1
|
Rao H, Tian H, Wang X, Huo C, Zhu L, Li Z, Li Y. Diversification of Toll-like receptor 1 in swamp eel (Monopterus albus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105190. [PMID: 38697378 DOI: 10.1016/j.dci.2024.105190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Toll-like receptor 1 (TLR1) is a pattern recognition receptor that plays critical roles in triggering immune activation via detecting bacterial lipoproteins and lipopeptides. In this study, the genetic characteristic of TLR1 was studied for an important aquaculture fish, swamp eel Monopterus albus. The eel has been seriously threatened by infectious diseases. However, a low level of genetic heterogeneity in the fish that has resulted from a demographic bottleneck presents further challenges in breeding for disease resistance. A comparison with the homologue of closely related species M. javanensis revealed that amino acid replacement (nonsynonymous) but not silent (synonymous) differences have accumulated nonrandomly over the coding sequences of the receptors at the early stage of their phylogenetic split. The combined results from comparative analyses of nonsynonymous-to-synonymous polymorphisms showed that the receptor has undergone significant diversification in M. albus driven by adaptive selection likely after the genetic bottleneck. Some of the changes reported here have taken place in the structures mediating heterodimerization with co-receptor TLR2, ligand recognition, and/or formation of active signaling complex with adaptor, which highlighted key structural elements and strategies of TLR1 in arms race against exogenous challenges. The findings of this study will add to the knowledge base of genetic engineering and breeding for disease resistance in the eel.
Collapse
Affiliation(s)
- Han Rao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Haifeng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, PR China
| | - Xueting Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Caifei Huo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Lilan Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Zhong Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, PR China.
| | - Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China.
| |
Collapse
|
2
|
Luo Y, Zhang G, Hu C, Huang L, Wang D, Chen Z, Wang Y. The Role of Natural Products from Herbal Medicine in TLR4 Signaling for Colorectal Cancer Treatment. Molecules 2024; 29:2727. [PMID: 38930793 PMCID: PMC11206024 DOI: 10.3390/molecules29122727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The toll-like receptor 4 (TLR4) signaling pathway constitutes an intricate network of protein interactions primarily involved in inflammation and cancer. This pathway triggers intracellular signaling cascades, modulating transcription factors that regulate gene expression related to immunity and malignancy. Previous studies showed that colon cancer patients with low TLR4 expression exhibit extended survival times and the TLR4 signaling pathway holds a significant role in CRC pathogenesis. In recent years, traditional Chinese medicines (TCMs) have garnered substantial attention as an alternative therapeutic modality for CRC, primarily due to their multifaceted composition and ability to target multiple pathways. Emerging evidence indicates that specific TCM products, such as andrographolide, rosmarinic acid, baicalin, etc., have the potential to impede CRC development through the TLR4 signaling pathway. Here, we review the role and biochemical processes of the TLR4 signaling pathway in CRC, and natural products from TCMs affecting the TLR4 pathway. This review sheds light on potential treatment strategies utilizing natural TLR4 inhibitors for CRC, which contributes to the advancement of research and accelerates their clinical integration into CRC treatment.
Collapse
Affiliation(s)
- Yan Luo
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Guochen Zhang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Chao Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Lijun Huang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Dong Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Zhejie Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yumei Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| |
Collapse
|
3
|
Weidinger D, Jacobsen J, Alisch D, Uebner H, Heinen N, Greune L, Westhoven S, Jamal Jameel K, Kronsbein J, Pfaender S, Taube C, Reuter S, Peters M, Hatt H, Knobloch J. Olfactory receptors impact pathophysiological processes of lung diseases in bronchial epithelial cells. Eur J Cell Biol 2024; 103:151408. [PMID: 38583306 DOI: 10.1016/j.ejcb.2024.151408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Therapeutic options for steroid-resistant non-type 2 inflammation in obstructive lung diseases are limited. Bronchial epithelial cells are key in the pathogenesis by releasing the central proinflammatory cytokine interleukine-8 (IL-8). Olfactory receptors (ORs) are expressed in various cell types. This study examined the drug target potential of ORs by investigating their impact on associated pathophysiological processes in lung epithelial cells. METHODS Experiments were performed in the A549 cell line and in primary human bronchial epithelial cells. OR expression was investigated using RT-PCR, Western blot, and immunocytochemical staining. OR-mediated effects were analyzed by measuring 1) intracellular calcium concentration via calcium imaging, 2) cAMP concentration by luminescence-based assays, 3) wound healing by scratch assays, 4) proliferation by MTS-based assays, 5) cellular vitality by Annexin V/PI-based FACS staining, and 6) the secretion of IL-8 in culture supernatants by ELISA. RESULTS By screening 100 potential OR agonists, we identified two, Brahmanol and Cinnamaldehyde, that increased intracellular calcium concentrations. The mRNA and proteins of the corresponding receptors OR2AT4 and OR2J3 were detected. Stimulation of OR2J3 with Cinnamaldehyde reduced 1) IL-8 in the absence and presence of bacterial and viral pathogen-associated molecular patterns (PAMPs), 2) proliferation, and 3) wound healing but increased cAMP. In contrast, stimulation of OR2AT4 by Brahmanol increased wound healing but did not affect cAMP and proliferation. Both ORs did not influence cell vitality. CONCLUSION ORs might be promising drug target candidates for lung diseases with non-type 2 inflammation. Their stimulation might reduce inflammation or prevent tissue remodeling by promoting wound healing.
Collapse
Affiliation(s)
- Daniel Weidinger
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany
| | - Julian Jacobsen
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany
| | - Desiree Alisch
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany
| | - Hendrik Uebner
- Department of Pulmonary Medicine, University Medical Center Essen - Ruhrlandklinik, Tüschener Weg 40, Essen 45239, Germany
| | - Natalie Heinen
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum 44801, Germany
| | - Lea Greune
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany
| | - Saskia Westhoven
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum 44801, Germany; Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Kaschin Jamal Jameel
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany
| | - Juliane Kronsbein
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum 44801, Germany; Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany; University of Lübeck, Lübeck, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Medical Center Essen - Ruhrlandklinik, Tüschener Weg 40, Essen 45239, Germany
| | - Sebastian Reuter
- Department of Pulmonary Medicine, University Medical Center Essen - Ruhrlandklinik, Tüschener Weg 40, Essen 45239, Germany
| | - Marcus Peters
- Department of Molecular Immunology, Ruhr-University Bochum, Universitätsstraße 150, Bochum 44801, Germany
| | - Hanns Hatt
- Cell Physiology ND4/35, Ruhr-University Bochum, Universitätsstraße 150, Bochum 44801, Germany
| | - Jürgen Knobloch
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany.
| |
Collapse
|
4
|
Wang J, Cao H, Yang H, Wang N, Weng Y, Luo H. The function of CD36 in Mycobacterium tuberculosis infection. Front Immunol 2024; 15:1413947. [PMID: 38881887 PMCID: PMC11176518 DOI: 10.3389/fimmu.2024.1413947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
CD36 is a scavenger receptor that has been reported to function as a signaling receptor that responds to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and could integrate metabolic pathways and cell signaling through its dual functions. Thereby influencing activation to regulate the immune response and immune cell differentiation. Recent studies have revealed that CD36 plays critical roles in the process of lipid metabolism, inflammatory response and immune process caused by Mycobacterium tuberculosis infection. This review will comprehensively investigate CD36's functions in lipid uptake and processing, inflammatory response, immune response and therapeutic targets and biomarkers in the infection process of M. tuberculosis. The study also raised outstanding issues in this field to designate future directions.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Hongwei Yang
- Department of Clinical Laboratory, Suzhou BOE Hospital, Suzhou, Jiangsu, China
| | - Nan Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, China
| | - Yiwei Weng
- Department of Clinical Laboratory, The Fourth People’s Hospital of Kunshan, Suzhou, Jiangsu, China
| | - Hao Luo
- Department of Clinical Laboratory, The Second People's Hospital of Kunshan, Suzhou, China
| |
Collapse
|
5
|
Gilmour BC, Corthay A, Øynebråten I. High production of IL-12 by human dendritic cells stimulated with combinations of pattern-recognition receptor agonists. NPJ Vaccines 2024; 9:83. [PMID: 38702320 PMCID: PMC11068792 DOI: 10.1038/s41541-024-00869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/29/2024] [Indexed: 05/06/2024] Open
Abstract
The cytokine IL-12p70 is crucial for T helper 1 (Th1) polarization and the generation of type 1 immunity required to fight cancer and pathogens. Therefore, strategies to optimize the production of IL-12p70 by human dendritic cells (DCs) may significantly improve the efficacy of vaccines and immunotherapies. However, the rules governing the production of IL-12p70 remain obscure. Here, we stimulated pattern recognition receptors (PRRs) representing five families of PRRs, to evaluate their ability to elicit high production of IL-12p70 by monocyte-derived DCs. We used ten well-characterized agonists and stimulated DCs in vitro with either single agonists or 27 different combinations. We found that poly(I:C), which engages the RNA-sensing PRRs TLR3 and MDA5, and LPS which stimulates TLR4, were the only agonists that could elicit notable IL-12p70 production when used as single ligands. We identified six different combinations of PRR agonists, all containing either the TLR3/MDA5 agonist poly(I:C) or the TLR7/8 agonist R848, that could synergize to elicit high production of IL-12p70 by human DCs. Five of the six combinations also triggered high production of the antiviral and antitumor cytokine IFNβ. Overall, the tested PRR ligands could be divided into three groups depending on whether they triggered production of both IL-12p70 and IFNβ, only one of the two, or neither. Thus, combinations of PRR agonists were found to increase the production of IL-12p70 by human DCs in a synergistic manner, and we identified six PRR agonist combinations that may represent strong adjuvant candidates, in particular for therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Brian C Gilmour
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Inger Øynebråten
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway.
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
6
|
Pandi K, Angabo S, Makkawi H, Benyamini H, Elgavish S, Nussbaum G. P. gingivalis-Induced TLR2 Interactome Analysis Reveals Association with PARP9. J Dent Res 2024; 103:329-338. [PMID: 38344758 DOI: 10.1177/00220345231222181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic bacterium strongly associated with periodontal disease. Toll-like receptor 2 (TLR2) is indispensable for the host response to P. gingivalis, but P. gingivalis escapes from immune clearance via TLR2-dependent activation of phosphoinositide-3-kinase (PI3K). To probe the TLR2-dependent escape pathway of P. gingivalis, we analyzed the TLR2 interactome induced following P. gingivalis infection or activation by a synthetic lipopeptide TLR2/1 agonist on human macrophages overexpressing TLR2. Interacting proteins were stabilized by cross-linking and then immunoprecipitated and analyzed by mass spectrometry. In total, 792 proteins were recovered and network analysis enabled mapping of the TLR2 interactome at baseline and in response to infection. The P. gingivalis infection-induced TLR2 interactome included the poly (ADP-ribose) polymerase family member mono-ADP-ribosyltransferase protein 9 (PARP9) and additional members of the PARP9 complex (DTX3L and NMI). PARP9 and its complex members are highly upregulated in macrophages exposed to P. gingivalis or to the synthetic TLR2/1 ligand Pam3Cys-Ser-(Lys)4 (PAM). Consistent with its known role in virally induced interferon production, PARP9 knockdown blocked type I interferon (IFN-I) production in response to P. gingivalis and reduced inflammatory cytokine production. We found that P. gingivalis drives signal transducer and activation of transcription (STAT) 1 (S727) phosphorylation through TLR2-PARP9, explaining PARP9's role in the induction of IFN-I downstream of TLR2. Furthermore, PARP9 knockdown reduced PI3K activation by P. gingivalis, leading to improved macrophage bactericidal activity. In summary, PARP9 is a novel TLR2 interacting partner that enables IFN-I induction and P. gingivalis immune escape in macrophages downstream of TLR2 sensing.
Collapse
Affiliation(s)
- K Pandi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - S Angabo
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - H Makkawi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - H Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - G Nussbaum
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
7
|
Mansouri A, Yousef MS, Kowsar R, Miyamoto A. Homology Modeling, Molecular Dynamics Simulation, and Prediction of Bovine TLR2 Heterodimerization. Int J Mol Sci 2024; 25:1496. [PMID: 38338775 PMCID: PMC10855669 DOI: 10.3390/ijms25031496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Toll-like receptor 2 (TLR2) is a major membrane-bound receptor with ligand and species specificity that activates the host immune response. Heterodimerization of TLR2 with TLR1 (TLR2/1) or TLR6 (TLR2/6), triggered by ligand binding, is essential to initiating the signaling pathway. Bovine TLR2 (bTLR2) heterodimerization has not been defined yet compared with human and mouse TLR2s (hTLR2 and mTLR2). The aim of the present study was to model bovine TLRs (TLRs 1, 2 and 6) and create the heterodimeric forms of the bovine TLR2 using molecular dynamics (MD) simulations. We compared the intermolecular interactions in bTLR2/1-PAM3 and bTLR2/6-PAM2 with the hTLR2 and mTLR2 complexes through docking simulations and subsequent MD analyses. The present computational findings showed that bTLR2 dimerization could have a biological function and activate the immune response, similar to hTLR2 and mTLR2. Agonists and antagonists that are designed for hTLR2 and mTLR2 can target bTLR2. However, the experimental approaches to comparing the functional immune response of TLR2 across species were missing in the present study. This computational study provides a structural analysis of the bTLR2 interaction with bTLR1 and bTLR6 in the presence of an agonist/antagonist and reveals the three-dimensional structure of bTLR2 dimerization. The present findings could guide future experimental studies targeting bTLR2 with different ligands and lipopeptides.
Collapse
Affiliation(s)
- Alireza Mansouri
- Global AgroMedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (A.M.); (M.S.Y.)
| | - Mohamed Samy Yousef
- Global AgroMedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (A.M.); (M.S.Y.)
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Akio Miyamoto
- Global AgroMedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (A.M.); (M.S.Y.)
| |
Collapse
|
8
|
Li D, Hodges R, AukrustNaqvi M, Bair J, Bispo PJM, Gilmore MS, Gregory-Ksander M, Dartt DA. Staphylococcus aureus activates NRLP3-dependent IL-1β secretion from human conjunctival goblet cells using α toxin and toll-like receptors 2 and 1. Front Cell Infect Microbiol 2023; 13:1265471. [PMID: 38089811 PMCID: PMC10711068 DOI: 10.3389/fcimb.2023.1265471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
We used cultured human conjunctival goblet cells to determine (i) whether the toxigenic S. aureus- induced activation of the epithelial goblet cells requires two signals to activate the NLRP3 inflammasome, (ii) if one signal is mediated by TLR1, TLR2, or TLR6, and (iii) if the S. aureus toxin α toxin is another signal for the activation of the inflammasome and secretion of mature IL-1β. Cultured cells were incubated with siRNA to knock down the different TLRs. After stimulation with toxigenic S. aureus RN6390, pro-IL-1β synthesis, caspase-1 activity, and mature IL-1β secretion were measured. In a separate set of experiments, the cells were incubated with toxigenic S. aureus RN6390 or mutant S. aureus ALC837 that does not express α toxin with or without exogenous α toxin. A gentamicin protection assay was used to determine if intracellular bacteria were active. We conclude that α toxin from toxigenic S. aureus triggers two separate mechanisms required for the activation of the NLRP3 inflammasome and secretion of mature IL-1β. In the first mechanism, α toxin secreted from internalized S. aureus produces a pore, allowing the internalized bacteria and associated pathogen-associated molecular patterns to interact with intracellular TLR2 and, to a lesser extent, TLR1. In the second mechanism, α toxin forms a pore in the plasma membrane, leading to an efflux of cytosolic K+ and influx of Ca2+. We conclude that α toxin by these two different mechanisms triggers the synthesis of pro-IL-1β and NLRP3 components, activation of capase-1, and secretion of mature IL-1β to defend against bacterial infection.
Collapse
Affiliation(s)
- Dayu Li
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
| | - Robin Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
| | - Maria AukrustNaqvi
- Department of Life Sciences and Health Faculty of Health Sciences Oslo Metropolitan University, Oslo, Norway
| | - Jeffrey Bair
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, United States
| | - Paulo J. M. Bispo
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
- Massachusetts Eye and Ear, Boston, MA, United States
| | - Michael S. Gilmore
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
- Massachusetts Eye and Ear, Boston, MA, United States
| | - Meredith Gregory-Ksander
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
| | - Darlene A. Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Gagnon PA, Klein M, De Vos J, Biardel S, Côté A, Godbout K, Laviolette M, Laprise C, Assou S, Chakir J. S100A alarmins and thymic stromal lymphopoietin (TSLP) regulation in severe asthma following bronchial thermoplasty. Respir Res 2023; 24:294. [PMID: 37996952 PMCID: PMC10668474 DOI: 10.1186/s12931-023-02604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
RATIONALE Severe asthma affects a small proportion of asthmatics but represents a significant healthcare challenge. Bronchial thermoplasty (BT) is an interventional treatment approach preconized for uncontrolled severe asthma after considering biologics therapy. It was showed that BT long-lastingly improves asthma control. These improvements seem to be related to the ability of BT to reduce airway smooth muscle remodeling, reduce the number of nerve fibers and to modulate bronchial epithelium integrity and behavior. Current evidence suggest that BT downregulates epithelial mucins expression, cytokine production and metabolic profile. Despite these observations, biological mechanisms explaining asthma control improvement post-BT are still not well understood. OBJECTIVES To assess whether BT affects gene signatures in bronchial epithelial cells (BECs). METHODS In this study we evaluated the transcriptome of cultured bronchial epithelial cells (BECs) of severe asthmatics obtained pre- and post-BT treatment using microarrays. We further validated gene and protein expressions in BECs and in bronchial biopsies with immunohistochemistry pre- and post-BT treatment. MEASUREMENTS AND MAIN RESULTS Transcriptomics analysis revealed that a large portion of differentially expressed genes (DEG) was involved in anti-viral response, anti-microbial response and pathogen induced cytokine storm signaling pathway. S100A gene family stood out as five members of this family where consistently downregulated post-BT. Further validation revealed that S100A7, S100A8, S100A9 and their receptor (RAGE, TLR4, CD36) expressions were highly enriched in severe asthmatic BECs. Further, these S100A family members were downregulated at the gene and protein levels in BECs and in bronchial biopsies of severe asthmatics post-BT. TLR4 and CD36 protein expression were also reduced in BECs post-BT. Thymic stromal lymphopoietin (TSLP) and human β-defensin 2 (hBD2) were significantly decreased while no significant change was observed in IL-25 and IL-33. CONCLUSIONS These data suggest that BT might improve asthma control by downregulating epithelial derived S100A family expression and related downstream signaling pathways.
Collapse
Affiliation(s)
- Pierre-Alexandre Gagnon
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval (IUCPQ-UL), 2725 Chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada
| | - Martin Klein
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval (IUCPQ-UL), 2725 Chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada
| | - John De Vos
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Sabrina Biardel
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval (IUCPQ-UL), 2725 Chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada
| | - Andréanne Côté
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval (IUCPQ-UL), 2725 Chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada
| | - Krystelle Godbout
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval (IUCPQ-UL), 2725 Chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada
| | - Michel Laviolette
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval (IUCPQ-UL), 2725 Chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada
| | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi (UQAC), Saguenay, QC, Canada
| | - Said Assou
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Jamila Chakir
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval (IUCPQ-UL), 2725 Chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada.
| |
Collapse
|
10
|
Shi Y, Ruan H, Xu Y, Zou C. Cholesterol, Eukaryotic Lipid Domains, and an Evolutionary Perspective of Transmembrane Signaling. Cold Spring Harb Perspect Biol 2023; 15:a041418. [PMID: 37604587 PMCID: PMC10626259 DOI: 10.1101/cshperspect.a041418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Transmembrane signaling is essential for complex life forms. Communication across a bilayer lipid barrier is elaborately organized to convey precision and to fine-tune strength. Looking back, the steps that it has taken to enable this seemingly mundane errand are breathtaking, and with our survivorship bias, Darwinian. While this review is to discuss eukaryotic membranes in biological functions for coherence and theoretical footing, we are obliged to follow the evolution of the biological membrane through time. Such a visit is necessary for our hypothesis that constraints posited on cellular functions are mainly via the biomembrane, and relaxation thereof in favor of a coordinating membrane environment is the molecular basis for the development of highly specialized cellular activities, among them transmembrane signaling. We discuss the obligatory paths that have led to eukaryotic membrane formation, its intrinsic ability to signal, and how it set up the platform for later integration of protein-based receptor activation.
Collapse
Affiliation(s)
- Yan Shi
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Hefei Ruan
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanni Xu
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Chunlin Zou
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Weaver DF. Druggable targets for the immunopathy of Alzheimer's disease. RSC Med Chem 2023; 14:1645-1661. [PMID: 37731705 PMCID: PMC10507808 DOI: 10.1039/d3md00096f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/21/2023] [Indexed: 09/22/2023] Open
Abstract
Alzheimer's disease (AD) is one of the leading threats to the health and socioeconomic well-being of humankind. Though research to develop disease modifying therapies for AD has traditionally focussed on the misfolding and aggregation of proteins, this approach has failed to yield a definitively curative agent. Accordingly, the search for additional or alternative approaches is a medicinal chemistry priority. Dysfunction of the brain's neuroimmune-neuroinflammation axis has emerged as a leading contender. Neuroimmunity however is mechanistically complex, rendering the recognition of candidate receptors a challenging task. Herein, a review of the role of neuroimmunity in the biomolecular pathogenesis of AD is presented with the identification of a 'druggable dozen' targets; in turn, each identified target represents one or more discrete receptors centred on a common biochemical mechanism. The druggable dozen is composed of both cellular and molecular messenger targets, with a 'targetable ten' microglial targets as well as two cytokine-based targets. For each target, the underlying molecular basis, with a consideration of strengths and weaknesses, is considered.
Collapse
Affiliation(s)
- Donald F Weaver
- Krembil Research Institute, University Health Network, Department of Chemistry, University of Toronto 60 Leonard Avenue Toronto ON M5T 0S8 Canada
| |
Collapse
|
12
|
Xue S, Su Z, Liu D. Immunometabolism and immune response regulate macrophage function in atherosclerosis. Ageing Res Rev 2023; 90:101993. [PMID: 37379970 DOI: 10.1016/j.arr.2023.101993] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
Macrophages are crucial in the progression of atherosclerotic cardiovascular disease (ASCVD). In the atherosclerotic lesions, macrophages play a central role in maintaining inflammatory response, promoting plaque development, and facilitating thrombosis. Increasing studies indicate that metabolic reprogramming and immune response mediate macrophage functional changes in all stages of atherosclerosis. In this review article, we explain how metabolic changes in glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, fatty acid synthesis, fatty acid oxidation, and cholesterol metabolism regulate macrophage function in atherosclerosis. We discuss how immune response to oxidized lipids regulate macrophage function in atherosclerosis. Additionally, we explore how abnormal metabolism leads to macrophage mitochondrial dysfunction in atherosclerosis.
Collapse
Affiliation(s)
- Sheng Xue
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003 China.
| | - Zhe Su
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003 China
| | - Dacheng Liu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003 China
| |
Collapse
|
13
|
Swiderski J, Sakkal S, Apostolopoulos V, Zulli A, Gadanec LK. Combination of Taurine and Black Pepper Extract as a Treatment for Cardiovascular and Coronary Artery Diseases. Nutrients 2023; 15:nu15112562. [PMID: 37299525 DOI: 10.3390/nu15112562] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The shift in modern dietary regimens to "Western style" and sedentary lifestyles are believed to be partly responsible for the increase in the global burden of cardiovascular diseases. Natural products have been used throughout human history as treatments for a plethora of pathological conditions. Taurine and, more recently, black pepper have gained attention for their beneficial health effects while remaining non-toxic even when ingested in excess. Taurine, black pepper, and the major terpene constituents found in black pepper (i.e., β-caryophyllene; α-pinene; β-pinene; α-humulene; limonene; and sabinene) that are present in PhytoCann BP® have been shown to have cardioprotective effects based on anti-inflammatory, antioxidative, anti-hypertensive and anti-atherosclerotic mechanisms. This comprehensive review of the literature focuses on determining whether the combination of taurine and black pepper extract is an effective natural treatment for reducing cardiovascular diseases risk factors (i.e., hypertension and hyperhomocysteinemia) and for driving anti-inflammatory, antioxidative and anti-atherosclerotic mechanisms to combat coronary artery disease, heart failure, myocardial infarction, and atherosclerotic disease.
Collapse
Affiliation(s)
- Jordan Swiderski
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| |
Collapse
|
14
|
O’Neal A, Singh N, Rolandelli A, Laukaitis HJ, Wang X, Shaw D, Young B, Narasimhan S, Dutta S, Snyder G, Samaddar S, Marnin L, Butler L, Mendes M, Cabrera Paz F, Valencia L, Sundberg E, Fikrig E, Pal U, Weber D, Pedra J. Croquemort elicits activation of the immune deficiency pathway in ticks. Proc Natl Acad Sci U S A 2023; 120:e2208673120. [PMID: 37155900 PMCID: PMC10193931 DOI: 10.1073/pnas.2208673120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 03/27/2023] [Indexed: 05/10/2023] Open
Abstract
The immune deficiency (IMD) pathway directs host defense in arthropods upon bacterial infection. In Pancrustacea, peptidoglycan recognition proteins sense microbial moieties and initiate nuclear factor-κB-driven immune responses. Proteins that elicit the IMD pathway in non-insect arthropods remain elusive. Here, we show that an Ixodes scapularis homolog of croquemort (Crq), a CD36-like protein, promotes activation of the tick IMD pathway. Crq exhibits plasma membrane localization and binds the lipid agonist 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol. Crq regulates the IMD and jun N-terminal kinase signaling cascades and limits the acquisition of the Lyme disease spirochete B. burgdorferi. Additionally, nymphs silenced for crq display impaired feeding and delayed molting to adulthood due to a deficiency in ecdysteroid synthesis. Collectively, we establish a distinct mechanism for arthropod immunity outside of insects and crustaceans.
Collapse
Affiliation(s)
- Anya J. O’Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Hanna J. Laukaitis
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Xiaowei Wang
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Dana K. Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA99164
| | - Brianna D. Young
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Sukanya Narasimhan
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT06510
| | - Shraboni Dutta
- Department of Veterinary Medicine, University of Maryland, College Park, MD20742
| | - Greg A. Snyder
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Sourabh Samaddar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Liron Marnin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - L. Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - M. Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Francy E. Cabrera Paz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Luisa M. Valencia
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Eric J. Sundberg
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA30322
| | - Erol Fikrig
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT06510
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD20742
| | - David J. Weber
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Joao H. F. Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| |
Collapse
|
15
|
Kim SK, Im J, Ko EB, Lee D, Seo HS, Yun CH, Han SH. Lipoteichoic acid of Streptococcus gordonii as a negative regulator of human dendritic cell activation. Front Immunol 2023; 14:1056949. [PMID: 37056772 PMCID: PMC10086370 DOI: 10.3389/fimmu.2023.1056949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Streptococcus gordonii, an opportunistic Gram-positive bacterium, causes an infective endocarditis that could be fatal to human health. Dendritic cells (DCs) are known to be involved in disease progression and immune responses in S. gordonii infection. Since lipoteichoic acid (LTA) is a representative virulence factor of S. gordonii, we here investigated its role in the activation of human DCs stimulated with LTA-deficient (ΔltaS) S. gordonii or S. gordonii LTA. DCs were differentiated from human blood-derived monocytes in the presence of GM-CSF and IL-4 for 6 days. DCs treated with heat-killed ΔltaS S. gordonii (ΔltaS HKSG) showed relatively higher binding and phagocytic activities than those treated with heat-killed wild-type S. gordonii (wild-type HKSG). Furthermore, ΔltaS HKSG was superior to wild-type HKSG in inducing phenotypic maturation markers including CD80, CD83, CD86, PD-L1, and PD-L2, antigen-presenting molecule MHC class II, and proinflammatory cytokines such as TNF-α and IL-6. Concomitantly, DCs treated with the ΔltaS HKSG induced better T cell activities, including proliferation and activation marker (CD25) expression, than those treated with the wild-type. LTA, but not lipoproteins, isolated from S. gordonii weakly activated TLR2 and barely affected the expression of phenotypic maturation markers or cytokines in DCs. Collectively, these results demonstrated that LTA is not a major immuno-stimulating agent of S. gordonii but rather it interferes with bacteria-induced DC maturation, suggesting its potential role in immune evasion.
Collapse
Affiliation(s)
- Sun Kyung Kim
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jintaek Im
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Eun Byeol Ko
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Dongwook Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes of Green-bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, Republic of Korea
- Interdisciplinary Programs in Agricultural Genomics, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- *Correspondence: Seung Hyun Han,
| |
Collapse
|
16
|
Ahmadi S, Mohammadi Talvar S, Masoudi K, Zobeiri M. Repeated Use of Morphine Induces Anxiety by Affecting a Proinflammatory Cytokine Signaling Pathway in the Prefrontal Cortex in Rats. Mol Neurobiol 2023; 60:1425-1439. [PMID: 36450935 DOI: 10.1007/s12035-022-03144-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
We examined the role of toll-like receptors (TLRs) and proinflammatory cytokine signaling pathways in the prefrontal cortex (PFC) in anxiety-like behaviors after repeated use of morphine. Morphine (10 mg/kg) was used twice daily for 8 days to induce morphine dependence in male Wistar rats. On day 8, opioid dependence was confirmed by measuring naloxone-precipitated withdrawal signs. On days 1 and 8, anxiety-like behaviors were evaluated using a light/dark box test. Expression of TLR1 and 4, proinflammatory cytokines, and some of the downstream signaling molecules was also evaluated in the bilateral PFC at mRNA and protein levels following morphine dependence. The results revealed that morphine caused anxiolytic-like effects on day 1 while induced anxiety following 8 days of repeated injection. On day 8, a significant decrease in TLR1 expression was detected in the PFC in morphine-dependent rats, but TLR4 remained unaffected. Repeated morphine injection significantly increased IL1-β, TNFα, and IL6 expression, but decreased IL1R and TNFR at mRNA and protein levels except for IL6R at the protein level in the PFC. The p38α mitogen-activated protein (MAP) kinase expression significantly increased but the JNK3 expression decreased in the PFC in morphine-dependent rats. Repeated injection of morphine also significantly increased the NF-κB expression in the PFC. Further, significant increases in Let-7c, mir-133b, and mir-365 were detected in the PFC in morphine-dependent rats. We conclude that TLR1 and proinflammatory cytokines signaling pathways in the PFC are associated with the anxiogenic-like effects of morphine following its chronic use in rats via a MAP kinase/NF-κB pathway.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran.
| | - Shiva Mohammadi Talvar
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Kayvan Masoudi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Mohammad Zobeiri
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| |
Collapse
|
17
|
Molecular characterization of four innate immune genes in Tor putitora and their comparative transcriptional abundance during wild- and captive-bred ontogenetic developmental stages. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100058. [DOI: 10.1016/j.fsirep.2022.100058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022] Open
|
18
|
Aguilar Briseño JA, Ramos Pereira L, van der Laan M, Pauzuolis M, ter Ellen BM, Upasani V, Moser J, de Souza Ferreira LC, Smit JM, Rodenhuis-Zybert IA. TLR2 axis on peripheral blood mononuclear cells regulates inflammatory responses to non-infectious immature dengue virus particles. PLoS Pathog 2022; 18:e1010499. [PMID: 36240261 PMCID: PMC9605289 DOI: 10.1371/journal.ppat.1010499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/26/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Severe dengue virus (DENV) infection is characterized by exacerbated inflammatory responses that lead to endothelial dysfunction and plasma leakage. We have recently demonstrated that Toll-like receptor 2 (TLR2) on blood monocytes senses DENV infection leading to endothelial activation. Here, we report that non-infectious immature DENV particles, which are released in large numbers by DENV-infected cells, drive endothelial activation via the TLR2 axis. We show that fully immature DENV particles induce a rapid, within 6 hours post-infection, inflammatory response in PBMCs. Furthermore, pharmacological blocking of TLR2/TLR6/CD14 and/or NF-kB prior to exposure of PBMCs to immature DENV reduces the initial production of inter alia TNF-α and IL-1β by monocytes and prevents endothelial activation. However, prolonged TLR2 block induces TNF-α production and leads to exacerbated endothelial activation, indicating that TLR2-mediated responses play an important role not only in the initiation but also the resolution of inflammation. Altogether, these data indicate that the maturation status of the virus has the potential to influence the kinetics and extent of inflammatory responses during DENV infection.
Collapse
Affiliation(s)
- José Alberto Aguilar Briseño
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Lennon Ramos Pereira
- Vaccine Development Laboratory, Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marleen van der Laan
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Mindaugas Pauzuolis
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Bram M. ter Ellen
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Vinit Upasani
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Jill Moser
- Departments of Critical Care, Pathology & Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Luís Carlos de Souza Ferreira
- Vaccine Development Laboratory, Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jolanda M. Smit
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Izabela A. Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
19
|
Zubova SV, Kosyakova NI, Grachev SV, Prokhorenko IR. Rhodobacter capsulatus PG Lipopolysaccharide Blocks the Effects of a Lipoteichoic Acid, a Toll-Like Receptor 2 Agonist. Acta Naturae 2022; 14:69-74. [PMID: 36694898 PMCID: PMC9844088 DOI: 10.32607/actanaturae.11747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/02/2022] [Indexed: 01/22/2023] Open
Abstract
Lipopolysaccharides (LPS) and lipoteichoic acids (LTA) are the major inducers of the inflammatory response of blood cells caused by Gram-negative and some Gram-positive bacteria. CD14 is a common receptor for LPS and LTA that transfers the ligands to TLR4 and TLR2, respectively. In this work, we have demonstrated that the non-toxic LPS from Rhodobacter capsulatus PG blocks the synthesis of pro-inflammatory cytokines during the activation of blood cells by Streptococcus pyogenes LTA through binding to the CD14 receptor, resulting in the signal transduction to TLR2/TLR6 being blocked. The LPS from Rhodobacter capsulatus PG can be considered a prototype for developing preparations to protect blood cells against the LTA of gram-positive bacteria.
Collapse
Affiliation(s)
- S. V. Zubova
- Institute of Basic Biological Problems of RAS FRC PSCBR RAS, Pushchino, 142290 Russia
| | - N. I. Kosyakova
- Clinical Hospital at the Pushchino Research Center, Pushchino, 142290 Russia
| | - S. V. Grachev
- Institute of Basic Biological Problems of RAS FRC PSCBR RAS, Pushchino, 142290 Russia
- First Moscow State Medical University named I.M. Sechenov of Russia Health Ministry (Sechenov University), Moscow, 119991 Russia
| | - I. R. Prokhorenko
- Institute of Basic Biological Problems of RAS FRC PSCBR RAS, Pushchino, 142290 Russia
| |
Collapse
|
20
|
Dey D, Dhar D, Das S, Maulik A, Basu S. Structural and functional implications of leucine-rich repeats in toll-like receptor1 subfamily. J Biosci 2022. [DOI: 10.1007/s12038-022-00300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Li YJ, Chen CY, Yang JH, Chiu YF. Modulating cholesterol-rich lipid rafts to disrupt influenza A virus infection. Front Immunol 2022; 13:982264. [PMID: 36177026 PMCID: PMC9513517 DOI: 10.3389/fimmu.2022.982264] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) is widely disseminated across different species and can cause recurrent epidemics and severe pandemics in humans. During infection, IAV attaches to receptors that are predominantly located in cell membrane regions known as lipid rafts, which are highly enriched in cholesterol and sphingolipids. Following IAV entry into the host cell, uncoating, transcription, and replication of the viral genome occur, after which newly synthesized viral proteins and genomes are delivered to lipid rafts for assembly prior to viral budding from the cell. Moreover, during budding, IAV acquires an envelope with embedded cholesterol from the host cell membrane, and it is known that decreased cholesterol levels on IAV virions reduce infectivity. Statins are commonly used to inhibit cholesterol synthesis for preventing cardiovascular diseases, and several studies have investigated whether such inhibition can block IAV infection and propagation, as well as modulate the host immune response to IAV. Taken together, current research suggests that there may be a role for statins in countering IAV infections and modulating the host immune response to prevent or mitigate cytokine storms, and further investigation into this is warranted.
Collapse
Affiliation(s)
- Yu-Jyun Li
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Yuan Chen
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Jeng-How Yang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, New Taipei, Taiwan
| | - Ya-Fang Chiu
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
22
|
Clement M, Forbester JL, Marsden M, Sabberwal P, Sommerville MS, Wellington D, Dimonte S, Clare S, Harcourt K, Yin Z, Nobre L, Antrobus R, Jin B, Chen M, Makvandi-Nejad S, Lindborg JA, Strittmatter SM, Weekes MP, Stanton RJ, Dong T, Humphreys IR. IFITM3 restricts virus-induced inflammatory cytokine production by limiting Nogo-B mediated TLR responses. Nat Commun 2022; 13:5294. [PMID: 36075894 PMCID: PMC9454482 DOI: 10.1038/s41467-022-32587-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is a restriction factor that limits viral pathogenesis and exerts poorly understood immunoregulatory functions. Here, using human and mouse models, we demonstrate that IFITM3 promotes MyD88-dependent, TLR-mediated IL-6 production following exposure to cytomegalovirus (CMV). IFITM3 also restricts IL-6 production in response to influenza and SARS-CoV-2. In dendritic cells, IFITM3 binds to the reticulon 4 isoform Nogo-B and promotes its proteasomal degradation. We reveal that Nogo-B mediates TLR-dependent pro-inflammatory cytokine production and promotes viral pathogenesis in vivo, and in the case of TLR2 responses, this process involves alteration of TLR2 cellular localization. Nogo-B deletion abrogates inflammatory cytokine responses and associated disease in virus-infected IFITM3-deficient mice. Thus, we uncover Nogo-B as a driver of viral pathogenesis and highlight an immunoregulatory pathway in which IFITM3 fine-tunes the responsiveness of myeloid cells to viral stimulation.
Collapse
Affiliation(s)
- M Clement
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - J L Forbester
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - M Marsden
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - P Sabberwal
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - M S Sommerville
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - D Wellington
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - S Dimonte
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - S Clare
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - K Harcourt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Z Yin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - L Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - R Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - B Jin
- Fourth Military Medical University, Xian, China
| | - M Chen
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - S Makvandi-Nejad
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - J A Lindborg
- Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - S M Strittmatter
- Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - M P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - R J Stanton
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - T Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - I R Humphreys
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
23
|
Microglia and microglial-based receptors in the pathogenesis and treatment of Alzheimer’s disease. Int Immunopharmacol 2022; 110:109070. [DOI: 10.1016/j.intimp.2022.109070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/02/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022]
|
24
|
Liao Z, Yang C, Jiang R, Zhu W, Zhang Y, Su J. Cyprinid-specific duplicated membrane TLR5 senses dsRNA as functional homodimeric receptors. EMBO Rep 2022; 23:e54281. [PMID: 35678424 DOI: 10.15252/embr.202154281] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022] Open
Abstract
Membrane-embedded Toll-like receptor 5 (TLR5) functions as a homodimer to detect bacterial flagellin. Cyprinid grass carp (Ctenopharyngodon idella) encodes two TLR5 genes, CiTLR5a and CiTLR5b. Here, we show that cyprinid TLR5a and TLR5b homodimers unexpectedly bind the dsRNA analog poly(I:C) and regulate interferon (IFN) response in early endosomes and lysosomes. Although TLR5 homodimers also bind flagellin, an immune response to flagellin is only triggered by TLR5a/b heterodimer. Moreover, we demonstrate that two TLR5 paralogs have opposite effects on antiviral response: CiTLR5a slightly promotes and powerfully maintains, whereas CiTLR5b remarkably inhibits virus replication. We show that the ectodomain of CiTLR5 is required for dsRNA-induced IFN signaling, and we map the key poly(I:C) binding sites to G240 for CiTLR5a and to N547 for CiTLR5b. Furthermore, we reveal that differential N-glycosylation of CiTLR5a/b affects dsRNA-IFN signaling but has no role in flagellin-mediated NF-κB induction, with paralog-specific roles for CiTLR5a-T101 and corresponding CiTLR5b-I99. Moreover, we provide evidence that the ability to sense dsRNA represents a neofunctionalization specific for membrane-bound TLR5 in cyprinid, bridging viral and bacterial immune responses.
Collapse
Affiliation(s)
- Zhiwei Liao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Jiang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wentao Zhu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yongan Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Chiang MC, Chern E. More than Antibiotics: Latest Therapeutics in the Treatment and Prevention of Ocular Surface Infections. J Clin Med 2022; 11:4195. [PMID: 35887958 PMCID: PMC9323953 DOI: 10.3390/jcm11144195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Ocular surface infections have been common issues for ophthalmologists for decades. Traditional strategies for infection include antibiotics, antiviral agents, and steroids. However, multiple drug-resistant bacteria have become more common with the prevalence of antibiotic use. Furthermore, an ideal treatment for an infectious disease should not only emphasize eliminating the microorganism but also maintaining clear and satisfying visual acuity. Immunogenetic inflammation, tissue fibrosis, and corneal scarring pose serious threats to vision, and they are not attenuated or prevented by traditional antimicrobial therapeutics. Herein, we collected information about current management techniques including stem-cell therapy, probiotics, and gene therapy as well as preventive strategies related to Toll-like receptors. Finally, we will introduce the latest research findings in ocular drug-delivery systems, which may enhance the bioavailability and efficiency of ocular therapeutics. The clinical application of improved delivery systems and novel therapeutics may support people suffering from ocular surface infections.
Collapse
Affiliation(s)
- Ming-Cheng Chiang
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
26
|
Chen Y, Zhang J, Cui W, Silverstein RL. CD36, a signaling receptor and fatty acid transporter that regulates immune cell metabolism and fate. J Exp Med 2022; 219:213166. [PMID: 35438721 PMCID: PMC9022290 DOI: 10.1084/jem.20211314] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022] Open
Abstract
CD36 is a type 2 cell surface scavenger receptor widely expressed in many immune and non-immune cells. It functions as both a signaling receptor responding to DAMPs and PAMPs, as well as a long chain free fatty acid transporter. Recent studies have indicated that CD36 can integrate cell signaling and metabolic pathways through its dual functions and thereby influence immune cell differentiation and activation, and ultimately help determine cell fate. Its expression along with its dual functions in both innate and adaptive immune cells contribute to pathogenesis of common diseases, including atherosclerosis and tumor progression, which makes CD36 and its downstream effectors potential therapeutic targets. This review comprehensively examines the dual functions of CD36 in a variety of immune cells, especially macrophages and T cells. We also briefly discuss CD36 function in non-immune cells, such as adipocytes and platelets, which impact the immune system via intercellular communication. Finally, outstanding questions in this field are provided for potential directions of future studies.
Collapse
Affiliation(s)
- Yiliang Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI.,Versiti, Blood Research Institute, Milwaukee, WI
| | - Jue Zhang
- Versiti, Blood Research Institute, Milwaukee, WI
| | - Weiguo Cui
- Versiti, Blood Research Institute, Milwaukee, WI.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Roy L Silverstein
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI.,Versiti, Blood Research Institute, Milwaukee, WI
| |
Collapse
|
27
|
Inflammation: A New Look at an Old Problem. Int J Mol Sci 2022; 23:ijms23094596. [PMID: 35562986 PMCID: PMC9100490 DOI: 10.3390/ijms23094596] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
Pro-inflammatory stress is inherent in any cells that are subject to damage or threat of damage. It is defined by a number of universal components, including oxidative stress, cellular response to DNA damage, unfolded protein response to mitochondrial and endoplasmic reticulum stress, changes in autophagy, inflammasome formation, non-coding RNA response, formation of an inducible network of signaling pathways, and epigenetic changes. The presence of an inducible receptor and secretory phenotype in many cells is the cause of tissue pro-inflammatory stress. The key phenomenon determining the occurrence of a classical inflammatory focus is the microvascular inflammatory response (exudation, leukocyte migration to the alteration zone). This same reaction at the systemic level leads to the development of life-critical systemic inflammation. From this standpoint, we can characterize the common mechanisms of pathologies that differ in their clinical appearance. The division of inflammation into alternative variants has deep evolutionary roots. Evolutionary aspects of inflammation are also described in the review. The aim of the review is to provide theoretical arguments for the need for an up-to-date theory of the relationship between key human pathological processes based on the integrative role of the molecular mechanisms of cellular and tissue pro-inflammatory stress.
Collapse
|
28
|
Charó N, Jerez H, Tatti S, Romero EL, Schattner M. The Anti-Inflammatory Effect of Nanoarchaeosomes on Human Endothelial Cells. Pharmaceutics 2022; 14:pharmaceutics14040736. [PMID: 35456570 PMCID: PMC9027062 DOI: 10.3390/pharmaceutics14040736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 01/14/2023] Open
Abstract
Archaebacterias are considered a unique source of novel biomaterials of interest for nanomedicine. In this perspective, the effects of nanoarchaeosomes (ARC), which are nanovesicles prepared from polar lipids extracted from the extreme halophilic Halorubrum tebenquinchense, on human umbilical vein endothelial cells (HUVEC) were investigated in physiological and under inflammatory static conditions. Upon incubation, ARC (170 nm mean size, −41 mV ζ) did not affect viability, cell proliferation, and expression of intercellular adhesion molecule-1 (ICAM-1) and E-selectin under basal conditions, but reduced expression of both molecules and secretion of IL-6 induced by lypopolysaccharide (LPS), Pam3CSK4 or Escherichia coli. Such effects were not observed with TNF-α or IL-1β stimulation. Interestingly, ARC significantly decreased basal levels of von Willebrand factor (vWF) and levels induced by all stimuli. None of these parameters was altered by liposomes of hydrogenated phosphatidylcholine and cholesterol of comparable size and concentration. Only ARC were endocytosed by HUVEC and reduced mRNA expression of ICAM-1 and vWF via NF-ĸB and ERK1/2 in LPS-stimulated cells. This is the first report of the anti-inflammatory effect of ARC on endothelial cells and our data suggest that its future use in vascular disease may hopefully be of particular interest.
Collapse
Affiliation(s)
- Nancy Charó
- Laboratory of Experimental Thrombosis and Immunobiology of Inflammation, Institute of Experimental Medicine, CONICET-National Academy of Medicine, Pacheco de Melo 3081, Buenos Aires 1425, Argentina;
| | - Horacio Jerez
- Center for Research and Development in Nanomedicines (CIDEN), National University of Quilmes, Roque Saenz Peña, Bernal 1876, Argentina;
| | - Silvio Tatti
- Department of Obstetrics and Gynecology, Clinical Hospital, Av. Córdoba 2351, Buenos Aires 1120, Argentina;
| | - Eder Lilia Romero
- Center for Research and Development in Nanomedicines (CIDEN), National University of Quilmes, Roque Saenz Peña, Bernal 1876, Argentina;
- Correspondence: (E.L.R.); (M.S.)
| | - Mirta Schattner
- Laboratory of Experimental Thrombosis and Immunobiology of Inflammation, Institute of Experimental Medicine, CONICET-National Academy of Medicine, Pacheco de Melo 3081, Buenos Aires 1425, Argentina;
- Correspondence: (E.L.R.); (M.S.)
| |
Collapse
|
29
|
Lebrun LJ, Moreira S, Tavernier A, Niot I. Postprandial consequences of lipid absorption in the onset of obesity: Role of intestinal CD36. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159154. [DOI: 10.1016/j.bbalip.2022.159154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
30
|
Patten DA, Wilkinson AL, O'Keeffe A, Shetty S. Scavenger Receptors: Novel Roles in the Pathogenesis of Liver Inflammation and Cancer. Semin Liver Dis 2022; 42:61-76. [PMID: 34553345 PMCID: PMC8893982 DOI: 10.1055/s-0041-1733876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The scavenger receptor superfamily represents a highly diverse collection of evolutionarily-conserved receptors which are known to play key roles in host homeostasis, the most prominent of which is the clearance of unwanted endogenous macromolecules, such as oxidized low-density lipoproteins, from the systemic circulation. Members of this family have also been well characterized in their binding and internalization of a vast range of exogenous antigens and, consequently, are generally considered to be pattern recognition receptors, thus contributing to innate immunity. Several studies have implicated scavenger receptors in the pathophysiology of several inflammatory diseases, such as Alzheimer's and atherosclerosis. Hepatic resident cellular populations express a diverse complement of scavenger receptors in keeping with the liver's homeostatic functions, but there is gathering interest in the contribution of these receptors to hepatic inflammation and its complications. Here, we review the expression of scavenger receptors in the liver, their functionality in liver homeostasis, and their role in inflammatory liver disease and cancer.
Collapse
Affiliation(s)
- Daniel A. Patten
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Alex L. Wilkinson
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ayla O'Keeffe
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
31
|
Gao FY, Zhou X, Lu MX, Wang M, Liu ZG, Cao JM, Ke XL, Yi MM, Qiu DG. TLR1 in Nile tilapia: The conserved receptor cannot interact with MyD88 and TIRAP but can activate NF-κB in vitro. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104300. [PMID: 34673140 DOI: 10.1016/j.dci.2021.104300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Toll-like receptors (TLRs) play a critical role in the innate immune response of fish. In this study, we isolated the cDNA sequence of Nile tilapia TLR1 (OnTLR1). The deduced OnTLR1 protein contains a signal peptide, 7 leucine-rich repeats (LRRs), a C-terminal LRR (LRR-CT), a transmembrane region and a highly conserved TIR domain. In healthy Nile tilapia, the OnTLR1 transcript was broadly expressed in all examined tissues, with the highest expression levels in the spleen. After infection with Streptococcus agalactiae, the OnTLR1 transcripts were upregulated in the gill and kidney. After stimulation with polyinosinic-polycytidylic acid (poly(I:C)), the expression levels of OnTLR1 were significantly downregulated in the intestine, whereas OnTLR1 transcripts were significantly upregulated in the kidney. After challenge with lipopolysaccharide (LPS), the expression levels of OnTLR1 were significantly upregulated in the spleen and kidney. The subcellular localization showed that OnTLR1 was expressed in the cytoplasm. TLR1 significantly increased MyD88-dependent NF-κB activity. However, the results of a pull-down assay showed that OnTLR1 did not interact with MyD88 or TIRAP. Binding assays revealed the specificity of OnTLR1 for pathogen-associated molecular patterns (PAMPs) and bacteria that included S. agalactiae, Aeromonas hydrophila and poly(I:C) and LPS. Taken together, these findings suggest that OnTLR1, as a pattern recognition receptor (PRR), might play an important role in the immune response to pathogen invasion.
Collapse
Affiliation(s)
- Feng-Ying Gao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Xin Zhou
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Mai-Xin Lu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Miao Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Zhi-Gang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Jian-Meng Cao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Xiao-Li Ke
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Meng-Meng Yi
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province/Fisheries Research Institute of Fujian, Xiamen, Fujian, 361013, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Deng-Gao Qiu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province/Fisheries Research Institute of Fujian, Xiamen, Fujian, 361013, China.
| |
Collapse
|
32
|
Peruń A, Gębicka M, Biedroń R, Skalska P, Józefowski S. The CD36 and SR-A/CD204 scavenger receptors fine-tune Staphylococcus aureus-stimulated cytokine production in mouse macrophages. Cell Immunol 2022; 372:104483. [DOI: 10.1016/j.cellimm.2022.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 11/03/2022]
|
33
|
Daskou M, Mu W, Sharma M, Vasilopoulos H, Heymans R, Ritou E, Rezek V, Hamid P, Kossyvakis A, Sen Roy S, Grijalva V, Chattopadhyay A, Kitchen SG, Fogelman AM, Reddy ST, Kelesidis T. ApoA-I mimetics reduce systemic and gut inflammation in chronic treated HIV. PLoS Pathog 2022; 18:e1010160. [PMID: 34995311 PMCID: PMC8740974 DOI: 10.1371/journal.ppat.1010160] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/30/2021] [Indexed: 12/31/2022] Open
Abstract
Novel therapeutic strategies are needed to attenuate increased systemic and gut inflammation that contribute to morbidity and mortality in chronic HIV infection despite potent antiretroviral therapy (ART). The goal of this study is to use preclinical models of chronic treated HIV to determine whether the antioxidant and anti-inflammatory apoA-I mimetic peptides 6F and 4F attenuate systemic and gut inflammation in chronic HIV. We used two humanized murine models of HIV infection and gut explants from 10 uninfected and 10 HIV infected persons on potent ART, to determine the in vivo and ex vivo impact of apoA-I mimetics on systemic and intestinal inflammation in HIV. When compared to HIV infected humanized mice treated with ART alone, mice on oral apoA-I mimetic peptide 6F with ART had consistently reduced plasma and gut tissue cytokines (TNF-α, IL-6) and chemokines (CX3CL1) that are products of ADAM17 sheddase activity. Oral 6F attenuated gut protein levels of ADAM17 that were increased in HIV-1 infected mice on potent ART compared to uninfected mice. Adding oxidized lipoproteins and endotoxin (LPS) ex vivo to gut explants from HIV infected persons increased levels of ADAM17 in myeloid and intestinal cells, which increased TNF-α and CX3CL1. Both 4F and 6F attenuated these changes. Our preclinical data suggest that apoA-I mimetic peptides provide a novel therapeutic strategy that can target increased protein levels of ADAM17 and its sheddase activity that contribute to intestinal and systemic inflammation in treated HIV. The large repertoire of inflammatory mediators involved in ADAM17 sheddase activity places it as a pivotal orchestrator of several inflammatory pathways associated with morbidity in chronic treated HIV that make it an attractive therapeutic target.
Collapse
Affiliation(s)
- Maria Daskou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - William Mu
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Madhav Sharma
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hariclea Vasilopoulos
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Rachel Heymans
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Eleni Ritou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Valerie Rezek
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Philip Hamid
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Athanasios Kossyvakis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shubhendu Sen Roy
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Victor Grijalva
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Arnab Chattopadhyay
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Scott G. Kitchen
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Alan M. Fogelman
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Srinivasa T. Reddy
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
34
|
Vogel A, Brunner JS, Hajto A, Sharif O, Schabbauer G. Lipid scavenging macrophages and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159066. [PMID: 34626791 DOI: 10.1016/j.bbalip.2021.159066] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
Macrophages are professional phagocytes, indispensable for maintenance of tissue homeostasis and integrity. Depending on their resident tissue, macrophages are exposed to highly diverse metabolic environments. Adapted to their niche, they can contribute to local metabolic turnover through metabolite uptake, conversion, storage and release. Disturbances in tissue homeostasis caused by infection, inflammation or damage dramatically alter the local milieu, impacting macrophage activation status and metabolism. In the case of persisting stimuli, defective macrophage responses ensue, which can promote tissue damage and disease. Especially relevant herein are disbalances in lipid rich environments, where macrophages are crucially involved in lipid uptake and turnover, preventing lipotoxicity. Lipid uptake is to a large extent facilitated by macrophage expressed scavenger receptors that are dynamically regulated and important in many metabolic diseases. Here, we review the receptors mediating lipid uptake and summarize recent findings on their role in health and disease. We further highlight the underlying pathways driving macrophage lipid acquisition and their impact on myeloid metabolic remodelling.
Collapse
Affiliation(s)
- Andrea Vogel
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Julia Stefanie Brunner
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Alexander Hajto
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Omar Sharif
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria.
| | - Gernot Schabbauer
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria.
| |
Collapse
|
35
|
Sauer AK, Malijauskaite S, Meleady P, Boeckers TM, McGourty K, Grabrucker AM. Zinc is a key regulator of gastrointestinal development, microbiota composition and inflammation with relevance for autism spectrum disorders. Cell Mol Life Sci 2021; 79:46. [PMID: 34936034 PMCID: PMC11072240 DOI: 10.1007/s00018-021-04052-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/31/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022]
Abstract
Gastrointestinal (GI) problems and microbiota alterations have been frequently reported in autism spectrum disorders (ASD). In addition, abnormal perinatal trace metal levels have been found in ASD. Accordingly, mice exposed to prenatal zinc deficiency display features of ASD-like behavior. Here, we model GI development using 3D intestinal organoids grown under zinc-restricted conditions. We found significant morphological alterations. Using proteomic approaches, we identified biological processes affected by zinc deficiency that regulate barrier permeability and pro-inflammatory pathways. We confirmed our results in vivo through proteomics studies and investigating GI development in zinc-deficient mice. These show altered GI physiology and pro-inflammatory signaling, resulting in chronic systemic and neuroinflammation, and gut microbiota composition similar to that reported in human ASD cases. Thus, low zinc status during development is sufficient to compromise intestinal barrier integrity and activate pro-inflammatory signaling, resulting in changes in microbiota composition that may aggravate inflammation, altogether mimicking the co-morbidities frequently observed in ASD.
Collapse
Affiliation(s)
- Ann Katrin Sauer
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, Bernal Institute, Analog Devices Building AD3-018, Castletroy, Limerick, V94PH61, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Sigita Malijauskaite
- Bernal Institute, University of Limerick, Limerick, Ireland
- Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Paula Meleady
- School of Biotechnology and National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- DZNE, Ulm Unit, Ulm, Germany
| | - Kieran McGourty
- Bernal Institute, University of Limerick, Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland
- Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Andreas M Grabrucker
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, Bernal Institute, Analog Devices Building AD3-018, Castletroy, Limerick, V94PH61, Ireland.
- Bernal Institute, University of Limerick, Limerick, Ireland.
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland.
| |
Collapse
|
36
|
Souza TN, Valdez AF, Rizzo J, Zamith-Miranda D, Guimarães AJ, Nosanchuk JD, Nimrichter L. Host cell membrane microdomains and fungal infection. Cell Microbiol 2021; 23:e13385. [PMID: 34392593 PMCID: PMC8664998 DOI: 10.1111/cmi.13385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/14/2021] [Accepted: 07/24/2021] [Indexed: 01/13/2023]
Abstract
Lipid microdomains or lipid rafts are dynamic and tightly ordered regions of the plasma membrane. In mammalian cells, they are enriched in cholesterol, glycosphingolipids, Glycosylphosphatidylinositol-anchored and signalling-related proteins. Several studies have suggested that mammalian pattern recognition receptors are concentrated or recruited to lipid domains during host-pathogen association to enhance the effectiveness of host effector processes. However, pathogens have also evolved strategies to exploit these domains to invade cells and survive. In fungal organisms, a complex cell wall network usually mediates the first contact with the host cells. This cell wall may contain virulence factors that interfere with the host membrane microdomains dynamics, potentially impacting the infection outcome. Indeed, the microdomain disruption can dampen fungus-host cell adhesion, phagocytosis and cellular immune responses. Here, we provide an overview of regulatory strategies employed by pathogenic fungi to engage with and potentially subvert the lipid microdomains of host cells. TAKE AWAY: Lipid microdomains are ordered regions of the plasma membrane enriched in cholesterol, glycosphingolipids (GSL), GPI-anchored and signalling-related proteins. Pathogen recognition by host immune cells can involve lipid microdomain participation. During this process, these domains can coalesce in larger complexes recruiting receptors and signalling proteins, significantly increasing their signalling abilities. The antifungal innate immune response is mediated by the engagement of pathogen-associated molecular patterns to pattern recognition receptors (PRRs) at the plasma membrane of innate immune cells. Lipid microdomains can concentrate or recruit PRRs during host cell-fungi association through a multi-interactive mechanism. This association can enhance the effectiveness of host effector processes. However, virulence factors at the fungal cell surface and extracellular vesicles can re-assembly these domains, compromising the downstream signalling and favouring the disease development. Lipid microdomains are therefore very attractive targets for novel drugs to combat fungal infections.
Collapse
Affiliation(s)
- Taiane N Souza
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro F Valdez
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Rizzo
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Paris, France
| | - Daniel Zamith-Miranda
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Allan Jefferson Guimarães
- Departamento de Microbiologia e Parasitologia-MIP, Instituto Biomédico, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Leonardo Nimrichter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Dias ML, O'Connor KM, Dempsey EM, O'Halloran KD, McDonald FB. Targeting the Toll-like receptor pathway as a therapeutic strategy for neonatal infection. Am J Physiol Regul Integr Comp Physiol 2021; 321:R879-R902. [PMID: 34612068 DOI: 10.1152/ajpregu.00307.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) are crucial transmembrane receptors that form part of the innate immune response. They play a role in the recognition of various microorganisms and their elimination from the host. TLRs have been proposed as vital immunomodulators in the regulation of multiple neonatal stressors that extend beyond infection such as oxidative stress and pain. The immune system is immature at birth and takes some time to become fully established. As such, babies are especially vulnerable to sepsis at this early stage of life. Findings suggest a gestational age-dependent increase in TLR expression. TLRs engage with accessory and adaptor proteins to facilitate recognition of pathogens and their activation of the receptor. TLRs are generally upregulated during infection and promote the transcription and release of proinflammatory cytokines. Several studies report that TLRs are epigenetically modulated by chromatin changes and promoter methylation upon bacterial infection that have long-term influences on immune responses. TLR activation is reported to modulate cardiorespiratory responses during infection and may play a key role in driving homeostatic instability observed during sepsis. Although complex, TLR signaling and downstream pathways are potential therapeutic targets in the treatment of neonatal diseases. By reviewing the expression and function of key Toll-like receptors, we aim to provide an important framework to understand the functional role of these receptors in response to stress and infection in premature infants.
Collapse
Affiliation(s)
- Maria L Dias
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Karen M O'Connor
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland.,Department of Pediatrics and Child Health, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland.,Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland
| | - Fiona B McDonald
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland.,Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland
| |
Collapse
|
38
|
Chen F, Zou L, Williams B, Chao W. Targeting Toll-Like Receptors in Sepsis: From Bench to Clinical Trials. Antioxid Redox Signal 2021; 35:1324-1339. [PMID: 33588628 PMCID: PMC8817700 DOI: 10.1089/ars.2021.0005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Sepsis is a critical clinical syndrome with life-threatening organ dysfunction induced by a dysregulated host response to infection. Despite decades of intensive research, sepsis remains a leading cause of in-hospital mortality with few specific treatments. Recent Advances: Toll-like receptors (TLRs) are a part of the innate immune system and play an important role in host defense against invading pathogens such as bacteria, virus, and fungi. Using a combination of genetically modified animal models and pharmacological agents, numerous preclinical studies during the past two decades have demonstrated that dysregulated TLR signaling may contribute to sepsis pathogenesis. However, many clinical trials targeting inflammation and innate immunity such as TLR4 have yielded mixed results. Critical Issues: Here we review various TLRs and the specific molecules these TLRs sense-both the pathogen-associated and host-derived stress molecules, and their converging signaling pathways. We critically analyze preclinical investigations into the role of TLRs in animal sepsis, the complexity of targeting TLRs for sepsis intervention, and the disappointing clinical trials of the TLR4 antagonist eritoran. Future Directions: Future sepsis treatments will depend on better understanding the complex biological mechanisms of sepsis pathogenesis, the high heterogeneity of septic humans as defined by clinical presentations and unique immunological biomarkers, and improved stratifications for targeted interventions.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lin Zou
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Brittney Williams
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
39
|
Daskou M, Sharma M, Mu W, Heymans R, Ritou E, Rezek V, Hamid P, Kossyvakis A, Sen Roy S, Grijalva V, Chattopadhyay A, Papesh J, Meriwether D, Kitchen SG, Fogelman AM, Reddy ST, Kelesidis T. ApoA-I mimetics favorably impact cyclooxygenase 2 and bioactive lipids that may contribute to cardiometabolic syndrome in chronic treated HIV. Metabolism 2021; 124:154888. [PMID: 34509494 PMCID: PMC8802211 DOI: 10.1016/j.metabol.2021.154888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE We investigated whether apolipoprotein A-I (apoA-I) mimetic peptides 4F and 6F can be a novel therapeutic strategy to reduce blood and gut bioactive lipids, proinflammatory effects of endotoxin (LPS) and aberrant activation of cyclooxygenase 2 (COX-2) as instigators of increased risk for cardiometabolic disease in chronic treated HIV. METHODS We used two humanized murine models of chronic treated HIV infection (n = 109 mice) and gut explants from HIV infected (n = 10) persons to determine whether Tg6F and 4F attenuate in vivo and ex vivo increased blood and gut bioactive lipids (measured by mass spectrometry) and intestinal protein levels of COX-2 (measured by immunoassays) in chronic treated HIV. RESULTS In these models of HIV, when compared to HIV-1 infected mice on antiretroviral therapy (ART) alone, oral Tg6F in combination with ART attenuated increases in plasma and gut bioactive lipids (and particularly COX lipids) and intestinal COX-2. 4F and Tg6F also reduced ex vivo production of COX-2 protein and associated secretion of bioactive lipids in gut explants from HIV-1 infected persons treated with LPS. CONCLUSION ApoA-I mimetics favorably impact the proinflammatory effects of LPS, COX-2 and production of bioactive lipids that collectively drive gut and systemic inflammation in chronic treated HIV. Given prior experimental evidence that the proinflammatory effects of LPS, COX-2 and gut dysfunction contribute to cardiometabolic syndrome in chronic HIV, apoA-I mimetic peptides may be a novel therapy to treat cardiometabolic syndrome in chronic HIV.
Collapse
Affiliation(s)
- M Daskou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - M Sharma
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - W Mu
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - R Heymans
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - E Ritou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - V Rezek
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - P Hamid
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - A Kossyvakis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - S Sen Roy
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - V Grijalva
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - A Chattopadhyay
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - J Papesh
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - D Meriwether
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - S G Kitchen
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - A M Fogelman
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - S T Reddy
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles, Los Angeles, CA, USA
| | - T Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
40
|
Multivariate Analysis Reveals That Unsubstituted β-Ring and C8-Keto Structures Are Important Factors for Anti-Inflammatory Activity of Carotenoids. Nutrients 2021; 13:nu13113699. [PMID: 34835955 PMCID: PMC8622589 DOI: 10.3390/nu13113699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Carotenoids are natural lipophilic pigments with substantial health benefits. Numerous studies have demonstrated the anti-inflammatory activities of carotenoids, especially toward lipopolysaccharide-induced inflammatory responses. As such, there are few reports on the evaluation and comparison of the anti-inflammatory activities of carotenoids against inflammation induced by other stimuli. In this study, we used pathogen-associated molecular patterns, proinflammatory cytokines, degenerated proteins, and chemical irritants as inflammatory inducers to evaluate the anti-inflammatory activities of eight different carotenoids. Each carotenoid showed characteristic anti-inflammatory activities; thus, we conducted a multivariate analysis to clarify the differences among them. Unsubstituted β-ring (i.e., provitamin A) and C8-keto structures of carotenoids were found to be crucial for their inhibitory effects on the activation of nuclear factor-kappa B and interferon regulatory factors, respectively. Furthermore, we found that β-carotene and echinenone treatment increased intracellular retinoid levels in monocytes and that the retinoids showed the similar activities to β-carotene and echinenone. Taken together, the intake of both provitamin A and C8-keto carotenoids (e.g., siphonaxanthin and fucoxanthin) might be effective in improving the inflammatory status of individuals. A multivariate analysis of anti-inflammatory activities is a useful method for characterizing anti-inflammatory compounds.
Collapse
|
41
|
Adhikarla SV, Jha NK, Goswami VK, Sharma A, Bhardwaj A, Dey A, Villa C, Kumar Y, Jha SK. TLR-Mediated Signal Transduction and Neurodegenerative Disorders. Brain Sci 2021; 11:brainsci11111373. [PMID: 34827372 PMCID: PMC8615980 DOI: 10.3390/brainsci11111373] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022] Open
Abstract
A special class of proteins called Toll-like receptors (TLRs) are an essential part of the innate immune system, connecting it to the adaptive immune system. There are 10 different Toll-Like Receptors that have been identified in human beings. TLRs are part of the central nervous system (CNS), showing that the CNS is capable of the immune response, breaking the long-held belief of the brain's "immune privilege" owing to the blood-brain barrier (BBB). These Toll-Like Receptors are present not just on the resident macrophages of the central nervous system but are also expressed by the neurons to allow them for the production of proinflammatory agents such as interferons, cytokines, and chemokines; the activation and recruitment of glial cells; and their participation in neuronal cell death by apoptosis. This study is focused on the potential roles of various TLRs in various neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD), namely TLR2, TLR3, TLR4, TLR7, and TLR9 in AD and PD in human beings and a mouse model.
Collapse
Affiliation(s)
- Shashank Vishwanath Adhikarla
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology (Formerly NSIT, University of Delhi), New Delhi 110078, India;
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India; (N.K.J.); (A.B.)
| | - Vineet Kumar Goswami
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India;
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham 2770, Australia;
| | - Ankur Sharma
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham 2770, Australia;
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida 201310, India
| | - Anuradha Bhardwaj
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India; (N.K.J.); (A.B.)
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India;
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Yatender Kumar
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology (Formerly NSIT, University of Delhi), New Delhi 110078, India;
- Correspondence: (Y.K.); (S.K.J.)
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India; (N.K.J.); (A.B.)
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham 2770, Australia;
- Correspondence: (Y.K.); (S.K.J.)
| |
Collapse
|
42
|
Castillo JA, Giraldo DM, Hernandez JC, Smit JM, Rodenhuis-Zybert IA, Urcuqui-Inchima S. Regulation of innate immune responses in macrophages differentiated in the presence of vitamin D and infected with dengue virus 2. PLoS Negl Trop Dis 2021; 15:e0009873. [PMID: 34634046 PMCID: PMC8530315 DOI: 10.1371/journal.pntd.0009873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/21/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022] Open
Abstract
A dysregulated or exacerbated inflammatory response is thought to be the key driver of the pathogenesis of severe disease caused by the mosquito-borne dengue virus (DENV). Compounds that restrict virus replication and modulate the inflammatory response could thus serve as promising therapeutics mitigating the disease pathogenesis. We and others have previously shown that macrophages, which are important cellular targets for DENV replication, differentiated in the presence of bioactive vitamin D (VitD3) are less permissive to viral replication, and produce lower levels of pro-inflammatory cytokines. Therefore, we here evaluated the extent and kinetics of innate immune responses of DENV-2 infected monocytes differentiated into macrophages in the presence (D3-MDMs) or absence of VitD3 (MDMs). We found that D3-MDMs expressed lower levels of RIG I, Toll-like receptor (TLR)3, and TLR7, as well as higher levels of SOCS-1 in response to DENV-2 infection. D3-MDMs produced lower levels of reactive oxygen species, related to a lower expression of TLR9. Moreover, although VitD3 treatment did not modulate either the expression of IFN-α or IFN-β, higher expression of protein kinase R (PKR) and 2'-5'-oligoadenylate synthetase 1 (OAS1) mRNA were found in D3-MDMs. Importantly, the observed effects were independent of reduced infection, highlighting the intrinsic differences between D3-MDMs and MDMs. Taken together, our results suggest that differentiation of MDMs in the presence of VitD3 modulates innate immunity in responses to DENV-2 infection.
Collapse
Affiliation(s)
- Jorge Andrés Castillo
- Grupo de Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, (Antioquia), Colombia
- Department of Medical Microbiology and infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Diana M. Giraldo
- Grupo de Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, (Antioquia), Colombia
| | - Juan C. Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, (Antioquia), Colombia
| | - Jolanda M. Smit
- Department of Medical Microbiology and infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Izabela A. Rodenhuis-Zybert
- Department of Medical Microbiology and infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Silvio Urcuqui-Inchima
- Grupo de Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, (Antioquia), Colombia
| |
Collapse
|
43
|
Parra-Izquierdo I, Lakshmanan HHS, Melrose AR, Pang J, Zheng TJ, Jordan KR, Reitsma SE, McCarty OJT, Aslan JE. The Toll-Like Receptor 2 Ligand Pam2CSK4 Activates Platelet Nuclear Factor-κB and Bruton's Tyrosine Kinase Signaling to Promote Platelet-Endothelial Cell Interactions. Front Immunol 2021; 12:729951. [PMID: 34527000 PMCID: PMC8435771 DOI: 10.3389/fimmu.2021.729951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022] Open
Abstract
Circulating platelets establish a variety of immunological programs and orchestrate inflammatory responses at the endothelium. Platelets express the innate immunity family of Toll-like receptors (TLRs). While TLR2/TLR1 ligands are known to activate platelets, the effects of TLR2/TLR6 ligands on platelet function remain unclear. Here, we aim to determine whether the TLR2/TLR6 agonists Pam2CSK4 and FSL-1 activate human platelets. In addition, human umbilical vein endothelial cells (HUVECs) and platelets were co-cultured to analyze the role of platelet TLR2/TLR6 on inflammation and adhesion to endothelial cells. Pam2CSK4, but not FSL-1, induced platelet granule secretion and integrin αIIbβ3 activation in a concentration-dependent manner. Moreover, Pam2CSK4 promoted platelet aggregation and increased platelet adhesion to collagen-coated surfaces. Mechanistic studies with blocking antibodies and pharmacologic inhibitors demonstrated that the TLR2/Nuclear factor-κB axis, Bruton’s-tyrosine kinase, and a secondary ADP feedback loop are involved in Pam2CSK4-induced platelet functional responses. Interestingly, Pam2CSK4 showed cooperation with immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling to enhance platelet activation. Finally, the presence of platelets increased inflammatory responses in HUVECs treated with Pam2CSK4, and platelets challenged with Pam2CSK4 showed increased adhesion to HUVECs under static and physiologically relevant flow conditions. Herein, we define a functional role for platelet TLR2-mediated signaling, which may represent a druggable target to dampen excessive platelet activation in thrombo-inflammatory diseases.
Collapse
Affiliation(s)
- Iván Parra-Izquierdo
- Knight Cardiovascular Institute and Division of Cardiology, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Hari Hara Sudhan Lakshmanan
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Alexander R Melrose
- Knight Cardiovascular Institute and Division of Cardiology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jiaqing Pang
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Tony J Zheng
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Kelley R Jordan
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Stéphanie E Reitsma
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Owen J T McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Division of Hematology and Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Joseph E Aslan
- Knight Cardiovascular Institute and Division of Cardiology, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
44
|
Venkataranganayaka Abhilasha K, Kedihithlu Marathe G. Bacterial lipoproteins in sepsis. Immunobiology 2021; 226:152128. [PMID: 34488139 DOI: 10.1016/j.imbio.2021.152128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 01/05/2023]
Abstract
Bacterial lipoproteins are membrane proteins derived from both gram-negative and gram-positive bacteria. They seem to have diverse functions not only on bacterial growth, but also play an important role in host's virulence. Bacterial lipoproteins exert their action on host immune cells via TLR2/1 or TLR2/6. Therefore, bacterial lipoproteins also need to be considered while addressing bacterial pathogenicity besides classical bacterial endotoxin like LPS and other microbial associated molecular patterns such as LTA, and peptidoglycans. In this mini-review, we provide an overview of general bacterial lipoprotein biosynthesis and the need to understand the lipoprotein-mediated pathogenicity in diseases like sepsis.
Collapse
Affiliation(s)
- Kandahalli Venkataranganayaka Abhilasha
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570006, Karnataka, India; Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570006, Karnataka, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangothri, Mysuru 570006, Karnataka, India.
| |
Collapse
|
45
|
The Expression Levels of Toll-like Receptors after Metallic Particle and Ion Exposition in the Synovium of a Murine Model. J Clin Med 2021; 10:jcm10163489. [PMID: 34441785 PMCID: PMC8396889 DOI: 10.3390/jcm10163489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
To date, the exact role of specific Toll-like receptors (TLRs) in regulating immune reactivity to metallic byproducts of orthopedic implants has not been fully clarified. In light of the situation, our objective in this investigation was to assess the expression levels of surface TLRs after metallic particle and ion exposure in an established animal model. Ten female BALB/c mice in each group received intra-articular injections of phosphate buffer (PBS) (control), metallic particles (MP), and metallic ions (MI), respectively. Seven days later, immunohistochemical staining was undertaken in the synovial layer of the murine knee joints using anti-TLR 1, 2, 4, 5, and 6 polyclonal antibodies. In addition to increased cellular infiltrates and a hyperplastic synovial membrane, the MP group showed significantly elevated TLR expression compared to the control group and had higher TLR 1-, 4-, and 6-positive cells than the MI group (p < 0.0167). TLR 4- and TLR 6-positive cells were significantly augmented for the MI group compared to the control group (p < 0.0167). Additionally, greenish corrosion particles found in the necrotic tissue suggested that metallic particles might release a certain level of locally toxic metallic ions in vivo.
Collapse
|
46
|
Wang KL, Chen SN, Huo HJ, Nie P. Identification and expression analysis of sixteen Toll-like receptor genes, TLR1, TLR2a, TLR2b, TLR3, TLR5M, TLR5S, TLR7-9, TLR13a-c, TLR14, TLR21-23 in mandarin fish Siniperca chuatsi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104100. [PMID: 33862097 DOI: 10.1016/j.dci.2021.104100] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Toll-like receptors (TLRs), as a family of pattern recognition receptors (PRRs), possess specific pathogen-related molecular pattern (PAMP) recognition spectrum in inducing immune responses. In this study, sixteen TLRs were identified and characterized in mandarin fish (Siniperca chuatsi). All these TLRs consist of leucine-rich repeats (LRRs), a transmembrane domain and a Toll/interleukin-I receptor (TIR) domain, with the exception of TLR5S which lacks TIR domain, and they can be clustered into five branches, i.e. TLR1 subfamily, TLR3 subfamily, TLR5 subfamily, TLR7 subfamily and TLR11 subfamily in phylogenetic tree. These TLR genes were expressed in all tested tissues and had high expression levels in immune-related tissues such as head-kidney and spleen or mucosa-related tissues such as intestine and pyloric caecum. The transcripts of TLR2a, TLR2b, TLR3, TLR13a, TLR14, TLR22 and TLR23 were all significantly up-regulated after stimulation with poly(I:C); TLR1, TLR2a, TLR2b, TLR3, TLR5M, TLR5S, TLR13a and TLR13b transcripts were all significantly up-regulated after stimulation with PGN; and TLR2a, TLR2b, TLR5M, TLR5S, TLR7, TLR8, TLR9, TLR13c, TLR14 and TLR22 transcripts were all significantly up-regulated after stimulation with LPS in isolated head kidney lymphocytes of mandarin fish. The findings in this study may provide a valuable basis for functional study on TLR genes in mandarin fish.
Collapse
Affiliation(s)
- Kai Lun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| | - Hui Jun Huo
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
47
|
Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6:263. [PMID: 34248142 PMCID: PMC8273155 DOI: 10.1038/s41392-021-00658-5] [Citation(s) in RCA: 868] [Impact Index Per Article: 289.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer development and its response to therapy are regulated by inflammation, which either promotes or suppresses tumor progression, potentially displaying opposing effects on therapeutic outcomes. Chronic inflammation facilitates tumor progression and treatment resistance, whereas induction of acute inflammatory reactions often stimulates the maturation of dendritic cells (DCs) and antigen presentation, leading to anti-tumor immune responses. In addition, multiple signaling pathways, such as nuclear factor kappa B (NF-kB), Janus kinase/signal transducers and activators of transcription (JAK-STAT), toll-like receptor (TLR) pathways, cGAS/STING, and mitogen-activated protein kinase (MAPK); inflammatory factors, including cytokines (e.g., interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF)-α), chemokines (e.g., C-C motif chemokine ligands (CCLs) and C-X-C motif chemokine ligands (CXCLs)), growth factors (e.g., vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β), and inflammasome; as well as inflammatory metabolites including prostaglandins, leukotrienes, thromboxane, and specialized proresolving mediators (SPM), have been identified as pivotal regulators of the initiation and resolution of inflammation. Nowadays, local irradiation, recombinant cytokines, neutralizing antibodies, small-molecule inhibitors, DC vaccines, oncolytic viruses, TLR agonists, and SPM have been developed to specifically modulate inflammation in cancer therapy, with some of these factors already undergoing clinical trials. Herein, we discuss the initiation and resolution of inflammation, the crosstalk between tumor development and inflammatory processes. We also highlight potential targets for harnessing inflammation in the treatment of cancer.
Collapse
|
48
|
Xia P, Wu Y, Lian S, Yan L, Meng X, Duan Q, Zhu G. Research progress on Toll-like receptor signal transduction and its roles in antimicrobial immune responses. Appl Microbiol Biotechnol 2021; 105:5341-5355. [PMID: 34180006 PMCID: PMC8236385 DOI: 10.1007/s00253-021-11406-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022]
Abstract
When microorganisms invade a host, the innate immune system first recognizes the pathogen-associated molecular patterns of these microorganisms through pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are known transmembrane PRRs existing in both invertebrates and vertebrates. Upon ligand recognition, TLRs initiate a cascade of signaling events; promote the pro-inflammatory cytokine, type I interferon, and chemokine expression; and play an essential role in the modulation of the host's innate and adaptive immunity. Therefore, it is of great significance to improve our understanding of antimicrobial immune responses by studying the role of TLRs and their signal molecules in the host's defense against invading microbes. This paper aims to summarize the specificity of TLRs in recognition of conserved microbial components, such as lipoprotein, lipopolysaccharide, flagella, endosomal nucleic acids, and other bioactive metabolites derived from microbes. This set of interactions helps to elucidate the immunomodulatory effect of TLRs and the signal transduction changes involved in the infectious process and provide a novel therapeutic strategy to combat microbial infections.
Collapse
Affiliation(s)
- Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Yunping Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Li Yan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Xia Meng
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Qiangde Duan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
49
|
Ohm RG, Mulumba M, Chingle RM, Ahsanullah, Zhang J, Chemtob S, Ong H, Lubell WD. Diversity-Oriented A 3-Macrocyclization for Studying Influences of Ring-Size and Shape of Cyclic Peptides: CD36 Receptor Modulators. J Med Chem 2021; 64:9365-9380. [PMID: 34161728 DOI: 10.1021/acs.jmedchem.1c00642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cyclic peptide diversity has been broadened by elaborating the A3-macrocyclization to include various di-amino carboxylate components with different Nε-amine substituents. Triple-bond reduction provided new cyclic peptide macrocycles with Z-olefin and completely saturated structures. Moreover, cyclic azasulfurylpeptides were prepared by exchanging the propargylglycine (Pra) component for an amino sulfamide surrogate. Examination of such diversity-oriented methods on potent cyclic azapeptide modulators of the cluster of differentiation 36 receptor (CD36) identified the importance of the triple bond as well as the Nε-allyl lysine and azaPra residues for high CD36 binding affinity. Cyclic azapeptides which engaged CD36 effectively reduced pro-inflammatory nitric oxide and downstream cytokine and chemokine production in macrophages stimulated with a Toll-like receptor-2 agonist. Studying the triple bond and amine components in the multiple-component A3-macrocyclization has given a diverse array of macrocycles and pertinent information to guide the development of ideal CD36 modulators with biomedical potential for curbing macrophage-driven inflammation.
Collapse
Affiliation(s)
- Ragnhild G Ohm
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale, Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Mukandila Mulumba
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale, Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Ramesh M Chingle
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale, Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Ahsanullah
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale, Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Jinqiang Zhang
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale, Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Sylvain Chemtob
- Département de Pédiatrie, Université de Montréal, C.P. 6128, Succursale, Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Huy Ong
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale, Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - William D Lubell
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale, Centre-Ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
50
|
Jiménez M, Cervantes-García D, Córdova-Dávalos LE, Pérez-Rodríguez MJ, Gonzalez-Espinosa C, Salinas E. Responses of Mast Cells to Pathogens: Beneficial and Detrimental Roles. Front Immunol 2021; 12:685865. [PMID: 34211473 PMCID: PMC8240065 DOI: 10.3389/fimmu.2021.685865] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MCs) are strategically located in tissues close to the external environment, being one of the first immune cells to interact with invading pathogens. They are long living effector cells equipped with different receptors that allow microbial recognition. Once activated, MCs release numerous biologically active mediators in the site of pathogen contact, which induce vascular endothelium modification, inflammation development and extracellular matrix remodeling. Efficient and direct antimicrobial mechanisms of MCs involve phagocytosis with oxidative and non-oxidative microbial destruction, extracellular trap formation, and the release of antimicrobial substances. MCs also contribute to host defense through the attraction and activation of phagocytic and inflammatory cells, shaping the innate and adaptive immune responses. However, as part of their response to pathogens and under an impaired, sustained, or systemic activation, MCs may contribute to tissue damage. This review will focus on the current knowledge about direct and indirect contribution of MCs to pathogen clearance. Antimicrobial mechanisms of MCs are addressed with special attention to signaling pathways involved and molecular weapons implicated. The role of MCs in a dysregulated host response that can increase morbidity and mortality is also reviewed and discussed, highlighting the complexity of MCs biology in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Mariela Jiménez
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Daniel Cervantes-García
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Cátedras CONACYT, National Council of Science and Technology, Mexico City, Mexico
| | - Laura E Córdova-Dávalos
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Marian Jesabel Pérez-Rodríguez
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia Gonzalez-Espinosa
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Eva Salinas
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|