1
|
Cockx M, Steels S, Michiels B, Van Elslande J, Vermeersch P, Frans G, Claeys KG, Desmet S, De Munter P, Bossuyt X. IFN-α2 Autoantibody Screening and Functional Evaluation in Viral and Bacterial Infections. J Appl Lab Med 2024; 9:977-989. [PMID: 39114898 DOI: 10.1093/jalm/jfae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/17/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND The presence of anti-interferon (IFN)-α2 autoantibodies is a strong indicator of severe disease course during viral infections and is observed in autoimmune diseases (e.g., myasthenia gravis). Detection of these autoantibodies during severe bacterial infections is understudied. Multiple anti-IFN-α2 autoantibody screening assays are available. However, the results do not always correlate with the neutralizing capacity of the autoantibodies. METHODS Anti-IFN-α2 antibodies were measured by a Luminex-based assay in serum samples from individuals admitted to the intensive care unit infected with influenza (n = 38), invasive bacteria (n = 152), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (n = 52). Anti-IFN-α2 antibodies were also studied in individuals with myasthenia gravis (n = 22) and in healthy individuals (n = 37). Individuals testing positive by Luminex were subsequently tested by enzyme-linked immunosorbent assay (ELISA) and tested for nonspecific reactivity and neutralization. RESULTS Three of 16 Luminex-positive samples had nonspecific reactivity, 11/16 were positive by ELISA, and 10/16 had neutralizing activity. Anti-IFN-α2 antibodies were found in individuals infected with SARS-CoV-2 (7/52), influenza (3/38), invasive bacteria [2/152, of which 1 was Legionella pneumophilia and was 1 Escherichia coli (E. coli) (out of 39 E. coli infections)], and in individuals with myasthenia gravis (2/22). CONCLUSIONS Anti-IFN-α2 autoantibodies were detected in viral infections, myasthenia gravis, and rarely in bacterial infections. ELISA and Luminex screening assays do not give similar results. Nonspecific reactivity and functional assays are necessary to validate the screening test result.
Collapse
Affiliation(s)
- Maaike Cockx
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Sophie Steels
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Birthe Michiels
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jan Van Elslande
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Vermeersch
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Glynis Frans
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences, Laboratory for Muscle Diseases and Neuropathies, KU Leuven, and Leuven Brain Institute, Leuven, Belgium
| | - Stefanie Desmet
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Paul De Munter
- Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Xavier Bossuyt
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Allen CNS, Banks DA, Shuster M, Vogel SN, O’Connor TJ, Briken V. Legionella pneumophila inhibits type I interferon signaling to avoid cell-intrinsic host cell defense. Infect Immun 2023; 91:e0036523. [PMID: 37843413 PMCID: PMC10652965 DOI: 10.1128/iai.00365-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The host type I interferon (IFN) response protects against Legionella pneumophila infections. Other bacterial pathogens inhibit type I IFN-mediated cell signaling; however, the interaction between this signaling pathway and L. pneumophila has not been well described. Here, we demonstrate that L. pneumophila inhibits the IFN-β signaling pathway but does not inhibit IFN-γ-mediated cell signaling. The addition of IFN-β to L. pneumophila-infected macrophages limited bacterial growth independently of NOS2 and reactive nitrogen species. The type IV secretion system of L. pneumophila is required to inhibit IFN-β-mediated cell signaling. Finally, we show that the inhibition of the IFN-β signaling pathway occurs downstream of STAT1 and STAT2 phosphorylation. In conclusion, our findings describe a novel host cell signaling pathway inhibited by L. pneumophila via its type IV secretion system.
Collapse
Affiliation(s)
- Charles N. S. Allen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Dallas A. Banks
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tamara J. O’Connor
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
3
|
Routsias JG, Marinou D, Mavrouli M, Tsakris A, Pitiriga V. Serum β-Defensin 2, A Novel Biomarker for the Diagnosis of Acute Infections. Diagnostics (Basel) 2023; 13:diagnostics13111885. [PMID: 37296737 DOI: 10.3390/diagnostics13111885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Defensins are natural antimicrobial peptides that the human body secretes to protect itself from an infection. Thus, they are ideal molecules to serve as biomarkers for infection. This study was conducted to evaluate the levels of human β-defensins in patients with inflammation. METHODS CRP, hBD2 and procalcitonin were measured in 423 sera of 114 patients with inflammation and healthy individuals using nephelometry and commercial ELISA assays. RESULTS Levels of hBD2 in the serum of patients with an infection were markedly elevated compared to those of hBD2 in patients with inflammation of non-infectious etiology (p < 0.0001, t = 10.17) and healthy individuals. ROC analysis demonstrated that hBD2 showed the highest detection performance for infection (AUC 0.897; p < 0.001) followed by PCT (AUC 0.576; p = ns) and CRP (AUC 0.517; p = ns). In addition, analysis of hBD2 and CRP in patients' sera collected at different time points showed that hBD2 levels could help differentiate inflammation of infectious and non-infectious etiology during the first 5 days of hospitalization, while CRP levels could not. CONCLUSIONS hBD2 has the potential to serve as a diagnostic biomarker for infection. In addition, the levels of hBD2 may reflect the efficacy of antibiotic treatment.
Collapse
Affiliation(s)
- John G Routsias
- Department of Microbiology, School of Health Sciences, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Attica, Greece
| | - Dionysia Marinou
- Department of Microbiology, School of Health Sciences, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Attica, Greece
| | - Maria Mavrouli
- Department of Microbiology, School of Health Sciences, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Attica, Greece
| | - Athanasios Tsakris
- Department of Microbiology, School of Health Sciences, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Attica, Greece
| | - Vassiliki Pitiriga
- Department of Microbiology, School of Health Sciences, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Attica, Greece
| |
Collapse
|
4
|
Sun Y, Cao Z, Zhang P, Wei C, Li J, Wu Y, Zhou Y. IFN regulatory factor 3 of golden pompano and its NLS domain are involved in antibacterial innate immunity and regulate the expression of type I interferon (IFNa3). Front Immunol 2023; 14:1128196. [PMID: 36817435 PMCID: PMC9933344 DOI: 10.3389/fimmu.2023.1128196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction The transcription factor interferon regulatory factor 3 (IRF3) plays an important role in host defence against viral infections. However, its role during bacterial infection in teleosts remains unclear. In the present study, we evaluated the antibacterial effects of Trachinotus ovatus IRF3 (TroIRF3) and how it regulates type I interferon (IFN). Methods Subcellular localisation experiments, overexpression, and quantitative real-time PCR (qRT-PCR) were performed to examine the nuclear localisation signal (NLS) of TroIRF3 and its role in the antibacterial regulatory function of TroIRF3. We assessed the binding activity of TroIRF3 to the IFNa3 promoter by luciferase reporter assay. Results and Discussion The results showed that TroIRF3 was constitutively expressed at high levels in the gill and liver. TroIRF3 was significantly upregulated and transferred from the cytoplasm to the nucleus after Vibrio harveyi infection. By overexpressing TroIRF3, the fish were able to inhibit the replication of V. harveyi, whereas knocking it down increased bacterial replication. Moreover, the overexpression of TroIRF3 increased type I interferon (IFNa3) production and the IFN signalling molecules. The NLS, which is from the 64-127 amino acids of TroIRF3, contains the basic amino acids KR74/75 and RK82/84. The results proved that NLS is required for the efficient nuclear import of TroIRF3 and that the NLS domain of TroIRF3 consists of the key amino acids KR74/75 and RK82/84. The findings also showed that NLS plays a key role in the antibacterial immunity and upregulation of TroIFNa3 induced by TroIRF3. Moreover, TroIRF3 induces TroIFNa3 promoter activity, whereas these effects are inhibited when the NLS domain is deficient. Overall, our results suggested that TroIRF3 is involved in the antibacterial immunity and regulation of type I IFN in T. ovatus and that the NLS of TroIRF3 is vital for IRF3-mediated antibacterial responses, which will aid in understanding the immune role of fish IRF3.
Collapse
Affiliation(s)
- Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Panpan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Caoying Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Jianlong Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Ying Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China,*Correspondence: Ying Wu, ; Yongcan Zhou,
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China,*Correspondence: Ying Wu, ; Yongcan Zhou,
| |
Collapse
|
5
|
Mraz AL, Weir MH. Knowledge to Predict Pathogens: Legionella pneumophila Lifecycle Systematic Review Part II Growth within and Egress from a Host Cell. Microorganisms 2022; 10:141. [PMID: 35056590 PMCID: PMC8780890 DOI: 10.3390/microorganisms10010141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
Legionella pneumophila (L. pneumophila) is a pathogenic bacterium of increasing concern, due to its ability to cause a severe pneumonia, Legionnaires' Disease (LD), and the challenges in controlling the bacteria within premise plumbing systems. L. pneumophila can thrive within the biofilm of premise plumbing systems, utilizing protozoan hosts for protection from environmental stressors and to increase its growth rate, which increases the bacteria's infectivity to human host cells. Typical disinfectant techniques have proven to be inadequate in controlling L. pneumophila in the premise plumbing system, exposing users to LD risks. As the bacteria have limited infectivity to human macrophages without replicating within a host protozoan cell, the replication within, and egress from, a protozoan host cell is an integral part of the bacteria's lifecycle. While there is a great deal of information regarding how L. pneumophila interacts with protozoa, the ability to use this data in a model to attempt to predict a concentration of L. pneumophila in a water system is not known. This systematic review summarizes the information in the literature regarding L. pneumophila's growth within and egress from the host cell, summarizes the genes which affect these processes, and calculates how oxidative stress can downregulate those genes.
Collapse
Affiliation(s)
- Alexis L. Mraz
- School of Nursing, Health, Exercise Science, The College of New Jersey, P.O. Box 7718, 2000 Pennington Rd., Ewing, NJ 08628, USA
| | - Mark H. Weir
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210, USA;
- Sustainability Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Impact of STING Inflammatory Signaling during Intracellular Bacterial Infections. Cells 2021; 11:cells11010074. [PMID: 35011636 PMCID: PMC8750390 DOI: 10.3390/cells11010074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
The early detection of bacterial pathogens through immune sensors is an essential step in innate immunity. STING (Stimulator of Interferon Genes) has emerged as a key mediator of inflammation in the setting of infection by connecting pathogen cytosolic recognition with immune responses. STING detects bacteria by directly recognizing cyclic dinucleotides or indirectly by bacterial genomic DNA sensing through the cyclic GMP-AMP synthase (cGAS). Upon activation, STING triggers a plethora of powerful signaling pathways, including the production of type I interferons and proinflammatory cytokines. STING activation has also been associated with the induction of endoplasmic reticulum (ER) stress and the associated inflammatory responses. Recent reports indicate that STING-dependent pathways participate in the metabolic reprogramming of macrophages and contribute to the establishment and maintenance of a robust inflammatory profile. The induction of this inflammatory state is typically antimicrobial and related to pathogen clearance. However, depending on the infection, STING-mediated immune responses can be detrimental to the host, facilitating bacterial survival, indicating an intricate balance between immune signaling and inflammation during bacterial infections. In this paper, we review recent insights regarding the role of STING in inducing an inflammatory profile upon intracellular bacterial entry in host cells and discuss the impact of STING signaling on the outcome of infection. Unraveling the STING-mediated inflammatory responses can enable a better understanding of the pathogenesis of certain bacterial diseases and reveal the potential of new antimicrobial therapy.
Collapse
|
7
|
Rafeld HL, Kolanus W, van Driel IR, Hartland EL. Interferon-induced GTPases orchestrate host cell-autonomous defence against bacterial pathogens. Biochem Soc Trans 2021; 49:1287-1297. [PMID: 34003245 PMCID: PMC8286824 DOI: 10.1042/bst20200900] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 01/08/2023]
Abstract
Interferon (IFN)-induced guanosine triphosphate hydrolysing enzymes (GTPases) have been identified as cornerstones of IFN-mediated cell-autonomous defence. Upon IFN stimulation, these GTPases are highly expressed in various host cells, where they orchestrate anti-microbial activities against a diverse range of pathogens such as bacteria, protozoan and viruses. IFN-induced GTPases have been shown to interact with various host pathways and proteins mediating pathogen control via inflammasome activation, destabilising pathogen compartments and membranes, orchestrating destruction via autophagy and the production of reactive oxygen species as well as inhibiting pathogen mobility. In this mini-review, we provide an update on how the IFN-induced GTPases target pathogens and mediate host defence, emphasising findings on protection against bacterial pathogens.
Collapse
Affiliation(s)
- Heike L. Rafeld
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Life and Medical Sciences Institute (LIMES), Molecular Immunology and Cell Biology, University of Bonn, Bonn, Germany
| | - Waldemar Kolanus
- Life and Medical Sciences Institute (LIMES), Molecular Immunology and Cell Biology, University of Bonn, Bonn, Germany
| | - Ian R. van Driel
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth L. Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Petro TM. IFN Regulatory Factor 3 in Health and Disease. THE JOURNAL OF IMMUNOLOGY 2021; 205:1981-1989. [PMID: 33020188 DOI: 10.4049/jimmunol.2000462] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
Immunity to viruses requires an array of critical cellular proteins that include IFN regulatory factor 3 (IRF3). Consequently, most viruses that infect vertebrates encode proteins that interfere with IRF3 activation. This review describes the cellular pathways linked to IRF3 activation and where those pathways are targeted by human viral pathogens. Moreover, key regulatory pathways that control IRF3 are discussed. Besides viral infections, IRF3 is also involved in resistance to some bacterial infections, in anticancer immunity, and in anticancer therapies involving DNA damage agents. A recent finding shows that IRF3 is needed for T cell effector functions that are involved in anticancer immunity and also in T cell autoimmune diseases. In contrast, unregulated IRF3 activity is clearly not beneficial, considering it is implicated in certain interferonopathies, in which heightened IRF3 activity leads to IFN-β-induced disease. Therefore, IRF3 is involved largely in maintaining health but sometimes contributing to disease.
Collapse
Affiliation(s)
- Thomas M Petro
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583; and Nebraska Center for Virology, University of Nebraska Medical Center, Lincoln, NE 68583
| |
Collapse
|
9
|
Kienes I, Weidl T, Mirza N, Chamaillard M, Kufer TA. Role of NLRs in the Regulation of Type I Interferon Signaling, Host Defense and Tolerance to Inflammation. Int J Mol Sci 2021; 22:1301. [PMID: 33525590 PMCID: PMC7865845 DOI: 10.3390/ijms22031301] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Type I interferon signaling contributes to the development of innate and adaptive immune responses to either viruses, fungi, or bacteria. However, amplitude and timing of the interferon response is of utmost importance for preventing an underwhelming outcome, or tissue damage. While several pathogens evolved strategies for disturbing the quality of interferon signaling, there is growing evidence that this pathway can be regulated by several members of the Nod-like receptor (NLR) family, although the precise mechanism for most of these remains elusive. NLRs consist of a family of about 20 proteins in mammals, which are capable of sensing microbial products as well as endogenous signals related to tissue injury. Here we provide an overview of our current understanding of the function of those NLRs in type I interferon responses with a focus on viral infections. We discuss how NLR-mediated type I interferon regulation can influence the development of auto-immunity and the immune response to infection.
Collapse
Affiliation(s)
- Ioannis Kienes
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | - Tanja Weidl
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | - Nora Mirza
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | | | - Thomas A. Kufer
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| |
Collapse
|
10
|
A MicroRNA Network Controls Legionella pneumophila Replication in Human Macrophages via LGALS8 and MX1. mBio 2020; 11:mBio.03155-19. [PMID: 32209695 PMCID: PMC7157531 DOI: 10.1128/mbio.03155-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cases of Legionella pneumophila pneumonia occur worldwide, with potentially fatal outcome. When causing human disease, Legionella injects a plethora of virulence factors to reprogram macrophages to circumvent immune defense and create a replication niche. By analyzing Legionella-induced changes in miRNA expression and genomewide chromatin modifications in primary human macrophages, we identified a cell-autonomous immune network restricting Legionella growth. This network comprises three miRNAs governing expression of the cytosolic RNA receptor DDX58/RIG-I, the tumor suppressor TP53, the antibacterial effector LGALS8, and MX1, which has been described as an antiviral factor. Our findings for the first time link TP53, LGALS8, DDX58, and MX1 in one miRNA-regulated network and integrate them into a functional node in the defense against L. pneumophila. Legionella pneumophila is an important cause of pneumonia. It invades alveolar macrophages and manipulates the immune response by interfering with signaling pathways and gene transcription to support its own replication. MicroRNAs (miRNAs) are critical posttranscriptional regulators of gene expression and are involved in defense against bacterial infections. Several pathogens have been shown to exploit the host miRNA machinery to their advantage. We therefore hypothesize that macrophage miRNAs exert positive or negative control over Legionella intracellular replication. We found significant regulation of 85 miRNAs in human macrophages upon L. pneumophila infection. Chromatin immunoprecipitation and sequencing revealed concordant changes of histone acetylation at the putative promoters. Interestingly, a trio of miRNAs (miR-125b, miR-221, and miR-579) was found to significantly affect intracellular L. pneumophila replication in a cooperative manner. Using proteome-analysis, we pinpointed this effect to a concerted downregulation of galectin-8 (LGALS8), DExD/H-box helicase 58 (DDX58), tumor protein P53 (TP53), and then MX dynamin-like GTPase 1 (MX1) by the three miRNAs. In summary, our results demonstrate a new miRNA-controlled immune network restricting Legionella replication in human macrophages.
Collapse
|
11
|
Caspase-4 Mediates Restriction of Burkholderia pseudomallei in Human Alveolar Epithelial Cells. Infect Immun 2020; 88:IAI.00868-19. [PMID: 31818963 DOI: 10.1128/iai.00868-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
Melioidosis is an infectious disease with a high mortality rate responsible for community-acquired sepsis in Southeast Asia and Northern Australia. The causative agent of this disease is Burkholderia pseudomallei, a Gram-negative bacterium that resides in soil and contaminated natural water. After entering into host cells, the bacteria escape into the cytoplasm, which has numerous cytosolic sensors, including the noncanonical inflammatory caspases. Although the noncanonical inflammasome (caspase-11) has been investigated in a murine model of B. pseudomallei infection, its role in humans, particularly in lung epithelial cells, remains unknown. We, therefore, investigated the function of caspase-4 (ortholog of murine caspase-11) in intracellular killing of B. pseudomallei The results showed that B. pseudomallei induced caspase-4 activation at 12 h postinfection in human alveolar epithelial A549 cells. The number of intracellular B. pseudomallei bacteria was increased in the absence of caspase-4, suggesting its function in intracellular bacterial restriction. In contrast, a high level of caspase-4 processing was observed when cells were infected with lipopolysaccharide (LPS) mutant B. pseudomallei The enhanced bacterial clearance in LPS-mutant-infected cells is also correlated with a higher degree of caspase-4 activation. These results highlight the susceptibility of the LPS mutant to caspase-4-mediated intracellular bacterial killing.
Collapse
|
12
|
Viewing Legionella pneumophila Pathogenesis through an Immunological Lens. J Mol Biol 2019; 431:4321-4344. [PMID: 31351897 DOI: 10.1016/j.jmb.2019.07.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/25/2019] [Accepted: 07/13/2019] [Indexed: 12/14/2022]
Abstract
Legionella pneumophila is the causative agent of the severe pneumonia Legionnaires' disease. L. pneumophila is ubiquitously found in freshwater environments, where it replicates within free-living protozoa. Aerosolization of contaminated water supplies allows the bacteria to be inhaled into the human lung, where L. pneumophila can be phagocytosed by alveolar macrophages and replicate intracellularly. The Dot/Icm type IV secretion system (T4SS) is one of the key virulence factors required for intracellular bacterial replication and subsequent disease. The Dot/Icm apparatus translocates more than 300 effector proteins into the host cell cytosol. These effectors interfere with a variety of cellular processes, thus enabling the bacterium to evade phagosome-lysosome fusion and establish an endoplasmic reticulum-derived Legionella-containing vacuole, which facilitates bacterial replication. In turn, the immune system has evolved numerous strategies to recognize intracellular bacteria such as L. pneumophila, leading to potent inflammatory responses that aid in eliminating infection. This review aims to provide an overview of L. pneumophila pathogenesis in the context of the host immune response.
Collapse
|
13
|
Potentiation of Cytokine-Mediated Restriction of Legionella Intracellular Replication by a Dot/Icm-Translocated Effector. J Bacteriol 2019; 201:JB.00755-18. [PMID: 31036725 DOI: 10.1128/jb.00755-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/22/2019] [Indexed: 01/23/2023] Open
Abstract
Legionella pneumophila is ubiquitous in freshwater environments, where it replicates within unicellular protozoa. However, L. pneumophila is also an accidental human pathogen that can cause Legionnaires' disease in immunocompromised individuals by uncontrolled replication within alveolar macrophages. To replicate within eukaryotic phagocytes, L. pneumophila utilizes a Dot/Icm type IV secretion system to translocate a large arsenal of over 300 effector proteins directly into host cells. In mammals, translocated effectors contribute to innate immune restriction of L. pneumophila We found previously that the effector LegC4 is important for L. pneumophila replication within a natural host protist but is deleterious to replication in a mouse model of Legionnaires' disease. In the present study, we used cultured mouse primary macrophages to investigate how LegC4 attenuates L. pneumophila replication. We found that LegC4 enhanced restriction of L. pneumophila replication within macrophages activated with tumor necrosis factor (TNF) or interferon gamma (IFN-γ). In addition, expression of legC4 was sufficient to restrict Legionella longbeachae replication within TNF- or IFN-γ-activated macrophages. Thus, this study demonstrates that LegC4 contributes to L. pneumophila clearance from healthy hosts by potentiating cytokine-mediated host defense mechanisms.IMPORTANCE Legionella spp. are natural pathogens of protozoa and accidental pathogens of humans. Innate immunity in healthy individuals effectively controls Legionella infection due in part to rapid and robust production of proinflammatory cytokines resulting from detection of Dot/Icm-translocated substrates, including effectors. Here, we demonstrate that the effector LegC4 enhances proinflammatory host restriction of Legionella by macrophages. These data suggest that LegC4 may augment proinflammatory signaling or antimicrobial activity of macrophages, a function that has not previously been observed for another bacterial effector. Further insight into LegC4 function will likely reveal novel mechanisms to enhance immunity against pathogens.
Collapse
|
14
|
STAT2 dependent Type I Interferon response promotes dysbiosis and luminal expansion of the enteric pathogen Salmonella Typhimurium. PLoS Pathog 2019; 15:e1007745. [PMID: 31009517 PMCID: PMC6513112 DOI: 10.1371/journal.ppat.1007745] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 05/13/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022] Open
Abstract
The mechanisms by which the gut luminal environment is disturbed by the immune system to foster pathogenic bacterial growth and survival remain incompletely understood. Here, we show that STAT2 dependent type I IFN signaling contributes to the inflammatory environment by disrupting hypoxia enabling the pathogenic S. Typhimurium to outgrow the microbiota. Stat2-/- mice infected with S. Typhimurium exhibited impaired type I IFN induced transcriptional responses in cecal tissue and reduced bacterial burden in the intestinal lumen compared to infected wild-type mice. Although inflammatory pathology was similar between wild-type and Stat2-/- mice, we observed decreased hypoxia in the gut tissue of Stat2-/- mice. Neutrophil numbers were similar in wild-type and Stat2-/- mice, yet Stat2-/- mice showed reduced levels of myeloperoxidase activity. In vitro, the neutrophils from Stat2-/- mice produced lower levels of superoxide anion upon stimulation with the bacterial ligand N-formylmethionyl-leucyl-phenylalanine (fMLP) in the presence of IFNα compared to neutrophils from wild-type mice, indicating that the neutrophils were less functional in Stat2-/- mice. Cytochrome bd-II oxidase-mediated respiration enhances S. Typhimurium fitness in wild-type mice, while in Stat2-/- deficiency, this respiratory pathway did not provide a fitness advantage. Furthermore, luminal expansion of S. Typhimurium in wild-type mice was blunted in Stat2-/- mice. Compared to wild-type mice which exhibited a significant perturbation in Bacteroidetes abundance, Stat2-/- mice exhibited significantly less perturbation and higher levels of Bacteroidetes upon S. Typhimurium infection. Our results highlight STAT2 dependent type I IFN mediated inflammation in the gut as a novel mechanism promoting luminal expansion of S. Typhimurium. The spread of invading microbes is frequently contained by an inflammatory response. Yet, some pathogenic microbes have evolved to utilize inflammation for niche generation and to support their metabolism. Here, we demonstrate that S. Typhimurium exploits type I IFN signaling, a prototypical anti-viral response, to foster its own growth in the inflamed gut. In the absence of STAT2-dependent type I IFN, production of neutrophil reactive oxygen species was impaired, and epithelial metabolism returned to homeostatic hypoxia. Consequently, S. Typhimurium was unable to respire in the absence of type I IFN, and failed to expand in the gut lumen. Furthermore, perturbation of the gut microbiota was dependent on type I IFN signaling. Taken together, our work suggests that S. Typhimurium utilizes STAT2-dependent type I IFN signaling to generate a niche in the inflamed intestinal tract and outcompete the gut microbiota.
Collapse
|
15
|
Abstract
Pseudomonas aeruginosa is the major cause of morbidity and mortality in patients with ventilator-associated pneumonia. Interferon regulatory factor 3 (IRF3) is a transcription factor that plays an important role in the immune response to viral infection via the IRF3/IFN-β signaling pathway. Controversial data exist regarding the role of IRF3 in immune cell recruitment during bacterial infections. IRF3 has been shown to promote neutrophil recruitment and bacterial clearance in mice infected with P. aeruginosa by inducing the production of specific chemokines and cytokines. In contrast, our study showed that IRF3 knockout (KO) mice infected with P. aeruginosa exhibited greater survival rates, demonstrated enhanced bacterial clearance, and showed significantly increased neutrophil recruitment to the lungs, when compared with the wild-type (WT) mice. The peritoneal lavage fluid collected from IRF3 KO mice 4 h after intraperitoneal injection with P. aeruginosa or 3% thioglycolate contained a significantly increased number of neutrophils. Furthermore, neutrophils from the bone marrow (BM) of IRF3 KO mice showed greater adhesiveness to the extracellular matrix when compared with those of WT mice, post-P. aeruginosa infection. In addition, IRF3 induced the expression of target genes in WT neutrophils infected with P. aeruginosa. These findings indicate that IRF3 exacerbates P. aeruginosa-induced mortality in mice by inhibiting neutrophil adhesion and recruitment to the lungs. Together, these data indicate that the inhibition of IRF3 might provide a possible mechanism for controlling P. aeruginosa infections.
Collapse
|
16
|
Ruiz-Moreno JS, Hamann L, Shah JA, Verbon A, Mockenhaupt FP, Puzianowska-Kuznicka M, Naujoks J, Sander LE, Witzenrath M, Cambier JC, Suttorp N, Schumann RR, Jin L, Hawn TR, Opitz B. The common HAQ STING variant impairs cGAS-dependent antibacterial responses and is associated with susceptibility to Legionnaires' disease in humans. PLoS Pathog 2018; 14:e1006829. [PMID: 29298342 PMCID: PMC5770077 DOI: 10.1371/journal.ppat.1006829] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 01/16/2018] [Accepted: 12/18/2017] [Indexed: 11/23/2022] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-STING pathway is central for innate immune sensing of various bacterial, viral and protozoal infections. Recent studies identified the common HAQ and R232H alleles of TMEM173/STING, but the functional consequences of these variants for primary infections are unknown. Here we demonstrate that cGAS- and STING-deficient murine macrophages as well as human cells of individuals carrying HAQ TMEM173/STING were severely impaired in producing type I IFNs and pro-inflammatory cytokines in response to Legionella pneumophila, bacterial DNA or cyclic dinucleotides (CDNs). In contrast, R232H attenuated cytokine production only following stimulation with bacterial CDN, but not in response to L. pneumophila or DNA. In a mouse model of Legionnaires’ disease, cGAS- and STING-deficient animals exhibited higher bacterial loads as compared to wild-type mice. Moreover, the haplotype frequency of HAQ TMEM173/STING, but not of R232H TMEM173/STING, was increased in two independent cohorts of human Legionnaires’ disease patients as compared to healthy controls. Our study reveals that the cGAS-STING cascade contributes to antibacterial defense against L. pneumophila in mice and men, and provides important insight into how the common HAQ TMEM173/STING variant affects antimicrobial immune responses and susceptibility to infection. Interferons (IFNs) and pro-inflammatory cytokines are key regulators of gene expression and antibacterial defense during Legionella pneumophila infection. Here we demonstrate that production of these mediators was largely or partly dependent on the cyclic GMP-AMP synthase (cGAS)-STING pathway in human and murine cells. Cells of individuals carrying the common HAQ allele of TMEM173/STING were strongly impaired in their ability to respond to L. pneumophila, bacterial DNA or cyclic dinucleotides (CDNs), whereas the R232H allele was only attenuated in sensing of exogenous CDNs. Importantly, cGAS and STING contributed to antibacterial defense in mice during L. pneumophila lung infection, and the allele frequency of HAQ TMEM173/STING, but not of R232H TMEM173/STING, was increased in two independent cohorts of human Legionnaires’ disease patients as compared to healthy controls. Hence, sensing of bacterial DNA by the cGAS/STING pathway contributes to antibacterial defense against L. pneumophila infection, and the hypomorphic variant HAQ TMEM173/STING is associated with increased susceptibility to Legionnaires’ disease in humans.
Collapse
Affiliation(s)
- Juan S. Ruiz-Moreno
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lutz Hamann
- Institute of Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin, Berlin, Germany
| | - Javeed A. Shah
- Department of Medicine, University of Washington, Seattle, Washington, United states of America
- VA Puget Sound Health Care System, Seattle, Washington, United states of America
| | - Annelies Verbon
- Department of Medical Microbiology and Infectious diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frank P. Mockenhaupt
- Institute of Tropical Medicine and International Health, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - Jan Naujoks
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Leif E. Sander
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Lung Research (DZL), Germany
| | - Martin Witzenrath
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Lung Research (DZL), Germany
- CAPNETZ STIFTUNG, Hannover, Germany
| | - John C. Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Lung Research (DZL), Germany
- CAPNETZ STIFTUNG, Hannover, Germany
| | - Ralf R. Schumann
- Institute of Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin, Berlin, Germany
| | - Lei Jin
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Thomas R. Hawn
- Department of Medicine, University of Washington, Seattle, Washington, United states of America
| | - Bastian Opitz
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Lung Research (DZL), Germany
- * E-mail:
| | | |
Collapse
|
17
|
Naujoks J, Lippmann J, Suttorp N, Opitz B. Innate sensing and cell-autonomous resistance pathways in Legionella pneumophila infection. Int J Med Microbiol 2017; 308:161-167. [PMID: 29097162 DOI: 10.1016/j.ijmm.2017.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
Legionella pneumophila is a facultative intracellular bacterium which can cause a severe pneumonia called Legionnaires' disease after inhalation of contaminated water droplets and replication in alveolar macrophages. The innate immune system is generally able to sense and -in most cases- control L. pneumophila infection. Comorbidities and genetic risk factors, however, can compromise the immune system and high infection doses might overwhelm its capacity, thereby enabling L. pneumophila to grow and disseminate inside the lung. The innate immune system mediates sensing of L. pneumophila by employing e.g. NOD-like receptors (NLRs), Toll-like receptors (TLRs), as well as the cGAS/STING pathway to stimulate death of infected macrophages as well as production of proinflammatory cytokines and interferons (IFNs). Control of pulmonary L. pneumophila infection is largely mediated by inflammasome-, TNFα- and IFN-dependent macrophage-intrinsic resistance mechanisms. This article summarizes the current knowledge of innate immune responses to L. pneumophila infection in general, and of macrophage-intrinsic defense mechanisms in particular.
Collapse
Affiliation(s)
- Jan Naujoks
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Juliane Lippmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Norbert Suttorp
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Bastian Opitz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Augustenburger Platz 1, 13353 Berlin, Germany; German Center for Lung Research (DZL), Germany.
| |
Collapse
|
18
|
THP-1-derived macrophages render lung epithelial cells hypo-responsive to Legionella pneumophila - a systems biology study. Sci Rep 2017; 7:11988. [PMID: 28931863 PMCID: PMC5607273 DOI: 10.1038/s41598-017-12154-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 09/04/2017] [Indexed: 11/25/2022] Open
Abstract
Immune response in the lung has to protect the huge alveolar surface against pathogens while securing the delicate lung structure. Macrophages and alveolar epithelial cells constitute the first line of defense and together orchestrate the initial steps of host defense. In this study, we analysed the influence of macrophages on type II alveolar epithelial cells during Legionella pneumophila-infection by a systems biology approach combining experimental work and mathematical modelling. We found that L. pneumophila-infected THP-1-derived macrophages provoke a pro-inflammatory activation of neighboring lung epithelial cells, but in addition render them hypo-responsive to direct infection with the same pathogen. We generated a kinetic mathematical model of macrophage activation and identified a paracrine mechanism of macrophage-secreted IL-1β inducing a prolonged IRAK-1 degradation in lung epithelial cells. This intercellular crosstalk may help to avoid an overwhelming inflammatory response by preventing excessive local secretion of pro-inflammatory cytokines and thereby negatively regulating the recruitment of immune cells to the site of infection. This suggests an important but ambivalent immunomodulatory role of macrophages in lung infection.
Collapse
|
19
|
He X, Ma S, Tian Y, Wei C, Zhu Y, Li F, Zhang P, Wang P, Zhang Y, Zhong H. ERRα negatively regulates type I interferon induction by inhibiting TBK1-IRF3 interaction. PLoS Pathog 2017; 13:e1006347. [PMID: 28591144 PMCID: PMC5476288 DOI: 10.1371/journal.ppat.1006347] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/19/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022] Open
Abstract
Estrogen-related receptor α (ERRα) is a member of the nuclear receptor superfamily controlling energy homeostasis; however, its precise role in regulating antiviral innate immunity remains to be clarified. Here, we showed that ERRα deficiency conferred resistance to viral infection both in vivo and in vitro. Mechanistically, ERRα inhibited the production of type-I interferon (IFN-I) and the expression of multiple interferon-stimulated genes (ISGs). Furthermore, we found that viral infection induced TBK1-dependent ERRα stabilization, which in turn associated with TBK1 and IRF3 to impede the formation of TBK1-IRF3, IRF3 phosphorylation, IRF3 dimerization, and the DNA binding affinity of IRF3. The effect of ERRα on IFN-I production was independent of its transcriptional activity and PCG-1α. Notably, ERRα chemical inhibitor XCT790 has broad antiviral potency. This work not only identifies ERRα as a critical negative regulator of antiviral signaling, but also provides a potential target for future antiviral therapy.
Collapse
Affiliation(s)
- Xiang He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Shengli Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Yinyin Tian
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
- Institute of Healthy Science, Anhui University, Hefei, Anhui, P.R. China
| | - Congwen Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Yongjie Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
- Institute of Healthy Science, Anhui University, Hefei, Anhui, P.R. China
| | - Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
- Institute of Healthy Science, Anhui University, Hefei, Anhui, P.R. China
| | - Pingping Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Penghao Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Yanhong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Hui Zhong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
| |
Collapse
|
20
|
Snyder DT, Hedges JF, Jutila MA. Getting "Inside" Type I IFNs: Type I IFNs in Intracellular Bacterial Infections. J Immunol Res 2017; 2017:9361802. [PMID: 28529959 PMCID: PMC5424489 DOI: 10.1155/2017/9361802] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/23/2022] Open
Abstract
Type I interferons represent a unique and complex group of cytokines, serving many purposes during innate and adaptive immunity. Discovered in the context of viral infections, type I IFNs are now known to have myriad effects in infectious and autoimmune disease settings. Type I IFN signaling during bacterial infections is dependent on many factors including whether the infecting bacterium is intracellular or extracellular, as different signaling pathways are activated. As such, the repercussions of type I IFN induction can positively or negatively impact the disease outcome. This review focuses on type I IFN induction and downstream consequences during infection with the following intracellular bacteria: Chlamydia trachomatis, Listeria monocytogenes, Mycobacterium tuberculosis, Salmonella enterica serovar Typhimurium, Francisella tularensis, Brucella abortus, Legionella pneumophila, and Coxiella burnetii. Intracellular bacterial infections are unique because the bacteria must avoid, circumvent, and even co-opt microbial "sensing" mechanisms in order to reside and replicate within a host cell. Furthermore, life inside a host cell makes intracellular bacteria more difficult to target with antibiotics. Because type I IFNs are important immune effectors, modulating this pathway may improve disease outcomes. But first, it is critical to understand the context-dependent effects of the type I IFN pathway in intracellular bacterial infections.
Collapse
Affiliation(s)
- Deann T. Snyder
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Jodi F. Hedges
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Mark A. Jutila
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
21
|
The Type II Secretion System of Legionella pneumophila Dampens the MyD88 and Toll-Like Receptor 2 Signaling Pathway in Infected Human Macrophages. Infect Immun 2017; 85:IAI.00897-16. [PMID: 28138020 DOI: 10.1128/iai.00897-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/24/2017] [Indexed: 12/25/2022] Open
Abstract
Previously, we reported that mutants of Legionella pneumophila lacking a type II secretion (T2S) system elicit higher levels of cytokines (e.g., interleukin-6 [IL-6]) following infection of U937 cells, a human macrophage-like cell line. We now show that this effect of T2S is also manifest upon infection of human THP-1 macrophages and peripheral blood monocytes but does not occur during infection of murine macrophages. Supporting the hypothesis that T2S acts to dampen the triggering of an innate immune response, we observed that the mitogen-activated protein kinase (MAPK) and nuclear transcription factor kappa B (NF-κB) pathways are more highly stimulated upon infection with the T2S mutant than upon infection with the wild type. By using short hairpin RNA to deplete proteins involved in specific pathogen-associated molecular pattern (PAMP) recognition pathways, we determined that the dampening effect of the T2S system was not dependent on nucleotide binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible protein I (RIG-I)-like receptors (RLRs), double-stranded RNA (dsRNA)-dependent protein kinase receptor (PKR), or TIR domain-containing adaptor inducing interferon beta (TRIF) signaling or an apoptosis-associated speck-like protein containing a CARD (ASC)- or caspase-4-dependent inflammasome. However, the dampening effect of T2S on IL-6 production was significantly reduced upon gene knockdown of myeloid differentiation primary response 88 (MyD88), TANK binding kinase 1 (TBK1), or Toll-like receptor 2 (TLR2). These data indicate that the L. pneumophila T2S system dampens the signaling of the TLR2 pathway in infected human macrophages. We also document the importance of PKR, TRIF, and TBK1 in cytokine secretion during L. pneumophila infection of macrophages.
Collapse
|
22
|
Park B, Park G, Kim J, Lim SA, Lee KM. Innate immunity against Legionella pneumophila during pulmonary infections in mice. Arch Pharm Res 2017; 40:131-145. [PMID: 28063015 DOI: 10.1007/s12272-016-0859-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/02/2016] [Indexed: 01/01/2023]
Abstract
Legionella pneumophila is an etiological agent of the severe pneumonia known as Legionnaires' disease (LD). This gram-negative bacterium is thought to replicate naturally in various freshwater amoebae, but also replicates in human alveolar macrophages. Inside host cells, legionella induce the production of non-endosomal replicative phagosomes by injecting effector proteins into the cytosol. Innate immune responses are first line defenses against legionella during early phases of infection, and distinguish between legionella and host cells using germline-encoded pattern recognition receptors such as Toll-like receptors , NOD-like receptors, and RIG-I-like receptors, which sense pathogen-associated molecular patterns that are absent in host cells. During pulmonary legionella infections, various inflammatory cells such as macrophages, neutrophils, natural killer (NK) cells, large mononuclear cells, B cells, and CD4+ and CD8+ T cells are recruited into infected lungs, and predominantly occupy interstitial areas to control legionella. During pulmonary legionella infections, the interplay between distinct cytokines and chemokines also modulates innate host responses to clear legionella from the lungs. Recognition by NK cell receptors triggers effector functions including secretion of cytokines and chemokines, and leads to lysis of target cells. Crosstalk between NK cells and dendritic cells, monocytes, and macrophages provides a major first-line defense against legionella infection, whereas activation of T and B cells resolves the infection and mounts legionella-specific memory in the host.
Collapse
Affiliation(s)
- Bonggoo Park
- Global Research Laboratory, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Korea
| | - Gayoung Park
- Global Research Laboratory, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Korea.,Department of Biomicrosystem Technology, Korea University, Seoul, 136-701, Korea
| | - Jiyoung Kim
- Global Research Laboratory, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Korea
| | - Seon Ah Lim
- Global Research Laboratory, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Korea
| | - Kyung-Mi Lee
- Global Research Laboratory, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Korea.
| |
Collapse
|
23
|
Cui Y, Zhao D, Sreevatsan S, Liu C, Yang W, Song Z, Yang L, Barrow P, Zhou X. Mycobacterium bovis Induces Endoplasmic Reticulum Stress Mediated-Apoptosis by Activating IRF3 in a Murine Macrophage Cell Line. Front Cell Infect Microbiol 2016; 6:182. [PMID: 28018864 PMCID: PMC5149527 DOI: 10.3389/fcimb.2016.00182] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 11/28/2016] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium bovis (M. bovis) is highly adapted to macrophages and has developed multiple mechanisms to resist intracellular assaults. However, the host cells in turn deploy a multipronged defense mechanism to control bacterial infection. Endoplasmic reticulum (ER) stress-mediated apoptosis is one such primary defense mechanism. However, the role of interferon regulatory factor 3 (IRF3) between ER stress and apoptosis during M. bovis infection is unknown. Here, we demonstrate that M. bovis effectively induced apoptosis in murine macrophages. Caspase-12, caspase-9, and caspase-3 were activated over a 48 h infection period. The splicing of XBP-1 mRNA and the level of phosphorylation of eIF2α, indicators of ER stress, significantly increased at early time points after M. bovis infection. The expansion of the ER compartment, a morphological hallmark of ER stress, was observed at 6 h. Pre-treatment of Raw 264.7 cells with 4-PBA (an ER stress-inhibitor) reduced the activation of the ER stress indicators, caspase activation and its downstream poly (ADP-ribose) polymerase (PARP) cleavage, phosphorylation of TBK1 and IRF3 and cytoplasmic co-localization of STING and TBK1. M. bovis infection led to the interaction of activated IRF3 and cytoplasmic Bax leading to mitochondrial damage. Role of IRF3 in apoptosis was further confirmed by blocking this molecule with BX-795 that showed significant reduction expression of caspase-8 and caspase-3. Intracellular survival of M. bovis increased in response to 4-PBA and BX-795. These findings indicate that STING-TBK1-IRF3 pathway mediates a crosstalk between ER stress and apoptosis during M. bovis infection, which can effectively control intracellular bacteria.
Collapse
Affiliation(s)
- Yongyong Cui
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Deming Zhao
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Srinand Sreevatsan
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota St. Paul, MN, USA
| | - Chunfa Liu
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Wei Yang
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Zhiqi Song
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Lifeng Yang
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Paul Barrow
- School of Veterinary Medicine, University of Nottingham Sutton Bonington, UK
| | - Xiangmei Zhou
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| |
Collapse
|
24
|
Type I Interferon Counters or Promotes Coxiella burnetii Replication Dependent on Tissue. Infect Immun 2016; 84:1815-1825. [PMID: 27068091 DOI: 10.1128/iai.01540-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/01/2016] [Indexed: 01/09/2023] Open
Abstract
Coxiella burnetii is an intracellular pathogen and the cause of Q fever. Gamma interferon (IFN-γ) is critical for host protection from infection, but a role for type I IFN in C. burnetii infection has not been determined. Type I IFN supports host protection from a related pathogen, Legionella pneumophila, and we hypothesized that it would be similarly protective in C. burnetii infection. In contrast to our prediction, IFN-α receptor-deficient (IFNAR(-/-)) mice were protected from C. burnetii-induced infection. Therefore, the role of type I IFN in C. burnetii infection was distinct from that in L. pneumophila Mice treated with a double-stranded-RNA mimetic were protected from C. burnetii-induced weight loss through an IFNAR-independent pathway. We next treated mice with recombinant IFN-α (rIFN-α). When rIFN-α was injected by the intraperitoneal route during infection, disease-induced weight loss was exacerbated. Mice that received rIFN-α by this route had dampened interleukin 1β (IL-1β) expression in bronchoalveolar lavage fluids. However, when rIFN-α was delivered to the lung, bacterial replication was decreased in all tissues. Thus, the presence of type I IFN in the lung protected from infection, but when delivered to the periphery, type I IFN enhanced disease, potentially by dampening inflammatory cytokines. To better characterize the capacity for type I IFN induction by C. burnetii, we assessed expression of IFN-β transcripts by human macrophages following stimulation with lipopolysaccharide (LPS) from C. burnetii Understanding innate responses in C. burnetii infection will support the discovery of novel therapies that may be alternative or complementary to the current antibiotic treatment.
Collapse
|
25
|
Shin S. Innate Immunity to Intracellular Pathogens: Lessons Learned from Legionella pneumophila. ADVANCES IN APPLIED MICROBIOLOGY 2016; 79:43-71. [PMID: 22569517 DOI: 10.1016/b978-0-12-394318-7.00003-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intracellular bacterial pathogens have the remarkable ability to manipulate host cell processes in order to establish a replicative niche within the host cell. In response, the host can initiate immune defenses that lead to the eventual restriction and clearance of intracellular infection. The bacterial pathogen Legionella pneumophila has evolved elaborate virulence mechanisms that allow for its survival inside protozoa within a specialized membrane-bound organelle. These strategies also enable L. pneumophila to survive and replicate within alveolar macrophages, and can result in the severe pneumonia Legionnaires' disease. Essential to L. pneumophila's intracellular lifestyle is a specialized type IV secretion system, termed Dot/Icm, that translocates bacterial effector proteins into host cells. The ease with which L. pneumophila can be genetically manipulated has facilitated the comparison of host responses to virulent and isogenic avirulent mutants lacking a functional Dot/Icm system. This has made L. pneumophila an excellent model for understanding how the host discriminates between pathogenic and nonpathogenic bacteria and for systematically dissecting host defense mechanisms against intracellular pathogens. In this chapter, I discuss a few examples demonstrating how the study of immune responses triggered specifically by the L. pneumophila type IV secretion system has provided unique insight into our understanding of host immunity against intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Sunny Shin
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
26
|
Primary Role for Toll-Like Receptor-Driven Tumor Necrosis Factor Rather than Cytosolic Immune Detection in Restricting Coxiella burnetii Phase II Replication within Mouse Macrophages. Infect Immun 2016; 84:998-1015. [PMID: 26787725 DOI: 10.1128/iai.01536-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 12/13/2022] Open
Abstract
Coxiella burnetii replicates within permissive host cells by employing a Dot/Icm type IV secretion system (T4SS) to translocate effector proteins that direct the formation of a parasitophorous vacuole. C57BL/6 mouse macrophages restrict the intracellular replication of the C. burnetii. Nine Mile phase II (NMII) strain. However, eliminating Toll-like receptor 2 (TLR2) permits bacterial replication, indicating that the restriction of bacterial replication is immune mediated. Here, we examined whether additional innate immune pathways are employed by C57BL/6 macrophages to sense and restrict NMII replication. In addition to the known role of TLR2 in detecting and restricting NMII infection, we found that TLR4 also contributes to cytokine responses but is not required to restrict bacterial replication. Furthermore, the TLR signaling adaptors MyD88 and Trif are required for cytokine responses and restricting bacterial replication. The C. burnetii NMII T4SS translocates bacterial products into C57BL/6 macrophages. However, there was little evidence of cytosolic immune sensing of NMII, as there was a lack of inflammasome activation, T4SS-dependent cytokine responses, and robust type I interferon (IFN) production, and these pathways were not required to restrict bacterial replication. Instead, endogenous tumor necrosis factor (TNF) produced upon TLR sensing of C. burnetii NMII was required to control bacterial replication. Therefore, our findings indicate a primary role for TNF produced upon immune detection of C. burnetii NMII by TLRs, rather than cytosolic PRRs, in enabling C57BL/6 macrophages to restrict bacterial replication.
Collapse
|
27
|
Naujoks J, Tabeling C, Dill BD, Hoffmann C, Brown AS, Kunze M, Kempa S, Peter A, Mollenkopf HJ, Dorhoi A, Kershaw O, Gruber AD, Sander LE, Witzenrath M, Herold S, Nerlich A, Hocke AC, van Driel I, Suttorp N, Bedoui S, Hilbi H, Trost M, Opitz B. IFNs Modify the Proteome of Legionella-Containing Vacuoles and Restrict Infection Via IRG1-Derived Itaconic Acid. PLoS Pathog 2016; 12:e1005408. [PMID: 26829557 PMCID: PMC4734697 DOI: 10.1371/journal.ppat.1005408] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/30/2015] [Indexed: 11/21/2022] Open
Abstract
Macrophages can be niches for bacterial pathogens or antibacterial effector cells depending on the pathogen and signals from the immune system. Here we show that type I and II IFNs are master regulators of gene expression during Legionella pneumophila infection, and activators of an alveolar macrophage-intrinsic immune response that restricts bacterial growth during pneumonia. Quantitative mass spectrometry revealed that both IFNs substantially modify Legionella-containing vacuoles, and comparative analyses reveal distinct subsets of transcriptionally and spatially IFN-regulated proteins. Immune-responsive gene (IRG)1 is induced by IFNs in mitochondria that closely associate with Legionella-containing vacuoles, and mediates production of itaconic acid. This metabolite is bactericidal against intravacuolar L. pneumophila as well as extracellular multidrug-resistant Gram-positive and -negative bacteria. Our study explores the overall role IFNs play in inducing substantial remodeling of bacterial vacuoles and in stimulating production of IRG1-derived itaconic acid which targets intravacuolar pathogens. IRG1 or its product itaconic acid might be therapeutically targetable to fight intracellular and drug-resistant bacteria. Numerous intracellular bacterial pathogens replicate in specialized vacuoles within macrophages. We systematically study the molecular mechanism and the impact of macrophage-intrinsic antibacterial defense. Using L. pneumophila, an important cause of pneumonia and model organism for intracellular bacteria, we found that type I and II interferons critically modify the proteome of bacterial vacuoles to restrict infection. We identify IRG1 and demonstrate a bactericidal activity of its metabolite itaconic acid on bacteria in their vacuole. Moreover, our study provides evidence for the impact of this cell-autonomous defense pathway in alveolar macrophages to restrict lung infection. We speculate that vacuolar IRG1 or its product itaconic acid could serve as future therapeutic targets to fight intracellular and drug-resistant bacteria.
Collapse
Affiliation(s)
- Jan Naujoks
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Christoph Tabeling
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Brian D. Dill
- MRC Protein Phosphorylation Unit, University of Dundee, Dundee, United Kingdom
| | - Christine Hoffmann
- Max-von-Pettenkofer Institute, Ludwig Maximilian University, Munich, Germany
| | - Andrew S. Brown
- The Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia
| | - Mareike Kunze
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Stefan Kempa
- Integrative Metabolomics and Proteomics, Institute of Medical Systems Biology/Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Andrea Peter
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité University Medicine Berlin, Berlin, Germany
| | | | - Anca Dorhoi
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Olivia Kershaw
- Department of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - Achim D. Gruber
- Department of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - Leif E. Sander
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Martin Witzenrath
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Susanne Herold
- Medizinische Klinik II, University Giessen and Marburg Lung Center, Justus-Liebig-University Giessen, Giessen, Germany
| | - Andreas Nerlich
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Andreas C. Hocke
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Ian van Driel
- The Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Sammy Bedoui
- The Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| | - Hubert Hilbi
- Max-von-Pettenkofer Institute, Ludwig Maximilian University, Munich, Germany
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Matthias Trost
- MRC Protein Phosphorylation Unit, University of Dundee, Dundee, United Kingdom
| | - Bastian Opitz
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité University Medicine Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
28
|
Nalpas NC, Magee DA, Conlon KM, Browne JA, Healy C, McLoughlin KE, Rue-Albrecht K, McGettigan PA, Killick KE, Gormley E, Gordon SV, MacHugh DE. RNA sequencing provides exquisite insight into the manipulation of the alveolar macrophage by tubercle bacilli. Sci Rep 2015; 5:13629. [PMID: 26346536 PMCID: PMC4642568 DOI: 10.1038/srep13629] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/31/2015] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium bovis, the agent of bovine tuberculosis, causes an estimated $3 billion annual losses to global agriculture due, in part, to the limitations of current diagnostics. Development of next-generation diagnostics requires a greater understanding of the interaction between the pathogen and the bovine host. Therefore, to explore the early response of the alveolar macrophage to infection, we report the first application of RNA-sequencing to define, in exquisite detail, the transcriptomes of M. bovis-infected and non-infected alveolar macrophages from ten calves at 2, 6, 24 and 48 hours post-infection. Differentially expressed sense genes were detected at these time points that revealed enrichment of innate immune signalling functions, and transcriptional suppression of host defence mechanisms (e.g., lysosome maturation). We also detected differentially expressed natural antisense transcripts, which may play a role in subverting innate immune mechanisms following infection. Furthermore, we report differential expression of novel bovine genes, some of which have immune-related functions based on orthology with human proteins. This is the first in-depth transcriptomics investigation of the alveolar macrophage response to the early stages of M. bovis infection and reveals complex patterns of gene expression and regulation that underlie the immunomodulatory mechanisms used by M. bovis to evade host defence mechanisms.
Collapse
Affiliation(s)
- Nicolas C Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kevin M Conlon
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Claire Healy
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kirsten E McLoughlin
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kévin Rue-Albrecht
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.,UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Paul A McGettigan
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kate E Killick
- Systems Biology Ireland, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Eamonn Gormley
- Tuberculosis Diagnostics and Immunology Research Centre, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.,UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
29
|
McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nat Rev Immunol 2015; 15:87-103. [PMID: 25614319 DOI: 10.1038/nri3787] [Citation(s) in RCA: 1745] [Impact Index Per Article: 193.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type I interferons (IFNs) have diverse effects on innate and adaptive immune cells during infection with viruses, bacteria, parasites and fungi, directly and/or indirectly through the induction of other mediators. Type I IFNs are important for host defence against viruses. However, recently, they have been shown to cause immunopathology in some acute viral infections, such as influenza virus infection. Conversely, they can lead to immunosuppression during chronic viral infections, such as lymphocytic choriomeningitis virus infection. During bacterial infections, low levels of type I IFNs may be required at an early stage, to initiate cell-mediated immune responses. High concentrations of type I IFNs may block B cell responses or lead to the production of immunosuppressive molecules, and such concentrations also reduce the responsiveness of macrophages to activation by IFNγ, as has been shown for infections with Listeria monocytogenes and Mycobacterium tuberculosis. Recent studies in experimental models of tuberculosis have demonstrated that prostaglandin E2 and interleukin-1 inhibit type I IFN expression and its downstream effects, demonstrating that a cross-regulatory network of cytokines operates during infectious diseases to provide protection with minimum damage to the host.
Collapse
Affiliation(s)
- Finlay McNab
- 1] Allergic Inflammation Discovery Performance Unit, Respiratory Disease Respiratory Research and Development, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, UK. [2] Division of Immunoregulation, Medical Research Council (MRC) National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Katrin Mayer-Barber
- Immunobiology Section, Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Andreas Wack
- Division of Immunoregulation, Medical Research Council (MRC) National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Anne O'Garra
- 1] Division of Immunoregulation, Medical Research Council (MRC) National Institute for Medical Research, Mill Hill, London NW7 1AA, UK. [2] National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
30
|
Cunha LD, Zamboni DS. Recognition of Legionella pneumophila nucleic acids by innate immune receptors. Microbes Infect 2014; 16:985-90. [PMID: 25172398 DOI: 10.1016/j.micinf.2014.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
Abstract
Innate immune receptors evolved to sense conserved molecules that are present in microbes or are released during non-physiological conditions. Activation of these receptors is essential for early restriction of microbial infections and generation of adaptive immunity. Among the conserved molecules sensed by innate immune receptors are the nucleic acids, which are abundantly contained in all infectious organisms including virus, bacteria, fungi and parasites. In this review we focus in the innate immune proteins that function to sense nucleic acids from the intracellular bacterial pathogen Legionella pneumophila and the importance of these processes to the outcome of the infection.
Collapse
Affiliation(s)
- Larissa D Cunha
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto, SP 14049-900, Brazil
| | - Dario S Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto, SP 14049-900, Brazil.
| |
Collapse
|
31
|
Du Z, Yang H, Tan Y, Tian G, Zhang Q, Cui Y, Yanfeng Yan, Wu X, Chen Z, Cao S, Bi Y, Han Y, Wang X, Song Y, Yang R. Transcriptomic response to Yersinia pestis: RIG-I like receptor signaling response is detrimental to the host against plague. J Genet Genomics 2014; 41:379-96. [PMID: 25064677 DOI: 10.1016/j.jgg.2014.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/09/2014] [Accepted: 05/14/2014] [Indexed: 02/07/2023]
Abstract
Bacterial pathogens have evolved various mechanisms to modulate host immune responses for successful infection. In this study, RNA-sequencing technology was used to analyze the responses of human monocytes THP1 to Yersinia pestis infection. Over 6000 genes were differentially expressed over the 12 h infection. Kinetic responses of pathogen recognition receptor signaling pathways, apoptosis, antigen processing, and presentation pathway and coagulation system were analyzed in detail. Among them, RIG-I-like receptor (RLR) signaling pathway, which was established for antiviral defense, was significantly affected. Mice lacking MAVS, the adaptor of the RLR signaling pathway, were less sensitive to infection and exhibited lower IFN-β production, higher Th1-type cytokines IFN-γ and IL-12 production, and lower Th2-type cytokines IL-4 and IL-13 production in the serum compared with wild-type mice. Moreover, infection of pathogenic bacteria other than Y. pestis also altered the expression of the RLR pathway, suggesting that the response of RLR pathway to bacterial infection is a universal mechanism.
Collapse
Affiliation(s)
- Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Guang Tian
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qingwen Zhang
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Xining 811602, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiaohong Wu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | | | - Shiyang Cao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiaoyi Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China.
| |
Collapse
|
32
|
Malireddi RKS, Kanneganti TD. Role of type I interferons in inflammasome activation, cell death, and disease during microbial infection. Front Cell Infect Microbiol 2013; 3:77. [PMID: 24273750 PMCID: PMC3824101 DOI: 10.3389/fcimb.2013.00077] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 10/24/2013] [Indexed: 12/17/2022] Open
Abstract
Interferons (IFNs) were discovered over a half-century ago as antiviral factors. The role of type I IFNs has been studied in the pathogenesis of both acute and chronic microbial infections. Deregulated type I IFN production results in a damaging cascade of cell death, inflammation, and immunological host responses that can lead to tissue injury and disease progression. Here, we summarize the role of type I IFNs in the regulation of cell death and disease during different microbial infections, ranging from viruses and bacteria to fungal pathogens. Understanding the specific mechanisms driving type I IFN-mediated cell death and disease could aid in the development of targeted therapies.
Collapse
|
33
|
Schlee M. Master sensors of pathogenic RNA - RIG-I like receptors. Immunobiology 2013; 218:1322-35. [PMID: 23896194 PMCID: PMC7114584 DOI: 10.1016/j.imbio.2013.06.007] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/27/2013] [Accepted: 06/05/2013] [Indexed: 12/25/2022]
Abstract
Initiating the immune response to invading pathogens, the innate immune system is constituted of immune receptors (pattern recognition receptors, PRR) that sense microbe-associated molecular patterns (MAMPs). Detection of pathogens triggers intracellular defense mechanisms, such as the secretion of cytokines or chemokines to alarm neighboring cells and attract or activate immune cells. The innate immune response to viruses is mostly based on PRRs that detect the unusual structure, modification or location of viral nucleic acids. Most of the highly pathogenic and emerging viruses are RNA genome-based viruses, which can give rise to zoonotic and epidemic diseases or cause viral hemorrhagic fever. As viral RNA is located in the same compartment as host RNA, PRRs in the cytosol have to discriminate between viral and endogenous RNA by virtue of their structure or modification. This challenging task is taken on by the homologous cytosolic DExD/H-box family helicases RIG-I and MDA5, which control the innate immune response to most RNA viruses. This review focuses on the molecular basis for RIG-I like receptor (RLR) activation by synthetic and natural ligands and will discuss controversial ligand definitions.
Collapse
Affiliation(s)
- Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53105 Bonn, Germany.
| |
Collapse
|
34
|
Shaik-Dasthagirisaheb YB, Huang N, Gibson FC. Inflammatory response to Porphyromonas gingivalis partially requires interferon regulatory factor (IRF) 3. Innate Immun 2013; 20:312-9. [PMID: 23803413 DOI: 10.1177/1753425913492180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Innate immune activation with expression of pro-inflammatory molecules such as TNF-α is a hallmark of the chronic inflammation associated with periodontal disease (PD). Porphyromonas gingivalis, a bacterium associated with PD, engages TLRs and activates MyD88-dependent and TIR-domain-containing adapter-inducing IFN-β (TRIF)-dependent signaling pathways. IFN regulatory factor (IRF) 3 is activated in a TRIF-dependent manner and participates in production of cytokines such as TNF-α; however, little is known regarding IRF3 and the host response to PD pathogens. We speculated that IRF3 participates in the host inflammatory response to P. gingivalis. Our results show that bone marrow macrophages (MØ) from WT mice respond to P. gingivalis with activation and nuclear translocation of IRF3. Compared with WT, MØ from IRF3(-/-), TRIF(-/-), and TLR4(-/-) mice responded with reduced levels of TNF-α on P. gingivalis challenge. In addition, full expression of IL-6 and RANTES by MØ to P. gingivalis was dependent on IRF3. Lastly, employing MØ from IRF3(-/-) and IRF7(-/-) mice we observed a significant role for IRF3 and a modest role for IRF7 in the P. gingivalis-elicited TNF-α response. These studies identify a role for IRF3 in the inflammatory response by MØ to the periodontal pathogen P. gingivalis.
Collapse
|
35
|
Hagmann CA, Herzner AM, Abdullah Z, Zillinger T, Jakobs C, Schuberth C, Coch C, Higgins PG, Wisplinghoff H, Barchet W, Hornung V, Hartmann G, Schlee M. RIG-I detects triphosphorylated RNA of Listeria monocytogenes during infection in non-immune cells. PLoS One 2013; 8:e62872. [PMID: 23653683 PMCID: PMC3639904 DOI: 10.1371/journal.pone.0062872] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 03/29/2013] [Indexed: 12/25/2022] Open
Abstract
The innate immune system senses pathogens by pattern recognition receptors in different cell compartments. In the endosome, bacteria are generally recognized by TLRs; facultative intracellular bacteria such as Listeria, however, can escape the endosome. Once in the cytosol, they become accessible to cytosolic pattern recognition receptors, which recognize components of the bacterial cell wall, metabolites or bacterial nucleic acids and initiate an immune response in the host cell. Current knowledge has been focused on the type I IFN response to Listeria DNA or Listeria-derived second messenger c-di-AMP via the signaling adaptor STING. Our study focused on the recognition of Listeria RNA in the cytosol. With the aid of a novel labeling technique, we have been able to visualize immediate cytosolic delivery of Listeria RNA upon infection. Infection with Listeria as well as transfection of bacterial RNA induced a type-I-IFN response in human monocytes, epithelial cells or hepatocytes. However, in contrast to monocytes, the type-I-IFN response of epithelial cells and hepatocytes was not triggered by bacterial DNA, indicating a STING-independent Listeria recognition pathway. RIG-I and MAVS knock-down resulted in abolishment of the IFN response in epithelial cells, but the IFN response in monocytic cells remained unaffected. By contrast, knockdown of STING in monocytic cells reduced cytosolic Listeria-mediated type-I-IFN induction. Our results show that detection of Listeria RNA by RIG-I represents a non-redundant cytosolic immunorecognition pathway in non-immune cells lacking a functional STING dependent signaling pathway.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Cells, Cultured
- Cytosol/metabolism
- Cytosol/microbiology
- Epithelial Cells/cytology
- Epithelial Cells/metabolism
- Epithelial Cells/microbiology
- Gene Expression Regulation
- Gene Knockdown Techniques
- Hepatocytes/cytology
- Hepatocytes/metabolism
- Hepatocytes/microbiology
- Host-Pathogen Interactions
- Humans
- Interferon Type I/biosynthesis
- Interferon Type I/metabolism
- Listeria monocytogenes/metabolism
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Monocytes/cytology
- Monocytes/metabolism
- Monocytes/microbiology
- Phosphorylation
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Retinoic Acid/antagonists & inhibitors
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Cristina Amparo Hagmann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Anna Maria Herzner
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Zeinab Abdullah
- Institutes of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany
| | - Thomas Zillinger
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Christopher Jakobs
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Christine Schuberth
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Christoph Coch
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Paul G. Higgins
- Institute of Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Hilmar Wisplinghoff
- Institute of Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Winfried Barchet
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Veit Hornung
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
- German Center for Infection Research, Cologne-Bonn, Germany
| | - Gunther Hartmann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
- German Center for Infection Research, Cologne-Bonn, Germany
| | - Martin Schlee
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
36
|
Arcangeletti MC, Germini D, Rodighiero I, Mirandola P, De Conto F, Medici MC, Gatti R, Chezzi C, Calderaro A. Toll-like receptor 4 is involved in the cell cycle modulation and required for effective human cytomegalovirus infection in THP-1 macrophages. Virology 2013; 440:19-30. [PMID: 23497941 DOI: 10.1016/j.virol.2013.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/06/2012] [Accepted: 01/28/2013] [Indexed: 11/30/2022]
Abstract
Suitable host cell metabolic conditions are fundamental for the effective development of the human cytomegalovirus (HCMV) lytic cycle. Indeed, several studies have demonstrated the ability of this virus to interfere with cell cycle regulation, mainly by blocking proliferating cells in G1 or G1/S. In the present study, we demonstrate that HCMV deregulates the cell cycle of THP-1 macrophages (a cell line irreversibly arrested in G0) by pushing them into S and G2 phases. Moreover, we show that HCMV infection of THP-1 macrophages leads to Toll-like receptor 4 (TLR4) activation. Since various studies have indicated TLR4 to be involved in promoting cell proliferation, here we investigate the possible role of TLR4 in the observed HCMV-induced cell cycle perturbation. Our data strongly support TLR4 as a mediator of HCMV-triggered cell cycle activation in THP-1 macrophages favouring, in turn, the development of an efficient viral lytic cycle.
Collapse
|
37
|
de Paus RA, van Wengen A, Schmidt I, Visser M, Verdegaal EME, van Dissel JT, van de Vosse E. Inhibition of the type I immune responses of human monocytes by IFN-α and IFN-β. Cytokine 2013; 61:645-55. [PMID: 23299081 DOI: 10.1016/j.cyto.2012.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 11/02/2012] [Accepted: 12/07/2012] [Indexed: 01/20/2023]
Abstract
Interleukin-12 (IL-12), IL-23 and interferon-γ (IFN-γ) are pivotal cytokines acting in concert with tumor necrosis factor (TNF) and IL-1β to shape type I immune responses against bacterial pathogens. Recently, several groups reported that type I immunity can be inhibited by IFN-α/β. Here we show the extent of the inhibitory effects of IFN-α and IFN-β on the responsiveness of human monocytes to Toll like receptor-ligands and IFN-γ. Both IFN-α and IFN-β strongly reduced the production of IL-12p40, IL-1β and TNF and the IFN-γ induced CD54 and CD64 expression. High IFN-γ concentrations could not counterbalance the inhibitions and IFN-α still inhibited monocytes 24h after stimulation in vitro as well as in vivo in patients undergoing IFN-α treatment. Next, we explored the mechanism of inhibition. We confirm that IFN-α/β interferes with the IFN-γR1 expression, by studying the kinetics of IFN-γR1 downregulation. However, IFN-γR1 downregulation occurred only after two hours of IFN-α/β stimulation and was transient, which cannot explain the IFN-γ unresponsiveness observed directly and late after IFN-α/β stimulation. Additional experiments indeed indicate that other mechanisms are involved. IFN-α may interfere with IFN-γ-elicited phosphorylation of signal transducer and activator of transcription 1 (STAT1). IFN-α may also activate methyltransferases which in turn reduce, at least partly, the TNF and IL-1β production and CD54 expression. IFN-α also induces the protein inhibitor of activated STAT1 (PIAS1). In conclusion, IFN-α and IFN-β strongly inhibit the IFN-γ responsiveness and the production of type I cytokines of monocytes, probably via various mechanisms. Our findings indicate that IFN-α/β play a significant role in the immunopathogenesis of bacterial infections, for example Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Roelof A de Paus
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
38
|
Brown AS, van Driel IR, Hartland EL. Mouse models of Legionnaires' disease. Curr Top Microbiol Immunol 2013; 376:271-91. [PMID: 23918179 DOI: 10.1007/82_2013_349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Legionella pneumophila is an accidental respiratory pathogen of humans that provokes a robust inflammatory response upon infection. While most people exposed to L. pneumophila will clear the infection, certain groups with underlying susceptibility will develop Legionnaires' disease. Mice, like most humans, are inherently resistant to L. pneumophila and infection of most inbred strains reflects the response of immune competent people to L. pneumophila exposure. Hence, the use of mouse models of L. pneumophila infection has taught us a great deal about the innate and adaptive factors that lead to successful clearance of the pathogen and avoidance of Legionnaires' disease. At the same time, L. pneumophila has provided new insight into innate immunity in general and is now a model pathogen with which to study acute lung inflammation and inflammasome activation. This chapter will explore the history and use of the mouse model of L. pneumophila infection and examine what we know about the innate and adaptive factors that contribute to the control of L. pneumophila in the mouse lung.
Collapse
Affiliation(s)
- Andrew S Brown
- Department of Biochemistry and Molecular Biology and the Bio21 Institute, University of Melbourne, Victoria, 3010, Australia
| | | | | |
Collapse
|
39
|
Abstract
Type II secretion (T2S) is one of six systems that can occur in Gram-negative bacteria for the purpose of secreting proteins into the extracellular milieu and/or into host cells. This chapter will describe the T2S system of Legionella pneumophila. Topics to be covered include the genetic basis of T2S in L. pneumophila, the numbers (>25), types, and novelties of Legionella proteins that are secreted via T2S, and the many ways in which T2S and its substrates promote L. pneumophila physiology, ecology, and virulence. Within the aquatic environment, T2S plays a major role in L. pneumophila intracellular infection of multiple types of (Acanthamoeba, Hartmannella, and Naegleria) amoebae. Within the mammalian host, T2S promotes bacterial persistence in lungs, intracellular infection of both macrophages and epithelial cells, and a dampening of the host innate immune response. In this context, T2S may represent a potential target for both industrial and biomedical application.
Collapse
|
40
|
Abstract
The RIG-I-like receptors (RLRs) RIG-I, MDA5, and LGP2 trigger innate immune responses against viral infections that serve to limit virus replication and to stimulate adaptive immunity. RLRs are cytosolic sensors for virus-derived RNA and thus responsible for intracellular immune surveillance against infection. RLR signaling requires the adapter protein MAVS to induce type I interferon, interferon-stimulated genes, and proinflammatory cytokines. This review focuses on the molecular and cell biological requirements for RLR signal transduction.
Collapse
Affiliation(s)
- Evelyn Dixit
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | | |
Collapse
|
41
|
Ryzhakov G, Blazek K, Lai CCK, Udalova IA. IL-17 receptor adaptor protein Act1/CIKS plays an evolutionarily conserved role in antiviral signaling. THE JOURNAL OF IMMUNOLOGY 2012; 189:4852-8. [PMID: 23066157 DOI: 10.4049/jimmunol.1200428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Double-stranded RNA-induced antiviral gene expression in mammalian cells requires activation of IFN regulatory factor 3 (IRF3). In this study, we show that the IL-17R adaptor protein Act1/CIKS is involved in this process. Small interfering RNA-mediated knockdown of Act1 in primary human skin fibroblasts specifically attenuates expression of IFN-β and IFN-stimulated antiviral genes induced by a synthetic viral mimic, polyinosinic-polycytidylic acid. Ectopic expression of Act1 potentiates the IRF3-driven expression of a synthetic reporter construct as well as the induction of antiviral genes. We demonstrate that this effect is dependent on the ability of Act1 to functionally and physically interact with IκB kinase ε (IKKε), a known IRF3 kinase, and IRF3: 1) Act1 binds IKKε and IRF3; 2) Act1-induced IRF3 activation can be blocked specifically by coexpression of a catalytically inactive mutant of IKKε; and 3) mutants of IRF3, either lacking the C terminus or mutated at the key phosphorylation sites, important for its activation by IKKε, do not support Act1-dependent IRF3 activation. We also show that a zebrafish Act1 protein is able to trigger antiviral gene expression in human cells, which suggests an evolutionarily conserved function of vertebrate Act1 in the host defense against viruses. On the whole, our study demonstrates that Act1 is a component of antiviral signaling.
Collapse
Affiliation(s)
- Grigory Ryzhakov
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, London W6 8LH, United Kingdom.
| | | | | | | |
Collapse
|
42
|
Patel AA, Lee-Lewis H, Hughes-Hanks J, Lewis CA, Anderson DM. Opposing roles for interferon regulatory factor-3 (IRF-3) and type I interferon signaling during plague. PLoS Pathog 2012; 8:e1002817. [PMID: 22911267 PMCID: PMC3406097 DOI: 10.1371/journal.ppat.1002817] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 06/10/2012] [Indexed: 11/25/2022] Open
Abstract
Type I interferons (IFN-I) broadly control innate immunity and are typically transcriptionally induced by Interferon Regulatory Factors (IRFs) following stimulation of pattern recognition receptors within the cytosol of host cells. For bacterial infection, IFN-I signaling can result in widely variant responses, in some cases contributing to the pathogenesis of disease while in others contributing to host defense. In this work, we addressed the role of type I IFN during Yersinia pestis infection in a murine model of septicemic plague. Transcription of IFN-β was induced in vitro and in vivo and contributed to pathogenesis. Mice lacking the IFN-I receptor, Ifnar, were less sensitive to disease and harbored more neutrophils in the later stage of infection which correlated with protection from lethality. In contrast, IRF-3, a transcription factor commonly involved in inducing IFN-β following bacterial infection, was not necessary for IFN production but instead contributed to host defense. In vitro, phagocytosis of Y. pestis by macrophages and neutrophils was more effective in the presence of IRF-3 and was not affected by IFN-β signaling. This activity correlated with limited bacterial growth in vivo in the presence of IRF-3. Together the data demonstrate that IRF-3 is able to activate pathways of innate immunity against bacterial infection that extend beyond regulation of IFN-β production. Type I interferons (IFN-I) broadly stimulate innate immunity against viral, bacterial and parasitic pathogens. Many bacterial pathogens induce IFN-I through phosphorylation of Interferon Regulatory Factor 3 (IRF-3) allowing it to bind promoters containing Interferon Stimulated Response Elements (ISRE) which include IFN-β and pro-inflammatory cytokines and chemokines. Secreted IFN-β is taken up by the IFN-αβ receptor (IFNAR), triggering activation of the JAK-STAT pathway which also activates ISRE-containing genes. In this work, we have discovered a novel anti-bacterial function of IRF-3. We show that the respiratory pathogen, Yersinia pestis, the causative agent of plague, activates IRF-3 and the IFN-I response and that these two events cause opposite outcomes in the host. While IRF-3 is necessary for an early stage of phagocytosis, IFNAR signaling promotes the infection and may directly contribute to neutrophil depletion during infection. These results demonstrate that an IFN-independent function of IRF-3 is important to host defense against bacterial infection.
Collapse
Affiliation(s)
- Ami A. Patel
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
| | - Hanni Lee-Lewis
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
| | - Jennifer Hughes-Hanks
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Craig A. Lewis
- Starling Enterprise, LLC, Columbia, Missouri, United States of America
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
43
|
Cruz AR, Ramirez LG, Zuluaga AV, Pillay A, Abreu C, Valencia CA, La Vake C, Cervantes JL, Dunham-Ems S, Cartun R, Mavilio D, Radolf JD, Salazar JC. Immune evasion and recognition of the syphilis spirochete in blood and skin of secondary syphilis patients: two immunologically distinct compartments. PLoS Negl Trop Dis 2012; 6:e1717. [PMID: 22816000 PMCID: PMC3398964 DOI: 10.1371/journal.pntd.0001717] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/18/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The clinical syndrome associated with secondary syphilis (SS) reflects the propensity of Treponema pallidum (Tp) to escape immune recognition while simultaneously inducing inflammation. METHODS To better understand the duality of immune evasion and immune recognition in human syphilis, herein we used a combination of flow cytometry, immunohistochemistry (IHC), and transcriptional profiling to study the immune response in the blood and skin of 27 HIV(-) SS patients in relation to spirochetal burdens. Ex vivo opsonophagocytosis assays using human syphilitic sera (HSS) were performed to model spirochete-monocyte/macrophage interactions in vivo. RESULTS Despite the presence of low-level spirochetemia, as well as immunophenotypic changes suggestive of monocyte activation, we did not detect systemic cytokine production. SS subjects had substantial decreases in circulating DCs and in IFNγ-producing and cytotoxic NK-cells, along with an emergent CD56-/CD16+ NK-cell subset in blood. Skin lesions, which had visible Tp by IHC and substantial amounts of Tp-DNA, had large numbers of macrophages (CD68+), a relative increase in CD8+ T-cells over CD4+ T-cells and were enriched for CD56+ NK-cells. Skin lesions contained transcripts for cytokines (IFN-γ, TNF-α), chemokines (CCL2, CXCL10), macrophage and DC activation markers (CD40, CD86), Fc-mediated phagocytosis receptors (FcγRI, FcγR3), IFN-β and effector molecules associated with CD8 and NK-cell cytotoxic responses. While HSS promoted uptake of Tp in conjunction with monocyte activation, most spirochetes were not internalized. CONCLUSIONS Our findings support the importance of macrophage driven opsonophagocytosis and cell mediated immunity in treponemal clearance, while suggesting that the balance between phagocytic uptake and evasion is influenced by the relative burdens of bacteria in blood and skin and the presence of Tp subpopulations with differential capacities for binding opsonic antibodies. They also bring to light the extent of the systemic innate and adaptive immunologic abnormalities that define the secondary stage of the disease, which in the skin of patients trends towards a T-cell cytolytic response.
Collapse
Affiliation(s)
- Adriana R. Cruz
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Lady G. Ramirez
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Ana V. Zuluaga
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Allan Pillay
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Christine Abreu
- Clinical Research Center, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Carlos A. Valencia
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Carson La Vake
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Jorge L. Cervantes
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Star Dunham-Ems
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Richard Cartun
- Department of Pathology, Hartford Hospital, Hartford, Connecticut, United States of America
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Justin D. Radolf
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Division of Pediatric Infectious Diseases, Connecticut Children's Medical Center, Hartford, Connecticut, United States of America
| | - Juan C. Salazar
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Division of Pediatric Infectious Diseases, Connecticut Children's Medical Center, Hartford, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
44
|
Preventing bacterial DNA release and absent in melanoma 2 inflammasome activation by a Legionella effector functioning in membrane trafficking. Proc Natl Acad Sci U S A 2012; 109:6193-8. [PMID: 22474394 DOI: 10.1073/pnas.1117490109] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires' pneumonia, resides in a distinct vacuole structure called Legionella-containing vacuole (LCV). The LCV resists fusion with the lysosome and permits efficient bacterial replication in host macrophages, which requires a Dot/Icm type IVB secretion system. Dot/Icm-translocated effector SdhA is critical for L. pneumophila intracellular growth and functions to prevent host cell death. Here, we show that the absence of SdhA resulted in elevated caspase-1 activation and IL-1β secretion as well as macrophage pyroptosis during Legionella infection. These inflammasome activation phenotypes were independent of the established flagellin-NAIP5-NLRC4 axis, but relied on the DNA-sensing AIM2 inflammasome. We further demonstrate that Legionella DNA was released into macrophage cytosol, and this effect was significantly exaggerated by the absence of SdhA. SdhA bears a functional Golgi-targeting GRIP domain that is required for preventing AIM2 inflammasome activation. Ectopically expressed SdhA formed a unique ring-shape membrane structure, further indicating a role in membrane trafficking and maintaining LCV membrane integrity. Our data together suggest a possible link, mediated by the function of SdhA, between LCV trafficking/maturation and suppression of host innate immune detection.
Collapse
|
45
|
Morinaga Y, Yanagihara K, Araki N, Migiyama Y, Nagaoka K, Harada Y, Yamada K, Hasegawa H, Nishino T, Izumikawa K, Kakeya H, Yamamoto Y, Kohno S, Kamihira S. LiveLegionella pneumophilainduces MUC5AC production by airway epithelial cells independently of intracellular invasion. Can J Microbiol 2012; 58:151-7. [DOI: 10.1139/w11-123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoshitomo Morinaga
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| | - Nobuko Araki
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| | - Yohei Migiyama
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
- Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kentaro Nagaoka
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
- Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yosuke Harada
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
- Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koichi Yamada
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
- Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| | - Tomoya Nishino
- Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koichi Izumikawa
- Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Kakeya
- Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshihiro Yamamoto
- Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shigeru Kohno
- Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Global COE Program, Nagasaki University, Nagasaki, Japan
| | - Shimeru Kamihira
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
46
|
The protein SdhA maintains the integrity of the Legionella-containing vacuole. Proc Natl Acad Sci U S A 2012; 109:3481-6. [PMID: 22308473 DOI: 10.1073/pnas.1121286109] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Legionella pneumophila directs the formation of a specialized vacuole within host cells, dependent on protein substrates of the Icm/Dot translocation system. Survival of the host cell is essential for intracellular replication of L. pneumophila. Strains lacking the translocated substrate SdhA are defective for intracellular replication and activate host cell death pathways in primary macrophages. To understand how SdhA promotes evasion of death pathways, we performed a mutant hunt to identify bacterial suppressors of the ΔsdhA growth defect. We identified the secreted phospholipase PlaA as key to activation of death pathways by the ΔsdhA strain. Based on homology between PlaA and SseJ, a Salmonella protein associated with vacuole degradation, we determined the roles of SdhA and PlaA in controlling vacuole integrity. In the absence of sdhA, the Legionella-containing vacuole was unstable, resulting in access to the host cytosol. Both vacuole disruption and host cell death were largely dependent on PlaA. Consistent with these observations, the ΔsdhA strain colocalized with galectin-3, a marker of vacuole rupture, in a PlaA-dependent process. Access of ΔsdhA strains to the macrophage cytosol triggered multiple responses in the host cell, including degradation of bacteria, induction of the type I IFN response, and activation of inflammasomes. Therefore, we have demonstrated that the Legionella-containing vacuole is actively stabilized by the SdhA protein during intracellular replication. This vacuolar niche affords the bacterium protection from cytosolic host factors that degrade bacteria and initiate immune responses.
Collapse
|
47
|
Abstract
Two-signal models have a rich history in immunology. In the classic two-signal model of T-cell activation, signal one consists of engagement of the T-cell receptor by antigen/major histocompatibility complex, whereas signal two arises from costimulatory ligands on antigen-presenting cells. A requirement for two independent signals helps to ensure that T-cell responses are initiated only in response to bona fide infectious threats. Our studies have led us to conclude that initiation of innate immune responses to pathogens also often requires two signals: signal one is initiated by a microbe-derived ligand, such as lipopolysaccharide (LPS) or flagellin, whereas signal two conveys additional contextual information that often accompanies infectious microbes. Although signal one alone is sufficient to initiate many innate responses, certain responses-particularly ones with the potential for self-damage-require two signals for activation. Many of our studies have employed the intracellular bacterial pathogen Legionella pneumophila, which has been established as a valuable model for understanding innate immune responses. In this review, we discuss how the innate immune system integrates multiple signals to generate an effective response to L. pneumophila and other bacterial pathogens.
Collapse
Affiliation(s)
- Mary F Fontana
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
48
|
Koppe U, Högner K, Doehn JM, Müller HC, Witzenrath M, Gutbier B, Bauer S, Pribyl T, Hammerschmidt S, Lohmeyer J, Suttorp N, Herold S, Opitz B. Streptococcus pneumoniae stimulates a STING- and IFN regulatory factor 3-dependent type I IFN production in macrophages, which regulates RANTES production in macrophages, cocultured alveolar epithelial cells, and mouse lungs. THE JOURNAL OF IMMUNOLOGY 2011; 188:811-7. [PMID: 22156592 DOI: 10.4049/jimmunol.1004143] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Streptococcus pneumoniae is the leading cause of community-acquired pneumonia. In this study, we examine an innate immune recognition pathway that senses pneumococcal infection, triggers type I IFN production, and regulates RANTES production. We found that human and murine alveolar macrophages as well as murine bone marrow macrophages, but not alveolar epithelial cells, produced type I IFNs upon infection with S. pneumoniae. This response was dependent on the pore-forming toxin pneumolysin and appeared to be mediated by a cytosolic DNA-sensing pathway involving the adapter molecule STING and the transcription factor IFN regulatory factor 3. Indeed, DNA was present in the cytosol during pneumococcal infection as indicated by the activation of the AIM2 inflammasome, which is known to sense microbial DNA. Type I IFNs produced by S. pneumoniae-infected macrophages positively regulated gene expression and RANTES production in macrophages and cocultured alveolar epithelial cells in vitro. Moreover, type I IFNs controlled RANTES production during pneumococcal pneumonia in vivo. In conclusion, we identified an immune sensing pathway detecting S. pneumoniae that triggers a type I IFN response and positively regulates RANTES production.
Collapse
Affiliation(s)
- Uwe Koppe
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité University Medicine Berlin, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Type I interferons: diversity of sources, production pathways and effects on immune responses. Curr Opin Virol 2011; 1:463-75. [PMID: 22440910 DOI: 10.1016/j.coviro.2011.10.026] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 10/24/2011] [Accepted: 10/27/2011] [Indexed: 12/24/2022]
Abstract
Type I interferons (IFN-I) were first described over 50 years ago as factors produced by cells that interfere with virus replication and promote an antiviral state. Innate and adaptive immune responses to viruses are also greatly influenced by IFN-I. In this article we discuss the diversity of cellular sources of IFN-I and the pathways leading to IFN-I production during viral infections. Finally, we discuss the effects of IFN-I on cells of the immune system with emphasis on dendritic cells.
Collapse
|
50
|
Ge J, Shao F. Manipulation of host vesicular trafficking and innate immune defence by Legionella Dot/Icm effectors. Cell Microbiol 2011; 13:1870-80. [PMID: 21981078 DOI: 10.1111/j.1462-5822.2011.01710.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, infects and replicates in macrophages and amoebas. Following internalization, L. pneumophila resides in a vacuole structure called Legionella-containing vacuole (LCV). The LCV escapes from the endocytic maturation process and avoids fusion with the lysosome, a hallmark of Legionella pathogenesis. Interference with the secretory vesicle transport and avoiding lysosomal targeting render the LCV permissive for L. pneumophila intracellular replication. Central to L. pneumophila pathogenesis is a defect in the organelle trafficking/intracellular multiplication (Dot/Icm) type IV secretion system that translocates a large number of effector proteins into host cells. Many of the Dot/Icm effectors employ diverse and sophisticated biochemical strategies to manipulate the host vesicular transport system, playing an important role in LCV biogenesis and trafficking. Similar to other bacterial pathogens, L. pneumophila also delivers effector proteins to modulate or counteract host innate immune defence pathways such as the NF-κB and apoptotic signalling. This review summarizes the known functions and mechanisms of Dot/Icm effectors that target host membrane trafficking and innate immune defence pathways.
Collapse
Affiliation(s)
- Jianning Ge
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | | |
Collapse
|