1β and P15-1-treated human articular chondrocytes was less inhibitory for chondrogenic differentiation of precursor cells than conditioned medium from chondrocytes treated with IL-1β alone. In conclusion, P15-1 is proposed to function synergistically with HMWHA to enhance the protective microenvironment for chondrocytes and mesenchymal stem cells during inflammation and regeneration.
Collapse
Affiliation(s)
- Claire Shortt
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA
- FoodMarble Digestive Health, Dublin, 2, Ireland
| | - Leonard G Luyt
- The University of Western Ontario, London, ON, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Eva A Turley
- The University of Western Ontario, London, ON, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Mary K Cowman
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY, USA
| | - Thorsten Kirsch
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA.
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY, USA.
| |
Collapse
|
9
|
Ishizuka S, Tsuchiya S, Ohashi Y, Terabe K, Askew EB, Ishizuka N, Knudson CB, Knudson W. Hyaluronan synthase 2 (HAS2) overexpression diminishes the procatabolic activity of chondrocytes by a mechanism independent of extracellular hyaluronan. J Biol Chem 2019; 294:13562-13579. [PMID: 31270213 DOI: 10.1074/jbc.ra119.008567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/25/2019] [Indexed: 02/03/2023] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative disease of the joints caused in part by a change in the phenotype of resident chondrocytes within affected joints. This altered phenotype, often termed proinflammatory or procatabolic, features enhanced production of endoproteinases and matrix metallo-proteinases (MMPs) as well as secretion of endogenous inflammatory mediators. Degradation and reduced retention of the proteoglycan aggrecan is an early event in OA. Enhanced turnover of hyaluronan (HA) is closely associated with changes in aggrecan. Here, to determine whether experimentally increased HA production promotes aggrecan retention and generates a positive feedback response, we overexpressed HA synthase-2 (HAS2) in chondrocytes via an inducible adenovirus construct (HA synthase-2 viral overexpression; HAS2-OE). HAS2-OE incrementally increased high-molecular-mass HA >100-fold within the cell-associated and growth medium pools. More importantly, our results indicated that the HAS2-OE expression system inhibits MMP3, MMP13, and other markers of the procatabolic phenotype (such as TNF-stimulated gene 6 protein (TSG6)) and also enhances aggrecan retention. These markers were inhibited in OA-associated chondrocytes and in chondrocytes activated by interleukin-1β (IL1β), but also chondrocytes activated by lipopolysaccharide (LPS), tumor necrosis factor α (TNFα), or HA oligosaccharides. However, the enhanced extracellular HA resulting from HAS2-OE did not reduce the procatabolic phenotype of neighboring nontransduced chondrocytes as we had expected. Rather, HA-mediated inhibition of the phenotype occurred only in transduced cells. In addition, high HA biosynthesis rates, especially in transduced procatabolic chondrocytes, resulted in marked changes in chondrocyte dependence on glycolysis versus oxidative phosphorylation for their metabolic energy needs.
Collapse
Affiliation(s)
- Shinya Ishizuka
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834.,Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Saho Tsuchiya
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Yoshifumi Ohashi
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Kenya Terabe
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834.,Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Emily B Askew
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Naoko Ishizuka
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834.,Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Cheryl B Knudson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Warren Knudson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| |
Collapse
|
10
|
Hayes AJ, Melrose J. Glycosaminoglycan and Proteoglycan Biotherapeutics in Articular Cartilage Protection and Repair Strategies: Novel Approaches to Visco‐supplementation in Orthobiologics. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research HubCardiff School of BiosciencesCardiff University Cardiff CF10 3AX Wales UK
| | - James Melrose
- Graduate School of Biomedical EngineeringUNSW Sydney Sydney NSW 2052 Australia
- Raymond Purves Bone and Joint Research LaboratoriesKolling Institute of Medical ResearchRoyal North Shore Hospital and The Faculty of Medicine and HealthUniversity of Sydney St. Leonards NSW 2065 Australia
- Sydney Medical SchoolNorthernRoyal North Shore HospitalSydney University St. Leonards NSW 2065 Australia
| |
Collapse
|
11
|
Asparuhova MB, Kiryak D, Eliezer M, Mihov D, Sculean A. Activity of two hyaluronan preparations on primary human oral fibroblasts. J Periodontal Res 2018; 54:33-45. [PMID: 30264516 PMCID: PMC6586051 DOI: 10.1111/jre.12602] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 08/02/2018] [Indexed: 01/09/2023]
Abstract
Background and Objective The potential benefit of using hyaluronan (HA) in reconstructive periodontal surgery is still a matter of debate. The aim of the present study was to evaluate the effects of two HA formulations on human oral fibroblasts involved in soft tissue wound healing/regeneration. Material and Methods Metabolic, proliferative and migratory abilities of primary human palatal and gingival fibroblasts were examined upon HA treatment. To uncover the mechanisms whereby HA influences cellular behavior, wound healing‐related gene expression and activation of signaling kinases were analyzed by qRT‐PCR and immunoblotting, respectively. Results The investigated HA formulations maintained the viability of oral fibroblasts and increased their proliferative and migratory abilities. They enhanced expression of genes encoding type III collagen and transforming growth factor‐β3, characteristic of scarless wound healing. The HAs upregulated the expression of genes encoding pro‐proliferative, pro‐migratory, and pro‐inflammatory factors, with only a moderate effect on the latter in gingival fibroblasts. In palatal but not gingival fibroblasts, an indirect effect of HA on the expression of matrix metalloproteinases 2 and 3 was detected, potentially exerted through induction of pro‐inflammatory cytokines. Finally, our data pointed on Akt, Erk1/2 and p38 as the signaling molecules whereby the HAs exert their effects on oral fibroblasts. Conclusion Both investigated HA formulations are biocompatible and enhance the proliferative, migratory and wound healing properties of cell types involved in soft tissue wound healing following regenerative periodontal surgery. Our data further suggest that in gingival tissues, the HAs are not likely to impair the healing process by prolonging inflammation or causing excessive MMP expression at the repair site.
Collapse
Affiliation(s)
- Maria B Asparuhova
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Deniz Kiryak
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Meizi Eliezer
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Deyan Mihov
- Biozentrum, University of Basel, Basel, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
The pericellular hyaluronan of articular chondrocytes. Matrix Biol 2018; 78-79:32-46. [PMID: 29425696 DOI: 10.1016/j.matbio.2018.02.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 02/01/2023]
Abstract
The story of hyaluronan in articular cartilage, pericellular hyaluronan in particular, essentially is also the story of aggrecan. Without properly tethered aggrecan, the load bearing function of cartilage is compromised. The anchorage of aggrecan to the cell surface only occurs due to the binding of aggrecan to hyaluronan-with hyaluronan tethered either to a hyaluronan synthase or by multivalent binding to CD44. In this review, details of hyaluronan synthesis are discussed including how HAS2 production of hyaluronan is necessary for normal chondrocyte development and matrix assembly, how an abundance or deficit of pericellular hyaluronan alters chondrocyte metabolism, and whether hyaluronan size matters or changes with aging or disease. The biomechanical role and matrix assembly function of hyaluronan in addition to the functions of hyaluronidases are discussed. The turnover of hyaluronan is considered including mechanisms by which its turnover, at least in part, is mediated by endocytosis by chondrocytes and regulated by aggrecan degradation. Differences between turnover and clearance of newly synthesized hyaluronan and aggrecan versus the half-life of hyaluronan remaining within the inter-territorial matrix of cartilage are discussed. The release of neutral pH-acting hyaluronidase activity remains one unanswered question concerning the loss of cartilage hyaluronan in osteoarthritis. Signaling events driven by changes in hyaluronan-chondrocyte interactions may involve a chaperone function of CD44 with other receptors/cofactors as well as the changes in hyaluronan production functioning as a metabolic rheostat.
Collapse
|
13
|
Wu SC, Chen CH, Wang JY, Lin YS, Chang JK, Ho ML. Hyaluronan size alters chondrogenesis of adipose-derived stem cells via the CD44/ERK/SOX-9 pathway. Acta Biomater 2018; 66:224-237. [PMID: 29128538 DOI: 10.1016/j.actbio.2017.11.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 12/23/2022]
Abstract
Hyaluronan (HA) is a natural linear polymer that is one of the main types of extracellular matrix during the early stage of chondrogenesis. We found that the chondrogenesis of adipose-derived stem cells (ADSCs) can be initiated and promoted by the application of HA to mimic the chondrogenic niche. The aim of this study is to investigate the optimal HA molecular weight (Mw) for chondrogenesis of ADSCs and the detailed mechanism. In this study, we investigated the relationships among HA Mw, CD44 clustering, and the extracellular signal-regulated kinase (ERK)/SOX-9 pathway during chondrogenesis of ADSCs. Human ADSCs (hADSCs) and rabbit ADSCs (rADSCs) were isolated and expanded. Chondrogenesis was induced in rADSCs by culturing cells in HA-coated wells (HA Mw: 80 kDa, 600 kDa and 2000 kDa) and evaluated by examining cell aggregation, chondrogenic gene expression (collagen type II and aggrecan) and sulfated glycosaminoglycan (sGAG) deposition in vitro. Cartilaginous tissue formation in vivo was confirmed by implanting HA/rADSCs into joint cavities. CD44 clustering, ERK phosphorylation, SOX-9 expression and SOX-9 phosphorylation in cultured hADSCs were further evaluated. Isolated and expanded rADSCs showed multilineage potential and anchorage-independent growth properties. Cell aggregation, chondrogenic gene expression, and sGAG deposition increased with increasing HA Mw in rADSCs. The 2000 kDa HA had the most pronounced chondrogenic effect on rADSCs in vitro, and implanted 2000 kDa HA/rADSCs exhibited marked cartilaginous tissue formation in vivo. CD44 clustering and cell aggregation of hADSCs were enhanced by an increase in HA Mw. In addition, higher HA Mws further enhanced CD44 clustering, ERK phosphorylation, and SOX-9 expression and phosphorylation in hADSCs. Inhibiting CD44 clustering in hADSCs reduced HA-induced chondrogenic gene expression. Inhibiting ERK phosphorylation also simultaneously attenuated HA-induced SOX-9 expression and phosphorylation and chondrogenic gene expression in hADSCs. Our results indicate that HA initiates ADSC chondrogenesis and that higher Mw HAs exhibit stronger effects, with 2000 kDa HA having the strongest effect. These effects may be mediated through increased CD44 clustering and the ERK/SOX-9 signaling pathway. STATEMENT OF SIGNIFICANCE HA-based biomaterials have been studied in stem cell-based articular cartilage tissue engineering. However, little is known about the optimal HA size for stem cell chondrogenesis and the mechanism of how HA size modulates stem cell chondrogenesis. Accordingly, we used HAs with various Mws (80-2000 kDa) as culture substrates and tested their chondrogenic effect on ADSCs. Our results demonstrated that HAs with a Mw of 2000 kDa showed the optimal effect for chondrogenesis of ADSCs. Moreover, we found that HA size can regulate ADSC chondrogenesis via the CD44/ERK/SOX-9 pathway. This finding provides new information regarding the biochemical control of chondrogenesis by HA substrates that may add value to the development of HA-based biomaterials for articular cartilage regeneration.
Collapse
Affiliation(s)
- Shun-Cheng Wu
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jyun-Ya Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Shan Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Je-Ken Chang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Mei-Ling Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
14
|
Fuller ES, Shu C, Smith MM, Little CB, Melrose J. Hyaluronan oligosaccharides stimulate matrix metalloproteinase and anabolic gene expression in vitro by intervertebral disc cells and annular repair in vivo. J Tissue Eng Regen Med 2017; 12:e216-e226. [PMID: 27689852 DOI: 10.1002/term.2319] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/14/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022]
Abstract
The role of hyaluronan (HA) oligosaccharides in disc cell-mediated matrix metalloproteinase (MMP) and anabolic gene expression in vitro and annular repair in vivo were examined. Monolayer and alginate bead cultures of ovine intervertebral disc cells were stimulated with 10-12 mer hyaluronan oligosaccharides (HA-oligos). Annulus fibrosus (AF) monolayers were poorly responsive to the HA-oligos, proMMP-2 levels were marginally elevated and levels were MMP-9 unaffected. ProMMP-2 displayed a strong dose-dependent increase in the nucleus pulposus (NP) monolayers. In AF alginate bead cultures, proMMP-2 and active MMP-9 increased up to day 10, in NP cultures proMMP-2 was progressively converted to active MMP-2 over days 7-10 and active MMP-9 levels were elevated on day 10. A steady decline in MMP-2 and MMP-9 activity was evident over days 2-10 in the non-stimulated NP cultures. Disc cell viabilities were ≥92 ± 5% in all cultures indicating that the HA-oligo was not cytotoxic. Reverse-transcription polymerase chain reaction demonstrated an upregulation in MMP1, MMP113 and ADAMTS1 and the anabolic matrix repair genes ACAN, COL1A1 and COL2A1 in the NP by HA-oligos, whereas AF MMP13, ADAMTS1, ADAMTS4 and ADAMTS5, ACAN and COL2A1 were down-regulated; this differential regulation is expected to promote clearance of granulation/scar tissue from AF defects and matrix replenishment. The AF defect sites contained enlarged annular lamellae in vivo in response to the HA oligos, which is consistent with an active repair response. Masson trichrome and PicroSirius red histology and immunolocalization of type I collagen supported active remodelling in the outer lesion zone by the HA-oligo treatment but not the inner lesion. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Emily S Fuller
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Cindy Shu
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Margaret M Smith
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St Leonards, NSW, Australia.,Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, Sydney, Australia
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St Leonards, NSW, Australia.,Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, Sydney, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
15
|
Dubey RD, Klippstein R, Wang JTW, Hodgins N, Mei KC, Sosabowski J, Hider RC, Abbate V, Gupta PN, Al-Jamal KT. Novel Hyaluronic Acid Conjugates for Dual Nuclear Imaging and Therapy in CD44-Expressing Tumors in Mice In Vivo. Nanotheranostics 2017; 1:59-79. [PMID: 29071179 PMCID: PMC5646725 DOI: 10.7150/ntno.17896] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
Hyaluronic acid, a natural CD44 receptor ligand, has attracted attention in the past years as a macromolecular delivery of anticancer agents to cancer. At the same time, the clinical applications of Gemcitabine (Gem) have been hindered by its short biological half-life, high dose and development of drug resistance. This work reports the synthesis of a hyaluronic acid (HA) conjugate for nuclear imaging, and in vivo Gem delivery to CD44-expressing solid tumors in mice. HA was individually conjugated, via amide coupling, to Gem (HA-Gem), 4'-(aminomethyl)fluorescein hydrochloride (HA-4'-AMF) or tris(hydroxypyridinone) amine (HA-THP) for cancer therapy, in vitro tracking or single photon emission computed tomography/computed tomography (SPECT/CT) imaging, respectively. Gem conjugation to HA was directly confirmed by nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC) and UV-visible spectrometry, or indirectly by a nucleoside transporter inhibition study. Gem conjugation to HA improved its plasma stability, reduced blood hemolysis and resulted in delayed cytotoxicity in vitro. Uptake inhibition studies in colon CT26 and pancreatic PANC-1 cells, by flow cytometry, revealed that uptake of fluorescent HA conjugate is CD44 receptor and macropinocytosis-dependent. Gamma scintigraphy and SPECT/CT imaging confirmed the relatively prolonged blood circulation profile and uptake in CT26 (1.5 % ID/gm) and PANC-1 (1 % ID/gm) subcutaneous tumors at 24 h after intravenous injection in mice. Four injections of HA-Gem at ~15 mg/kg, over a 28-day period, resulted in significant delay in CT26 tumor growth and prolonged mice survival compared to the free drug. This study reports for the first time dual nuclear imaging and drug delivery (Gem) of HA conjugates to solid tumors in mice. The conjugates show great potential in targeting, imaging and killing of CD44-over expressing cells in vivo. This work is likely to open new avenues for the application of HA-based macromolecules in the field of image-guided delivery in oncology.
Collapse
Affiliation(s)
- Ravindra Dhar Dubey
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Rebecca Klippstein
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Naomi Hodgins
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Kuo-Ching Mei
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Jane Sosabowski
- Centre for Molecular Oncology, Bart's Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Robert C Hider
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Vincenzo Abbate
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| |
Collapse
|
16
|
|
17
|
Hanabayashi M, Takahashi N, Sobue Y, Hirabara S, Ishiguro N, Kojima T. Hyaluronan Oligosaccharides Induce MMP-1 and -3 via Transcriptional Activation of NF-κB and p38 MAPK in Rheumatoid Synovial Fibroblasts. PLoS One 2016; 11:e0161875. [PMID: 27564851 PMCID: PMC5001728 DOI: 10.1371/journal.pone.0161875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/12/2016] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To explore the effect of hyaluronan oligosaccharides (HAoligos) on interactions between HA and its principal receptor, CD44, in rheumatoid synovial fibroblasts (RSFs) and matrix metalloproteinase (MMP) production. METHODS RSFs were isolated from rheumatoid synovial tissue. HA distribution was visualized by immunocytochemistry. MMP-1 and MMP-3 induction was analyzed by real-time RT-PCR and immunoblotting. The interaction between HAoligos and their MMP-producing receptors was tested by blocking with anti-CD44 and anti-Toll-like receptor 4 (TLR-4). Phosphorylation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) was analyzed by immunoblotting. RESULTS Endogenous HA decreased after treatment with HAoligos, while MMP-1 and MMP-3 expression increased in a dose-dependent manner. Pretreatment with anti-CD44 or anti-TLR-4 antibody significantly reduced the effect of HAoligos on MMP-1 and MMP-3 mRNA expression. NF-κB and p38 MAPK phosphorylation was enhanced by HAoligos pretreated with anti-TLR-4, and HAoligo-induced MMP production was blocked with an inhibitor of NF-κB and p38 MAPK pathways. CONCLUSIONS Disruptive changes in CD44-HA interactions by HAoligos enhanced MMP-1 and MMP-3 production via activation of NF-κB and p38 MAPK signaling pathways in RSFs.
Collapse
Affiliation(s)
- Masahiro Hanabayashi
- Department of Orthopedic Surgery and Rheumatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobunori Takahashi
- Department of Orthopedic Surgery and Rheumatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| | - Yasumori Sobue
- Department of Orthopedic Surgery and Rheumatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinya Hirabara
- Department of Orthopedic Surgery and Rheumatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Ishiguro
- Department of Orthopedic Surgery and Rheumatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshihisa Kojima
- Department of Orthopedic Surgery and Rheumatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
18
|
Baggenstoss BA, Harris EN, Washburn JL, Medina AP, Nguyen L, Weigel PH. Hyaluronan synthase control of synthesis rate and hyaluronan product size are independent functions differentially affected by mutations in a conserved tandem B-X7-B motif. Glycobiology 2016; 27:154-164. [PMID: 27558839 DOI: 10.1093/glycob/cww089] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 01/27/2023] Open
Abstract
Hyaluronan synthases (HAS) normally make large (>MDa) hyaluronan (HA) products. Smaller HA fragments (e.g. 100-400 kDa) produced in vivo are associated with inflammation and cell signaling by HA receptors that bind small, but not large, HA. Although HA fragments can arise from breakdown by hyaluronidases, HAS might also be regulated directly to synthesize small HA. Here we examined the Streptococcus equisimilis HAS (SeHAS) C-terminus, which contains a tandem B-X7-B motif (K398-X7-R406-X7-K414), by testing the effects of 27 site-specific scanning mutations and 7 C-terminal truncations on HA synthesis activity and weight-average mass. Although HAS enzymes cannot be HA-binding proteins, these motifs are highly conserved within the Class I HAS family. Fifteen Arg406 mutants made large MDa HA (86-110% wildtype size), with specific activities from 70% to 177% of wildtype. In contrast, 10 of 12 Lys398 mutants made HA that was 8-14% of wildtype size (≤250-480 kDa), with specific activities from 14% to 64% of wildtype. Four nearly inactive (2% wildtype activity) C-terminal truncation mutants made MDa HA (56-71% wildtype). The results confirm earlier findings with Cys-mutants [Weigel PH, Baggenstoss BA. 2012. Hyaluronan synthase polymerizing activity and control of product size are discrete enzyme functions that can be uncoupled by mutagenesis of conserved cysteines. Glycobiology 22:1302-1310] that HAS uses two independent activities to control HA size and HA synthesis rate; these are two separate functions. We conclude that HAS regulatory modifications that alter tandem B-X7-B motif conformation could mimic these mutagenesis-induced effects, allowing HAS in vivo to make small HA directly. The results also support a model in which the tandem-motif region is part of the intra-HAS pore and interacts directly with HA.
Collapse
Affiliation(s)
- Bruce A Baggenstoss
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Edward N Harris
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jennifer L Washburn
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andria P Medina
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Long Nguyen
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Paul H Weigel
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
19
|
Pradère JP, Hernandez C, Koppe C, Friedman RA, Luedde T, Schwabe RF. Negative regulation of NF-κB p65 activity by serine 536 phosphorylation. Sci Signal 2016; 9:ra85. [PMID: 27555662 DOI: 10.1126/scisignal.aab2820] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nuclear factor κB (NF-κB) is a master regulator of inflammation and cell death. Whereas most of the activity of NF-κB is regulated through the inhibitor of κB (IκB) kinase (IKK)-dependent degradation of IκB, IKK also phosphorylates subunits of NF-κB. We investigated the contribution of the phosphorylation of the NF-κB subunit p65 at the IKK phosphorylation site serine 536 (Ser(536)) in humans, which is thought to be required for the activation and nuclear translocation of NF-κB. Through experiments with knock-in mice (S534A mice) expressing a mutant p65 with an alanine-to-serine substitution at position 534 (the murine homolog of human Ser(536)), we observed increased expression of NF-κB-dependent genes after injection of mice with the inflammatory stimulus lipopolysaccharide (LPS) or exposure to gamma irradiation, and the enhanced gene expression was most pronounced at late time points. Compared to wild-type mice, S534A mice displayed increased mortality after injection with LPS. Increased NF-κB signaling in the S534A mice was at least in part explained by the increased stability of the S534A p65 protein compared to that of the Ser(534)-phosphorylated wild-type protein. Together, our results suggest that Ser(534) phosphorylation of p65 in mice (and, by extension, Ser(536) phosphorylation of human p65) is not required for its nuclear translocation, but instead inhibits NF-κB signaling to prevent deleterious inflammation.
Collapse
Affiliation(s)
| | - Céline Hernandez
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Christiane Koppe
- Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
20
|
Kobayakawa T, Takahashi N, Sobue Y, Terabe K, Ishiguro N, Kojima T. Mechanical stress loading induces CD44 cleavage in human chondrocytic HCS-2/8 cells. Biochem Biophys Res Commun 2016; 478:1230-5. [PMID: 27545604 DOI: 10.1016/j.bbrc.2016.08.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
Abstract
Although excessive mechanical stress loading is known to induce articular cartilage degradation, the mechanism underlying this process is unclear. The interaction between hyaluronan (HA) and its primary receptor CD44 maintains the homeostasis of articular chondrocytes. CD44 cleavage and the generation of CD44-intracellular domain (ICD) can lead to the loss of extracellular matrices in chondrocytes. Here we studied the effects of cyclic tensile strain (CTS) loading, a representative mechanical stress, on CD44 cleavage. CTS loading (1 Hz and 20% elongation for 48 h) increased ADAM10 expression and CD44 cleavage in HCS-2/8 cells, a human chondrocytic cell line. Co-treatment with a chemical ADAM10 inhibitor significantly suppressed CTS loading-induced CD44 cleavage. Chemical inhibition of transient receptor potential vanilloid 4 (TRPV4) significantly suppressed CTS loading-induced ADAM10 expression and CD44 cleavage. Conversely, chemical activation of TRPV4 increased ADAM10 expression and enhanced CD44 cleavage. Our findings suggest that CTS loading significantly increases the expression of ADAM10, which in turn enhances CD44 cleavage in HCS-2/8 cells. The primary mechanoreceptor mediating this process is TRPV4. This signature event could provide an avenue for intervention in the prevention of cartilage degradation leading to OA.
Collapse
Affiliation(s)
- Tomonori Kobayakawa
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Nobunori Takahashi
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Yasumori Sobue
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kenya Terabe
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Naoki Ishiguro
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Toshihisa Kojima
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
21
|
Pritchard MT, McCracken JM. Identifying Novel Targets for Treatment of Liver Fibrosis: What Can We Learn from Injured Tissues which Heal Without a Scar? Curr Drug Targets 2016; 16:1332-46. [PMID: 26302807 DOI: 10.2174/1389450116666150825111439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/08/2015] [Indexed: 02/07/2023]
Abstract
The liver is unique in that it is able to regenerate. This regeneration occurs without formation of a scar in the case of non-iterative hepatic injury. However, when the liver is exposed to chronic liver injury, the purely regenerative process fails and excessive extracellular matrix proteins are deposited in place of normal liver parenchyma. While much has been discovered in the past three decades, insights into fibrotic mechanisms have not yet lead to effective therapies; liver transplant remains the only cure for advanced liver disease. In an effort to broaden the collection of possible therapeutic targets, this review will compare and contrast the liver wound healing response to that found in two types of wound healing: scarless wound healing of fetal skin and oral mucosa and scar-forming wound healing found in adult skin. This review will examine wound healing in the liver and the skin in relation to the role of humoral and cellular factors, as well as the extracellular matrix, in this process. While several therapeutic targets are similar between fibrotic liver and adult skin wound healing, others are unique and represent novel areas for hepatic anti-fibrotic research. In particular, investigations into the role of hyaluronan in liver fibrosis and fibrosis resolution are warranted.
Collapse
Affiliation(s)
- Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66161, USA.
| | | |
Collapse
|
22
|
Terabe K, Takahashi N, Takemoto T, Knudson W, Ishiguro N, Kojima T. Simvastatin inhibits CD44 fragmentation in chondrocytes. Arch Biochem Biophys 2016; 604:1-10. [PMID: 27242325 DOI: 10.1016/j.abb.2016.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 11/17/2022]
Abstract
In human osteoarthritic chondrocytes, the hyaluronan receptor CD44 undergoes proteolytic cleavage at the cell surface. CD44 cleavage is thought to require transit of CD44 into cholesterol-rich lipid rafts. The purpose of this study was to investigate whether statins exert a protective effect on articular chondrocytes due to diminution of cholesterol. Three model systems of chondrocytes were examined including human HCS-2/8 chondrosarcoma cells, human osteoarthritic chondrocytes and normal bovine articular chondrocytes. Treatment with IL-1β + Oncostatin M resulted in a substantial increase in CD44 fragmentation in each of the three chondrocyte models. Pre-incubation with simvastatin prior to treatment with IL-1β + Oncostatin M decreased the level of CD44 fragmentation, decreased the proportion of CD44 that transits into the lipid raft fractions, decreased ADAM10 activity and diminished the interaction between CD44 and ADAM10. In HCS-2/8 cells and bovine articular chondrocytes, fragmentation of CD44 was blocked by the knockdown of ADAM10. Inhibition of CD44 fragmentation by simvastatin also resulted in improved retention of pericellular matrix. Addition of cholesterol and farnesyl-pyrophosphate reversed the protective effects of simvastatin. Thus, the addition of simvastatin exerts positive effects on chondrocytes including reduced CD44 fragmentation and enhanced the retention of pericellular matrix.
Collapse
Affiliation(s)
- Kenya Terabe
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, NC 27834, USA
| | - Nobunori Takahashi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Toki Takemoto
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Warren Knudson
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, NC 27834, USA
| | - Naoki Ishiguro
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Toshihisa Kojima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
23
|
Ishizuka S, Askew EB, Ishizuka N, Knudson CB, Knudson W. 4-Methylumbelliferone Diminishes Catabolically Activated Articular Chondrocytes and Cartilage Explants via a Mechanism Independent of Hyaluronan Inhibition. J Biol Chem 2016; 291:12087-104. [PMID: 27129266 DOI: 10.1074/jbc.m115.709683] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Indexed: 01/12/2023] Open
Abstract
Depletion of the cartilage proteoglycan aggrecan is one of the earliest events that occurs in association with osteoarthritis. This loss is often accompanied by a coordinate loss in another glycosaminoglycan, hyaluronan. Chondrocytes experimentally depleted of cell-associated hyaluronan respond by switching to a pro-catabolic metabolism that includes enhanced production of endogenous inflammatory mediators and increased synthesis of matrix metalloproteinases. Hyaluronan turnover is also increased. Together, such a response provides for possible establishment of a self-perpetuating spiral of events that maintains or prolongs the pro-catabolic state. Chondrocytes or cartilage can also be activated by treatment with pro-inflammatory cytokines and mediators such as IL-1β, TNFα, LPS, fibronectin fragments, and hyaluronan oligosaccharides. To determine the mechanism of chondrocyte activation due to hyaluronan loss, a depletion method was required that did not include degrading the hyaluronan. In recent years, several laboratories have used the coumarin derivative, 4-methylumbelliferone, as a potent inhibitor of hyaluronan biosynthesis, due in part to its ability to sequester intracellular UDP-glucuronic acid and inhibition of hyaluronan synthase transcription. However, contrary to our expectation, although 4-methylumbelliferone was indeed an inhibitor of hyaluronan biosynthesis, this depletion did not give rise to an activation of chondrocytes or cartilage. Rather, 4-methylumbelliferone directly and selectively blocked gene products associated with the pro-catabolic metabolic state of chondrocytes and did so through a mechanism preceding and independent of hyaluronan inhibition. These data suggest that 4-methylumbelliferone has additional useful applications to block pro-inflammatory cell activation events but complicates how it is used for defining functions related to hyaluronan.
Collapse
Affiliation(s)
- Shinya Ishizuka
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Emily B Askew
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Naoko Ishizuka
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Cheryl B Knudson
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Warren Knudson
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| |
Collapse
|
24
|
Huang Y, Askew EB, Knudson CB, Knudson W. CRISPR/Cas9 knockout of HAS2 in rat chondrosarcoma chondrocytes demonstrates the requirement of hyaluronan for aggrecan retention. Matrix Biol 2016; 56:74-94. [PMID: 27094859 DOI: 10.1016/j.matbio.2016.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 12/13/2022]
Abstract
Hyaluronan (HA) plays an essential role in cartilage where it functions to retain aggrecan. Previous studies have suggested that aggrecan is anchored indirectly to the plasma membrane of chondrocytes via its binding to cell-associated HA. However, reagents used to test these observations such as hyaluronidase and HA oligosaccharides are short term and may have side activities that complicate interpretation. Using the CRISPR/Cas9 gene editing approach, a model system was developed by generating HA-deficient chondrocyte cell lines. HA synthase-2 (Has2)-specific single guide RNA was introduced into two different variant lines of rat chondrosarcoma chondrocytes; knockout clones were isolated and characterized. Two other members of the HA synthase gene family were expressed at very low relative copy number but showed no compensatory response in the Has2 knockouts. Wild type chondrocytes of both variants exhibited large pericellular matrices or coats extending from the plasma membrane. Addition of purified aggrecan monomer expanded the size of these coats as the proteoglycan became retained within the pericellular matrix. Has2 knockout chondrocytes lost all capacity to assemble a particle-excluding pericellular matrix and more importantly, no matrices formed around the knockout cells following the addition of purified aggrecan. When grown as pellet cultures so as to generate a bioengineered neocartilage tissue, the Has2 knockout chondrocytes assumed a tightly-compacted morphology as compared to the wild type cells. When knockout chondrocytes were transduced with Adeno-ZsGreen1-mycHas2, the cell-associated pericellular matrices were restored including the capacity to bind and incorporate additional exogenous aggrecan into the matrix. These results suggest that HA is essential for aggrecan retention and maintaining cell separation during tissue formation.
Collapse
Affiliation(s)
- Yi Huang
- Department of Anatomy and Cell Biology, East Carolina University, The Brody School of Medicine, Greenville, NC 27834, USA
| | - Emily B Askew
- Department of Anatomy and Cell Biology, East Carolina University, The Brody School of Medicine, Greenville, NC 27834, USA
| | - Cheryl B Knudson
- Department of Anatomy and Cell Biology, East Carolina University, The Brody School of Medicine, Greenville, NC 27834, USA
| | - Warren Knudson
- Department of Anatomy and Cell Biology, East Carolina University, The Brody School of Medicine, Greenville, NC 27834, USA.
| |
Collapse
|
25
|
Anti-obesity potential of enzymatic fragments of hyaluronan on high-fat diet-induced obesity in C57BL/6 mice. Biochem Biophys Res Commun 2016; 473:290-295. [PMID: 27012203 DOI: 10.1016/j.bbrc.2016.03.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/20/2016] [Indexed: 11/22/2022]
Abstract
Hyaluronan has diverse biological activities depending on its molecular size. The hyaluronan fragments (50 kDa) can decrease adipogenic differentiation in vitro. However, in vivo anti-obesitic effects of hyaluronan fragments have not been elucidated. Therefore, we examined the anti-obesity effects of hyaluronan fragments on high-fat diet induced obesity in C57BL/6 mice. Oral administration of hyaluronan fragments (200 mg/kg for 8 weeks) decreased body weight, adipose tissues, serum lipid (low-density lipoprotein cholesterol, triglyceride), and leptin level. Hyaluronan fragments decreased the hypertrophy of adipose tissue and ameliorated liver steatosis. The mRNA expression of leptin was reduced in adipocyte by treatment with hyaluronan fragments. Additionally, hyaluronan fragments enhanced the mRNA expression of PPAR-α and its target genes UCP-2 and decreased mRNA expression of PPAR- γ and fatty acid synthase in liver. In conclusions, hyaluronan fragments had marked effects on inhibiting the development of obesity in obese mice fed the high-fat diet. It suggested that enhancing PPAR-α and suppressing PPAR-γ expression are two possible mechanisms for the anti-obesitic effect of hyaluronan fragments.
Collapse
|
26
|
Pavan M, Galesso D, Secchieri C, Guarise C. Hyaluronic acid alkyl derivative: A novel inhibitor of metalloproteases and hyaluronidases. Int J Biol Macromol 2016; 84:221-6. [DOI: 10.1016/j.ijbiomac.2015.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/01/2015] [Indexed: 12/18/2022]
|
27
|
Enzymatic fragments of hyaluronan inhibit adipocyte differentiation in 3T3-L1 pre-adipocytes. Biochem Biophys Res Commun 2015; 467:623-8. [PMID: 26525853 DOI: 10.1016/j.bbrc.2015.10.104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 11/21/2022]
Abstract
Hyaluronan has diverse biological activities depending on its molecular size. High molecular weight hyaluronan (2000 kDa) is a major component of extracellular matrix, and has been used in wounding healing, extracellular matrix regeneration, and in the treatment of osteoarthritis. Hyaluronan fragments can stimulate inflammation or induce loss of extracellular matrix. Hyaluronan is expressed during adipocyte differentiation, and down regulation of hyaluronan synthesis can reduce adipogenic differentiation. However, the direct effects of hyaluronan fragments on adipocyte differentiation have not been elucidated. Therefore, we prepared hyaluronan fragments by enzymatic digestion, and examined the inhibitory effects of these hyaluronan fragments on the accumulation of lipid droplets and on adipogenic gene mRNA expression in differentiating 3T3-L1 pre-adipocytes. Medium sized hyaluronan fragments (50 kDa) decreased lipid droplet accumulation in a dose-dependent manner. However, high molecular weight hyaluronan did not inhibit lipid droplet accumulation when used at a concentration of 600 μg/ml. Two or 4 day treatments with medium molecular weight of hyaluronan resulted in similar inhibitory levels of lipid accumulation as did treatment for 8 days. Medium sized hyaluronan inhibited the differentiation of 3T3-L1 pre-adipocytes during the early stages of adipogenesis. When 3T3-L1 cells were treated with 180 μg/ml of medium sized hyaluronan, the mRNAs for the master adipogenic transcription factors PPAR-γ and C/EBP-α were inhibited. Additionally, medium molecular weight hyaluronan suppressed mRNA expression of PPAR-γ target genes, including aP2 and FAS. This study is the first to report that medium molecular weight hyaluronan fragments can inhibit adipocyte differentiation.
Collapse
|
28
|
Onodera Y, Teramura T, Takehara T, Shigi K, Fukuda K. Reactive oxygen species induce Cox-2 expression via TAK1 activation in synovial fibroblast cells. FEBS Open Bio 2015; 5:492-501. [PMID: 26110105 PMCID: PMC4476901 DOI: 10.1016/j.fob.2015.06.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/15/2015] [Accepted: 06/02/2015] [Indexed: 11/05/2022] Open
Abstract
Oxidative stress in the arthritis joint is involved in generating mediators for inflammation. Oxidative stress-induced expression of Cox-2 was mediated by MAPKs and NF-κB. ROS-induced MAPKs and NF-κB were attenuated by inhibition of MAPKKK TAK1. Inhibition of TAK1 activity resulted in reduced expression of Cox-2 and PGE2. ROS-induced TAK1 activation and Cox-2 expression was inhibited by antioxidants N-acetyl cysteamine and hyaluronic acid.
Oxidative stress within the arthritis joint has been indicated to be involved in generating mediators for tissue degeneration and inflammation. COX-2 is a mediator in inflammatory action, pain and some catabolic reactions in inflamed tissues. Here, we demonstrated a direct relationship between oxidative stress and Cox-2 expression in the bovine synovial fibroblasts. Furthermore, we elucidated a novel mechanism, in which oxidative stress induced phosphorylation of MAPKs and NF-κB through TAK1 activation and resulted in increased Cox-2 and prostaglandin E2 expression. Finally, we demonstrated that ROS-induced Cox-2 expression was inhibited by supplementation of an antioxidant such as N-acetyl cysteamine and hyaluronic acid in vitro and in vivo. From these results, we conclude that oxidative stress is an important factor for generation of Cox-2 in synovial fibroblasts and thus its neutralization may be an effective strategy in palliative therapy for chronic joint diseases.
Collapse
Affiliation(s)
- Yuta Onodera
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takeshi Teramura
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Toshiyuki Takehara
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kanae Shigi
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kanji Fukuda
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
29
|
Luo N, Knudson W, Askew EB, Veluci R, Knudson CB. CD44 and hyaluronan promote the bone morphogenetic protein 7 signaling response in murine chondrocytes. Arthritis Rheumatol 2014; 66:1547-58. [PMID: 24497488 DOI: 10.1002/art.38388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/28/2014] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Cell-matrix interactions promote cartilage homeostasis. We previously found that Smad1, the transcriptional modulator of the canonical bone morphogenetic protein 7 (BMP-7) pathway, interacted with the cytoplasmic domain of CD44, the principal hyaluronan receptor on chondrocytes. To elucidate the physiologic function of CD44-Smad1 interactions, as well as the role of hyaluronan, we studied the response of chondrocytes isolated from CD44(-/-) and BALB/c (wild-type [WT]) mice to stimulation with BMP-7. METHODS In primary murine chondrocytes, CD44 expression was decreased by small interfering RNA (siRNA) transfection or was enhanced by plasmid transfection. Pericellular hyaluronan was removed by hyaluronidase treatment, or its endogenous synthesis was inhibited. Changes in response to BMP-7 stimulation were evaluated by Western blotting of Smad1 phosphorylation and aggrecan messenger RNA (mRNA) expression. RESULTS Chondrocytes from CD44(-/-) mice and WT mice transfected with CD44 siRNA were less responsive than untransfected chondrocytes from WT mice to BMP-7. CD44(-/-) mouse chondrocytes transfected with pCD44 showed increased sensitivity to BMP-7. Significant increases in aggrecan mRNA were observed in WT mouse chondrocytes in response to 10 ng/ml of BMP-7, whereas at least 100 ng/ml of BMP-7 was required for CD44(-/-) mouse chondrocytes. However, in chondrocytes from CD44(-/-) and WT mice, hyaluronidase treatment decreased cellular responses to BMP-7. Treatment of both bovine and murine chondrocytes with 4-methylumbelliferone to reduce the synthesis of endogenous hyaluronan confirmed that hyaluronan promoted BMP-7 signaling. CONCLUSION Taken together, these investigations into the mechanisms underlying BMP-7 signaling in chondrocytes revealed that while hyaluronan-dependent pericellular matrix is critical for BMP-7 signaling, the expression of CD44 promotes the cellular response to lower concentrations of BMP-7.
Collapse
Affiliation(s)
- Na Luo
- East Carolina University, Brody School of Medicine, Greenville, North Carolina; Nankai University School of Medicine, Tianjin, China
| | | | | | | | | |
Collapse
|
30
|
Skaalure SC, Dimson SO, Pennington AM, Bryant SJ. Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering. Acta Biomater 2014; 10:3409-20. [PMID: 24769116 DOI: 10.1016/j.actbio.2014.04.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/26/2014] [Accepted: 04/14/2014] [Indexed: 12/11/2022]
Abstract
Hydrolytically biodegradable poly(ethylene glycol) (PEG) hydrogels offer a promising platform for chondrocyte encapsulation and tuning degradation for cartilage tissue engineering, but offer no bioactive cues to encapsulated cells. This study tests the hypothesis that a semi-interpenetrating network of entrapped hyaluronic acid (HA), a bioactive molecule that binds cell surface receptors on chondrocytes, and crosslinked degradable PEG improves matrix synthesis by encapsulated chondrocytes. Degradation was achieved by incorporating oligo (lactic acid) segments into the crosslinks. The effects of HA molecular weight (MW) (2.9×10(4) and 2×10(6)Da) and concentration (0.5 and 5mgg(-1)) were investigated. Bovine chondrocytes were encapsulated in semi-interpenetrating networks and cultured for 4weeks. A steady release of HA was observed over the course of the study with 90% released by 4weeks. Incorporation of HA led to significantly higher cell numbers throughout the culture period. After 8days, HA increased collagen content per cell, increased aggrecan-positive cells, while decreasing the deposition of hypertrophic collagen X, but these effects were not sustained long term. Measuring total sulfated glycosaminoglycan (sGAG) and collagen content within the constructs and released to the culture medium after 4weeks revealed that total matrix synthesis was elevated by high concentrations of HA, indicating that HA stimulated matrix production although this matrix was not retained within the hydrogels. Matrix-degrading enzymes were elevated in the low-, but not the high-MW HA. Overall, incorporating high-MW HA into degrading hydrogels increased chondrocyte number and sGAG and collagen production, warranting further investigations to improve retention of newly synthesized matrix molecules.
Collapse
Affiliation(s)
- Stacey C Skaalure
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA; BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Shash O Dimson
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Ashley M Pennington
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA; BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
31
|
Vigetti D, Karousou E, Viola M, Deleonibus S, De Luca G, Passi A. Hyaluronan: Biosynthesis and signaling. Biochim Biophys Acta Gen Subj 2014; 1840:2452-9. [DOI: 10.1016/j.bbagen.2014.02.001] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/30/2014] [Accepted: 02/01/2014] [Indexed: 12/28/2022]
|
32
|
Ono Y, Ishizuka S, Knudson CB, Knudson W. Chondroprotective Effect of Kartogenin on CD44-Mediated Functions in Articular Cartilage and Chondrocytes. Cartilage 2014; 5:172-80. [PMID: 25610529 PMCID: PMC4297178 DOI: 10.1177/1947603514528354] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE A recent report identified the small molecule kartogenin as a chondrogenic and chondroprotective agent. Since changes in hyaluronan metabolism occur during cartilage degeneration in osteoarthritis, we began studies to determine whether there was a connection between extracellular hyaluronan, CD44-hyaluronan interactions and the effects of kartogenin on articular chondrocytes. METHODS Chondrocytes cultured in monolayers, bioengineered neocartilages, or cartilage explants were treated with kartogenin with or without stimulation by IL-1β. Accumulation of matrix was visualized by a particle exclusion assay or by safranin O staining and release of sulfated glycosaminoglycans was determined. Production of aggrecanases and aggrecan G1-ITEGE neoepitope, fragmentation of CD44 and the SMAD1/5/8 signaling pathway were evaluated by western blotting. RESULTS Kartogenin treatment enhanced chondrocyte pericellular matrix assembly and retention in the presence of IL-1β. The chondroprotective effects of kartogenin on IL-1β-induced release of sulfated glycosaminoglycans from articular cartilage explants, reduction in safranin O staining of neocartilage discs as well as a reduction in aggrecan G1-ITEGE neoepitope in chondrocyte and explant cartilage cultures were observed. Kartogenin partially blocked the IL-1β-induced increased expression of ADAMTS-5. Additionally, kartogenin-treated articular chondrocytes exhibited a decrease in CD44 proteolytic fragmentation. However, kartogenin treatment did not enhance proteoglycan in control, non-IL-1β-treated cultures. Similarly, kartogenin enhanced the SMAD1 phosphorylation but only following pretreatment with IL-1β. CONCLUSION These studies provide novel information on the chondroprotective function of kartogenin in adult articular cartilage. The effects of kartogenin are significant after activation of chondrocytic chondrolysis, which may occur following disruption of homeostasis maintained by hyaluronan-CD44 interactions.
Collapse
Affiliation(s)
- Yohei Ono
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan,Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Shinya Ishizuka
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan,Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Cheryl B. Knudson
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Warren Knudson
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|
33
|
Julovi SM, Ito H, Hiramitsu T, Yasuda T, Nakamura T. Hyaluronan inhibits IL-1β-stimulated collagenase production via down-regulation of phosphorylated p38 in SW-1353 human chondrosarcoma cells. Mod Rheumatol 2014. [DOI: 10.3109/s10165-008-0067-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Hamamura K, Zhang P, Zhao L, Shim JW, Chen A, Dodge TR, Wan Q, Shih H, Na S, Lin CC, Sun HB, Yokota H. Knee loading reduces MMP13 activity in the mouse cartilage. BMC Musculoskelet Disord 2013; 14:312. [PMID: 24180431 PMCID: PMC3924329 DOI: 10.1186/1471-2474-14-312] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/18/2013] [Indexed: 11/17/2022] Open
Abstract
Background Moderate loads with knee loading enhance bone formation, but its effects on the maintenance of the knee are not well understood. In this study, we examined the effects of knee loading on the activity of matrix metalloproteinase13 (MMP13) and evaluated the role of p38 MAPK and Rac1 GTPase in the regulation of MMP13. Methods Knee loading (0.5–3 N for 5 min) was applied to the right knee of surgically-induced osteoarthritis (OA) mice as well as normal (non-OA) mice, and MMP13 activity in the femoral cartilage was examined. The sham-loaded knee was used as a non-loading control. We also employed primary non-OA and OA human chondrocytes as well as C28/I2 chondrocyte cells, and examined MMP13 activity and molecular signaling in response to shear at 2–20 dyn/cm2. Results Daily knee loading at 1 N for 2 weeks suppressed cartilage destruction in the knee of OA mice. Induction of OA elevated MMP13 activity and knee loading at 1 N suppressed this elevation. MMP13 activity was also increased in primary OA chondrocytes, and this increase was attenuated by applying shear at 10 dyn/cm2. Load-driven reduction in MMP13 was associated with a decrease in the phosphorylation level of p38 MAPK (p-p38) and NFκB (p-NFκB). Molecular imaging using a fluorescence resonance energy transfer (FRET) technique showed that Rac1 activity was reduced by shear at 10 dyn/cm2 and elevated by it at 20 dyn/cm2. Silencing Rac1 GTPase significantly reduced MMP13 expression and p-p38 but not p-NFκB. Transfection of a constitutively active Rac1 GTPase mutant increased MMP13 activity, while a dominant negative mutant decreased it. Conclusions Knee loading reduces MMP13 activity at least in part through Rac1-mediated p38 MAPK signaling. This study suggests the possibility of knee loading as a therapy not only for strengthening bone but also preventing tissue degradation of the femoral cartilage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, SL220C, 723 West Michigan Street, Indianapolis, IN 46202, USA.
| |
Collapse
|
35
|
Prehm P. Curcumin analogue identified as hyaluronan export inhibitor by virtual docking to the ABC transporter MRP5. Food Chem Toxicol 2013; 62:76-81. [PMID: 23978416 DOI: 10.1016/j.fct.2013.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 08/13/2013] [Accepted: 08/16/2013] [Indexed: 11/29/2022]
Abstract
Hyaluronan is overproduced in many diseases including metastasis, inflammation or ischemia, but there is no drug to attenuate hyaluronan production. Hyaluronan is exported from fibroblasts by the multidrug resistance associated protein 5 (MRP5) which is inhibited by the plant phenols curcumin or xanthohumol. We performed virtual docking and chemical synthesis of analogues to optimize the inhibitors. The AutoDock software was used to identify the binding cavity within the open conformation of MRP5. Inhibitory plant phenols bound to the ATP binding site between the two nucleotide binding domains NBD1 and NBD2. This binding cavity was chosen to screen about 120 derivatives and analogues. The superior hyaluronan export inhibitor was 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadien-3-one (hylin). It inhibited hyaluronan export from fibroblasts with an IC50 of 4.9 μM. Hylin is a minor component in natural curcumin preparations and has previously been described as anti-metastatic and anti-inflammatory. Since curcumin itself is unstable under physiological conditions, the active component for many cell biological and pharmaceutical effects of natural curcumin preparations could be hylin that acts by hyaluronan export inhibition.
Collapse
Affiliation(s)
- Peter Prehm
- Muenster University Hospital, Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstrasse 15, D-48149 Muenster, Germany.
| |
Collapse
|
36
|
Quero L, Klawitter M, Schmaus A, Rothley M, Sleeman J, Tiaden AN, Klasen J, Boos N, Hottiger MO, Wuertz K, Richards PJ. Hyaluronic acid fragments enhance the inflammatory and catabolic response in human intervertebral disc cells through modulation of toll-like receptor 2 signalling pathways. Arthritis Res Ther 2013; 15:R94. [PMID: 23968377 PMCID: PMC3978638 DOI: 10.1186/ar4274] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/22/2013] [Indexed: 12/12/2022] Open
Abstract
Introduction Intervertebral disc (IVD) degeneration is characterized by extracellular matrix breakdown and is considered to be a primary cause of discogenic back pain. Although increases in pro-inflammatory cytokine levels within degenerating discs are associated with discogenic back pain, the mechanisms leading to their overproduction have not yet been elucidated. As fragmentation of matrix components occurs during IVD degeneration, we assessed the potential involvement of hyaluronic acid fragments (fHAs) in the induction of inflammatory and catabolic mediators. Methods Human IVD cells isolated from patient biopsies were stimulated with fHAs (6 to 12 disaccharides) and their effect on cytokine and matrix degrading enzyme production was assessed using quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The involvement of specific cell surface receptors and signal transduction pathways in mediating the effects of fHAs was tested using small interfering RNA (siRNA) approaches and kinase inhibition assays. Results Treatment of IVD cells with fHAs significantly increased mRNA expression levels of interleukin (IL)-1β, IL-6, IL-8, cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-1 and -13. The stimulatory effects of fHAs on IL-6 protein production were significantly impaired when added to IVD cells in combination with either Toll-like receptor (TLR)-2 siRNA or a TLR2 neutralizing antibody. Furthermore, the ability of fHAs to enhance IL-6 and MMP-3 protein production was found to be dependent on the mitogen-activated protein (MAP) kinase signaling pathway. Conclusions These findings suggest that fHAs may have the potential to mediate IVD degeneration and discogenic back pain through activation of the TLR2 signaling pathway in resident IVD cells.
Collapse
|
37
|
Mellor L, Knudson CB, Hida D, Askew EB, Knudson W. Intracellular domain fragment of CD44 alters CD44 function in chondrocytes. J Biol Chem 2013; 288:25838-25850. [PMID: 23884413 DOI: 10.1074/jbc.m113.494872] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The hyaluronan receptor CD44 undergoes sequential proteolytic cleavage at the cell surface. The initial cleavage of the CD44 extracellular domain is followed by a second intramembranous cleavage of the residual CD44 fragment, liberating the C-terminal cytoplasmic tail of CD44. In this study conditions that promote CD44 cleavage resulted in a diminished capacity to assemble and retain pericellular matrices even though sufficient non-degraded full-length CD44 remained. Using stable and transient overexpression of the cytoplasmic domain of CD44, we determined that the intracellular domain interfered with anchoring of the full-length CD44 to the cytoskeleton and disrupted the ability of the cells to bind hyaluronan and assemble a pericellular matrix. Co-immunoprecipitation assays were used to determine whether the mechanism of this interference was due to competition with actin adaptor proteins. CD44 of control chondrocytes was found to interact and co-immunoprecipitate with both the 65- and 130-kDa isoforms of ankyrin-3. Moreover, this interaction with ankyrin-3 proteins was diminished in cells overexpressing the CD44 intracellular domain. Mutating the putative ankyrin binding site of the transiently transfected CD44 intracellular domain diminished the inhibitory effects of this protein on matrix retention. Although CD44 in other cells types has been shown to interact with members of the ezrin/radixin/moesin (ERM) family of adaptor proteins, only modest interactions between CD44 and moesin could be demonstrated in chondrocytes. The data suggest that release of the CD44 intracellular domain into the cytoplasm of cells such as chondrocytes exerts a competitive or dominant-negative effect on the function of full-length CD44.
Collapse
Affiliation(s)
- Liliana Mellor
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Cheryl B Knudson
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Daisuke Hida
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Emily B Askew
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Warren Knudson
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834.
| |
Collapse
|
38
|
Lu HT, Sheu MT, Lin YF, Lan J, Chin YP, Hsieh MS, Cheng CW, Chen CH. Injectable hyaluronic-acid-doxycycline hydrogel therapy in experimental rabbit osteoarthritis. BMC Vet Res 2013; 9:68. [PMID: 23574696 PMCID: PMC3637605 DOI: 10.1186/1746-6148-9-68] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/26/2013] [Indexed: 12/16/2022] Open
Abstract
Background Osteoarthritis (OA) is a common joint disease that causes disabilities in elderly adults. However, few long-lasting pharmacotherapeutic agents with low side effects have been developed to treat OA. We evaluated the therapeutic effects of intra-articular injections of hydrogels containing hyaluronic acid (HA) and doxycycline (DOX) in a rabbit OA model. Results Thirteen week old New Zealand White rabbits undergone a partial meniscectomy and unilateral fibular ligament transection were administered with either normal saline (NT), HA, DOX or HA-DOX hydrogels on day 0, 3, 6, 9 and 12; animals were also examined the pain assessment in every three days. The joint samples were taken at day 14 post-surgery for further histopathological evaluation. The degree of pain was significantly attenuated after day 7 post-treatment with both HA and HA-DOX hydrogels. In macroscopic appearance, HA-DOX hydrogel group showed a smoother cartilage surface, no or minimal signs of ulceration, smaller osteophytes, and less fissure formation in compare to HA or DOX treatment alone. In the areas with slight OA changes, HA-DOX hydrogel group exhibited normal distribution of chondrocytes, indicating the existence of cartilage regeneration. In addition, HA-DOX hydrogels also ameliorated the progression of OA by protecting the injury of articular cartilage layer and restoring the elastoviscosity. Conclusion Overall, from both macroscopic and microscopic data of this study indicate the injectable HA-DOX hydrogels presented as a long-lasting pharmacotherapeutic agent to apply for OA therapy.
Collapse
Affiliation(s)
- Hsien-Tsung Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, No. 250 Wu-Hsing Street, Xinyi District, Taipei City 110, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Mainil-Varlet P, Schiavinato A, Ganster MM. Efficacy Evaluation of a New Hyaluronan Derivative HYADD ® 4-G to Maintain Cartilage Integrity in a Rabbit Model of Osteoarthritis. Cartilage 2013; 4:28-41. [PMID: 23550192 PMCID: PMC3583149 DOI: 10.1177/1947603512455193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Objective: To test the efficacy of a hyaluronan derivative (HYADD®4-G) in a model of osteoarthritis (anterior cruciate ligament [ACLT]) and to compare its efficacy with the injection of growth factors. Design: In a first experimental set-up, specially selected for treatment scheme with published studies on hyaluronan or growth factor efficacy in osteoarthritis, saline, HYADD®4-G, rh-BMP-7, and the treatments of rh-BMP-7 or rh-BMP-2 with HYADD®4-G were injected after ACLT, for five times starting 3 weeks after ACLT. Euthanasia was at day 70. The knees were evaluated by gross morphological observation, x-ray, and histology (Study A). In a second experimental set-up selected to evaluate the efficacy of three viscosupplement injections, starting 4 weeks after ACTL, HYADD®4-G was compared to saline (Study B). Results: (A) X-ray analysis showed more damage in the saline group than all other treatment groups (2.67 ± 0.61 for saline, 0.83 ± 0.26 for HYADD®4-G, 1.67 ± 0.82 for HYADD®4-G with rh-BMP-2, 0.75 ± 0.76 for HYADD®4-G with rh-BMP-7, and 1.58 ± 0.49 for rh-BMP-7), P < 0.05. In the femoral condyle, the Mankin's score for HYADD®4-G with rh-BMP-2, HYADD®4-G with rh-BMP-7, and rh-BMP7 alone was statistically lower compared to saline in the medial part; in the lateral part a significant lower value was observed in the HYADD®4-G with the rh-BMP-2 group. (B) The Kellgren and Lawrence score and Mankin's score was lower in the HYADD®4-G group than in the saline group (P < 0.002 and P = 0.0031). Conclusions: These two studies suggest that HYADD®4-G delayed the cartilage degeneration and that the association of HYADD®4-G with growth factors is synergistic.
Collapse
|
40
|
The Role of HA and Has2 in the Development and Function of the Skeleton. EXTRACELLULAR MATRIX IN DEVELOPMENT 2013. [DOI: 10.1007/978-3-642-35935-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Hirabara S, Kojima T, Takahashi N, Hanabayashi M, Ishiguro N. Hyaluronan inhibits TLR-4 dependent cathepsin K and matrix metalloproteinase 1 expression in human fibroblasts. Biochem Biophys Res Commun 2012; 430:519-22. [PMID: 23232115 DOI: 10.1016/j.bbrc.2012.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/02/2012] [Indexed: 01/01/2023]
Abstract
Rheumatoid synovial fibroblasts (RSF) are activated by toll-like receptor (TLR) signaling pathways during the pathogenesis of rheumatoid arthritis (RA). Cathepsin K is highly expressed by RSF, and is known to play a key role in the degradation of type I and type II collagen. Cathepsin K is considered to be implicated in the degradation of bone and cartilage in RA. Recent observations have shown that hyaluronan (HA) is an important inhibitor of inflammation. In the present study, we show that lipopolysaccharide (LPS) stimulation significantly increases cathepsin K expression by real-time PCR and western blotting analysis via a TLR-4 signaling pathway. Furthermore, we demonstrate that HA suppresses LPS-induced cathepsin K expression, which is dependent on CD44 but not intercellular adhesion molecule-1 (ICAM-1) interaction. We also show that HA suppresses LPS-induced matrix metalloproteinase-1 (MMP-1) expression, which is dependent on both CD44 and ICAM-1 interaction. We conclude that the anti-inflammatory effect of HA occurs through crosstalk between more than one HA receptor. Our study provides evidence for HA mediated suppression of LPS-induced cathepsin K and MMP-1 expression, supporting a protective effect of HA in RA.
Collapse
Affiliation(s)
- Shinya Hirabara
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | |
Collapse
|
42
|
The Role of Hyaluronan and CD44 in the Pathogenesis of Lupus Nephritis. Autoimmune Dis 2012; 2012:207190. [PMID: 22900150 PMCID: PMC3415140 DOI: 10.1155/2012/207190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/11/2012] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototype autoimmune disease that affects multiorgan systems. Lupus nephritis is one of the most severe manifestations of SLE whereby immune-mediated inflammation can lead to permanent damage within the glomerular, tubulo-interstitial, and vascular compartments of the kidney, resulting in acute or chronic renal failure. The mechanisms that regulate host inflammatory responses and tissue injury are incompletely understood. Accumulating evidence suggests that hyaluronan and its interaction with its cell surface receptor CD44 plays an important role in mediating pathogenic mechanisms in SLE. This paper discusses the putative mechanisms through which hyaluronan and CD44 contribute to the pathogenesis of SLE, with particular emphasis on lupus nephritis.
Collapse
|
43
|
Responte DJ, Natoli RM, Athanasiou KA. Identification of potential biophysical and molecular signalling mechanisms underlying hyaluronic acid enhancement of cartilage formation. J R Soc Interface 2012; 9:3564-73. [PMID: 22809846 DOI: 10.1098/rsif.2012.0399] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study determined the effects of exogenous hyaluronic acid (HA) on the biomechanical and biochemical properties of self-assembled bovine chondrocytes, and investigated biophysical and genetic mechanisms underlying these effects. The effects of HA commencement time, concentration, application duration and molecular weight were examined using histology, biomechanics and biochemistry. Additionally, the effects of HA application on sulphated glycosaminoglycan (GAG) retention were assessed. To investigate the influence of HA on gene expression, microarray analysis was conducted. HA treatment of developing neocartilage increased compressive stiffness onefold and increased sulphated GAG content by 35 per cent. These effects were dependent on HA molecular weight, concentration and application commencement time. Additionally, applying HA increased sulphated GAG retention within self-assembled neotissue. HA administration also upregulated 503 genes, including multiple genes associated with TGF-β1 signalling. Increased sulphated GAG retention indicated that HA could enhance compressive stiffness by increasing the osmotic pressure that negatively charged GAGs create. The gene expression data demonstrate that HA treatment differentially regulates genes related to TGF-β1 signalling, revealing a potential mechanism for altering matrix composition. These results illustrate the potential use of HA to improve cartilage regeneration efforts and better understand cartilage development.
Collapse
Affiliation(s)
- Donald J Responte
- Department of Bioengineering, Rice University, , 6500 Main St., Suite 135, Houston, TX 77030, USA
| | | | | |
Collapse
|
44
|
Hyaluronan regulates PPARγ and inflammatory responses in IL-1β-stimulated human chondrosarcoma cells, a model for osteoarthritis. Carbohydr Polym 2012; 90:1168-75. [PMID: 22840054 DOI: 10.1016/j.carbpol.2012.06.071] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/12/2012] [Accepted: 06/23/2012] [Indexed: 11/20/2022]
Abstract
The carbohydrate polymer, hyaluronan, is a major component of the extracellular matrix in animal tissues. Exogenous hyaluronan has been used to treat osteoarthritis (OA), a degenerative joint disease involving inflammatory changes. The underlying mechanisms of hyaluronan in OA are not fully understood. Pro-inflammatory interleukin (IL)-1β downregulates peroxisome proliferator-activated receptor gamma (PPARγ), and increases expression of matrix metalloproteinases (MMPs) which are responsible for the degeneration of articular cartilage. The effects of low- and high-molecular-weight hyaluronan (oligo-HA and HMW-HA) on the inflammatory genes were determined in human SW-1353 chondrosarcoma cells. HMW-HA antagonized the effects of IL-1β by increasing PPARγ and decreasing cyclooxygenase (COX)-2, MMP-1, and MMP-13 levels. It promoted Akt, but suppressed mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NFκB) signaling, indicating anti-inflammatory effects. In contrast, the cells had overall opposite responses to oligo-HA. In conclusion, HMW-HA and oligo-HA exerted differential inflammatory responses via PPARγ in IL-1β-treated chondrosarcoma cells.
Collapse
|
45
|
Montgomery N, Hill A, McFarlane S, Neisen J, O'Grady A, Conlon S, Jirstrom K, Kay EW, Waugh DJJ. CD44 enhances invasion of basal-like breast cancer cells by upregulating serine protease and collagen-degrading enzymatic expression and activity. Breast Cancer Res 2012; 14:R84. [PMID: 22621373 PMCID: PMC3446347 DOI: 10.1186/bcr3199] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/18/2012] [Accepted: 05/23/2012] [Indexed: 01/18/2023] Open
Abstract
Introduction Basal-like breast cancers (BL-BCa) have the worst prognosis of all subgroups of this disease. Hyaluronan (HA) and the HA receptor CD44 have a long-standing association with cell invasion and metastasis of breast cancer. The purpose of this study was to establish the relation of CD44 to BL-BCa and to characterize how HA/CD44 signaling promotes a protease-dependent invasion of breast cancer (BrCa) cells. Methods CD44 expression was determined with immunohistochemistry (IHC) analysis of a breast cancer tissue microarray (TMA). In vitro experiments were performed on a panel of invasive BL-BCa cell lines, by using quantitative polymerase chain reaction (PCR), immunoblotting, protease activity assays, and invasion assays to characterize the basis of HA-induced, CD44-mediated invasion. Results Expression of the hyaluronan (HA) receptor CD44 associated with the basal-like subgroup in a cohort of 141 breast tumor specimens (P = 0.018). Highly invasive cells of the representative BL-BCa cell line, MDA-MB-231 (MDA-MB-231Hi) exhibited increased invasion through a basement membrane matrix (Matrigel) and collagen. In further experiments, HA-induced promotion of CD44 signaling potentiated expression of urokinase plasminogen activator (uPA) and its receptor uPAR, and underpinned an increased cell-associated activity of this serine protease in MDA-MB-231Hi and a further BL-BCa cell line, Hs578T cells. Knockdown of CD44 attenuated both basal and HA-stimulated uPA and uPAR gene expression and uPA activity. Inhibition of uPA activity by using (a) a gene-targeted RNAi or (b) a small-molecule inhibitor of uPA attenuated HA-induced invasion of MDA-MB-231Hi cells through Matrigel. HA/CD44 signaling also was shown to increase invasion of MDA-MB-231 cells through collagen and to potentiate the collagen-degrading activity of MDA-MB-231Hi cells. CD44 signaling was subsequently shown to upregulate expression of two potent collagen-degrading enzymes, the cysteine protease cathepsin K and the matrix metalloprotease MT1-MMP. RNAi- or shRNA-mediated depletion of CD44 in MDA-MB-231Hi cells decreased basal and HA-induced cathepsin K and MT1-MMP expression, reduced the collagen-degrading activity of the cell, and attenuated cell invasion through collagen. Pharmacologic inhibition of cathepsin K or RNAi-mediated depletion of MT1-MMP also attenuated MDA-MB-231Hi cell invasion through collagen. Conclusion HA-induced CD44 signaling increases a diverse spectrum of protease activity to facilitate the invasion associated with BL-BCa cells, providing new insights into the molecular basis of CD44-promoted invasion.
Collapse
Affiliation(s)
- Nicola Montgomery
- Centre for Cancer Research and Cell Biology, Queens University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Liu Y, Lai L, Chen Q, Song Y, Xu S, Ma F, Wang X, Wang J, Yu H, Cao X, Wang Q. MicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloid-derived suppressor cells via targeting of PTEN. THE JOURNAL OF IMMUNOLOGY 2012; 188:5500-10. [PMID: 22544933 DOI: 10.4049/jimmunol.1103505] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) potently suppress the anti-tumor immune responses and also orchestrate the tumor microenvironment that favors tumor angiogenesis and metastasis. The molecular networks regulating the accumulation and functions of tumor-expanded MDSCs are largely unknown. In this study, we identified microRNA-494 (miR-494), whose expression was dramatically induced by tumor-derived factors, as an essential player in regulating the accumulation and activity of MDSCs by targeting of phosphatase and tensin homolog (PTEN) and activation of the Akt pathway. TGF-β1 was found to be the main tumor-derived factor responsible for the upregulation of miR-494 in MDSCs. Expression of miR-494 not only enhanced CXCR4-mediated MDSC chemotaxis but also altered the intrinsic apoptotic/survival signal by targeting of PTEN, thus contributing to the accumulation of MDSCs in tumor tissues. Consequently, downregulation of PTEN resulted in increased activity of the Akt pathway and the subsequent upregulation of MMPs for facilitation of tumor cell invasion and metastasis. Knockdown of miR-494 significantly reversed the activity of MDSCs and inhibited the tumor growth and metastasis of 4T1 murine breast cancer in vivo. Collectively, our findings reveal that TGF-β1-induced miR-494 expression in MDSCs plays a critical role in the molecular events governing the accumulation and functions of tumor-expanded MDSCs and might be identified as a potential target in cancer therapy.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pathophysiological changes to the peritoneal membrane during PD-related peritonitis: the role of mesothelial cells. Mediators Inflamm 2012; 2012:484167. [PMID: 22577250 PMCID: PMC3337720 DOI: 10.1155/2012/484167] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 01/18/2012] [Accepted: 01/18/2012] [Indexed: 01/08/2023] Open
Abstract
The success of peritoneal dialysis (PD) is dependent on the structural and functional integrity of the
peritoneal membrane. The mesothelium lines the peritoneal membrane and is the first line of
defense against chemical and/or bacterial insult. Peritonitis remains a major complication of PD and
is a predominant cause of technique failure, morbidity and mortality amongst PD patients. With
appropriate antibiotic treatment, peritonitis resolves without further complications, but in some PD
patients excessive peritoneal inflammatory responses lead to mesothelial cell exfoliation and
thickening of the submesothelium, resulting in peritoneal fibrosis and sclerosis. The detrimental
changes in the peritoneal membrane structure and function correlate with the number and severity
of peritonitis episodes and the need for catheter removal. There is evidence that despite clinical
resolution of peritonitis, increased levels of inflammatory and fibrotic mediators may persist in the
peritoneal cavity, signifying persistent injury to the mesothelial cells. This review will describe the
structural and functional changes that occur in the peritoneal membrane during peritonitis and how
mesothelial cells contribute to these changes and respond to infection. The latter part of the review
discusses the potential of mesothelial cell transplantation and genetic manipulation in the
preservation of the peritoneal membrane.
Collapse
|
48
|
Li H, Davison N, Moroni L, Feng F, Crist J, Salter E, Bingham CO, Elisseeff J. Evaluating Osteoarthritic Chondrocytes through a Novel 3-Dimensional In Vitro System for Cartilage Tissue Engineering and Regeneration. Cartilage 2012; 3:128-40. [PMID: 26069626 PMCID: PMC4297131 DOI: 10.1177/1947603511429698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To characterize and evaluate osteoarthritic (OA) chondrocytes, in comparison to normal chondrocytes, through a novel 3-dimensional (3-D) culture system, poly(ethylene-glycol) diacrylate (PEGDA). The cytokine interleukin 1β (IL-1β) was also used to simulate an in vitro OA model. METHODS Normal and OA chondrocytes were cultured in monolayer and analyzed for changes in cartilage-specific gene expressions due to passage number. Then, cells were encapsulated in PEGDA to evaluate phenotype and matrix production capabilities through the in vitro culture system. Characterization was conducted with polymerase chain reaction (PCR), biochemical analyses, and histological staining. 3-D encapsulated chondrocytes (human and bovine) were also treated with IL-1β to characterize how the cytokine affects gene transcription and extracellular matrix (ECM) content. RESULTS In 2-dimensional monolayer, anabolic genes were down-regulated significantly in both normal and OA chondrocytes. In 3-D culture, OA chondrocytes demonstrated significantly higher expressions of catabolic genes when compared to normal cells. Differentiation medium resulted in significantly more matrix production than growth medium from OA chondrocytes, indicated through histological staining. In addition, normal chondrocytes responded more significantly to exogenous administration of IL-1β than OA chondrocytes. Temporary initial stimulation of IL-1β to OA chondrocytes resulted in comparable gene expressions to untreated cells after 3 weeks of in vitro culture. CONCLUSIONS Our findings demonstrate the use of OA chondrocytes in tissue engineering and their significance for potential future cartilage regeneration research through their matrix production capabilities and the use of a hydrogel culture system.
Collapse
Affiliation(s)
- Hanwei Li
- Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | | - Erin Salter
- Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Jennifer Elisseeff
- Johns Hopkins School of Medicine, Baltimore, MD, USA,Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
49
|
Ariyoshi W, Takahashi N, Hida D, Knudson CB, Knudson W. Mechanisms involved in enhancement of the expression and function of aggrecanases by hyaluronan oligosaccharides. ACTA ACUST UNITED AC 2012; 64:187-97. [PMID: 21905012 DOI: 10.1002/art.33329] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Small hyaluronan (HA) oligosaccharides serve as competitive receptor antagonists to displace HA from the cell surface and induce cell signaling events. In articular chondrocytes, this cell signaling is mediated by the HA receptor CD44 and induces stimulation of genes involved in matrix degradation, such as matrix metalloproteinases (MMPs) as well as matrix repair genes including type II collagen, aggrecan, and HA synthase 2. The objective of this study was to determine changes in the expression and function of aggrecanases after disruption of chondrocyte CD44-HA interactions. METHODS Bovine articular chondrocytes or bovine cartilage tissue was pretreated with a variety of inhibitors of major signaling pathways prior to the addition of HA oligosaccharides. Changes in aggrecanase were monitored by real-time reverse transcription-polymerase chain reaction and Western blot analyses of ADAMTS-4, ADAMTS-5, and aggrecan proteolytic fragments. To test the interactions between ADAMTS-4 and membrane type 4 MMP (MT4-MMP), protein lysates purified from stimulated chondrocytes were subjected to coimmunoprecipitation. RESULTS Disruption of chondrocyte CD44-HA interactions with HA oligosaccharides induced the transcription of ADAMTS-4 and ADAMTS-5 in a time- and dose-dependent manner. The association of glycosyl phosphatidylinositol-anchored MT4-MMP with ADAMTS-4 was also induced in articular chondrocytes by HA oligosaccharides. Inhibition of the NF-κB pathway blocked HA oligosaccharide-mediated stimulation of aggrecanases. CONCLUSION Disruptive changes in chondrocyte-matrix interactions by HA oligosaccharides induce matrix degradation and elevate aggrecanases via the activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wataru Ariyoshi
- Department of Anatomy and Cell Biology, The Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834-4354, USA
| | | | | | | | | |
Collapse
|
50
|
Campo GM, Avenoso A, D'Ascola A, Prestipino V, Scuruchi M, Nastasi G, Calatroni A, Campo S. Hyaluronan differently modulates TLR-4 and the inflammatory response in mouse chondrocytes. Biofactors 2012; 38:69-76. [PMID: 22287316 DOI: 10.1002/biof.202] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/28/2011] [Indexed: 02/05/2023]
Abstract
Hyaluronic acid (HA) may exert different action depending on its degree of polymerization. Small HA fragments induce proinflammatory responses, while highly polymerized HA exerts a protective effect in inflammatory pathologies such as rheumatoid arthritis. In both cases the toll-like receptor 4 (TLR-4) seems to be involved in the modulation of the inflammation process. The aim of this study was to investigate the influence of short HA oligosaccharides (HA 4-mers) and high molecular weight HA (HMWHA) in the inflammatory response in normal mouse chondrocytes. Messenger RNA and related protein levels were measured for TLR-4, tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and interleukin-18 (IL-18) in cells with and without the addition of HA. NF-kB activation was also evaluated. 4-mer HA treatment produced a significant up-regulation of all parameters considered while HMWHA did not exert any activity in untreated cells although it was able to reduce the effects of 4- mers HA significantly. Specific TLR-4 small interference RNA (siRNA) was used to confirm TLR-4 as the target of HA action. This study suggests that HA may modulate proinflammatory cytokines via its different degree of polymerization and inflammatory action may be modulated as a result of the interaction between HA and TLR-4.
Collapse
Affiliation(s)
- Giuseppe M Campo
- Department of Biochemical, Physiological and Nutritional Sciences, Section of Medical Chemistry, School of Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy.
| | | | | | | | | | | | | | | |
Collapse
|