1
|
Chen L, Xiao J, Li Y, Song Y, Liu J, Zhou Q, Sun T, Wang HB, Liu B. The Raf-like MAPKKKs STY8, STY17, and STY46 negatively regulate Botrytis cinerea resistance by limiting MKK7 protein accumulation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1503-1516. [PMID: 38059690 DOI: 10.1111/tpj.16578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
Plant diseases, which seriously damage crop production, are in most cases caused by fungal pathogens. In this study, we found that the Raf-like MAPKKKs STY8 (SERINE/THREONINE/TYROSINE KINASE 8), STY17, and STY46 negatively regulate resistance to the fungal pathogen Botrytis cinerea through jasmonate response in Arabidopsis. Moreover, STY8/STY17/STY46 homologs negatively contribute to chitin signaling. We further identified MKK7 as the MAPKK component interacting with STY8/STY17/STY46 homologs. MKK7 positively contributes to resistance to B. cinerea and chitin signaling. Furthermore, we found that STY8/STY17/STY46 homologs negatively affect the accumulation of MKK7, in accordance with the opposite roles of MKK7 and STY8/STY17/STY46 homologs in defense against B. cinerea. These results provide new insights into the mechanisms precisely regulating plant immunity via Raf-like MAPKKKs.
Collapse
Affiliation(s)
- Lijuan Chen
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, 510640, Guangzhou, People's Republic of China
| | - Jiahui Xiao
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - You Li
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yuxiao Song
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Jun Liu
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Qi Zhou
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Ting Sun
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hong-Bin Wang
- School of Pharmaceutical Sciences, Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, 510006, Guangzhou, People's Republic of China
| | - Bing Liu
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| |
Collapse
|
2
|
Hibbert LE, Qian Y, Smith HK, Milner S, Katz E, Kliebenstein DJ, Taylor G. Making watercress ( Nasturtium officinale) cropping sustainable: genomic insights into enhanced phosphorus use efficiency in an aquatic crop. FRONTIERS IN PLANT SCIENCE 2023; 14:1279823. [PMID: 38023842 PMCID: PMC10662076 DOI: 10.3389/fpls.2023.1279823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
Watercress (Nasturtium officinale) is a nutrient-dense salad crop with high antioxidant capacity and glucosinolate concentration and with the potential to contribute to nutrient security as a locally grown outdoor aquatic crop in northern temperate climates. However, phosphate-based fertilizers used to support plant growth contribute to the eutrophication of aquatic habitats, often pristine chalk streams, downstream of farms, increasing pressure to minimize fertilizer use and develop a more phosphorus-use efficient (PUE) crop. Here, we grew genetically distinct watercress lines selected from a bi-parental mapping population on a commercial watercress farm either without additional phosphorus (P-) or under a commercial phosphate-based fertilizer regime (P+), to decipher effects on morphology, nutritional profile, and the transcriptome. Watercress plants sustained shoot yield in P- conditions, through enhanced root biomass, but with shorter stems and smaller leaves. Glucosinolate concentration was not affected by P- conditions, but both antioxidant capacity and the concentration of sugars and starch in shoot tissue were enhanced. We identified two watercress breeding lines, with contrasting strategies for enhanced PUE: line 60, with highly plastic root systems and increased root growth in P-, and line 102, maintaining high yield irrespective of P supply, but less plastic. RNA-seq analysis revealed a suite of genes involved in cell membrane remodeling, root development, suberization, and phosphate transport as potential future breeding targets for enhanced PUE. We identified watercress gene targets for enhanced PUE for future biotechnological and breeding approaches enabling less fertilizer inputs and reduced environmental damage from watercress cultivation.
Collapse
Affiliation(s)
- Lauren E. Hibbert
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
- School of Biological Sciences, University of Southampton, Hampshire, United Kingdom
| | - Yufei Qian
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
| | | | | | - Ella Katz
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
| | | | - Gail Taylor
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
| |
Collapse
|
3
|
Liao HS, Chen YJ, Hsieh WY, Li YC, Hsieh MH. Arabidopsis ACT DOMAIN REPEAT9 represses glucose signaling pathways. PLANT PHYSIOLOGY 2023; 192:1532-1547. [PMID: 36843191 PMCID: PMC10231364 DOI: 10.1093/plphys/kiad127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 02/01/2023] [Indexed: 06/01/2023]
Abstract
Nutrient sensing and signaling are critical for plants to coordinate growth and development in response to nutrient availability. Plant ACT DOMAIN REPEAT (ACR) proteins have been proposed to serve as nutrient sensors, but their functions remain largely unknown. Here, we showed that Arabidopsis (Arabidopsis thaliana) ACR9 might function as a repressor in glucose (Glc) signaling pathways. ACR9 was highly expressed in the leaves, and its expression was downregulated by sugars. Interestingly, the acr9-1 and acr9-2 T-DNA insertion mutants were hypersensitive to Glc during seedling growth, development, and anthocyanin accumulation. Nitrogen deficiency increased the mutants' sensitivity to Glc. The expression of sugar-responsive genes was also significantly enhanced in the acr9 mutants. By contrast, the 35S:ACR9 and 35S:ACR9-GFP overexpression (OE) lines were insensitive to Glc during early seedling development. The Glc signaling pathway is known to interact with the plant hormone abscisic acid (ABA). Notably, the acr9 mutants were also hypersensitive to ABA during early seedling development. The Glc sensor HEXOKINASE1 (HXK1) and the energy sensor SUCROSE NON-FERMENTING1 (SNF1)-RELATED PROTEIN KINASE1 (SnRK1) are key components of the Glc signaling pathways. The acr9-1/hxk1-3 and acr9-1/snrk1 double mutants were no longer hypersensitive to Glc, indicating that functional HXK1 and SnRK1 were required for the acr9-1 mutant to be hypersensitive to Glc. Together, these results suggest that ACR9 is a repressor of the Glc signaling pathway, which may act independently or upstream of the HXK1-SnRK1 signaling module.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ying-Jhu Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chiou Li
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
4
|
Mazur R, Maszkowska J, Anielska-Mazur A, Garstka M, Polkowska-Kowalczyk L, Czajkowska A, Zmienko A, Dobrowolska G, Kulik A. The SnRK2.10 kinase mitigates the adverse effects of salinity by protecting photosynthetic machinery. PLANT PHYSIOLOGY 2021; 187:2785-2802. [PMID: 34632500 PMCID: PMC8644180 DOI: 10.1093/plphys/kiab438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/13/2021] [Indexed: 05/25/2023]
Abstract
SNF1-Related protein kinases Type 2 (SnRK2) are plant-specific enzymes widely distributed across the plant kingdom. They are key players controlling abscisic acid (ABA)-dependent and ABA-independent signaling pathways in the plant response to osmotic stress. Here we established that SnRK2.4 and SnRK2.10, ABA-nonactivated kinases, are activated in Arabidopsis thaliana rosettes during the early response to salt stress and contribute to leaf growth retardation under prolonged salinity but act by maintaining different salt-triggered mechanisms. Under salinity, snrk2.10 insertion mutants were impaired in the reconstruction and rearrangement of damaged core and antenna protein complexes in photosystem II (PSII), which led to stronger non-photochemical quenching, lower maximal quantum yield of PSII, and lower adaptation of the photosynthetic apparatus to high light intensity. The observed effects were likely caused by disturbed accumulation and phosphorylation status of the main PSII core and antenna proteins. Finally, we found a higher accumulation of reactive oxygen species (ROS) in the snrk2.10 mutant leaves under a few-day-long exposure to salinity which also could contribute to the stronger damage of the photosynthetic apparatus and cause other deleterious effects affecting plant growth. We found that the snrk2.4 mutant plants did not display substantial changes in photosynthesis. Overall, our results indicate that SnRK2.10 is activated in leaves shortly after plant exposure to salinity and contributes to salt stress tolerance by maintaining efficient photosynthesis and preventing oxidative damage.
Collapse
Affiliation(s)
- Radosław Mazur
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Justyna Maszkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Anna Anielska-Mazur
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Maciej Garstka
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Lidia Polkowska-Kowalczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Anna Czajkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
- Warsaw University of Life Sciences – SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland
| | - Agnieszka Zmienko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Grazyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Anna Kulik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
5
|
Gross LE, Klinger A, Spies N, Ernst T, Flinner N, Simm S, Ladig R, Bodensohn U, Schleiff E. Insertion of plastidic β-barrel proteins into the outer envelopes of plastids involves an intermembrane space intermediate formed with Toc75-V/OEP80. THE PLANT CELL 2021; 33:1657-1681. [PMID: 33624803 PMCID: PMC8254496 DOI: 10.1093/plcell/koab052] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The insertion of organellar membrane proteins with the correct topology requires the following: First, the proteins must contain topogenic signals for translocation across and insertion into the membrane. Second, proteinaceous complexes in the cytoplasm, membrane, and lumen of organelles are required to drive this process. Many complexes required for the intracellular distribution of membrane proteins have been described, but the signals and components required for the insertion of plastidic β-barrel-type proteins into the outer membrane are largely unknown. The discovery of common principles is difficult, as only a few plastidic β-barrel proteins exist. Here, we provide evidence that the plastidic outer envelope β-barrel proteins OEP21, OEP24, and OEP37 from pea (Pisum sativum) and Arabidopsis thaliana contain information defining the topology of the protein. The information required for the translocation of pea proteins across the outer envelope membrane is present within the six N-terminal β-strands. This process requires the action of translocon of the outer chloroplast (TOC) membrane. After translocation into the intermembrane space, β-barrel proteins interact with TOC75-V, as exemplified by OEP37 and P39, and are integrated into the membrane. The membrane insertion of plastidic β-barrel proteins is affected by mutation of the last β-strand, suggesting that this strand contributes to the insertion signal. These findings shed light on the elements and complexes involved in plastidic β-barrel protein import.
Collapse
Affiliation(s)
- Lucia E Gross
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Anna Klinger
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Nicole Spies
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Theresa Ernst
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Nadine Flinner
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Stefan Simm
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, D-60438 Frankfurt, Germany
| | - Roman Ladig
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Uwe Bodensohn
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Enrico Schleiff
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, D-60438 Frankfurt, Germany
| |
Collapse
|
6
|
Avalbaev A, Yuldashev R, Fedorova K, Petrova N, Fedina E, Gilmanova R, Karimova F, Shakirova F. 24-epibrassinolide-induced growth promotion of wheat seedlings is associated with changes in the proteome and tyrosine phosphoproteome. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:456-463. [PMID: 33369832 DOI: 10.1111/plb.13233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Brassinosteroids (BRs) represent a unique class of steroidal plant hormones that display pronounced growth-promoting activity at very low concentrations. Although many efforts have been made to characterize the molecular basis of BR action, little is known about the mechanisms behind the growth-promoting effect of BRs at protein level. Proteomic analysis of response to the steroid plant hormone 24-epibrassinolide (EBR) in wheat seedling shoots (Triticum aestivum L.) was performed using two-dimensional electrophoresis (2-DE) and immunoblotting with highly specific antibodies (PY20) to phosphotyrosine. EBR-modulated proteins and phosphotyrosine polypeptides were identified using MALDI-TOF mass spectrometry. The study revealed that EBR-stimulated growth of wheat seedlings was accompanied by changes in the content of multiple proteins as well as in tyrosine phosphorylation of numerous polypeptides. Among them, 22 differentially accumulated proteins and 13 phosphotyrosine proteins were identified. Based on their performed functions, the identified proteins are involved in physiological processes (photosynthesis, growth, energy and amino acid metabolism) closely associated with intensification of plant metabolism. The EBR-induced changes in protein abundance and tyrosine phosphorylation profile may contribute to growth stimulation of wheat seedlings under the action of EBR. The obtained data suggest an important role for EBR in the activation of protein metabolism underlying fundamental physiological processes, including growth promotion.
Collapse
Affiliation(s)
- A Avalbaev
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - R Yuldashev
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - K Fedorova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - N Petrova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, 420111, Kazan, Russia
| | - E Fedina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, 420111, Kazan, Russia
| | - R Gilmanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, 420111, Kazan, Russia
| | - F Karimova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, 420111, Kazan, Russia
| | - F Shakirova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| |
Collapse
|
7
|
Cecchini NM, Speed DJ, Roychoudhry S, Greenberg JT. Kinases and protein motifs required for AZI1 plastid localization and trafficking during plant defense induction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1615-1629. [PMID: 33342031 PMCID: PMC8048937 DOI: 10.1111/tpj.15137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 05/10/2023]
Abstract
The proper subcellular localization of defense factors is an important part of the plant immune system. A key component for systemic resistance, lipid transfer protein (LTP)-like AZI1, is needed for the systemic movement of the priming signal azelaic acid (AZA) and a pool of AZI1 exists at the site of AZA production, the plastid envelope. Moreover, after systemic defense-triggering infections, the proportion of AZI1 localized to plastids increases. However, AZI1 does not possess a classical plastid transit peptide that can explain its localization. Instead, AZI1 uses a bipartite N-terminal signature that allows for its plastid targeting. Furthermore, the kinases MPK3 and MPK6, associated with systemic immunity, promote the accumulation of AZI1 at plastids during priming induction. Our results indicate the existence of a mode of plastid targeting possibly related to defense responses.
Collapse
Affiliation(s)
- Nicolás M. Cecchini
- Department of Molecular Genetics and Cell BiologyThe University of Chicago929 East 57th Street GCIS 524WChicagoIL60637USA
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC‐CONICET) and Departamento de Química Biológica Ranwel CaputtoFacultad de Ciencias QuímicasUniversidad Nacional de CórdobaHaya de la Torre y Medina Allende – Ciudad UniversitariaCórdobaX5000HUAArgentina
| | - DeQuantarius J. Speed
- Department of Molecular Genetics and Cell BiologyThe University of Chicago929 East 57th Street GCIS 524WChicagoIL60637USA
| | - Suruchi Roychoudhry
- Department of Molecular Genetics and Cell BiologyThe University of Chicago929 East 57th Street GCIS 524WChicagoIL60637USA
- Centre for Plant SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell BiologyThe University of Chicago929 East 57th Street GCIS 524WChicagoIL60637USA
| |
Collapse
|
8
|
The lineage and diversity of putative amino acid sensor ACR proteins in plants. Amino Acids 2020; 52:649-666. [PMID: 32306102 DOI: 10.1007/s00726-020-02844-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
Amino acid metabolic enzymes often contain a regulatory ACT domain, named for aspartate kinase, chorismate mutase, and TyrA (prephenate dehydrogenase). Arabidopsis encodes 12 putative amino acid sensor ACT repeat (ACR) proteins, all containing ACT repeats but no identifiable catalytic domain. Arabidopsis ACRs comprise three groups based on domain composition and sequence: group I and II ACRs contain four ACTs each, and group III ACRs contain two ACTs. Previously, all three groups had been documented only in Arabidopsis. Here, we extended this to algae and land plants, showing that all three groups of ACRs are present in most, if not all, land plants, whereas among algal ACRs, although quite diverse, only group III is conserved. The appearance of canonical group I and II ACRs thus accompanied the evolution of plants from living in water to living on land. Alignment of ACTs from plant ACRs revealed a conserved motif, DRPGLL, at the putative ligand-binding site. Notably, the unique features of the DRPGLL motifs in each ACT domain are conserved in ACRs from algae to land plants. The conservation of plant ACRs is reminiscent of that of human cellular arginine sensor for mTORC1 (CASTOR1), a member of a small protein family highly conserved in animals. CASTOR proteins also have four ACT domains, although the sequence identities between ACRs and CASTORs are very low. Thus, plant ACRs and animal CASTORs may have adapted the regulatory ACT domains from a more ancient metabolic enzyme, and then evolved independently.
Collapse
|
9
|
Koide E, Suetsugu N, Iwano M, Gotoh E, Nomura Y, Stolze SC, Nakagami H, Kohchi T, Nishihama R. Regulation of Photosynthetic Carbohydrate Metabolism by a Raf-Like Kinase in the Liverwort Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2020; 61:631-643. [PMID: 31851335 DOI: 10.1093/pcp/pcz232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/12/2019] [Indexed: 05/27/2023]
Abstract
To optimize growth and development, plants monitor photosynthetic activities and appropriately regulate various cellular processes. However, signaling mechanisms that coordinate plant growth with photosynthesis remain poorly understood. To identify factors that are involved in signaling related to photosynthetic stimuli, we performed a phosphoproteomic analysis with Marchantia polymorpha, an extant bryophyte species in the basal lineage of land plants. Among proteins whose phosphorylation status changed differentially between dark-treated plants and those after light irradiation but failed to do so in the presence of a photosynthesis inhibitor, we identified a B4-group Raf-like kinase, named PHOTOSYNTHESIS-RELATED RAF (MpPRAF). Biochemical analyses confirmed photosynthesis-activity-dependent changes in the phosphorylation status of MpPRAF. Mutations in the MpPRAF gene resulted in growth retardation. Measurement of carbohydrates demonstrated both hyper-accumulation of starch and reduction of sucrose in Mppraf mutants. Neither inhibition of starch synthesis nor exogenous supply of sucrose alleviated the growth defect, suggesting serious impairment of Mppraf mutants in both the synthesis of sucrose and the repression of its catabolism. As a result of the compromised photosynthate metabolism, photosynthetic electron transport was downregulated in Mppraf mutants. A mutated MpPRAF with a common amino acid substitution for inactivating kinase activity was unable to rescue the Mppraf mutant defects. Our results provide evidence that MpPRAF is a photosynthesis signaling kinase that regulates sucrose metabolism.
Collapse
Affiliation(s)
- Eri Koide
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Megumi Iwano
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Eiji Gotoh
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581 Japan
| | - Yuko Nomura
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, 230-0045 Japan
| | - Sara Christina Stolze
- Protein Mass Spectrometry Group, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Hirofumi Nakagami
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, 230-0045 Japan
- Protein Mass Spectrometry Group, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
10
|
Abstract
The past several decades have witnessed tremendous growth in the protein targeting, transport and translocation field. Major advances were made during this time period. Now the molecular details of the targeting factors, receptors and the membrane channels that were envisioned in Blobel's Signal Hypothesis in the 1970s have been revealed by powerful structural methods. It is evident that there is a myriad of cytosolic and membrane associated systems that accurately sort and target newly synthesized proteins to their correct membrane translocases for membrane insertion or protein translocation. Here we will describe the common principles for protein transport in prokaryotes and eukaryotes.
Collapse
|
11
|
Eisa A, Malenica K, Schwenkert S, Bölter B. High Light Acclimation Induces Chloroplast Precursor Phosphorylation and Reduces Import Efficiency. PLANTS 2019; 9:plants9010024. [PMID: 31878089 PMCID: PMC7020187 DOI: 10.3390/plants9010024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 12/14/2022]
Abstract
Acclimation is an essential process in plants on many levels, but especially in chloroplasts under changing light conditions. It is partially known how the photosynthetic machinery reacts upon exposure to high light intensities, including rearrangement of numerous protein complexes. Since the majority of proteins residing within chloroplasts needs to be posttranslationally imported into the organelles, we endeavored to study how this important process is regulated upon subjecting plants from pea and Arabidopsis to high light. Our results reveal that acclimation takes place on the one hand in the cytosol by differential phosphorylation of preproteins and resulting from the altered expression of the responsible kinases, and on the other hand at the level of the translocation machineries in the outer (TOC) and inner (TIC) envelope membranes. Intriguingly, while phosphorylation is more pronounced under high light, import itself shows a lower efficiency, along with a reduced accumulation of the Toc receptor proteins Toc34 and Toc159.
Collapse
|
12
|
Eisa A, Bölter B, Schwenkert S. The ACT domain in chloroplast precursor-phosphorylating STY kinases binds metabolites and allosterically regulates kinase activity. J Biol Chem 2019; 294:17278-17288. [PMID: 31594863 DOI: 10.1074/jbc.ra119.010298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/03/2019] [Indexed: 11/06/2022] Open
Abstract
Protein import of nucleus-encoded proteins into plant chloroplasts is a highly regulated process, requiring fine-tuning mechanisms especially during chloroplast differentiation. One way of altering import efficiency is phosphorylation of chloroplast transit peptides in the cytosol. We recently investigated the role of three serine/threonine/tyrosine (STY) kinases, STY8, STY17, and STY46, in precursor phosphorylation. These three kinases have a high degree of similarity and harbor a conserved aspartate kinase-chorismate mutase-tyrA (prephenate dehydrogenase) (ACT) domain upstream of the kinase domain. The ACT domain is a widely distributed structural motif known to be important for allosteric regulation of many enzymes. In this work, using biochemical and biophysical techniques in vitro and in planta, including kinase assays, microscale thermophoresis, size exclusion chromatography, as well as site-directed mutagenesis approaches, we show that the ACT domain regulates autophosphorylation and substrate phosphorylation of the STY kinases. We found that isoleucine and S-adenosylmethionine bind to the ACT domain, negatively influencing its autophosphorylation ability. Moreover, we investigated the role of the ACT domain in planta and confirmed its involvement in chloroplast differentiation in vivo Our results provide detailed insights into the regulation of enzyme activity by ACT domains and establish that it has a role in binding amino acid ligands during chloroplast biogenesis.
Collapse
Affiliation(s)
- Ahmed Eisa
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Bettina Bölter
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Serena Schwenkert
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
13
|
Wiesemann K, Simm S, Mirus O, Ladig R, Schleiff E. Regulation of two GTPases Toc159 and Toc34 in the translocon of the outer envelope of chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2019; 1867:627-636. [PMID: 30611779 DOI: 10.1016/j.bbapap.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 01/03/2023]
Abstract
The GTPases Toc159 and Toc34 of the translocon of the outer envelope of chloroplasts (TOC) are involved in recognition and transfer of precursor proteins at the cytosolic face of the organelle. Both proteins engage multiple interactions within the translocon during the translocation process, including dimeric states of their G-domains. The units of the Toc34 homodimer are involved in the recognition of the transit peptide representing the translocation signal of precursor proteins. This substrate recognition is part of the regulation of the GTPase cycle of Toc34. The Toc159 monomer and the Toc34 homodimer recognize the transit peptide of the small subunit of Rubisco at the N- and at the C-terminal region, respectively. Analysis of the transit peptide interaction by crosslinking shows that the heterodimer between both G-domains binds pSSU most efficiently. While substrate recognition by Toc34 homodimer was shown to regulate nucleotide exchange, we provide evidence that the high activation energy of the GTPase Toc159 is lowered by substrate recognition. The nucleotide affinity of Toc34G homodimer and Toc159G monomer are distinct, Toc34G homodimer recognizes GDP and Toc159G GTP with highest affinity. Moreover, the analysis of the nucleotide association rates of the monomeric and dimeric receptor units suggests that the heterodimer has an arrangement distinct from the homodimer of Toc34. Based on the biochemical parameters determined we propose a model for the order of events at the cytosolic side of TOC. The molecular processes described by this hypothesis range from transit peptide recognition to perception of the substrate by the translocation channel.
Collapse
Affiliation(s)
- Katharina Wiesemann
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Stefan Simm
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany; Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, D-60438 Frankfurt, Germany
| | - Oliver Mirus
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Roman Ladig
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany; Cluster of Excellence Frankfurt, Goethe University, D-60438 Frankfurt, Germany
| | - Enrico Schleiff
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany; Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, D-60438 Frankfurt, Germany; Cluster of Excellence Frankfurt, Goethe University, D-60438 Frankfurt, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Str. 15, D-60438 Frankfurt, Germany.
| |
Collapse
|
14
|
Bölter B. En route into chloroplasts: preproteins' way home. PHOTOSYNTHESIS RESEARCH 2018; 138:263-275. [PMID: 29943212 DOI: 10.1007/s11120-018-0542-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Chloroplasts are the characteristic endosymbiotic organelles of plant cells which during the course of evolution lost most of their genetic information to the nucleus. Thus, they critically depend on the host cell for allocation of nearly their complete protein supply. This includes gene expression, translation, protein targeting, and transport-all of which need to be tightly regulated and perfectly coordinated to accommodate the cells' needs. To this end, multiple signaling pathways have been implemented that interchange information between the different cellular compartments. One of the most complex and energy consuming processes is the translocation of chloroplast-destined proteins into their target organelle. It is a concerted effort from chaperones, receptor proteins, channels, and regulatory elements to ensure correct targeting, efficient transport, and subsequent folding. Although we have discovered and learned a lot about protein import into chloroplasts in the last decades, there are still many open questions and debates about the roles of individual proteins as well as the mechanistic details. In this review, I will summarize and discuss the published data with a focus on the translocation complex in the chloroplast inner envelope membrane.
Collapse
Affiliation(s)
- Bettina Bölter
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany.
| |
Collapse
|
15
|
Plant mitochondrial protein import: the ins and outs. Biochem J 2018; 475:2191-2208. [PMID: 30018142 DOI: 10.1042/bcj20170521] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/29/2023]
Abstract
The majority of the mitochondrial proteome, required to fulfil its diverse range of functions, is cytosolically synthesised and translocated via specialised machinery. The dedicated translocases, receptors, and associated proteins have been characterised in great detail in yeast over the last several decades, yet many of the mechanisms that regulate these processes in higher eukaryotes are still unknown. In this review, we highlight the current knowledge of mitochondrial protein import in plants. Despite the fact that the mechanisms of mitochondrial protein import have remained conserved across species, many unique features have arisen in plants to encompass the developmental, tissue-specific, and stress-responsive regulation in planta. An understanding of unique features and mechanisms in plants provides us with a unique insight into the regulation of mitochondrial biogenesis in higher eukaryotes.
Collapse
|
16
|
Law YS, Ngan L, Yan J, Kwok LY, Sun Y, Cheng S, Schwenkert S, Lim BL. Multiple Kinases Can Phosphorylate the N-Terminal Sequences of Mitochondrial Proteins in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:982. [PMID: 30042778 PMCID: PMC6048449 DOI: 10.3389/fpls.2018.00982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/18/2018] [Indexed: 05/06/2023]
Abstract
Phosphorylation of the transit peptides of nuclear-encoded preprotein is a well-known regulatory process of protein import in plant chloroplasts. In the Arabidopsis Protein Phosphorylation Site Database, 103 out of 802 mitochondrial proteins were found to contain one or more experimentally proven phosphorylation sites in their first 60 amino acid residues. Analysis of the N-terminal sequences of selected mitochondrial preproteins and their homologs from 64 plant species showed high conservation among phosphorylation sites. The ability of kinases from various sources including leaf extract (LE), root extract (RE), wheat germ lysate (WGL), and STY kinases to phosphorylate N-terminal sequences of several respiratory chain proteins were examined by in vitro kinase assays. The three STY kinases were shown to phosphorylate the N-terminal sequences of some proteins we tested but exhibited different specificities. Interestingly, the N-terminal sequences of two mitochondrial ATP synthase beta subunit 1/3 (pF1β-1/3) could be phosphorylated by LE and RE but not by STY kinases, suggesting that there are uncharacterized presequence-phosphorylating kinases other than STY kinases present in RE and LE. Mitochondrial import studies showed that the import of RRL-synthesized pF1βs was impeded by the treatment of LE, and the addition of a short SSU transit peptide containing a phosphorylatable 14-3-3 binding site could enhance the import of LE-treated pF1βs. Our results suggested that the transit peptide of pSSU can compete with the presequences of pF1βs for an uncharacterized kinase(s) in leaf. Altogether, our data showed that phosphorylation of transit peptides/presequences are not uncommon for chloroplast-targeted and mitochondria-targeted proteins, albeit possibly differentially regulated.
Collapse
Affiliation(s)
- Yee-Song Law
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ling Ngan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Junran Yan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Lok Y. Kwok
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yuzhe Sun
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Shifeng Cheng
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Serena Schwenkert
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Boon L. Lim
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- *Correspondence: Boon L. Lim,
| |
Collapse
|
17
|
Abstract
The plastids, including chloroplasts, are a group of interrelated organelles that confer photoautotrophic growth and the unique metabolic capabilities that are characteristic of plant systems. Plastid biogenesis relies on the expression, import, and assembly of thousands of nuclear encoded preproteins. Plastid proteomes undergo rapid remodeling in response to developmental and environmental signals to generate functionally distinct plastid types in specific cells and tissues. In this review, we will highlight the central role of the plastid protein import system in regulating and coordinating the import of functionally related sets of preproteins that are required for plastid-type transitions and maintenance.
Collapse
|
18
|
|
19
|
Zhang R, Guan X, Law YS, Sun F, Chen S, Wong KB, Lim BL. AtPAP2 modulates the import of the small subunit of Rubisco into chloroplasts. PLANT SIGNALING & BEHAVIOR 2016; 11:e1239687. [PMID: 27700374 PMCID: PMC5117095 DOI: 10.1080/15592324.2016.1239687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2) is the only phosphatase that is dual-targeted to both chloroplasts and mitochondria. Like Toc33/34 of the TOC and Tom 20 of the TOM, AtPAP2 is anchored to the outer membranes of chloroplasts and mitochondria via a hydrophobic C-terminal motif. AtPAP2 on the mitochondria was previously shown to recognize the presequences of several nuclear-encoded mitochondrial proteins and modulate the import of pMORF3 into the mitochondria. Here we show that AtPAP2 binds to the small subunit of Rubisco (pSSU) and that chloroplast import experiments demonstrated that pSSU was imported less efficiently into pap2 chloroplasts than into wild-type chloroplasts. We propose that AtPAP2 is an outer membrane-bound phosphatase receptor that facilitates the import of selected proteins into chloroplasts.
Collapse
Affiliation(s)
- Renshan Zhang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiaoqian Guan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Feng Sun
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shuai Chen
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Kam Bo Wong
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Boon Leong Lim
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- CONTACT Boon Leong LIM
| |
Collapse
|
20
|
Holbrook K, Subramanian C, Chotewutmontri P, Reddick LE, Wright S, Zhang H, Moncrief L, Bruce BD. Functional Analysis of Semi-conserved Transit Peptide Motifs and Mechanistic Implications in Precursor Targeting and Recognition. MOLECULAR PLANT 2016; 9:1286-1301. [PMID: 27378725 DOI: 10.1016/j.molp.2016.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 05/17/2023]
Abstract
Over 95% of plastid proteins are nuclear-encoded as their precursors containing an N-terminal extension known as the transit peptide (TP). Although highly variable, TPs direct the precursors through a conserved, posttranslational mechanism involving translocons in the outer (TOC) and inner envelope (TOC). The organelle import specificity is mediated by one or more components of the Toc complex. However, the high TP diversity creates a paradox on how the sequences can be specifically recognized. An emerging model of TP design is that they contain multiple loosely conserved motifs that are recognized at different steps in the targeting and transport process. Bioinformatics has demonstrated that many TPs contain semi-conserved physicochemical motifs, termed FGLK. In order to characterize FGLK motifs in TP recognition and import, we have analyzed two well-studied TPs from the precursor of RuBisCO small subunit (SStp) and ferredoxin (Fdtp). Both SStp and Fdtp contain two FGLK motifs. Analysis of large set mutations (∼85) in these two motifs using in vitro, in organello, and in vivo approaches support a model in which the FGLK domains mediate interaction with TOC34 and possibly other TOC components. In vivo import analysis suggests that multiple FGLK motifs are functionally redundant. Furthermore, we discuss how FGLK motifs are required for efficient precursor protein import and how these elements may permit a convergent function of this highly variable class of targeting sequences.
Collapse
Affiliation(s)
- Kristen Holbrook
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Chitra Subramanian
- Graduate Program in Plant Physiology and Genetics, University of Tennessee, Knoxville, TN 37996, USA
| | | | - L Evan Reddick
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sarah Wright
- Department of Botany, University of Tennessee, Knoxville, TN 37996, USA
| | - Huixia Zhang
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Lily Moncrief
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Barry D Bruce
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; Graduate Program in Plant Physiology and Genetics, University of Tennessee, Knoxville, TN 37996, USA; Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
21
|
Bölter B, Soll J. Once upon a Time - Chloroplast Protein Import Research from Infancy to Future Challenges. MOLECULAR PLANT 2016; 9:798-812. [PMID: 27142186 DOI: 10.1016/j.molp.2016.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 05/08/2023]
Abstract
Protein import into chloroplasts has been a focus of research for several decades. The first publications dealing with this fascinating topic appeared in the 1970s. From the initial realization that many plastid proteins are being encoded for in the nucleus and require transport into their target organelle to the identification of import components in the cytosol, chloroplast envelopes, and stroma, as well as elucidation of some mechanistic details, more fascinating aspects are still being unraveled. With this overview, we present a survey of the beginnings of chloroplast protein import research, the first steps on this winding road, and end with a glimpse into the future.
Collapse
Affiliation(s)
- Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| |
Collapse
|
22
|
Nickel C, Soll J, Schwenkert S. Phosphomimicking within the transit peptide of pHCF136 leads to reduced photosystem II accumulation in vivo. FEBS Lett 2015; 589:1301-7. [PMID: 25935521 DOI: 10.1016/j.febslet.2015.04.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 11/25/2022]
Abstract
Most chloroplast resident proteins are equipped with N-terminal transit peptides to ensure targeting from the cytosol to the organelle. Import rates can be modulated by phosphorylation and 14-3-3 binding within the transit peptides. Using the phosphorylatable preprotein pHCF136, a photosystem II assembly factor, we investigated the function of preprotein phosphorylation in vivo by complementing the seedling lethal hcf136 mutant. HCF136 constructs containing mutations within the 14-3-3 binding site were generated, either abolishing or mimicking phosphorylation. Interestingly, phosphomimicking reduced the import rate and the hcf136 phenotype could only be partially rescued, as shown by hampered photosystem II complex accumulation, which was most prominently observed in cotyledons.
Collapse
Affiliation(s)
- Catharina Nickel
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Jürgen Soll
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | - Serena Schwenkert
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany.
| |
Collapse
|
23
|
Bölter B, Soll J, Schwenkert S. Redox meets protein trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:949-56. [PMID: 25626173 DOI: 10.1016/j.bbabio.2015.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 11/15/2022]
Abstract
After the engulfment of two prokaryotic organisms, the thus emerged eukaryotic cell needed to establish means of communication and signaling to properly integrate the acquired organelles into its metabolism. Regulatory mechanisms had to evolve to ensure that chloroplasts and mitochondria smoothly function in accordance with all other cellular processes. One essential process is the post-translational import of nuclear encoded organellar proteins, which needs to be adapted according to the requirements of the plant. The demand for protein import is constantly changing depending on varying environmental conditions, as well as external and internal stimuli or different developmental stages. Apart from long-term regulatory mechanisms such as transcriptional/translation control, possibilities for short-term acclimation are mandatory. To this end, protein import is integrated into the cellular redox network, utilizing the recognition of signals from within the organelles and modifying the efficiency of the translocon complexes. Thereby, cellular requirements can be communicated throughout the whole organism. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstr. 2-4, D-82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstr. 2-4, D-82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany.
| | - Serena Schwenkert
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstr. 2-4, D-82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| |
Collapse
|
24
|
Lung SC, Smith MD, Weston JK, Gwynne W, Secord N, Chuong SDX. The C-terminus of Bienertia sinuspersici Toc159 contains essential elements for its targeting and anchorage to the chloroplast outer membrane. FRONTIERS IN PLANT SCIENCE 2014; 5:722. [PMID: 25566294 PMCID: PMC4274882 DOI: 10.3389/fpls.2014.00722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 11/30/2014] [Indexed: 05/11/2023]
Abstract
Most nucleus-encoded chloroplast proteins rely on an N-terminal transit peptide (TP) as a post-translational sorting signal for directing them to the organelle. Although Toc159 is known to be a receptor for specific preprotein TPs at the chloroplast surface, the mechanism for its own targeting and integration into the chloroplast outer membrane is not completely understood. In a previous study, we identified a novel TP-like sorting signal at the C-terminus (CT) of a Toc159 homolog from the single-cell C4 species, Bienertia sinuspersici. In the current study, we have extended our understanding of the sorting signal using transient expression of fluorescently-tagged fusion proteins of variable-length, and with truncated and swapped versions of the CT. As was shown in the earlier study, the 56 residues of the CT contain crucial sorting information for reversible interaction of the receptor with the chloroplast envelope. Extension of this region to 100 residues in the current study stabilized the interaction via membrane integration, as demonstrated by more prominent plastid-associated signals and resistance of the fusion protein to alkaline extraction. Despite a high degree of sequence similarity, the plastid localization signals of the equivalent CT regions of Arabidopsis thaliana Toc159 homologs were not as strong as that of the B. sinuspersici counterparts. Together with computational and circular dichroism analyses of the CT domain structures, our data provide insights into the critical elements of the CT for the efficient targeting and anchorage of Toc159 receptors to the dimorphic chloroplasts in the single-cell C4 species.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong KongHong Kong SAR, China
| | - Matthew D. Smith
- Department of Biology, Wilfrid Laurier UniversityWaterloo, ON, Canada
| | - J. Kyle Weston
- Department of Biology, Wilfrid Laurier UniversityWaterloo, ON, Canada
| | - William Gwynne
- Department of Biology, University of WaterlooWaterloo, ON, Canada
| | - Nathan Secord
- Department of Biology, University of WaterlooWaterloo, ON, Canada
| | | |
Collapse
|
25
|
Murcha MW, Kmiec B, Kubiszewski-Jakubiak S, Teixeira PF, Glaser E, Whelan J. Protein import into plant mitochondria: signals, machinery, processing, and regulation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6301-35. [PMID: 25324401 DOI: 10.1093/jxb/eru399] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The majority of more than 1000 proteins present in mitochondria are imported from nuclear-encoded, cytosolically synthesized precursor proteins. This impressive feat of transport and sorting is achieved by the combined action of targeting signals on mitochondrial proteins and the mitochondrial protein import apparatus. The mitochondrial protein import apparatus is composed of a number of multi-subunit protein complexes that recognize, translocate, and assemble mitochondrial proteins into functional complexes. While the core subunits involved in mitochondrial protein import are well conserved across wide phylogenetic gaps, the accessory subunits of these complexes differ in identity and/or function when plants are compared with Saccharomyces cerevisiae (yeast), the model system for mitochondrial protein import. These differences include distinct protein import receptors in plants, different mechanistic operation of the intermembrane protein import system, the location and activity of peptidases, the function of inner-membrane translocases in linking the outer and inner membrane, and the association/regulation of mitochondrial protein import complexes with components of the respiratory chain. Additionally, plant mitochondria share proteins with plastids, i.e. dual-targeted proteins. Also, the developmental and cell-specific nature of mitochondrial biogenesis is an aspect not observed in single-celled systems that is readily apparent in studies in plants. This means that plants provide a valuable model system to study the various regulatory processes associated with protein import and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Beata Kmiec
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - Szymon Kubiszewski-Jakubiak
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Pedro F Teixeira
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
26
|
Arias MC, Pelletier S, Hilliou F, Wattebled F, Renou JP, D'Hulst C. From dusk till dawn: the Arabidopsis thaliana sugar starving responsive network. FRONTIERS IN PLANT SCIENCE 2014; 5:482. [PMID: 25295047 PMCID: PMC4170100 DOI: 10.3389/fpls.2014.00482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/31/2014] [Indexed: 05/28/2023]
Abstract
Plant growth and development are tightly controlled by photosynthetic carbon availability. The understanding of mechanisms governing carbon partitioning in plants will be a valuable tool in order to satisfy the rising global demand for food and biofuel. The goal of this study was to determine if sugar starvation responses were transcriptionally coordinated in Arabidopsis thaliana. A set of sugar-starvation responsive (SSR) genes was selected to perform a co-expression network analysis. Posteriorly, a guided-gene approach was used to identify the SSR-network from public data and to discover candidate regulators of this network. In order to validate the SSR network, a global transcriptome analysis was realized on three A. thaliana starch-deficient mutants. The starch-deficient phenotype in leaves induces sugar starvation syndrome at the end of the night due to the absence of photosynthesis. Promoter sequences of genes belonging to the SSR-network were analyzed in silico reveling over-represented motifs implicated in light, abscisic acid, and sugar responses. A small cluster of protein encoding genes belonging to different metabolic pathways, including three regulatory proteins, a protein kinase, a transcription factor, and a blue light receptor, were identified as the cornerstones of the SSR co-expression network. In summary, a large transcriptionally coordinated SSR network was identified and was validated with transcriptional data from three starch-deficient mutant lines. Candidate master regulators of this network were point out.
Collapse
Affiliation(s)
- Maria C. Arias
- Unité Glycobiologie Structurale et Fonctionnelle, UMR 8576-CNRS, Université de Lille 1Villeneuve d'Ascq, France
| | | | - Frédérique Hilliou
- Institut Sophia Agrobiotech, UMR 1355, Institut National de la Recherche AgronomiqueSophia-Antipolis, France
| | - Fabrice Wattebled
- Unité Glycobiologie Structurale et Fonctionnelle, UMR 8576-CNRS, Université de Lille 1Villeneuve d'Ascq, France
| | | | - Christophe D'Hulst
- Unité Glycobiologie Structurale et Fonctionnelle, UMR 8576-CNRS, Université de Lille 1Villeneuve d'Ascq, France
| |
Collapse
|
27
|
Paila YD, Richardson LGL, Schnell DJ. New insights into the mechanism of chloroplast protein import and its integration with protein quality control, organelle biogenesis and development. J Mol Biol 2014; 427:1038-1060. [PMID: 25174336 DOI: 10.1016/j.jmb.2014.08.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/20/2014] [Accepted: 08/23/2014] [Indexed: 01/04/2023]
Abstract
The translocons at the outer (TOC) and the inner (TIC) envelope membranes of chloroplasts mediate the targeting and import of several thousand nucleus-encoded preproteins that are required for organelle biogenesis and homeostasis. The cytosolic events in preprotein targeting remain largely unknown, although cytoplasmic chaperones have been proposed to facilitate delivery to the TOC complex. Preprotein recognition is mediated by the TOC GTPase receptors Toc159 and Toc34. The receptors constitute a GTP-regulated switch, which initiates membrane translocation via Toc75, a member of the Omp85 (outer membrane protein 85)/TpsB (two-partner secretion system B) family of bacterial, plastid and mitochondrial β-barrel outer membrane proteins. The TOC receptor systems have diversified to recognize distinct sets of preproteins, thereby maximizing the efficiency of targeting in response to changes in gene expression during developmental and physiological events that impact organelle function. The TOC complex interacts with the TIC translocon to allow simultaneous translocation of preproteins across the envelope. Both the two inner membrane complexes, the Tic110 and 1 MDa complexes, have been implicated as constituents of the TIC translocon, and it remains to be determined how they interact to form the TIC channel and assemble the import-associated chaperone network in the stroma that drives import across the envelope membranes. This review will focus on recent developments in our understanding of the mechanisms and diversity of the TOC-TIC systems. Our goal is to incorporate these recent studies with previous work and present updated or revised models for the function of TOC-TIC in protein import.
Collapse
Affiliation(s)
- Yamuna D Paila
- Department of Biochemistry and Molecular Biology, Life Sciences Laboratories Room N431, 240 Thatcher Rd, University of Massachusetts, Amherst MA 01003-9364, USA
| | - Lynn G L Richardson
- Department of Biochemistry and Molecular Biology, Life Sciences Laboratories Room N431, 240 Thatcher Rd, University of Massachusetts, Amherst MA 01003-9364, USA
| | - Danny J Schnell
- Department of Biochemistry and Molecular Biology, Life Sciences Laboratories Room N431, 240 Thatcher Rd, University of Massachusetts, Amherst MA 01003-9364, USA
| |
Collapse
|
28
|
Kim DH, Hwang I. Direct targeting of proteins from the cytosol to organelles: the ER versus endosymbiotic organelles. Traffic 2013; 14:613-21. [PMID: 23331847 DOI: 10.1111/tra.12043] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/08/2013] [Accepted: 01/17/2013] [Indexed: 12/21/2022]
Abstract
In eukaryotic cells consisting of many different types of organelles, targeting of organellar proteins is one of the most fundamental cellular processes. Proteins belonging to the endoplasmic reticulum (ER), chloroplasts and mitochondria are targeted individually from the cytosol to their cognate organelles. As the targeting to these organelles occurs in the cytosol during or after translation, the most crucial aspect is how specific targeting to these three organelles can be achieved without interfering with other targeting pathways. For these organelles, multiple mechanisms are used for targeting proteins, but the exact mechanism used depends on the type of protein and organelle, the location of targeting signals in the protein and the location of the protein in the organelle. In this review, we discuss the various mechanisms involved in protein targeting to the ER, chloroplasts and mitochondria, and how the targeting specificity is determined for these organelles in plant cells.
Collapse
Affiliation(s)
- Dae Heon Kim
- Divisions of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | | |
Collapse
|
29
|
Guirimand G, Guihur A, Phillips MA, Oudin A, Glévarec G, Melin C, Papon N, Clastre M, St-Pierre B, Rodríguez-Concepción M, Burlat V, Courdavault V. A single gene encodes isopentenyl diphosphate isomerase isoforms targeted to plastids, mitochondria and peroxisomes in Catharanthus roseus. PLANT MOLECULAR BIOLOGY 2012; 79:443-59. [PMID: 22638903 DOI: 10.1007/s11103-012-9923-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/05/2012] [Indexed: 05/23/2023]
Abstract
Isopentenyl diphosphate isomerases (IDI) catalyze the interconversion of the two isoprenoid universal C5 units, isopentenyl diphosphate and dimethylally diphosphate, to allow the biosynthesis of the large variety of isoprenoids including both primary and specialized metabolites. This isomerisation is usually performed by two distinct IDI isoforms located either in plastids/peroxisomes or mitochondria/peroxisomes as recently established in Arabidopsis thaliana mainly accumulating primary isoprenoids. By contrast, almost nothing is known in plants accumulating specialized isoprenoids. Here we report the cloning and functional validation of an IDI encoding cDNA (CrIDI1) from Catharanthus roseus that produces high amount of monoterpenoid indole alkaloids. The corresponding gene is expressed in all organs including roots, flowers and young leaves where transcripts have been detected in internal phloem parenchyma and epidermis. The CrIDI1 gene also produces long and short transcripts giving rise to corresponding proteins with and without a N-terminal transit peptide (TP), respectively. Expression of green fluorescent protein fusions revealed that the long isoform is targeted to both plastids and mitochondria with an apparent similar efficiency. Deletion/fusion experiments established that the first 18-residues of the N-terminal TP are solely responsible of the mitochondria targeting while the entire 77-residue long TP is needed for an additional plastid localization. The short isoform is targeted to peroxisomes in agreement with the presence of peroxisome targeting sequence at its C-terminal end. This complex plastid/mitochondria/peroxisomes triple targeting occurring in C. roseus producing specialized isoprenoid secondary metabolites is somehow different from the situation observed in A. thaliana mainly producing housekeeping isoprenoid metabolites.
Collapse
Affiliation(s)
- Grégory Guirimand
- EA2106 "Biomolécules et Biotechnologies Végétales", Université François Rabelais de Tours, 37200, Tours, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Parthibane V, Iyappan R, Vijayakumar A, Venkateshwari V, Rajasekharan R. Serine/threonine/tyrosine protein kinase phosphorylates oleosin, a regulator of lipid metabolic functions. PLANT PHYSIOLOGY 2012; 159:95-104. [PMID: 22434039 PMCID: PMC3375988 DOI: 10.1104/pp.112.197194] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant oils are stored in oleosomes or oil bodies, which are surrounded by a monolayer of phospholipids embedded with oleosin proteins that stabilize the structure. Recently, a structural protein, Oleosin3 (OLE3), was shown to exhibit both monoacylglycerol acyltransferase and phospholipase A(2) activities. The regulation of these distinct dual activities in a single protein is unclear. Here, we report that a serine/threonine/tyrosine protein kinase phosphorylates oleosin. Using bimolecular fluorescence complementation analysis, we demonstrate that this kinase interacts with OLE3 and that the fluorescence was associated with chloroplasts. Oleosin-green fluorescent protein fusion protein was exclusively associated with the chloroplasts. Phosphorylated OLE3 exhibited reduced monoacylglycerol acyltransferase and increased phospholipase A(2) activities. Moreover, phosphatidylcholine and diacylglycerol activated oleosin phosphorylation, whereas lysophosphatidylcholine, oleic acid, and Ca(2+) inhibited phosphorylation. In addition, recombinant peanut (Arachis hypogaea) kinase was determined to predominantly phosphorylate serine residues, specifically serine-18 in OLE3. Phosphorylation levels of OLE3 during seed germination were determined to be higher than in developing peanut seeds. These findings provide direct evidence for the in vivo substrate selectivity of the dual-specificity kinase and demonstrate that the bifunctional activities of oleosin are regulated by phosphorylation.
Collapse
|
31
|
Flores-Pérez Ú, Jarvis P. Molecular chaperone involvement in chloroplast protein import. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:332-40. [PMID: 22521451 DOI: 10.1016/j.bbamcr.2012.03.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/16/2012] [Accepted: 03/31/2012] [Indexed: 11/19/2022]
Abstract
Chloroplasts are organelles of endosymbiotic origin that perform essential functions in plants. They contain about 3000 different proteins, the vast majority of which are nucleus-encoded, synthesized in precursor form in the cytosol, and transported into the chloroplasts post-translationally. These preproteins are generally imported via envelope complexes termed TOC and TIC (Translocon at the Outer/Inner envelope membrane of Chloroplasts). They must navigate different cellular and organellar compartments (e.g., the cytosol, the outer and inner envelope membranes, the intermembrane space, and the stroma) before arriving at their final destination. It is generally considered that preproteins are imported in a largely unfolded state, and the whole process is energy-dependent. Several chaperones and cochaperones have been found to mediate different stages of chloroplast import, in similar fashion to chaperone involvement in mitochondrial import. Cytosolic factors such as Hsp90, Hsp70 and 14-3-3 may assist preproteins to reach the TOC complex at the chloroplast surface, preventing their aggregation or degradation. Chaperone involvement in the intermembrane space has also been proposed, but remains uncertain. Preprotein translocation is completed at the trans side of the inner membrane by ATP-driven motor complexes. A stromal Hsp100-type chaperone, Hsp93, cooperates with Tic110 and Tic40 in one such motor complex, while stromal Hsp70 is proposed to act in a second, parallel complex. Upon arrival in the stroma, chaperones (e.g., Hsp70, Cpn60, cpSRP43) also contribute to the folding, assembly or onward intraorganellar guidance of the proteins. In this review, we focus on chaperone involvement during preprotein translocation at the chloroplast envelope. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
|
32
|
Cytosolic events involved in chloroplast protein targeting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:245-52. [PMID: 22450030 DOI: 10.1016/j.bbamcr.2012.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/24/2012] [Accepted: 03/08/2012] [Indexed: 12/12/2022]
Abstract
Chloroplasts are unique organelles that are responsible for photosynthesis. Although chloroplasts contain their own genome, the majority of chloroplast proteins are encoded by the nuclear genome. These proteins are transported to the chloroplasts after translation in the cytosol. Chloroplasts contain three membrane systems (outer/inner envelope and thylakoid membranes) that subdivide the interior into three soluble compartments known as the intermembrane space, stroma, and thylakoid lumen. Several targeting mechanisms are required to deliver proteins to the correct chloroplast membrane or soluble compartment. These mechanisms have been extensively studied using purified chloroplasts in vitro. Prior to targeting these proteins to the various compartments of the chloroplast, they must be correctly sorted in the cytosol. To date, it is not clear how these proteins are sorted in the cytosol and then targeted to the chloroplasts. Recently, the cytosolic carrier protein AKR2 and its associated cofactor Hsp17.8 for outer envelope membrane proteins of chloroplasts were identified. Additionally, a mechanism for controlling unimported plastid precursors in the cytosol has been discovered. This review will mainly focus on recent findings concerning the possible cytosolic events that occur prior to protein targeting to the chloroplasts. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
|
33
|
Bayer RG, Stael S, Rocha AG, Mair A, Vothknecht UC, Teige M. Chloroplast-localized protein kinases: a step forward towards a complete inventory. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1713-23. [PMID: 22282538 PMCID: PMC3971369 DOI: 10.1093/jxb/err377] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In addition to redox regulation, protein phosphorylation has gained increasing importance as a regulatory principle in chloroplasts in recent years. However, only very few chloroplast-localized protein kinases have been identified to date. Protein phosphorylation regulates important chloroplast processes such as photosynthesis or transcription. In order to better understand chloroplast function, it is therefore crucial to obtain a complete picture of the chloroplast kinome, which is currently constrained by two effects: first, recent observations showed that the bioinformatics-based prediction of chloroplast-localized protein kinases from available sequence data is strongly biased; and, secondly, protein kinases are of very low abundance, which makes their identification by proteomics approaches extremely difficult. Therefore, the aim of this study was to obtain a complete list of chloroplast-localized protein kinases from different species. Evaluation of protein kinases which were either highly predicted to be chloroplast localized or have been identified in different chloroplast proteomic studies resulted in the confirmation of only three new kinases. Considering also all reports of experimentally verified chloroplast protein kinases to date, compelling evidence was found for a total set of 15 chloroplast-localized protein kinases in different species. This is in contrast to a much higher number that would be expected based on targeting prediction or on the general abundance of protein kinases in relation to the entire proteome. Moreover, it is shown that unusual protein kinases with differing ATP-binding sites or catalytic centres seem to occur frequently within the chloroplast kinome, thus making their identification by mass spectrometry-based approaches even more difficult due to a different annotation.
Collapse
Affiliation(s)
- Roman G. Bayer
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Simon Stael
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Agostinho G. Rocha
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | - Andrea Mair
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Ute C. Vothknecht
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science (Munich) at the Department of Biology of the LMU Munich, D-81377 Munich, Germany
| | - Markus Teige
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
- To whom correspondence should be addressed.
| |
Collapse
|
34
|
Lamberti G, Drurey C, Soll J, Schwenkert S. The phosphorylation state of chloroplast transit peptides regulates preprotein import. PLANT SIGNALING & BEHAVIOR 2011; 6:1918-20. [PMID: 22105029 PMCID: PMC3337178 DOI: 10.4161/psb.6.12.18127] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Import of nuclear encoded proteins into chloroplast is an essential and well-regulated mechanism. The cytosolic kinases STY8, STY17 and STY46 have been shown to phosphorylate chloroplast preprotein transit peptides advantaging the binding of a 14-3-3 dimer. Analyses of sty8 sty17 sty46 mutant plants revealed a role for the kinases in chloroplast differentiation, possibly due to lack of transit peptide phosphorylation. Moreover we could show that not only phosphorylation but also transit peptide dephosphorylation appears to be required for the fine regulation of the back-transport of nuclear encoded proteins to the chloroplast.
Collapse
Affiliation(s)
- Giorgia Lamberti
- Department of Biology I, Botany; Ludwig-Maximilians-Universität München; Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science (CiPSM); Ludwig-Maximilians-Universität München; Munich, Germany
| | - Claire Drurey
- Department of Biology I, Botany; Ludwig-Maximilians-Universität München; Planegg-Martinsried, Germany
| | - Jürgen Soll
- Department of Biology I, Botany; Ludwig-Maximilians-Universität München; Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science (CiPSM); Ludwig-Maximilians-Universität München; Munich, Germany
| | - Serena Schwenkert
- Department of Biology I, Botany; Ludwig-Maximilians-Universität München; Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science (CiPSM); Ludwig-Maximilians-Universität München; Munich, Germany
| |
Collapse
|
35
|
Fellerer C, Schweiger R, Schöngruber K, Soll J, Schwenkert S. Cytosolic HSP90 cochaperones HOP and FKBP interact with freshly synthesized chloroplast preproteins of Arabidopsis. MOLECULAR PLANT 2011; 4:1133-45. [PMID: 21596689 DOI: 10.1093/mp/ssr037] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Most chloroplast and mitochondrial proteins are synthesized in the cytosol of the plant cell and have to be imported into the organelles post-translationally. Molecular chaperones play an important role in preventing protein aggregation of freshly translated preproteins and assist in maintaining the preproteins in an import competent state. Preproteins can associate with HSP70, HSP90, and 14-3-3 proteins in the cytosol. In this study, we analyzed a large set of wheat germ-translated chloroplast preproteins with respect to their chaperone binding. Our results demonstrate that the formation of distinct 14-3-3 or HSP90 containing preprotein complexes is a common feature in post-translational protein transport in addition to preproteins that seem to interact solely with HSP70. We were able to identify a diverse and extensive class of preproteins as HSP90 substrates, thus providing a tool for the investigation of HSP90 client protein association. The analyses of chimeric HSP90 and 14-3-3 binding preproteins with exchanged transit peptides indicate an involvement of both the transit peptide and the mature part of the proteins, in HSP90 binding. We identified two partner components of the HSP90 cycle, which were present in the preprotein containing high-molecular-weight complexes, the HSP70/HSP90 organizing protein HOP, as well as the immunophilin FKBP73. The results establish chloroplast preproteins as a general class of HSP90 client proteins in plants using HOP and FKBP as novel cochaperones.
Collapse
Affiliation(s)
- Christine Fellerer
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
36
|
Lamberti G, Gügel IL, Meurer J, Soll J, Schwenkert S. The cytosolic kinases STY8, STY17, and STY46 are involved in chloroplast differentiation in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:70-85. [PMID: 21799034 PMCID: PMC3165899 DOI: 10.1104/pp.111.182774] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), transit peptides for chloroplast-destined preproteins can be phosphorylated by the protein kinases STY8, STY17, and STY46. In this study, we have investigated the in vitro properties of these plant-specific kinases. Characterization of the mechanistic functioning of STY8 led to the identification of an essential threonine in the activation segment, which is phosphorylated by an intramolecular mechanism. STY8 is inhibited by specific tyrosine kinase inhibitors, although it lacked the ability to phosphorylate tyrosine residues in vitro. In vivo analysis of sty8, sty17, and sty46 Arabidopsis knockout/knockdown mutants revealed a distinct function of the three kinases in the greening process and in the efficient differentiation of chloroplasts. Mutant plants displayed not only a delayed accumulation of chlorophyll but also a reduction of nucleus-encoded chloroplast proteins and a retarded establishment of photosynthetic capacity during the first 6 h of deetiolation, supporting a role of cytosolic STY kinases in chloroplast differentiation.
Collapse
|
37
|
Schleiff E, Becker T. Common ground for protein translocation: access control for mitochondria and chloroplasts. Nat Rev Mol Cell Biol 2010; 12:48-59. [DOI: 10.1038/nrm3027] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Schwenkert S, Soll J, Bölter B. Protein import into chloroplasts--how chaperones feature into the game. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:901-11. [PMID: 20682282 DOI: 10.1016/j.bbamem.2010.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 11/15/2022]
Abstract
Chloroplasts originated from an endosymbiotic event, in which an ancestral photosynthetic cyanobacterium was engulfed by a mitochondriate eukaryotic host cell. During evolution, the endosymbiont lost its autonomy by means of a massive transfer of genetic information from the prokaryotic genome to the host nucleus. Consequently, the development of protein import machineries became necessary for the relocation of proteins that are now nuclear-encoded and synthesized in the cytosol but destined for the chloroplast. Organelle biogenesis and maintenance requires a tight coordination of transcription, translation and protein import between the host cell and the organelle. This review focuses on the translocation complexes in the outer and inner envelope membrane with a special emphasis on the role of molecular chaperones. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Serena Schwenkert
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstr 2-4, D-82152 Planegg-Martinsried, Germany
| | | | | |
Collapse
|
39
|
Agne B, Andrès C, Montandon C, Christ B, Ertan A, Jung F, Infanger S, Bischof S, Baginsky S, Kessler F. The acidic A-domain of Arabidopsis TOC159 occurs as a hyperphosphorylated protein. PLANT PHYSIOLOGY 2010; 153:1016-30. [PMID: 20457805 PMCID: PMC2899928 DOI: 10.1104/pp.110.158048] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 05/06/2010] [Indexed: 05/17/2023]
Abstract
The translocon at the outer membrane of the chloroplast assists the import of a large class of preproteins with amino-terminal transit sequences. The preprotein receptors Toc159 and Toc33 in Arabidopsis (Arabidopsis thaliana) are specific for the accumulation of abundant photosynthetic proteins. The receptors are homologous GTPases known to be regulated by phosphorylation within their GTP-binding domains. In addition to the central GTP-binding domain, Toc159 has an acidic N-terminal domain (A-domain) and a C-terminal membrane-anchoring domain (M-domain). The A-domain of Toc159 is dispensable for its in vivo activity in Arabidopsis and prone to degradation in pea (Pisum sativum). Therefore, it has been suggested to have a regulatory function. Here, we show that in Arabidopsis, the A-domain is not simply degraded but that it accumulates as a soluble, phosphorylated protein separated from Toc159. However, the physiological relevance of this process is unclear. The data show that the A-domain of Toc159 as well as those of its homologs Toc132 and Toc120 are targets of a casein kinase 2-like activity.
Collapse
|
40
|
Schweer J, Türkeri H, Link B, Link G. AtSIG6, a plastid sigma factor from Arabidopsis, reveals functional impact of cpCK2 phosphorylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:192-202. [PMID: 20088902 PMCID: PMC2988416 DOI: 10.1111/j.1365-313x.2010.04138.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 12/23/2009] [Indexed: 05/17/2023]
Abstract
Plastids contain sigma factors, i.e. gene-regulatory proteins for promoter binding and transcription initiation. Despite the physical and functional similarity shared with their prokaryotic counterparts, the plant sigma factors have distinguishing features: most notably the existence of a variable extra sequence comprising their N-terminal portions. This distinct architecture is reflected by functional differences, including phosphorylation control by organellar protein kinase(s) closely related to nucleocytosolic, rather than bacterial-type, enzymes. In particular, cpCK2, a nuclear-coded plastid-targeted casein kinase 2, has been implicated as a key component in plant sigma factor phosphorylation and transcriptional regulation (Eur. J. Biochem. 269, 2002, 3329; Planta, 219, 2004, 298). Although this notion is based mainly on biochemical evidence and in vitro systems, the recent availability of Arabidopsis sigma knock-out lines for complementation by intact and mutant sigma cDNAs has opened up new strategies for the study of transcription regulatory mechanisms in vivo. Using Arabidopsis sigma factor 6 (AtSIG6) as a paradigm, we present data suggesting that: (i) this factor is a substrate for regulatory phosphorylation by cpCK2 both in vitro and in vivo; (ii) cpCK2 phosphorylation of SIG6 occurs at multiple sites, which can widely differ in their effect on the visual and/or molecular phenotype; (iii) in vivo usage of the perhaps most critical cpCK2 site defined by Ser174 requires (pre-)phosphorylation at the n + 3 serine residue Ser177, pointing to 'pathfinder' kinase activity capable of generating a functional cpCK2 substrate site.
Collapse
Affiliation(s)
| | | | | | - Gerhard Link
- *For correspondence (fax: +49 234 321 4188; e-mail )
| |
Collapse
|
41
|
Protein import into chloroplasts: the Tic complex and its regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:740-7. [PMID: 20100520 DOI: 10.1016/j.bbamcr.2010.01.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 01/11/2010] [Accepted: 01/13/2010] [Indexed: 11/24/2022]
Abstract
Chloroplasts like mitochondria were derived from an endosymbiontic event. Due to the massive gene transfer to the nucleus during endosymbiosis, only a limited number of chloroplastic proteins are still encoded for in the plastid genome. Most of the nuclear-encoded plastidic proteins are post-translationally translocated back to the chloroplast via the general import pathway through distinct outer and inner envelope membrane protein complexes, the Toc and Tic translocons (Translocon at the outer/inner envelope membrane of chloroplasts). Eight Tic subunits have been described so far, including two potential channel proteins (Tic110 and Tic20), the "motor complex" (Tic40 associated with the stromal chaperone Hsp93) and the "redox regulon" (Tic62, Tic55, and Tic32) involved in regulation of protein import via the metabolic redox status of the chloroplast. Regulation can additionally occur via thioredoxins (Tic110 and Tic55) or via the calcium/calmodulin network (Tic110 and Tic32). In this review we present the current knowledge about the Tic complex focusing on its regulation and addressing some still open questions.
Collapse
|
42
|
Berglund AK, Spånning E, Biverståhl H, Maddalo G, Tellgren-Roth C, Mäler L, Glaser E. Dual targeting to mitochondria and chloroplasts: characterization of Thr-tRNA synthetase targeting peptide. MOLECULAR PLANT 2009; 2:1298-309. [PMID: 19995731 DOI: 10.1093/mp/ssp048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
There is a group of proteins that are encoded by a single gene, expressed as a single precursor protein and dually targeted to both mitochondria and chloroplasts using an ambiguous targeting peptide. Sequence analysis of 43 dual targeted proteins in comparison with 385 mitochondrial proteins and 567 chloroplast proteins of Arabidopsis thaliana revealed an overall significant increase in phenylalanines, leucines, and serines and a decrease in acidic amino acids and glycine in dual targeting peptides (dTPs). The N-terminal portion of dTPs has significantly more serines than mTPs. The number of arginines is similar to those in mTPs, but almost twice as high as those in cTPs. We have investigated targeting determinants of the dual targeting peptide of Thr-tRNA synthetase (ThrRS-dTP) studying organellar import of N- and C-terminal deletion constructs of ThrRS-dTP coupled to GFP. These results show that the 23 amino acid long N-terminal portion of ThrRS-dTP is crucial but not sufficient for the organellar import. The C-terminal deletions revealed that the shortest peptide that was capable of conferring dual targeting was 60 amino acids long. We have purified the ThrRS-dTP(2-60) to homogeneity after its expression as a fusion construct with GST followed by CNBr cleavage and ion exchange chromatography. The purified ThrRS-dTP(2-60) inhibited import of pF1beta into mitochondria and of pSSU into chloroplasts at microM concentrations showing that dual and organelle-specific proteins use the same organellar import pathways. Furthermore, the CD spectra of ThrRS-dTP(2-60) indicated that the peptide has the propensity for forming alpha-helical structure in membrane mimetic environments; however, the membrane charge was not important for the amount of induced helical structure. This is the first study in which a dual targeting peptide has been purified and investigated by biochemical and biophysical means.
Collapse
Affiliation(s)
- Anna-Karin Berglund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Science, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
43
|
Stengel A, Benz JP, Buchanan BB, Soll J, Bölter B. Preprotein import into chloroplasts via the Toc and Tic complexes is regulated by redox signals in Pisum sativum. MOLECULAR PLANT 2009; 2:1181-97. [PMID: 19995724 DOI: 10.1093/mp/ssp043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The import of nuclear-encoded preproteins is necessary to maintain chloroplast function. The recognition and transfer of most precursor proteins across the chloroplast envelopes are facilitated by two membrane-inserted protein complexes, the translocons of the chloroplast outer and inner envelope (Toc and Tic complexes, respectively). Several signals have been invoked to regulate the import of preproteins. In our study, we were interested in redox-based import regulation mediated by two signals: regulation based on thiols and on the metabolic NADP+/NADPH ratio. We sought to identify the proteins participating in the regulation of these transport pathways and to characterize the preprotein subgroups whose import is redox-dependent. Our results provide evidence that the formation and reduction of disulfide bridges in the Toc receptors and Toc translocation channel have a strong influence on import yield of all tested preproteins that depend on the Toc complex for translocation. Furthermore, the metabolic NADP+/NADPH ratio influences not only the composition of the Tic complex, but also the import efficiency of most, but not all, preproteins tested. Thus, several Tic subcomplexes appear to participate in the translocation of different preprotein subgroups, and the redox-active components of these complexes likely play a role in regulating transport.
Collapse
Affiliation(s)
- Anna Stengel
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
44
|
Baginsky S, Gruissem W. The chloroplast kinase network: new insights from large-scale phosphoproteome profiling. MOLECULAR PLANT 2009; 2:1141-53. [PMID: 19995723 DOI: 10.1093/mp/ssp058] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein phosphorylation is one of the most important posttranslational modifications in eukaryotic cells and affects almost all basic cellular processes. The chloroplast as plant-specific cell organelle with important metabolic functions is integrated into the cellular signaling and phosphorylation network. Recent large-scale chloroplast phosphoproteome analyses in Arabidopsis have provided new information about phosphorylation targets and expanded the list of chloroplast metabolic and regulatory functions that are potentially controlled by protein phosphorylation. Phosphorylated peptides identified from chloroplast proteins provide new insights into phosphorylation motifs, protein kinase activities, and substrate utilization. Phosphorylation sites in protein kinases can reveal chloroplast phosphorylation cascades that may network different functions by integrating signaling chains. Our review provides a meta-analysis of currently available chloroplast phosphoproteome information and discusses biological insights from large-scale chloroplast phosphoprotein profiling as well as technological constraints of kinase network analysis.
Collapse
Affiliation(s)
- Sacha Baginsky
- Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zürich, Switzerland.
| | | |
Collapse
|
45
|
Abstract
Abstract
Protein transport, especially into different cellular compartments, is a highly coordinated and regulated process. The molecular machineries which carry out these transport processes are highly complex in structure, function, and regulation. In the case of chloroplasts, thousands of protein molecules have been estimated to be transported across the double-membrane bound envelope per minute. In this brief review, we summarize current knowledge about the molecular interplay during precursor protein import into chloroplasts, focusing on the initial events at the outer envelope.
Collapse
|
46
|
Carrie C, Giraud E, Whelan J. Protein transport in organelles: Dual targeting of proteins to mitochondria and chloroplasts. FEBS J 2009; 276:1187-95. [PMID: 19187233 DOI: 10.1111/j.1742-4658.2009.06876.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As many as fifty proteins have now been experimentally demonstrated to be targeted to both mitochondria and plastids, a phenomenon referred to as dual targeting. Although the first reported case of dual targeting of a protein was reported in 1995, there is still little understanding of the mechanism of dual targeting and any similarities or differences with respect to the targeting of location-specific proteins. This minireview summarizes dual targeting in terms of signals, passenger proteins, receptors, regulation, why proteins may need to be dual targeted and the future challenges that remain in this area.
Collapse
Affiliation(s)
- Chris Carrie
- Australian Research Council Centre of Excellence in Plant Energy Biology, M316, University of Western Australia, Crawley, Australia
| | | | | |
Collapse
|
47
|
Abstract
Most of the estimated 1000 or so chloroplast proteins are synthesized as cytosolic preproteins with N-terminal cleavable targeting sequences (transit peptide). Translocon complexes at the outer (Toc) and inner chloroplast envelope membrane (Tic) concertedly facilitate post-translational import of preproteins into the chloroplast. Three components, the Toc34 and Toc159 GTPases together with the Toc75 channel, form the core of the Toc complex. The two GTPases act as GTP-dependent receptors at the chloroplast surface and promote insertion of the preprotein across the Toc75 channel. Additional factors guide preproteins to the Toc complex or support their stable ATP-dependent binding to the chloroplast. This minireview describes the components of the Toc complex and their function during the initial steps of preprotein translocation across the chloroplast envelope.
Collapse
Affiliation(s)
- Birgit Agne
- Laboratoire de Physiologie Végétale, Université de Neuchâtel, Switzerland
| | | |
Collapse
|
48
|
Abstract
Most chloroplast proteins are encoded in the nucleus and synthesized on free, cytosolic ribosomes in precursor form. Each precursor has an amino-terminal extension called a transit peptide, which directs the protein through a post-translational targeting pathway and is removed upon arrival inside the organelle. This 'protein import' process is mediated by the coordinate action of two multiprotein complexes, one in each of the envelope membranes: the TOC and TIC (Translocon at the Outer/ Inner envelope membrane of Chloroplasts) machines. Many components of these complexes have been identified biochemically in pea; these include transit peptide receptors, channel proteins, and molecular chaperones. Intriguingly, the Arabidopsis genome encodes multiple, homologous genes for receptor components of the TOC complex. Careful analysis indicated that the different receptor isoforms operate in different import pathways with distinct precursor recognition specificities. These 'substrate-specific' import pathways might play a role in the differentiation of different plastid types, and/or act to prevent deleterious competition effects between abundant and nonabundant precursors. Until recently, all proteins destined for internal chloroplast compartments were thought to possess a cleavable transit peptide, and to engage the TOC/TIC machinery. New studies using proteomics and other approaches have revealed that this is far from true. Remarkably, a significant number of chloroplast proteins are transported via a pathway that involves the endoplasmic reticulum and Golgi apparatus. Other recent reports have elucidated an intriguing array of protein targeting routes leading to the envelope membranes themselves.
Collapse
Affiliation(s)
- Paul Jarvis
- Department of Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
49
|
Oreb M, Tews I, Schleiff E. Policing Tic 'n' Toc, the doorway to chloroplasts. Trends Cell Biol 2008; 18:19-27. [PMID: 18068366 DOI: 10.1016/j.tcb.2007.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 10/08/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
Abstract
The organization of eukaryotic cells into different membrane-enclosed compartments requires an ordered and regulated system for targeting and translocating proteins synthesized in the cytosol across organellar membranes. Protein translocation through integral membrane proteinaceous complexes shares common principles in different organelles, whereas molecular mechanisms and energy requirements are diverse. Translocation into mitochondria and plastids requires most proteins to cross two membranes, and translocation must be regulated to accommodate environmental or metabolic changes. In the last decade, the first ideas were formulated about the regulation of protein translocation into chloroplasts, thereby laying the foundation for this field. Here, we describe recent models for the regulation of translocation by precursor protein phosphorylation, receptor dimerization, redox sensing and calcium signaling. We suggest how these mechanisms might fit within the regulatory framework for the entry of proteins into chloroplasts.
Collapse
Affiliation(s)
- Mislav Oreb
- LMU München, Cluster of Excellence CIPS, Department of Biology I, Menziger Str. 67, 80638 München, Germany
| | | | | |
Collapse
|
50
|
Stengel A, Soll J, Bölter B. Protein import into chloroplasts: new aspects of a well-known topic. Biol Chem 2007; 388:765-72. [PMID: 17655494 DOI: 10.1515/bc.2007.099] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Protein import into plant chloroplasts is a fascinating topic that is being investigated by many research groups. Since the majority of chloroplast proteins are synthesised as precursor proteins in the cytosol, they have to be posttranslationally imported into the organelle. For this purpose, most preproteins are synthesised with an N-terminal presequence, which is both necessary and sufficient for organelle recognition and translocation initiation. The import of preproteins is facilitated by two translocation machineries in the outer and inner envelope of chloroplasts, the Toc and Tic complexes, respectively. Translocation of precursor proteins across the envelope membrane has to be highly regulated to react to the metabolic requirements of the organelle. The aim of this review is to summarise the events that take place at the translocation machineries that are known so far. In addition, we focus in particular on alternative import pathways and the aspect of regulation of protein transport at the outer and inner envelope membrane.
Collapse
Affiliation(s)
- Anna Stengel
- Department of Botany, University of Munich, Menzinger Str. 67, D-80638 Munich, Germany
| | | | | |
Collapse
|