1
|
Brady CT, Marshall A, Eagler LA, Pon TM, Duffey ME, Weil BR, Lang JK, Parker MD. Left Ventricular Systolic Dysfunction in NBCe1-B/C-Knockout Mice. Int J Mol Sci 2024; 25:9610. [PMID: 39273556 PMCID: PMC11395191 DOI: 10.3390/ijms25179610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Congenital proximal renal tubular acidosis (pRTA) is a rare systemic disease caused by mutations in the SLC4A4 gene that encodes the electrogenic sodium bicarbonate cotransporter, NBCe1. The major NBCe1 protein variants are designated NBCe1-A, NBCe1-B, and NBCe1-C. NBCe1-A expression is kidney-specific, NBCe1-B is broadly expressed and is the only NBCe1 variant expressed in the heart, and NBCe1-C is a splice variant of NBCe1-B that is expressed in the brain. No cardiac manifestations have been reported from patients with pRTA, but studies in adult rats with virally induced reduction in cardiac NBCe1-B expression indicate that NBCe1-B loss leads to cardiac hypertrophy and prolonged QT intervals in rodents. NBCe1-null mice die shortly after weaning, so the consequence of congenital, global NBCe1 loss on the heart is unknown. To circumvent this issue, we characterized the cardiac function of NBCe1-B/C-null (KOb/c) mice that survive up to 2 months of age and which, due to the uninterrupted expression of NBCe1-A, do not exhibit the confounding acidemia of the globally null mice. In contrast to the viral knockdown model, cardiac hypertrophy was not present in KOb/c mice as assessed by heart-weight-to-body-weight ratios and cardiomyocyte cross-sectional area. However, echocardiographic analysis revealed reduced left ventricular ejection fraction, and intraventricular pressure-volume measurements demonstrated reduced load-independent contractility. We also observed increased QT length variation in KOb/c mice. Finally, using the calcium indicator Fura-2 AM, we observed a significant reduction in the amplitude of Ca2+ transients in paced KOb/c cardiomyocytes. These data indicate that congenital, global absence of NBCe1-B/C leads to impaired cardiac contractility and increased QT length variation in juvenile mice. It remains to be determined whether the cardiac phenotype in KOb/c mice is influenced by the absence of NBCe1-B/C from neuronal and endocrine tissues.
Collapse
Affiliation(s)
- Clayton T Brady
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York: The University at Buffalo, Buffalo, NY 14203, USA
| | - Aniko Marshall
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York: The University at Buffalo, Buffalo, NY 14203, USA
| | - Lisa A Eagler
- Division of Cardiovascular Medicine and the Clinical and Translational Research Center, State University of New York: University at Buffalo, Buffalo, NY 14203, USA
| | - Thomas M Pon
- Division of Cardiovascular Medicine and the Clinical and Translational Research Center, State University of New York: University at Buffalo, Buffalo, NY 14203, USA
| | - Michael E Duffey
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York: The University at Buffalo, Buffalo, NY 14203, USA
| | - Brian R Weil
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York: The University at Buffalo, Buffalo, NY 14203, USA
- Division of Cardiovascular Medicine and the Clinical and Translational Research Center, State University of New York: University at Buffalo, Buffalo, NY 14203, USA
- Veterans Affairs Western New York Health Care System, Buffalo, NY 14215, USA
| | - Jennifer K Lang
- Division of Cardiovascular Medicine and the Clinical and Translational Research Center, State University of New York: University at Buffalo, Buffalo, NY 14203, USA
- Veterans Affairs Western New York Health Care System, Buffalo, NY 14215, USA
- Department of Biomedical Engineering, State University of New York: University at Buffalo, Buffalo, NY 14260, USA
- Department of Pharmacology and Toxicology, State University of New York: University at Buffalo, Buffalo, NY 14203, USA
- Department of Medicine, State University of New York: University at Buffalo, Buffalo, NY 14203, USA
| | - Mark D Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York: The University at Buffalo, Buffalo, NY 14203, USA
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York: The University at Buffalo, Buffalo, NY 14209, USA
| |
Collapse
|
2
|
Theparambil SM, Begum G, Rose CR. pH regulating mechanisms of astrocytes: A critical component in physiology and disease of the brain. Cell Calcium 2024; 120:102882. [PMID: 38631162 PMCID: PMC11423562 DOI: 10.1016/j.ceca.2024.102882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Strict homeostatic control of pH in both intra- and extracellular compartments of the brain is fundamentally important, primarily due to the profound impact of free protons ([H+]) on neuronal activity and overall brain function. Astrocytes, crucial players in the homeostasis of various ions in the brain, actively regulate their intracellular [H+] (pHi) through multiple membrane transporters and carbonic anhydrases. The activation of astroglial pHi regulating mechanisms also leads to corresponding alterations in the acid-base status of the extracellular fluid. Notably, astrocyte pH regulators are modulated by various neuronal signals, suggesting their pivotal role in regulating brain acid-base balance in both health and disease. This review presents the mechanisms involved in pH regulation in astrocytes and discusses their potential impact on extracellular pH under physiological conditions and in brain disorders. Targeting astrocytic pH regulatory mechanisms represents a promising therapeutic approach for modulating brain acid-base balance in diseases, offering a potential critical contribution to neuroprotection.
Collapse
Affiliation(s)
- Shefeeq M Theparambil
- Faculty of Health and Medicine, Department of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YW, Lancaster, UK.
| | - Gulnaz Begum
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
3
|
Jiang M, Salari A, Stock C, Nikolovska K, Boedtkjer E, Amiri M, Seidler UE. The electroneutral Na +-HCO 3- cotransporter NBCn1 (SLC4A7) modulates colonic enterocyte pH i, proliferation, and migration. Am J Physiol Cell Physiol 2024; 326:C1625-C1636. [PMID: 38646790 PMCID: PMC11371319 DOI: 10.1152/ajpcell.00079.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
NBCn1 (SLC4A7) is one of the two major Na+-HCO3- cotransporters in the human colonic epithelium, expressed predominantly in the highly proliferating colonocytes at the cryptal base. Increased NBCn1 expression levels are reported in tumors, including colorectal cancer. The study explores its importance for maintenance of the intracellular pH (pHi), as well as the proliferative, adhesive, and migratory behavior of the self-differentiating Caco2BBe colonic tumor cell line. In the self-differentiating Caco2BBe cells, NBCn1 mRNA was highly expressed from the proliferative stage until full differentiation. The downregulation of NBCn1 expression by RNA interference affected proliferation and differentiation and decreased intracellular pH (pHi) of the cells in correlation with the degree of knockdown. In addition, a disturbed cell adhesion and reduced migratory speed were associated with NBCn1 knockdown. Murine colonic Nbcn1-/- enteroids also displayed reduced proliferative activity. In the migrating Caco2BBe cells, NBCn1 was found at the leading edge and in colocalization with the focal adhesion markers vinculin and paxillin, which suggests that NBCn1 is involved in the establishment of cell-matrix adhesion. Our data highlight the physiological significance of NBCn1 in modulating epithelial pH homeostasis and cell-matrix interactions in the proliferative region of the colonic epithelium and unravel the molecular mechanism behind pathological overexpression of this transporter in human colorectal cancers.NEW & NOTEWORTHY The transporter NBCn1 plays a central role in maintaining homeostasis within Caco2BBe colonic epithelial cells through its regulation of intracellular pH, matrix adhesion, migration, and proliferation. These observations yield valuable insights into the molecular mechanism of the aberrant upregulation of this transporter in human colorectal cancers.
Collapse
Affiliation(s)
- Min Jiang
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Azam Salari
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Christian Stock
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Katerina Nikolovska
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mahdi Amiri
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ursula E Seidler
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Flint HJ, Louis P, Duncan SH. Why does increased microbial fermentation in the human colon shift toward butyrate? AIMS Microbiol 2024; 10:311-319. [PMID: 38919716 PMCID: PMC11194621 DOI: 10.3934/microbiol.2024016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 06/27/2024] Open
Abstract
The microbial community of the human large intestine mainly ferments dietary fiber to short chain fatty acids (SCFAs), which are efficiently absorbed by the host. The three major SCFAs (acetate, propionate, and butyrate) have different fates within the body and different effects on health. A recent analysis of 10 human volunteer studies established that the proportions of these SCFA in fecal samples significantly shifted towards butyrate as the overall concentration of SCFA increased. Butyrate plays a key role in gut health and is preferentially utilized as an energy source by the colonic epithelium. Here we discuss possible mechanisms that underlie this 'butyrate shift'; these include the selection for butyrate-producing bacteria within the microbiota by certain types of fiber, and the possibility of additional butyrate formation from lactate and acetate by metabolite cross-feeding. However, a crucial factor appears to be the pH in the proximal colon, which decreases as the SCFA concentrations increase. A mildly acidic pH has been shown to have an important impact on microbial competition and on the stoichiometry of butyrate production. Understanding these complex interactions has been greatly aided by the refinement of theoretical models of the colonic microbiota that assume a small number (10) of microbial functional groups (MFGs).
Collapse
Affiliation(s)
| | | | - Sylvia H. Duncan
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK AB25 2ZD
| |
Collapse
|
5
|
Becker HM, Seidler UE. Bicarbonate secretion and acid/base sensing by the intestine. Pflugers Arch 2024; 476:593-610. [PMID: 38374228 PMCID: PMC11006743 DOI: 10.1007/s00424-024-02914-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
The transport of bicarbonate across the enterocyte cell membrane regulates the intracellular as well as the luminal pH and is an essential part of directional fluid movement in the gut. Since the first description of "active" transport of HCO3- ions against a concentration gradient in the 1970s, the fundamental role of HCO3- transport for multiple intestinal functions has been recognized. The ion transport proteins have been identified and molecularly characterized, and knockout mouse models have given insight into their individual role in a variety of functions. This review describes the progress made in the last decade regarding novel techniques and new findings in the molecular regulation of intestinal HCO3- transport in the different segments of the gut. We discuss human diseases with defects in intestinal HCO3- secretion and potential treatment strategies to increase luminal alkalinity. In the last part of the review, the cellular and organismal mechanisms for acid/base sensing in the intestinal tract are highlighted.
Collapse
Affiliation(s)
- Holger M Becker
- Department of Gastroenterology, Hannover Medical School, 30625, Hannover, Germany
| | - Ursula E Seidler
- Department of Gastroenterology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
6
|
Everaerts K, Thapaliya P, Pape N, Durry S, Eitelmann S, Roussa E, Ullah G, Rose CR. Inward Operation of Sodium-Bicarbonate Cotransporter 1 Promotes Astrocytic Na + Loading and Loss of ATP in Mouse Neocortex during Brief Chemical Ischemia. Cells 2023; 12:2675. [PMID: 38067105 PMCID: PMC10705779 DOI: 10.3390/cells12232675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Ischemic conditions cause an increase in the sodium concentration of astrocytes, driving the breakdown of ionic homeostasis and exacerbating cellular damage. Astrocytes express high levels of the electrogenic sodium-bicarbonate cotransporter1 (NBCe1), which couples intracellular Na+ homeostasis to regulation of pH and operates close to its reversal potential under physiological conditions. Here, we analyzed its mode of operation during transient energy deprivation via imaging astrocytic pH, Na+, and ATP in organotypic slice cultures of the mouse neocortex, complemented with patch-clamp and ion-selective microelectrode recordings and computational modeling. We found that a 2 min period of metabolic failure resulted in a transient acidosis accompanied by a Na+ increase in astrocytes. Inhibition of NBCe1 increased the acidosis while decreasing the Na+ load. Similar results were obtained when comparing ion changes in wild-type and Nbce1-deficient mice. Mathematical modeling replicated these findings and further predicted that NBCe1 activation contributes to the loss of cellular ATP under ischemic conditions, a result confirmed experimentally using FRET-based imaging of ATP. Altogether, our data demonstrate that transient energy failure stimulates the inward operation of NBCe1 in astrocytes. This causes a significant amelioration of ischemia-induced astrocytic acidification, albeit at the expense of increased Na+ influx and a decline in cellular ATP.
Collapse
Affiliation(s)
- Katharina Everaerts
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.E.); (N.P.); (S.D.); (S.E.)
| | - Pawan Thapaliya
- Department of Physics, University of South Florida, Tampa, FL 33620, USA; (P.T.); (G.U.)
| | - Nils Pape
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.E.); (N.P.); (S.D.); (S.E.)
| | - Simone Durry
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.E.); (N.P.); (S.D.); (S.E.)
| | - Sara Eitelmann
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.E.); (N.P.); (S.D.); (S.E.)
| | - Eleni Roussa
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany;
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL 33620, USA; (P.T.); (G.U.)
| | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.E.); (N.P.); (S.D.); (S.E.)
| |
Collapse
|
7
|
Pethe A, Hamze M, Giannaki M, Heimrich B, Medina I, Hartmann AM, Roussa E. K +/Cl - cotransporter 2 (KCC2) and Na +/ HCO3- cotransporter 1 (NBCe1) interaction modulates profile of KCC2 phosphorylation. Front Cell Neurosci 2023; 17:1253424. [PMID: 37881493 PMCID: PMC10595033 DOI: 10.3389/fncel.2023.1253424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/07/2023] [Indexed: 10/27/2023] Open
Abstract
K+/Cl- cotransporter 2 (KCC2) is a major Cl- extruder in mature neurons and is responsible for the establishment of low intracellular [Cl-], necessary for fast hyperpolarizing GABAA-receptor mediated synaptic inhibition. Electrogenic sodium bicarbonate cotransporter 1 (NBCe1) is a pH regulatory protein expressed in neurons and glial cells. An interactome study identified NBCe1 as a possible interaction partner of KCC2. In this study, we investigated the putative effect of KCC2/NBCe1 interaction in baseline and the stimulus-induced phosphorylation pattern and function of KCC2. Primary mouse hippocampal neuronal cultures from wildtype (WT) and Nbce1-deficient mice, as well as HEK-293 cells stably transfected with KCC2WT, were used. The results show that KCC2 and NBCe1 are interaction partners in the mouse brain. In HEKKCC2 cells, pharmacological inhibition of NBCs with S0859 prevented staurosporine- and 4-aminopyridine (4AP)-induced KCC2 activation. In mature cultures of hippocampal neurons, however, S0859 completely inhibited postsynaptic GABAAR and, thus, could not be used as a tool to investigate the role of NBCs in GABA-dependent neuronal networks. In Nbce1-deficient immature hippocampal neurons, baseline phosphorylation of KCC2 at S940 was downregulated, compared to WT, and exposure to staurosporine failed to reduce pKCC2 S940 and T1007. In Nbce1-deficient mature neurons, baseline levels of pKCC2 S940 and T1007 were upregulated compared to WT, whereas after 4AP treatment, pKCC2 S940 was downregulated, and pKCC2 T1007 was further upregulated. Functional experiments showed that the levels of GABAAR reversal potential, baseline intracellular [Cl-], Cl- extrusion, and baseline intracellular pH were similar between WT and Nbce1-deficient neurons. Altogether, our data provide a primary description of the properties of KCC2/NBCe1 protein-protein interaction and implicate modulation of stimulus-mediated phosphorylation of KCC2 by NBCe1/KCC2 interaction-a mechanism with putative pathophysiological relevance.
Collapse
Affiliation(s)
- Abhishek Pethe
- Department of Molecular Embryology, Faculty of Medicine, Institute for Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Mira Hamze
- INMED, INSERM, Aix-Marseille University, Marseille, France
| | - Marina Giannaki
- Department of Molecular Embryology, Faculty of Medicine, Institute for Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Bernd Heimrich
- Department of Neuroanatomy, Faculty of Medicine, Institute for Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Igor Medina
- INMED, INSERM, Aix-Marseille University, Marseille, France
| | - Anna-Maria Hartmann
- Division of Neurogenetics, Faculty VI, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Faculty of Medicine, Institute for Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Lv Y, Wang W, Yao L, He J, Bai G, Lin C, Tu C. Sodium Fluoride and Sulfur Dioxide Derivatives Induce TGF-β1-Mediated NBCe1 Downregulation Causing Acid-Base Disorder of LS8 Cells. Biol Trace Elem Res 2023; 201:828-842. [PMID: 35304687 DOI: 10.1007/s12011-022-03169-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/16/2022] [Indexed: 01/25/2023]
Abstract
The aim of the present work was to assess whether the combination of sodium fluoride (NaF) and sulfur dioxide derivatives (SO2 derivatives) affects the expression of the electrogenic sodium bicarbonate cotransporter NBCe1 (SLC4A4), triggering an acid-base imbalance during enamel development, leading to enamel damage. LS8 cells was taken as the research objects and fluorescent probes, quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and factorial analysis were used to clarify the nature of the fluoro-sulfur interaction and the potential signaling pathway involved in the regulation of NBCe1. The results showed that exposure to fluoride or SO2 derivatives resulted in an acid-base imbalance, and these changes were accompanied by inhibited expression of NBCe1 and TGF-β1; these effects were more significant after fluoride exposure as compared to exposure to SO2 derivatives. Interestingly, in most cases, the toxic effects during combined exposure were significantly reduced compared to the effects observed with fluoride or sulfur dioxide derivatives alone. The results also indicated that activation of TGF-β1 signaling significantly upregulated the expression of NBCe1, and this effect was suppressed after the Smad, ERK, and JNK signals were blocked. Furthermore, fluoride and SO2 derivative-dependent NBCe1 regulation was found to require TGF-β1. In conclusion, this study indicates that the combined effect of fluorine and sulfur on LS8 cells is mainly antagonistic. TGF-β1 may regulate NBCe1 and may participate in the occurrence of dental fluorosis through the classic TGF-β1/Smad pathway and the unconventional ERK and JNK pathways.
Collapse
Affiliation(s)
- Ying Lv
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guizhou, China
| | - Wentai Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guizhou, China
| | - Lili Yao
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guizhou, China
| | - Jiaojiao He
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guizhou, China
| | - Guohui Bai
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Changhu Lin
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guizhou, China
| | - Chenglong Tu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guizhou, China.
- The Toxicity Testing Center of Guizhou Medical University, Guizhou Medical University, Guizhou, China.
| |
Collapse
|
9
|
López-Cayuqueo KI, Planells-Cases R, Pietzke M, Oliveras A, Kempa S, Bachmann S, Jentsch TJ. Renal Deletion of LRRC8/VRAC Channels Induces Proximal Tubulopathy. J Am Soc Nephrol 2022; 33:1528-1545. [PMID: 35777784 PMCID: PMC9342636 DOI: 10.1681/asn.2021111458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/13/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Volume-regulated anion channels (VRACs) are heterohexamers of LRRC8A with LRRC8B, -C, -D, or -E in various combinations. Depending on the subunit composition, these swelling-activated channels conduct chloride, amino acids, organic osmolytes, and drugs. Despite VRACs' role in cell volume regulation, and large osmolarity changes in the kidney, neither the localization nor the function of VRACs in the kidney is known. METHODS Mice expressing epitope-tagged LRRC8 subunits were used to determine the renal localization of all VRAC subunits. Mice carrying constitutive deletions of Lrrc8b-e, or with inducible or cell-specific ablation of Lrrc8a, were analyzed to assess renal functions of VRACs. Analysis included histology, urine and serum parameters in different diuresis states, and metabolomics. RESULTS The kidney expresses all five VRAC subunits with strikingly distinct localization. Whereas LRRC8C is exclusively found in vascular endothelium, all other subunits are found in the nephron. LRRC8E is specific for intercalated cells, whereas LRRC8A, LRRC8B, and LRRC8D are prominent in basolateral membranes of proximal tubules. Conditional deletion of LRRC8A in proximal but not distal tubules and constitutive deletion of LRRC8D cause proximal tubular injury, increased diuresis, and mild Fanconi-like symptoms. CONCLUSIONS VRAC/LRRC8 channels are crucial for the function and integrity of proximal tubules, but not for more distal nephron segments despite their larger need for volume regulation. LRRC8A/D channels may be required for the basolateral exit of many organic compounds, including cellular metabolites, in proximal tubules. Proximal tubular injury likely results from combined accumulation of several transported molecules in the absence of VRAC channels.
Collapse
Affiliation(s)
- Karen I. López-Cayuqueo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Rosa Planells-Cases
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Matthias Pietzke
- Integrative Metabolomics and Proteomics, Berlin Institute of Medical Systems Biology/Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Anna Oliveras
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Stefan Kempa
- Integrative Metabolomics and Proteomics, Berlin Institute of Medical Systems Biology/Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Sebastian Bachmann
- Department of Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany,NeuroCure Centre of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Gourine AV, Dale N. Brain H + /CO 2 sensing and control by glial cells. Glia 2022; 70:1520-1535. [PMID: 35102601 DOI: 10.1002/glia.24152] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 01/04/2023]
Abstract
Maintenance of constant brain pH is critically important to support the activity of individual neurons, effective communication within the neuronal circuits, and, thus, efficient processing of information by the brain. This review article focuses on how glial cells detect and respond to changes in brain tissue pH and concentration of CO2 , and then trigger systemic and local adaptive mechanisms that ensure a stable milieu for the operation of brain circuits. We give a detailed account of the cellular and molecular mechanisms underlying sensitivity of glial cells to H+ and CO2 and discuss the role of glial chemosensitivity and signaling in operation of three key mechanisms that work in concert to keep the brain pH constant. We discuss evidence suggesting that astrocytes and marginal glial cells of the brainstem are critically important for central respiratory CO2 chemoreception-a fundamental physiological mechanism that regulates breathing in accord with changes in blood and brain pH and partial pressure of CO2 in order to maintain systemic pH homeostasis. We review evidence suggesting that astrocytes are also responsible for the maintenance of local brain tissue extracellular pH in conditions of variable acid loads associated with changes in the neuronal activity and metabolism, and discuss potential role of these glial cells in mediating the effects of CO2 on cerebral vasculature.
Collapse
Affiliation(s)
- Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
11
|
Saint-Criq V, Guequén A, Philp AR, Villanueva S, Apablaza T, Fernández-Moncada I, Mansilla A, Delpiano L, Ruminot I, Carrasco C, Gray MA, Flores CA. Inhibition of the sodium-dependent HCO 3- transporter SLC4A4, produces a cystic fibrosis-like airway disease phenotype. eLife 2022; 11:e75871. [PMID: 35635440 PMCID: PMC9173743 DOI: 10.7554/elife.75871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
Bicarbonate secretion is a fundamental process involved in maintaining acid-base homeostasis. Disruption of bicarbonate entry into airway lumen, as has been observed in cystic fibrosis, produces several defects in lung function due to thick mucus accumulation. Bicarbonate is critical for correct mucin deployment and there is increasing interest in understanding its role in airway physiology, particularly in the initiation of lung disease in children affected by cystic fibrosis, in the absence of detectable bacterial infection. The current model of anion secretion in mammalian airways consists of CFTR and TMEM16A as apical anion exit channels, with limited capacity for bicarbonate transport compared to chloride. However, both channels can couple to SLC26A4 anion exchanger to maximise bicarbonate secretion. Nevertheless, current models lack any details about the identity of the basolateral protein(s) responsible for bicarbonate uptake into airway epithelial cells. We report herein that the electrogenic, sodium-dependent, bicarbonate cotransporter, SLC4A4, is expressed in the basolateral membrane of human and mouse airways, and that it's pharmacological inhibition or genetic silencing reduces bicarbonate secretion. In fully differentiated primary human airway cells cultures, SLC4A4 inhibition induced an acidification of the airways surface liquid and markedly reduced the capacity of cells to recover from an acid load. Studies in the Slc4a4-null mice revealed a previously unreported lung phenotype, characterized by mucus accumulation and reduced mucociliary clearance. Collectively, our results demonstrate that the reduction of SLC4A4 function induced a CF-like phenotype, even when chloride secretion remained intact, highlighting the important role SLC4A4 plays in bicarbonate secretion and mammalian airway function.
Collapse
Affiliation(s)
- Vinciane Saint-Criq
- Biosciences Institute, The Medical School, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Anita Guequén
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | - Amber R Philp
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | | | - Tábata Apablaza
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | | | - Agustín Mansilla
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | - Livia Delpiano
- Biosciences Institute, The Medical School, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Iván Ruminot
- Centro de Estudios CientíficosValdiviaChile
- Universidad San SebastiánValdiviaChile
| | - Cristian Carrasco
- Subdepartamento de Anatomía Patológica, Hospital Base de ValdiviaValdiviaChile
| | - Michael A Gray
- Biosciences Institute, The Medical School, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Carlos A Flores
- Centro de Estudios CientíficosValdiviaChile
- Universidad San SebastiánValdiviaChile
| |
Collapse
|
12
|
Kantaputra P, Guven Y, Aksu B, Kalayci T, Doğan C, Intachai W, Olsen B, Tongsima S, Ngamphiw C, Noppakun K. Distal renal tubular acidosis, autoimmune thyroiditis, enamel hypomaturation, and tooth agenesis caused by homozygosity of a novel double-nucleotide substitution in SLC4A4. J Am Dent Assoc 2022; 153:668-676. [DOI: 10.1016/j.adaj.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023]
|
13
|
Carroll CP, Bolland H, Vancauwenberghe E, Collier P, Ritchie AA, Clarke PA, Grabowska AM, Harris AL, McIntyre A. Targeting hypoxia regulated sodium driven bicarbonate transporters reduces triple negative breast cancer metastasis. Neoplasia 2022; 25:41-52. [PMID: 35150959 PMCID: PMC8844412 DOI: 10.1016/j.neo.2022.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/25/2022]
Abstract
Regions of low oxygen (hypoxia) are found in >50% of breast tumours, most frequently in the more aggressive triple negative breast cancer subtype (TNBC). Metastasis is the cause of 90% of breast cancer patient deaths. Regions of tumour hypoxia tend to be more acidic and both hypoxia and acidosis increase tumour metastasis. In line with this the metastatic process is dependent on pH regulatory mechanisms. We and others have previously identified increased hypoxic expression of Na+ driven bicarbonate transporters (NDBTs) as a major mechanism of tumour pH regulation. Hypoxia induced the expression of NDBTs in TNBC, most frequently SLC4A4 and SLC4A5. NDBT inhibition (S0859) and shRNA knockdown suppressed migration (40% reduction) and invasion (70% reduction) in vitro. Tumour xenograft metastasis in vivo was significantly reduced by NDBT knockdown. To investigate the mechanism by which NDBTs support metastasis, we investigated their role in regulation of phospho-signalling, epithelial-to-mesenchymal transition (EMT) and metabolism. NDBT knockdown resulted in an attenuation in hypoxic phospho-signalling activation; most notably LYN (Y397) reduced by 75%, and LCK (Y394) by 72%. The metastatic process is associated with EMT. We showed that NDBT knockdown inhibited EMT, modulating the expression of key EMT transcription factors and ablating the expression of vimentin whilst increasing the expression of E-cadherin. NDBT knockdown also altered metabolic activity reducing overall ATP and extracellular lactate levels. These results demonstrate that targeting hypoxia-induced NDBT can be used as an approach to modulate phospho-signalling, EMT, and metabolic activity and reduce tumour migration, invasion, and metastasis in vivo.
Collapse
Affiliation(s)
- Christopher Paul Carroll
- Hypoxia and Acidosis Group, Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham
| | - Hannah Bolland
- Hypoxia and Acidosis Group, Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham
| | - Eric Vancauwenberghe
- Hypoxia and Acidosis Group, Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham
| | - Pamela Collier
- Ex Vivo Cancer Pharmacology Centre, Biodiscovery Institute, University of Nottingham
| | - Alison A Ritchie
- Ex Vivo Cancer Pharmacology Centre, Biodiscovery Institute, University of Nottingham
| | - Philip A Clarke
- Ex Vivo Cancer Pharmacology Centre, Biodiscovery Institute, University of Nottingham
| | - Anna M Grabowska
- Ex Vivo Cancer Pharmacology Centre, Biodiscovery Institute, University of Nottingham
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Alan McIntyre
- Hypoxia and Acidosis Group, Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham.
| |
Collapse
|
14
|
Lee HW, Verlander JW, Shull GE, Harris AN, Weiner ID. Acid-base effects of combined renal deletion of NBCe1-A and NBCe1-B. Am J Physiol Renal Physiol 2022; 322:F208-F224. [PMID: 35001662 PMCID: PMC8836747 DOI: 10.1152/ajprenal.00358.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/03/2023] Open
Abstract
The molecular mechanisms regulating ammonia metabolism are fundamental to acid-base homeostasis. Deletion of the A splice variant of Na+-bicarbonate cotransporter, electrogenic, isoform 1 (NBCe1-A) partially blocks the effect of acidosis to increase urinary ammonia excretion, and this appears to involve the dysregulated expression of ammoniagenic enzymes in the proximal tubule (PT) in the cortex but not in the outer medulla (OM). A second NBCe1 splice variant, NBCe1-B, is present throughout the PT, including the OM, where NBCe1-A is not present. The purpose of the present study was to determine the effect of combined renal deletion of NBCe1-A and NBCe1-B on systemic and PT ammonia metabolism. We generated NBCe1-A/B deletion using Cre-loxP techniques and used Cre-negative mice as controls. As renal NBCe1-A and NBCe1-B expression is limited to the PT, Cre-positive mice had PT NBCe1-A/B deletion [PT-NBCe1-A/B knockout (KO)]. Although on a basal diet, PT-NBCe1-A/B KO mice had severe metabolic acidosis, yet urinary ammonia excretion was not changed significantly. PT-NBCe1-A/B KO decreased the expression of phosphate-dependent glutaminase and phosphoenolpyruvate carboxykinase and increased the expression of glutamine synthetase, an ammonia-recycling enzyme, in PTs in both the cortex and OM. Exogenous acid loading increased ammonia excretion in control mice, but PT-NBCe1-A/B KO prevented any increase. PT-NBCe1-A/B KO significantly blunted acid loading-induced changes in phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and glutamine synthetase expression in PTs in both the cortex and OM. We conclude that NBCe1-B, at least in the presence of NBCe1-A deletion, contributes to PT ammonia metabolism in the OM and thereby to systemic acid-base regulation.NEW & NOTEWORTHY The results of the present study show that combined deletion of both A and B splice variants of electrogenic Na+-bicarbonate cotransporter 1 from the proximal tubule impairs acid-base homeostasis and completely blocks changes in ammonia excretion in response to acidosis, indicating that both proteins are critical to acid-base homeostasis.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Autumn N Harris
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
- Deparment of Small Animal Clinical Science, University of Florida College of Veterinary Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
- Nephrology and Hypertension Section, Gainesville Veterans Administration Medical Center, Gainesville, Florida
| |
Collapse
|
15
|
Yamazaki O, Yamashita M, Li J, Ochiai-Homma F, Yoshida T, Hirahashi J, Furukawa T, Kozuma K, Fujigaki Y, Seki G, Hayashi M, Shibata S. A novel I551F variant of the Na +/HCO 3- cotransporter NBCe1-A shows reduced cell surface expression, resulting in diminished transport activity. Am J Physiol Renal Physiol 2021; 321:F771-F784. [PMID: 34719949 DOI: 10.1152/ajprenal.00584.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Homozygous mutations in SLC4A4, which encodes the electrogenic Na+/[Formula: see text] cotransporter (NBCe1), cause proximal renal tubular acidosis associated with extrarenal symptoms. Although 17` mutated sites in SLC4A4 have thus far been identified among patients with proximal renal tubular acidosis, the physiological significance of other nonsynonymous single-nucleotide variants (SNVs) remains largely undetermined. Here, we investigated the functional properties of SNVs in NBCe1. From the National Center for Biotechnology Information dbSNP database, we identified 13 SNVs that have not previously been characterized in the highly conserved, transmembrane domains of NBCe1-A. Immunocytochemical analysis revealed that the I551F variant was present predominantly in the cytoplasm in human embryonic kidney (HEK)-293 cells, whereas all other SNVs did not show as dramatic a change in subcellular distribution. Western blot analysis in HEK-293 cells demonstrated that the I551F variant showed impaired glycosylation and a 69% reduction in cell surface levels. To determine the role of I551 in more detail, we examined the significance of various artificial mutants in both nonpolarized HEK-293 cells and polarized Madin-Darby canine kidney cells, which indicated that only I551F substitution resulted in cytoplasmic retention. Moreover, functional analysis using Xenopus oocytes demonstrated that the I551F variant had a significantly reduced activity corresponding to 39% of that of the wild-type, whereas any other SNVs and artificial I551 mutants did not show significant changes in activity. Finally, immunofluorescence experiments in HEK-293 cells indicated that the I551F variant retained wild-type NBCe1-A in the cytoplasm. These data demonstrate that the I551F variant of NBCe1-A shows impaired transport activity predominantly through cytoplasmic retention and suggest that the variant can have a dominant negative effect by forming complexes with wild-type NBCe1-A.NEW & NOTEWORTHY Electrogenic Na+/[Formula: see text] cotransporter 1-A (NBCe1-A) in the proximal tubule regulates the acid/base balance and fluid volume homeostasis. From the National Center for Biotechnology Information dbSNP database, we identified the I551F variant of NBCe1-A, which showed reduced glycosylation, cell surface expression, and transport activity. We also found that the I551F variant can exert a dominant negative effect on wild-type NBCe1-A, suggesting its physiological significance.
Collapse
Affiliation(s)
- Osamu Yamazaki
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan.,Department of General Medicine, Keio University School of Medicine, Tokyo, Japan.,Apheresis and Dialysis Center, Keio University School of Medicine, Tokyo, Japan
| | - Maho Yamashita
- Apheresis and Dialysis Center, Keio University School of Medicine, Tokyo, Japan
| | - Jinping Li
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Fumika Ochiai-Homma
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Tadashi Yoshida
- Department of General Medicine, Keio University School of Medicine, Tokyo, Japan.,Apheresis and Dialysis Center, Keio University School of Medicine, Tokyo, Japan
| | - Junichi Hirahashi
- Department of General Medicine, Keio University School of Medicine, Tokyo, Japan.,Apheresis and Dialysis Center, Keio University School of Medicine, Tokyo, Japan
| | - Taiji Furukawa
- Department of Laboratory Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Ken Kozuma
- Division of Cardiology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshihide Fujigaki
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | | | - Matsuhiko Hayashi
- Department of General Medicine, Keio University School of Medicine, Tokyo, Japan.,Apheresis and Dialysis Center, Keio University School of Medicine, Tokyo, Japan.,Kawakita General Hospital, Center for Clinical Education, Tokyo, Japan
| | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Giannaki M, Ludwig C, Heermann S, Roussa E. Regulation of electrogenic Na + /HCO 3 - cotransporter 1 (NBCe1) function and its dependence on m-TOR mediated phosphorylation of Ser 245. J Cell Physiol 2021; 237:1372-1388. [PMID: 34642952 DOI: 10.1002/jcp.30601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 11/09/2022]
Abstract
Astrocytes are pivotal responders to alterations of extracellular pH, primarily by regulation of their principal acid-base transporter, the membrane-bound electrogenic Na+ /bicarbonate cotransporter 1 (NBCe1). Here, we describe amammalian target of rapamycin (mTOR)-dependent and NBCe1-mediated astroglial response to extracellular acidosis. Using primary mouse cortical astrocytes, we investigated the effect of long-term extracellular metabolic acidosis on regulation of NBCe1 and elucidated the underlying molecular mechanisms by immunoblotting, biotinylation of surface proteins, intracellular H+ recording using the H+ -sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein, and phosphoproteomic analysis. The results showed significant increase of NBCe1-mediated recovery of intracellular pH from acidification in WT astrocytes, but not in cortical astrocytes from NBCe1-deficient mice. Acidosis-induced upregulation of NBCe1 activity was prevented following inhibition of mTOR signaling by rapamycin. Yet, during acidosis or following exposure of astrocytes to rapamycin, surface protein abundance of NBCe1 remained -unchanged. Mutational analysis in HeLa cells suggested that NBCe1 activity was dependent on phosphorylation state of Ser245 , a residue conserved in all NBCe1 variants. Moreover, phosphorylation state of Ser245 is regulated by mTOR and is inversely correlated with NBCe1 transport activity. Our results identify pSer245 as a novel regulator of NBCe1 functional expression. We propose that context-dependent and mTOR-mediated multisite phosphorylation of serine residues of NBCe1 is likely to be a potent mechanism contributing to the response of astrocytes to acid/base challenges during pathophysiological conditions.
Collapse
Affiliation(s)
- Marina Giannaki
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Stephan Heermann
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Du L, Zahra A, Jia M, Wang Q, Wu J. Understanding the Functional Expression of Na+-Coupled SLC4 Transporters in the Renal and Nervous Systems: A Review. Brain Sci 2021; 11:1276. [PMID: 34679341 PMCID: PMC8534249 DOI: 10.3390/brainsci11101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
Acid-base homeostasis is crucial for numerous physiological processes. Na+/HCO3- cotransporters (NBCs) belong to the solute carrier 4 (SLC4) family, which regulates intracellular pH as well as HCO3- absorption and secretion. However, knowledge of the structural functions of these proteins remains limited. Electrogenic NBC (NBCe-1) is thought to be the primary factor promoting the precise acid-base equilibrium in distinct cell types for filtration and reabsorption, as well as the function of neurons and glia. NBC dysregulation is strongly linked to several diseases. As such, the need for special drugs that interfere with the transmission function of NBC is becoming increasingly urgent. In this review, we focus on the structural and functional characteristics of NBCe1, and discuss the roles of NBCe1 in the kidney, central nervous system (CNS), and related disorders, we also summarize the research on NBC inhibitors. NBCe1 and the related pathways should be further investigated, so that new medications may be developed to address the related conditions.
Collapse
Affiliation(s)
- Le Du
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (L.D.); (A.Z.)
| | - Aqeela Zahra
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (L.D.); (A.Z.)
| | - Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (M.J.); (Q.W.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Disease, Beijing 100070, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (M.J.); (Q.W.)
- National Clinical Research Center for Neurological Disease, Beijing 100070, China
| | - Jianping Wu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (L.D.); (A.Z.)
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (M.J.); (Q.W.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Disease, Beijing 100070, China
- Health Science Center, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
18
|
Brown MR, Holmes H, Rakshit K, Javeed N, Her TK, Stiller AA, Sen S, Shull GE, Prakash YS, Romero MF, Matveyenko AV. Electrogenic sodium bicarbonate cotransporter NBCe1 regulates pancreatic β cell function in type 2 diabetes. J Clin Invest 2021; 131:142365. [PMID: 34623331 DOI: 10.1172/jci142365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic β cell failure in type 2 diabetes mellitus (T2DM) is attributed to perturbations of the β cell's transcriptional landscape resulting in impaired glucose-stimulated insulin secretion. Recent studies identified SLC4A4 (a gene encoding an electrogenic Na+-coupled HCO3- cotransporter and intracellular pH regulator, NBCe1) as one of the misexpressed genes in β cells of patients with T2DM. Thus, in the current study, we set out to test the hypothesis that misexpression of SLC4A4/NBCe1 in T2DM β cells contributes to β cell dysfunction and impaired glucose homeostasis. To address this hypothesis, we first confirmed induction of SLC4A4/NBCe1 expression in β cells of patients with T2DM and demonstrated that its expression was associated with loss of β cell transcriptional identity, intracellular alkalinization, and β cell dysfunction. In addition, we generated a β cell-selective Slc4a4/NBCe1-KO mouse model and found that these mice were protected from diet-induced metabolic stress and β cell dysfunction. Importantly, improved glucose tolerance and enhanced β cell function in Slc4a4/NBCe1-deficient mice were due to augmented mitochondrial function and increased expression of genes regulating β cell identity and function. These results suggest that increased β cell expression of SLC4A4/NBCe1 in T2DM plays a contributory role in promotion of β cell failure and should be considered as a potential therapeutic target.
Collapse
Affiliation(s)
- Matthew R Brown
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Heather Holmes
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Kuntol Rakshit
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Naureen Javeed
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Tracy K Her
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Alison A Stiller
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Satish Sen
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Y S Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA.,Department of Anesthesiology
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA.,Division of Nephrology and Hypertension and
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA.,Division of Endocrinology, Metabolism, Diabetes, and Nutrition, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
19
|
Zhao W, Zhang L, Ermilov LG, Colmenares Aguilar MG, Linden DR, Eisenman ST, Romero MF, Farrugia G, Sha L, Gibbons SJ. Bicarbonate ion transport by the electrogenic Na + /HCO 3- cotransporter, NBCe1, is required for normal electrical slow-wave activity in mouse small intestine. Neurogastroenterol Motil 2021; 33:e14149. [PMID: 33837991 PMCID: PMC8485339 DOI: 10.1111/nmo.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/26/2021] [Accepted: 03/21/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Normal gastrointestinal motility depends on electrical slow-wave activity generated by interstitial cells of Cajal (ICC) in the tunica muscularis of the gastrointestinal tract. A requirement for HCO3- in extracellular solutions used to record slow waves indicates a role for HCO3- transport in ICC pacemaking. The Slc4a4 gene transcript encoding the electrogenic Na+ /HCO3- cotransporter, NBCe1, is enriched in mouse small intestinal myenteric region ICC (ICC-MY) that generate slow waves. This study aimed to determine how extracellular HCO3- concentrations affect electrical activity in mouse small intestine and to determine the contribution of NBCe1 activity to these effects. METHODS Immunohistochemistry and sharp electrode electrical recordings were used. KEY RESULTS The NBCe1 immunoreactivity was localized to ICC-MY of the tunica muscularis. In sharp electrode electrical recordings, removal of HCO3- from extracellular solutions caused significant, reversible, depolarization of the smooth muscle and a reduction in slow-wave amplitude and frequency. In 100 mM HCO3- , the muscle hyperpolarized and slow wave amplitude and frequency increased. The effects of replacing extracellular Na+ with Li+ , an ion that does not support NBCe1 activity, were similar to, but larger than, the effects of removing HCO3- . There were no additional changes to electrical activity when HCO3- was removed from Li+ containing solutions. The Na+ /HCO3- cotransport inhibitor, S-0859 (30µM) significantly reduced the effect of removing HCO3- on electrical activity. CONCLUSIONS & INFERENCES These studies demonstrate a major role for Na+ /HCO3- cotransport by NBCe1 in electrical activity of mouse small intestine and indicated that regulation of intracellular acid:base homeostasis contributes to generation of normal pacemaker activity in the gastrointestinal tract.
Collapse
Affiliation(s)
- Wenchang Zhao
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Rochester, Minnesota, USA.,Physiology and Biomedical Engineering, Rochester, Minnesota, USA.,Neuroendocrine Pharmacology, China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Liwen Zhang
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Rochester, Minnesota, USA.,Physiology and Biomedical Engineering, Rochester, Minnesota, USA.,Neuroendocrine Pharmacology, China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Leonid G. Ermilov
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Rochester, Minnesota, USA.,Physiology and Biomedical Engineering, Rochester, Minnesota, USA
| | - Maria Gabriela Colmenares Aguilar
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Rochester, Minnesota, USA.,Physiology and Biomedical Engineering, Rochester, Minnesota, USA
| | - David R. Linden
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Rochester, Minnesota, USA.,Physiology and Biomedical Engineering, Rochester, Minnesota, USA
| | - Seth T. Eisenman
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Rochester, Minnesota, USA.,Physiology and Biomedical Engineering, Rochester, Minnesota, USA
| | - Michael F. Romero
- Physiology and Biomedical Engineering, Rochester, Minnesota, USA.,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Gianrico Farrugia
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Rochester, Minnesota, USA.,Physiology and Biomedical Engineering, Rochester, Minnesota, USA
| | - Lei Sha
- Neuroendocrine Pharmacology, China Medical University, Shenyang, Liaoning Province, P. R. China.,Corresponding Authors: Simon J Gibbons, Ph.D., Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA. . Telephone: +1 507 284 9652, Lei Sha, M.D., China Medical University, 77 Pu He Road, Shenbei New District, Shenyang, Liaoning Province, P. R. China, 110122, , . Telephone: +86 18900911003
| | - Simon J. Gibbons
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Rochester, Minnesota, USA.,Physiology and Biomedical Engineering, Rochester, Minnesota, USA.,Corresponding Authors: Simon J Gibbons, Ph.D., Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA. . Telephone: +1 507 284 9652, Lei Sha, M.D., China Medical University, 77 Pu He Road, Shenbei New District, Shenyang, Liaoning Province, P. R. China, 110122, , . Telephone: +86 18900911003
| |
Collapse
|
20
|
Silva PHI, Wiegand A, Daryadel A, Russo G, Ritter A, Gaspert A, Wüthrich RP, Wagner CA, Mohebbi N. Acidosis and alkali therapy in patients with kidney transplant is associated with transcriptional changes and altered abundance of genes involved in cell metabolism and acid-base balance. Nephrol Dial Transplant 2021; 36:1806-1820. [PMID: 34240183 DOI: 10.1093/ndt/gfab210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Metabolic acidosis occurs frequently in patients with kidney transplant and is associated with higher risk for and accelerated loss of graft function. To date, it is not known whether alkali therapy in these patients improves kidney function and whether acidosis and its therapy is associated with altered expression of proteins involved in renal acid-base metabolism. METHODS We collected retrospectively kidney biopsies from 22 patients. Of these patients, 9 had no acidosis, 9 had metabolic acidosis (plasma HCO3- < 22 mmol/l), and 4 had acidosis and received alkali therapy. We performed transcriptome analysis and immunohistochemistry for proteins involved in renal acid-base handling. RESULTS We found the expression of 40 transcripts significantly changed between kidneys from non-acidotic and acidotic patients. These genes are mostly involved in proximal tubule amino acid and lipid metabolism and energy homeostasis. Three transcripts were fully recovered by alkali therapy: the Kir4.2 K+-channel, an important regulator of proximal tubule HCO3--metabolism and transport, ACADSB and SHMT1, genes involved in beta-oxidation and methionine metabolism. Immunohistochemistry showed reduced staining for the proximal tubule NBCe1 HCO3- transporter in kidneys from acidotic patients that recovered with alkali therapy. In addition, the HCO3-exchanger pendrin was affected by acidosis and alkali therapy. CONCLUSIONS Metabolic acidosis in kidney transplant recipients is associated with alterations in the renal transcriptome that are partly restored by alkali therapy. Acid-base transport proteins mostly from proximal tubule were also affected by acidosis and alkali therapy suggesting that the downregulation of critical players contributes to metabolic acidosis in these patients.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Switzerland
| | - Anna Wiegand
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Arezoo Daryadel
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Switzerland
| | - Giancarlo Russo
- Functional Genomics Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Alexander Ritter
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Ariana Gaspert
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Rudolf P Wüthrich
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Switzerland
| | - Nilufar Mohebbi
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Schoels M, Zhuang M, Fahrner A, Küchlin S, Sagar, Franz H, Schmitt A, Walz G, Yakulov TA. Single-cell mRNA profiling reveals changes in solute carrier expression and suggests a metabolic switch during zebrafish pronephros development. Am J Physiol Renal Physiol 2021; 320:F826-F837. [PMID: 33749326 DOI: 10.1152/ajprenal.00610.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Developing organisms need to adapt to environmental variations as well as to rapid changes in substrate availability and energy demands imposed by fast-growing tissues and organs. Little is known about the adjustments that kidneys undergo in response to these challenges. We performed single-cell RNA sequencing of zebrafish pronephric duct cells to understand how the developing kidney responds to changes in filtered substrates and intrinsic energy requirements. We found high levels of glucose transporters early in development and increased expression of monocarboxylate transporters at later times. This indicates that the zebrafish embryonic kidney displays a high glucose transporting capacity during early development, which is replaced by the ability to absorb monocarboxylates and amino acids at later stages. This change in transport capacity was accompanied by the upregulation of mitochondrial carriers, indicating a switch to increased oxidative phosphorylation to meet the increasing energy demand of a developing kidney.NEW & NOTEWORTHY The zebrafish embryonic kidney has high levels of glucose transporters during early development, which are replaced by monocarboxylate and amino acid transporters later on. Inhibition of Na+-glucose cotransporter-dependent glucose transport by sotagliflozin also increased slc2a1a expression, supporting the idea that the glucose transport capacity is dynamically adjusted during zebrafish pronephros development. Concurrent upregulation of mitochondrial SCL25 transporters at later stages supports the idea that the pronephros adjusts to changing substrate supplies and/or energy demands during embryonic development.
Collapse
Affiliation(s)
- Maximilian Schoels
- Renal Division, Department of Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Mingyue Zhuang
- Renal Division, Department of Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Andreas Fahrner
- Renal Division, Department of Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Sebastian Küchlin
- Renal Division, Department of Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.,Department of Ophthamology, Faculty of Medicine, University Freiburg Medical Center, University of Freiburg, Freiburg, Germany
| | - Sagar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Henriette Franz
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Annette Schmitt
- Renal Division, Department of Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Toma A Yakulov
- Renal Division, Department of Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
22
|
Colmenares Aguilar MG, Mazzone A, Eisenman ST, Strege PR, Bernard CE, Holmes HL, Romero MF, Farrugia G, Gibbons SJ. Expression of the regulated isoform of the electrogenic Na +/HCO 3- cotransporter, NBCe1, is enriched in pacemaker interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 2021; 320:G93-G107. [PMID: 33112159 PMCID: PMC8112189 DOI: 10.1152/ajpgi.00255.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interstitial cells of Cajal (ICCs) generate electrical slow waves, which are required for normal gastrointestinal motility. The mechanisms for generation of normal pacemaking are not fully understood. Normal gastrointestinal contractility- and electrical slow-wave activity depend on the presence of extracellular HCO3-. Previous transcriptional analysis identified enrichment of mRNA encoding the electrogenic Na+/HCO3- cotransporter (NBCe1) gene (Slc4a4) in pacemaker myenteric ICCs in mouse small intestine. We aimed to determine the distribution of NBCe1 protein in ICCs of the mouse gastrointestinal tract and to identify the transcripts of the Slc4a4 gene in mouse and human small intestinal tunica muscularis. We determined the distribution of NBCe1 immunoreactivity (NBCe1-IR) by immunofluorescent labeling in mouse and human tissues. In mice, NBCe1-IR was restricted to Kit-positive myenteric ICCs of the stomach and small intestine and submuscular ICCs of the large intestine, that is, the slow wave generating subset of ICCs. Other subtypes of ICCs were NBCe1-negative. Quantitative real-time PCR identified >500-fold enrichment of Slc4a4-207 and Slc4a4-208 transcripts ["IP3-receptor-binding protein released by IP3" (IRBIT)-regulated isoforms] in Kit-expressing cells isolated from KitcreERT2/+, Rpl22tm1.1Psam/Sj mice and from single GFP-positive ICCs from Kittm1Rosay mice. Human jejunal tunica muscularis ICCs were also NBCe1-positive, and SLC4A4-201 and SLC4A4-204 RNAs were >300-fold enriched relative to SLC4A4-202. In summary, NBCe1 protein expressed in ICCs with electrical pacemaker function is encoded by Slc4a4 gene transcripts that generate IRBIT-regulated isoforms of NBCe1. In conclusion, Na+/HCO3- cotransport through NBCe1 contributes to the generation of pacemaker activity in subsets of ICCs.NEW & NOTEWORTHY In this study, we show that the electrogenic Na+/HCO3- cotransporter, NBCe1/Slc4a4, is expressed in subtypes of interstitial cells of Cajal (ICCs) responsible for electrical slow wave generation throughout the mouse gastrointestinal tract and is absent in other types of ICCs. The transcripts of Slc4a4 expressed in mouse ICCs and human gastrointestinal smooth muscle are the regulated isoforms. This indicates a key role for HCO3- transport in generation of gastrointestinal motility patterns.
Collapse
Affiliation(s)
| | - Amelia Mazzone
- 1Enteric NeuroScience Program, Division of
Gastroenterology and Hepatology, Mayo Clinic,
Rochester, Minnesota
| | - Seth T. Eisenman
- 1Enteric NeuroScience Program, Division of
Gastroenterology and Hepatology, Mayo Clinic,
Rochester, Minnesota
| | - Peter R. Strege
- 1Enteric NeuroScience Program, Division of
Gastroenterology and Hepatology, Mayo Clinic,
Rochester, Minnesota
| | - Cheryl E. Bernard
- 1Enteric NeuroScience Program, Division of
Gastroenterology and Hepatology, Mayo Clinic,
Rochester, Minnesota
| | - Heather L. Holmes
- 2Physiology and Biomedical Engineering, Nephrology and
Hypertension, Mayo Clinic College of Medicine and
Science, Rochester, Minnesota
| | - Michael F. Romero
- 2Physiology and Biomedical Engineering, Nephrology and
Hypertension, Mayo Clinic College of Medicine and
Science, Rochester, Minnesota
| | - Gianrico Farrugia
- 1Enteric NeuroScience Program, Division of
Gastroenterology and Hepatology, Mayo Clinic,
Rochester, Minnesota,3Department of Physiology and Biomedical Engineering,
Mayo Clinic, Rochester, Minnesota
| | - Simon J. Gibbons
- 1Enteric NeuroScience Program, Division of
Gastroenterology and Hepatology, Mayo Clinic,
Rochester, Minnesota
| |
Collapse
|
23
|
Theparambil SM, Hosford PS, Ruminot I, Kopach O, Reynolds JR, Sandoval PY, Rusakov DA, Barros LF, Gourine AV. Astrocytes regulate brain extracellular pH via a neuronal activity-dependent bicarbonate shuttle. Nat Commun 2020; 11:5073. [PMID: 33033238 PMCID: PMC7545092 DOI: 10.1038/s41467-020-18756-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
Brain cells continuously produce and release protons into the extracellular space, with the rate of acid production corresponding to the levels of neuronal activity and metabolism. Efficient buffering and removal of excess H+ is essential for brain function, not least because all the electrogenic and biochemical machinery of synaptic transmission is highly sensitive to changes in pH. Here, we describe an astroglial mechanism that contributes to the protection of the brain milieu from acidification. In vivo and in vitro experiments conducted in rodent models show that at least one third of all astrocytes release bicarbonate to buffer extracellular H+ loads associated with increases in neuronal activity. The underlying signalling mechanism involves activity-dependent release of ATP triggering bicarbonate secretion by astrocytes via activation of metabotropic P2Y1 receptors, recruitment of phospholipase C, release of Ca2+ from the internal stores, and facilitated outward HCO3- transport by the electrogenic sodium bicarbonate cotransporter 1, NBCe1. These results show that astrocytes maintain local brain extracellular pH homeostasis via a neuronal activity-dependent release of bicarbonate. The data provide evidence of another important metabolic housekeeping function of these glial cells.
Collapse
Affiliation(s)
- Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Iván Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Olga Kopach
- Institute of Neurology, University College London, London, UK
| | | | | | | | | | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
24
|
Alam P, Amlal S, Thakar CV, Amlal H. Acetazolamide causes renal [Formula: see text] wasting but inhibits ammoniagenesis and prevents the correction of metabolic acidosis by the kidney. Am J Physiol Renal Physiol 2020; 319:F366-F379. [PMID: 32657159 PMCID: PMC7509283 DOI: 10.1152/ajprenal.00501.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/22/2022] Open
Abstract
Carbonic anhydrase (CAII) binds to the electrogenic basolateral Na+-[Formula: see text] cotransporter (NBCe1) and facilitates [Formula: see text] reabsorption across the proximal tubule. However, whether the inhibition of CAII with acetazolamide (ACTZ) alters NBCe1 activity and interferes with the ammoniagenesis pathway remains elusive. To address this issue, we compared the renal adaptation of rats treated with ACTZ to NH4Cl loading for up to 2 wk. The results indicated that ACTZ-treated rats exhibited a sustained metabolic acidosis for up to 2 wk, whereas in NH4Cl-loaded rats, metabolic acidosis was corrected within 2 wk of treatment. [Formula: see text] excretion increased by 10-fold in NH4Cl-loaded rats but only slightly (1.7-fold) in ACTZ-treated rats during the first week despite a similar degree of acidosis. Immunoblot experiments showed that the protein abundance of glutaminase (4-fold), glutamate dehydrogenase (6-fold), and SN1 (8-fold) increased significantly in NH4Cl-loaded rats but remained unchanged in ACTZ-treated rats. Na+/H+ exchanger 3 and NBCe1 proteins were upregulated in response to NH4Cl loading but not ACTZ treatment and were rather sharply downregulated after 2 wk of ACTZ treatment. ACTZ causes renal [Formula: see text] wasting and induces metabolic acidosis but inhibits the upregulation of glutamine transporter and ammoniagenic enzymes and thus suppresses ammonia synthesis and secretion in the proximal tubule, which prevented the correction of acidosis. This effect is likely mediated through the inhibition of the CA-NBCe1 metabolon complex, which results in cell alkalinization. During chronic ACTZ treatment, the downregulation of both NBCe1 and Na+/H+ exchanger 3, along with the inhibition of ammoniagenesis and [Formula: see text] generation, contributes to the maintenance of metabolic acidosis.
Collapse
Affiliation(s)
- Perwez Alam
- Division of Nephrology and Kidney C.A.R.E, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Sihame Amlal
- Division of Nephrology and Kidney C.A.R.E, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Charuhas V Thakar
- Division of Nephrology and Kidney C.A.R.E, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Hassane Amlal
- Division of Nephrology and Kidney C.A.R.E, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
25
|
Weiner ID, Verlander JW. Emerging Features of Ammonia Metabolism and Transport in Acid-Base Balance. Semin Nephrol 2020; 39:394-405. [PMID: 31300094 DOI: 10.1016/j.semnephrol.2019.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ammonia metabolism has a critical role in acid-base homeostasis and in other cellular functions. Kidneys have a central role in bicarbonate generation, which occurs through the process of net acid excretion; ammonia metabolism is the quantitatively greatest component of net acid excretion, both under basal conditions and in response to acid-base disturbances. Several recent studies have advanced our understanding substantially of the molecular mechanisms and regulation of ammonia metabolism. First, the previous paradigm that ammonia transport could be explained by passive NH3 diffusion and NH4+ trapping has been advanced by the recognition that specific transport of NH3 and of NH4+ by specific membrane proteins is critical to ammonia transport. Second, significant advances have been made in the understanding of the regulation of ammonia metabolism. Novel studies have shown that hyperkalemia directly inhibits ammonia metabolism, thereby leading to the metabolic acidosis present in type IV renal tubular acidosis. Other studies have shown that the proximal tubule protein NBCe1, specifically the A variant NBCe1-A, has a major role in regulating renal ammonia metabolism. Third, there are important sex differences in ammonia metabolism that involve structural and functional differences in the kidney. This review addresses these important aspects of ammonia metabolism and transport.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL; Nephrology and Hypertension Section, Gainesville Veterans Affairs Medical Center, Gainesville, FL.
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
26
|
Defective bicarbonate reabsorption in Kir4.2 potassium channel deficient mice impairs acid-base balance and ammonia excretion. Kidney Int 2019; 97:304-315. [PMID: 31870500 DOI: 10.1016/j.kint.2019.09.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 11/21/2022]
Abstract
The kidneys excrete the daily acid load mainly by generating and excreting ammonia but the underlying molecular mechanisms are not fully understood. Here we evaluated the role of the inwardly rectifying potassium channel subunit Kir4.2 (Kcnj15 gene product) in this process. In mice, Kir4.2 was present exclusively at the basolateral membrane of proximal tubular cells and disruption of Kcnj15 caused a hyperchloremic metabolic acidosis associated with a reduced threshold for bicarbonate in the absence of a generalized proximal tubule dysfunction. Urinary ammonium excretion rates in Kcnj15- deleted mice were inappropriate to acidosis under basal and acid-loading conditions, and not related to a failure to acidify urine or a reduced expression of ammonia transporters in the collecting duct. In contrast, the expression of key proteins involved in ammonia metabolism and secretion by proximal cells, namely the glutamine transporter SNAT3, the phosphate-dependent glutaminase and phosphoenolpyruvate carboxykinase enzymes, and the sodium-proton exchanger NHE-3 was inappropriate in Kcnj15-deleted mice. Additionally, Kcnj15 deletion depolarized the proximal cell membrane by decreasing the barium-sensitive component of the potassium conductance and caused an intracellular alkalinization. Thus, the Kir4.2 potassium channel subunit is a newly recognized regulator of proximal ammonia metabolism. The kidney consequences of its loss of function in mice support the proposal for KCNJ15 as a molecular basis for human isolated proximal renal tubular acidosis.
Collapse
|
27
|
Osis G, Webster KL, Harris AN, Lee HW, Chen C, Fang L, Romero MF, Khattri RB, Merritt ME, Verlander JW, Weiner ID. Regulation of renal NaDC1 expression and citrate excretion by NBCe1-A. Am J Physiol Renal Physiol 2019; 317:F489-F501. [PMID: 31188034 PMCID: PMC6732450 DOI: 10.1152/ajprenal.00015.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/20/2019] [Accepted: 06/07/2019] [Indexed: 11/22/2022] Open
Abstract
Citrate is critical for acid-base homeostasis and to prevent calcium nephrolithiasis. Both metabolic acidosis and hypokalemia decrease citrate excretion and increase expression of Na+-dicarboxylate cotransporter 1 (NaDC1; SLC13A2), the primary protein involved in citrate reabsorption. However, the mechanisms transducing extracellular signals and mediating these responses are incompletely understood. The purpose of the present study was to determine the role of the Na+-coupled electrogenic bicarbonate cotransporter (NBCe1) A variant (NBCe1-A) in citrate metabolism under basal conditions and in response to acid loading and hypokalemia. NBCe1-A deletion increased citrate excretion and decreased NaDC1 expression in the proximal convoluted tubules (PCT) and proximal straight tubules (PST) in the medullary ray (PST-MR) but not in the PST in the outer medulla (PST-OM). Acid loading wild-type (WT) mice decreased citrate excretion. NaDC1 expression increased only in the PCT and PST-MR and not in the PST-MR. In NBCe1-A knockout (KO) mice, the acid loading change in citrate excretion was unaffected, changes in PCT NaDC1 expression were blocked, and there was an adaptive increase in PST-MR. Hypokalemia in WT mice decreased citrate excretion; NaDC1 expression increased only in the PCT and PST-MR. NBCe1-A KO blocked both the citrate and NaDC1 changes. We conclude that 1) adaptive changes in NaDC1 expression in response to metabolic acidosis and hypokalemia occur specifically in the PCT and PST-MR, i.e., in cortical proximal tubule segments; 2) NBCe1-A is necessary for normal basal, metabolic acidosis and hypokalemia-stimulated citrate metabolism and does so by regulating NaDC1 expression in cortical proximal tubule segments; and 3) adaptive increases in PST-OM NaDC1 expression occur in NBCe1-A KO mice in response to acid loading that do not occur in WT mice.
Collapse
Affiliation(s)
- Gunars Osis
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Kierstin L Webster
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Autumn N Harris
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Chao Chen
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Lijuan Fang
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Ram B Khattri
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
28
|
Khakipoor S, Giannaki M, Theparambil SM, Zecha J, Küster B, Heermann S, Deitmer JW, Roussa E. Functional expression of electrogenic sodium bicarbonate cotransporter 1 (NBCe1) in mouse cortical astrocytes is dependent on S255‐257 and regulated by mTOR. Glia 2019; 67:2264-2278. [DOI: 10.1002/glia.23682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/23/2019] [Accepted: 07/03/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Shokoufeh Khakipoor
- Department of Molecular Embryology, Faculty of Medicine Institute of Anatomy and Cell Biology, Albert‐Ludwigs‐Universität Freiburg Freiburg Germany
| | - Marina Giannaki
- Department of Molecular Embryology, Faculty of Medicine Institute of Anatomy and Cell Biology, Albert‐Ludwigs‐Universität Freiburg Freiburg Germany
| | - Shefeeq M. Theparambil
- Department of General Zoology, FB Biology University of Kaiserslautern Kaiserslautern Germany
| | - Jana Zecha
- Chair of Proteomics and Bioanalytics Technical University of Munich Freising Germany
| | - Bernhard Küster
- Chair of Proteomics and Bioanalytics Technical University of Munich Freising Germany
- Bavarian Biomolecular Mass Spectrometry Center (BayBioMS) Technical University of Munich Freising Germany
| | - Stephan Heermann
- Department of Molecular Embryology, Faculty of Medicine Institute of Anatomy and Cell Biology, Albert‐Ludwigs‐Universität Freiburg Freiburg Germany
| | - Joachim W. Deitmer
- Department of General Zoology, FB Biology University of Kaiserslautern Kaiserslautern Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Faculty of Medicine Institute of Anatomy and Cell Biology, Albert‐Ludwigs‐Universität Freiburg Freiburg Germany
| |
Collapse
|
29
|
Salerno EE, Patel SP, Marshall A, Marshall J, Alsufayan T, Mballo CSA, Quade BN, Parker MD. Extrarenal Signs of Proximal Renal Tubular Acidosis Persist in Nonacidemic Nbce1b/c-Null Mice. J Am Soc Nephrol 2019; 30:979-989. [PMID: 31040187 DOI: 10.1681/asn.2018050545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The SLC4A4 gene encodes electrogenic sodium bicarbonate cotransporter 1 (NBCe1). Inheritance of recessive mutations in SLC4A4 causes proximal renal tubular acidosis (pRTA), a disease characterized by metabolic acidosis, growth retardation, ocular abnormalities, and often dental abnormalities. Mouse models of pRTA exhibit acidemia, corneal edema, weak dental enamel, impacted colons, nutritional defects, and a general failure to thrive, rarely surviving beyond weaning. Alkali therapy remains the preferred treatment for pRTA, but it is unclear which nonrenal signs are secondary to acidemia and which are a direct consequence of NBCe1 loss from nonrenal sites (such as the eye and enamel organ) and therefore require separate therapy. SLC4A4 encodes three major NBCe1 variants: NBCe1-A, NBCe1-B, and NBCe1-C. NBCe1-A is expressed in proximal tubule epithelia; its dysfunction causes the plasma bicarbonate insufficiency that underlies acidemia. NBCe1-B and NBCe1-C exhibit a broad extra-proximal-tubular distribution. METHODS To explore the consequences of Nbce1b/c loss in the absence of acidemia, we engineered a novel strain of Nbce1b/c-null mice and assessed them for signs of pRTA. RESULTS Nbce1b/c-null mice have normal blood pH, but exhibit increased mortality, growth retardation, corneal edema, and tooth enamel defects. CONCLUSIONS The correction of pRTA-related acidemia should not be considered a panacea for all signs of pRTA. The phenotype of Nbce1b/c-null mice highlights the physiologic importance of NBCe1 variants expressed beyond the proximal tubular epithelia and potential limitations of pH correction by alkali therapy in pRTA. It also suggests a novel genetic locus for corneal dystrophy and enamel hypomineralization without acidemia.
Collapse
Affiliation(s)
| | - Sangita P Patel
- Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York.,State University of New York Eye Institute, Buffalo, New York; and.,Research and Ophthalmology Services, VA Western New York Healthcare System, Buffalo, New York
| | | | | | | | | | | | - Mark D Parker
- Departments of Physiology and Biophysics and .,Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York.,State University of New York Eye Institute, Buffalo, New York; and
| |
Collapse
|
30
|
Ruminot I, Schmälzle J, Leyton B, Barros LF, Deitmer JW. Tight coupling of astrocyte energy metabolism to synaptic activity revealed by genetically encoded FRET nanosensors in hippocampal tissue. J Cereb Blood Flow Metab 2019; 39:513-523. [PMID: 29083247 PMCID: PMC6421254 DOI: 10.1177/0271678x17737012] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 11/17/2022]
Abstract
The potassium ion, K+, a neuronal signal that is released during excitatory synaptic activity, produces acute activation of glucose consumption in cultured astrocytes, a phenomenon mediated by the sodium bicarbonate cotransporter NBCe1 ( SLC4A4). We have explored here the relevance of this mechanism in brain tissue by imaging the effect of neuronal activity on pH, glucose, pyruvate and lactate dynamics in hippocampal astrocytes using BCECF and FRET nanosensors. Electrical stimulation of Schaffer collaterals produced fast activation of glucose consumption in astrocytes with a parallel increase in intracellular pyruvate and biphasic changes in lactate . These responses were blocked by TTX and were absent in tissue slices prepared from NBCe1-KO mice. Direct depolarization of astrocytes with elevated extracellular K+ or Ba2+ mimicked the metabolic effects of electrical stimulation. We conclude that the glycolytic pathway of astrocytes in situ is acutely sensitive to neuronal activity, and that extracellular K+ and the NBCe1 cotransporter are involved in metabolic crosstalk between neurons and astrocytes. Glycolytic activation of astrocytes in response to neuronal K+ helps to provide an adequate supply of lactate, a metabolite that is released by astrocytes and which acts as neuronal fuel and an intercellular signal.
Collapse
Affiliation(s)
- Iván Ruminot
- Abteilung für Allgemeine Zoologie, FB
Biologie, University of Kaiserslautern, Germany
- Centro de Estudios Científicos (CECs),
Valdivia, Chile
| | - Jana Schmälzle
- Abteilung für Allgemeine Zoologie, FB
Biologie, University of Kaiserslautern, Germany
| | - Belén Leyton
- Centro de Estudios Científicos (CECs),
Valdivia, Chile
- Universidad Austral de Chile, Valdivia,
Chile
| | | | - Joachim W Deitmer
- Abteilung für Allgemeine Zoologie, FB
Biologie, University of Kaiserslautern, Germany
| |
Collapse
|
31
|
Disorders of renal NaCl transport and implications for blood pressure regulation. MED GENET-BERLIN 2019. [DOI: 10.1007/s11825-019-0232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Hypertension is one of the major risk factors for cardiovascular disease in industrialized societies. Substantial progress has been made in understanding its epidemiology, its pathophysiology, and its associated risks such as coronary artery disease, stroke, and heart failure. Because there is consensus that the abnormal retention of sodium by the kidney is a major important pathophysiological event in hypertension, this review focuses on mechanisms of renal NaCl transport and associated genetic disorders.
Collapse
|
32
|
Abstract
Calcium kidney stones are common worldwide. Most are idiopathic and composed of calcium oxalate. Calcium phosphate is present in around 80% and may initiate stone formation. Stone production is multifactorial with a polygenic genetic contribution. Phosphaturia is found frequently among stone formers but until recently received scant attention. This review examines possible mechanisms for the phosphaturia and its relevance to stone formation from a wide angle. There is a striking lack of clinical data. Phosphaturia is associated, but not correlated, with hypercalciuria, increased 1,25 dihydroxy-vitamin D [1,25 (OH)2D], and sometimes evidence of disturbances in proximal renal tubular function. Phosphate reabsorption in the proximal renal tubules requires tightly regulated interaction of many proteins. Paracellular flow through intercellular tight junctions is the major route of phosphate absorption from the intestine and can be reduced therapeutically in hyperphosphatemic patients. In monogenic defects stones develop when phosphaturia is associated with hypercalciuria, generally explained by increased 1,25 (OH)2D production in response to hypophosphatemia. Calcification does not occur in disorders with increased FGF23 when phosphaturia occurs in isolation and 1,25 (OH)2D is suppressed. Candidate gene studies have identified mutations in the phosphate transporters, but in few individuals. One genome-wide study identified a polymorphism of the phosphate transporter gene SLC34A4 associated with stones. Others did not find mutations obviously linked to phosphate reabsorption. Future genetic studies should have a wide trawl and should focus initially on groups of patients with clearly defined phenotypes. The global data should be pooled.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.
| |
Collapse
|
33
|
Vairamani K, Prasad V, Wang Y, Huang W, Chen Y, Medvedovic M, Lorenz JN, Shull GE. NBCe1 Na +-HCO3 - cotransporter ablation causes reduced apoptosis following cardiac ischemia-reperfusion injury in vivo. World J Cardiol 2018; 10:97-109. [PMID: 30344957 PMCID: PMC6189072 DOI: 10.4330/wjc.v10.i9.97] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/05/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the hypothesis that cardiomyocyte-specific loss of the electrogenic NBCe1 Na+-HCO3- cotransporter is cardioprotective during in vivo ischemia-reperfusion (IR) injury.
METHODS An NBCe1 (Slc4a4 gene) conditional knockout mouse (KO) model was prepared by gene targeting. Cardiovascular performance of wildtype (WT) and cardiac-specific NBCe1 KO mice was analyzed by intraventricular pressure measurements, and changes in cardiac gene expression were determined by RNA Seq analysis. Response to in vivo IR injury was analyzed after 30 min occlusion of the left anterior descending artery followed by 3 h of reperfusion.
RESULTS Loss of NBCe1 in cardiac myocytes did not impair cardiac contractility or relaxation under basal conditions or in response to β-adrenergic stimulation, and caused only limited changes in gene expression patterns, such as those for electrical excitability. However, following ischemia and reperfusion, KO heart sections exhibited significantly fewer apoptotic nuclei than WT sections.
CONCLUSION These studies indicate that cardiac-specific loss of NBCe1 does not impair cardiovascular performance, causes only minimal changes in gene expression patterns, and protects against IR injury in vivo .
Collapse
Affiliation(s)
- Kanimozhi Vairamani
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3026, United States
| | - Vikram Prasad
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229-3039, United States
| | - Yigang Wang
- Department of Pathology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0529, United States
| | - Wei Huang
- Department of Pathology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0529, United States
| | - Yinhua Chen
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, United States
| | - Mario Medvedovic
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0056, United States
| | - John N Lorenz
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0575, United States
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0524, United States
| |
Collapse
|
34
|
Fang L, Lee HW, Chen C, Harris AN, Romero MF, Verlander JW, Weiner ID. Expression of the B splice variant of NBCe1 (SLC4A4) in the mouse kidney. Am J Physiol Renal Physiol 2018; 315:F417-F428. [PMID: 29631353 PMCID: PMC6172571 DOI: 10.1152/ajprenal.00515.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/07/2018] [Accepted: 03/29/2018] [Indexed: 01/10/2023] Open
Abstract
Sodium-coupled bicarbonate transporters are critical for renal electrolyte transport. The electrogenic, sodium-coupled bicarbonate cotransporter, isoform 1 (NBCe1), encoded by the SLC4A4 geneencoded by the SLC4A4 gene has five multiple splice variants; the A splice variant, NBCe1-A, is the primary basolateral bicarbonate transporter in the proximal convoluted tubule. This study's purpose was to determine if there is expression of additional NBCe1 splice variants in the mouse kidney, their cellular distribution, and their regulation by metabolic acidosis. In wild-type mice, an antibody reactive only to NBCe1-A showed basolateral immunolabel only in cortical proximal tubule (PT) segments, whereas an antibody reactive to all NBCe1 splice variants (pan-NBCe1) showed basolateral immunolabel in PT segments in both the cortex and outer medulla. In mice with NBCe1-A deletion, the pan-NBCe1 antibody showed basolateral PT immunolabel in both the renal cortex and outer stripe of the outer medulla, and immunoblot analysis showed expression of a ~121-kDa protein. RT-PCR of mRNA from NBCe1-A knockout mice directed at splice variant-specific regions showed expression of only NBCe1-B mRNA. In wild-type kidney, RT-PCR confirmed expression of mRNA for the NBCe1-B splice variant and absence of mRNA for the C, D, and E splice variants. Finally, exogenous acid loading increased expression in the proximal straight tubule in the outer stripe of the outer medulla. These studies demonstrate that the NBCe1-B splice variant is present in the PT, and its expression increases in response to exogenous acid loading, suggesting it participates in the PT contribution to acid-base homeostasis.
Collapse
Affiliation(s)
- Lijuan Fang
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Chao Chen
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Autumn N Harris
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
35
|
Kurtz I. Renal Tubular Acidosis: H +/Base and Ammonia Transport Abnormalities and Clinical Syndromes. Adv Chronic Kidney Dis 2018; 25:334-350. [PMID: 30139460 PMCID: PMC6128697 DOI: 10.1053/j.ackd.2018.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Renal tubular acidosis (RTA) represents a group of diseases characterized by (1) a normal anion gap metabolic acidosis; (2) abnormalities in renal HCO3- absorption or new renal HCO3- generation; (3) changes in renal NH4+, Ca2+, K+, and H2O homeostasis; and (4) extrarenal manifestations that provide etiologic diagnostic clues. The focus of this review is to give a general overview of the pathogenesis of the various clinical syndromes causing RTA with a particular emphasis on type I (hypokalemic distal RTA) and type II (proximal) RTA while reviewing their pathogenesis from a physiological "bottom-up" approach. In addition, the factors involved in the generation of metabolic acidosis in both type I and II RTA are reviewed highlighting the importance of altered renal ammonia production/partitioning and new HCO3- generation. Our understanding of the underlying tubular transport and extrarenal abnormalities has significantly improved since the first recognition of RTA as a clinical entity because of significant advances in clinical acid-base chemistry, whole tubule and single-cell H+/base transport, and the molecular characterization of the various transporters and channels that are functionally affected in patients with RTA. Despite these advances, additional studies are needed to address the underlying mechanisms involved in hypokalemia, altered ammonia production/partitioning, hypercalciuria, nephrocalcinosis, cystic abnormalities, and CKD progression in these patients.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, and Brain Research Institute, UCLA, Los Angeles, CA.
| |
Collapse
|
36
|
Lewis L, Kwong RWM. Zebrafish as a Model System for Investigating the Compensatory Regulation of Ionic Balance during Metabolic Acidosis. Int J Mol Sci 2018; 19:E1087. [PMID: 29621145 PMCID: PMC5979485 DOI: 10.3390/ijms19041087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/25/2018] [Accepted: 04/02/2018] [Indexed: 12/16/2022] Open
Abstract
Zebrafish (Danio rerio) have become an important model for integrative physiological research. Zebrafish inhabit a hypo-osmotic environment; to maintain ionic and acid-base homeostasis, they must actively take up ions and secrete acid to the water. The gills in the adult and the skin at larval stage are the primary sites of ionic regulation in zebrafish. The uptake of ions in zebrafish is mediated by specific ion transporting cells termed ionocytes. Similarly, in mammals, ion reabsorption and acid excretion occur in specific cell types in the terminal region of the renal tubules (distal convoluted tubule and collecting duct). Previous studies have suggested that functional regulation of several ion transporters/channels in the zebrafish ionocytes resembles that in the mammalian renal cells. Additionally, several mechanisms involved in regulating the epithelial ion transport during metabolic acidosis are found to be similar between zebrafish and mammals. In this article, we systemically review the similarities and differences in ionic regulation between zebrafish and mammals during metabolic acidosis. We summarize the available information on the regulation of epithelial ion transporters during acidosis, with a focus on epithelial Na⁺, Cl- and Ca2+ transporters in zebrafish ionocytes and mammalian renal cells. We also discuss the neuroendocrine responses to acid exposure, and their potential role in ionic compensation. Finally, we identify several knowledge gaps that would benefit from further study.
Collapse
Affiliation(s)
- Lletta Lewis
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
37
|
Harris AN, Lee HW, Osis G, Fang L, Webster KL, Verlander JW, Weiner ID. Differences in renal ammonia metabolism in male and female kidney. Am J Physiol Renal Physiol 2018; 315:F211-F222. [PMID: 29561185 DOI: 10.1152/ajprenal.00084.2018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Renal ammonia metabolism has a major role in the maintenance of acid-base homeostasis. Sex differences are well recognized as an important biological variable in many aspects of renal function, including fluid and electrolyte metabolism. However, sex differences in renal ammonia metabolism have not been previously reported. Therefore, the purpose of the current study was to investigate sex differences in renal ammonia metabolism. We studied 4-mo-old wild-type C57BL/6 mice fed a normal diet. Despite similar levels of food intake, and, thus, protein intake, which is the primary determinant of endogenous acid production, female mice excreted greater amounts of ammonia, but not titratable acids, than did male mice. This difference in ammonia metabolism was associated with fundamental structural differences between the female and male kidney. In the female mouse kidney, proximal tubules account for a lower percentage of the renal cortical parenchyma compared with the male kidney, whereas collecting ducts account for a greater percentage of the renal parenchyma than in male kidneys. To further investigate the mechanism(s) behind the greater ammonia excretion in female mice, we examined differences in the expression of proteins involved in renal ammonia metabolism and transport. Greater basal ammonia excretion in females was associated with greater expression of PEPCK, glutamine synthetase, NKCC2, Rhbg, and Rhcg than was observed in male mice. We conclude that there are sex differences in basal ammonia metabolism that involve both renal structural differences and differences in expression of proteins involved in ammonia metabolism.
Collapse
Affiliation(s)
- Autumn N Harris
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Gunars Osis
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Lijuan Fang
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Kierstin L Webster
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine , Gainesville, Florida.,Nephrology and Hypertension Section, Gainesville Veterans Administration Medical Center , Gainesville, Florida
| |
Collapse
|
38
|
Lee HW, Osis G, Harris AN, Fang L, Romero MF, Handlogten ME, Verlander JW, Weiner ID. NBCe1-A Regulates Proximal Tubule Ammonia Metabolism under Basal Conditions and in Response to Metabolic Acidosis. J Am Soc Nephrol 2018; 29:1182-1197. [PMID: 29483156 DOI: 10.1681/asn.2017080935] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/10/2018] [Indexed: 12/16/2022] Open
Abstract
Renal ammonia metabolism is the primary mechanism through which the kidneys maintain acid-base homeostasis, but the molecular mechanisms regulating renal ammonia generation are unclear. In these studies, we evaluated the role of the proximal tubule basolateral plasma membrane electrogenic sodium bicarbonate cotransporter 1 variant A (NBCe1-A) in this process. Deletion of the NBCe1-A gene caused severe spontaneous metabolic acidosis in mice. Despite this metabolic acidosis, which normally causes a dramatic increase in ammonia excretion, absolute urinary ammonia concentration was unaltered. Additionally, NBCe1-A deletion almost completely blocked the ability to increase ammonia excretion after exogenous acid loading. Under basal conditions and during acid loading, urine pH was more acidic in mice with NBCe1-A deletion than in wild-type controls, indicating that the abnormal ammonia excretion was not caused by a primary failure of urine acidification. Instead, NBCe1-A deletion altered the expression levels of multiple enzymes involved in proximal tubule ammonia generation, including phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and glutamine synthetase, under basal conditions and after exogenous acid loading. Deletion of NBCe1-A did not impair expression of key proteins involved in collecting duct ammonia secretion. These studies demonstrate that the integral membrane protein NBCe1-A has a critical role in basal and acidosis-stimulated ammonia metabolism through the regulation of proximal tubule ammonia-metabolizing enzymes.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Gunars Osis
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Autumn N Harris
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Lijuan Fang
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Mary E Handlogten
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida; .,Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
39
|
Parker MD. Mouse models of SLC4-linked disorders of HCO 3--transporter dysfunction. Am J Physiol Cell Physiol 2018; 314:C569-C588. [PMID: 29384695 DOI: 10.1152/ajpcell.00301.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The SLC4 family Cl-/[Formula: see text] cotransporters (NBCe1, NBCe2, NBCn1, and NBCn2) contribute to a variety of vital physiological processes including pH regulation and epithelial fluid secretion. Accordingly, their dysfunction can have devastating effects. Disorders such as epilepsy, hemolytic anemia, glaucoma, hearing loss, osteopetrosis, and renal tubular acidosis are all genetically linked to SLC4-family gene loci. This review summarizes how studies of Slc4-modified mice have enhanced our understanding of the etiology of SLC4-linked pathologies and the interpretation of genetic linkage studies. The review also surveys the novel disease signs exhibited by Slc4-modified mice which could either be considered to presage their description in humans, or to highlight interspecific differences. Finally, novel Slc4-modified mouse models are proposed, the study of which may further our understanding of the basis and treatment of SLC4-linked disorders of [Formula: see text]-transporter dysfunction.
Collapse
Affiliation(s)
- Mark D Parker
- Department of Physiology and Biophysics, The State University of New York: The University at Buffalo , Buffalo, New York.,Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo: The State University of New York , Buffalo, New York.,State University of New York Eye Institutes, University at Buffalo: The State University of New York , Buffalo, New York
| |
Collapse
|
40
|
Neuronal control of astrocytic respiration through a variant of the Crabtree effect. Proc Natl Acad Sci U S A 2018; 115:1623-1628. [PMID: 29378955 DOI: 10.1073/pnas.1716469115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aerobic glycolysis is a phenomenon that in the long term contributes to synaptic formation and growth, is reduced by normal aging, and correlates with amyloid beta deposition. Aerobic glycolysis starts within seconds of neural activity and it is not obvious why energetic efficiency should be compromised precisely when energy demand is highest. Using genetically encoded FRET nanosensors and real-time oxygen measurements in culture and in hippocampal slices, we show here that astrocytes respond to physiological extracellular K+ with an acute rise in cytosolic ATP and a parallel inhibition of oxygen consumption, explained by glycolytic stimulation via the Na+-bicarbonate cotransporter NBCe1. This control of mitochondrial respiration via glycolysis modulation is reminiscent of a phenomenon previously described in proliferating cells, known as the Crabtree effect. Fast brain aerobic glycolysis may be interpreted as a strategy whereby neurons manipulate neighboring astrocytes to obtain oxygen, thus maximizing information processing.
Collapse
|
41
|
Abstract
Amelogenesis (tooth enamel formation) is a biomineralization process consisting primarily of two stages (secretory stage and maturation stage) with unique features. During the secretory stage, the inner epithelium of the enamel organ (i.e., the ameloblast cells) synthesizes and secretes enamel matrix proteins (EMPs) into the enamel space. The protein-rich enamel matrix forms a highly organized architecture in a pH-neutral microenvironment. As amelogenesis transitions to maturation stage, EMPs are degraded and internalized by ameloblasts through endosomal-lysosomal pathways. Enamel crystallite formation is initiated early in the secretory stage, however, during maturation stage the more rapid deposition of calcium and phosphate into the enamel space results in a rapid expansion of crystallite length and mineral volume. During maturation-stage amelogenesis, the pH value of enamel varies considerably from slightly above neutral to acidic. Extracellular acid-base balance during enamel maturation is tightly controlled by ameloblast-mediated regulatory networks, which include significant synthesis and movement of bicarbonate ions from both the enamel papillary layer cells and ameloblasts. In this review we summarize the carbonic anhydrases and the carbonate transporters/exchangers involved in pH regulation in maturation-stage amelogenesis. Proteins that have been shown to be instrumental in this process include CA2, CA6, CFTR, AE2, NBCe1, SLC26A1/SAT1, SLC26A3/DRA, SLC26A4/PDS, SLC26A6/PAT1, and SLC26A7/SUT2. In addition, we discuss the association of miRNA regulation with bicarbonate transport in tooth enamel formation.
Collapse
Affiliation(s)
- Kaifeng Yin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA103, Los Angeles, CA, 90033, USA
- Department of Orthodontics, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Michael L Paine
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA103, Los Angeles, CA, 90033, USA.
| |
Collapse
|
42
|
Peña-Münzenmayer G, George AT, Shull GE, Melvin JE, Catalán MA. Ae4 (Slc4a9) is an electroneutral monovalent cation-dependent Cl-/HCO3- exchanger. J Gen Physiol 2017; 147:423-36. [PMID: 27114614 PMCID: PMC4845690 DOI: 10.1085/jgp.201611571] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/05/2016] [Indexed: 12/31/2022] Open
Abstract
Ae4 (Slc4a9) belongs to the Slc4a family of Cl(-)/HCO3 (-) exchangers and Na(+)-HCO3 (-) cotransporters, but its ion transport cycle is poorly understood. In this study, we find that native Ae4 activity in mouse salivary gland acinar cells supports Na(+)-dependent Cl(-)/HCO3 (-) exchange that is comparable with that obtained upon heterologous expression of mouse Ae4 and human AE4 in CHO-K1 cells. Additionally, whole cell recordings and ion concentration measurements demonstrate that Na(+) is transported by Ae4 in the same direction as HCO3 (-) (and opposite to that of Cl(-)) and that ion transport is not associated with changes in membrane potential. We also find that Ae4 can mediate Na(+)-HCO3 (-) cotransport-like activity under Cl(-)-free conditions. However, whole cell recordings show that this apparent Na(+)-HCO3 (-) cotransport activity is in fact electroneutral HCO3 (-)/Na(+)-HCO3 (-) exchange. Although the Ae4 anion exchanger is thought to regulate intracellular Cl(-) concentration in exocrine gland acinar cells, our thermodynamic calculations predict that the intracellular Na(+), Cl(-), and HCO3 (-) concentrations required for Ae4-mediated Cl(-) influx differ markedly from those reported for acinar secretory cells at rest or under sustained stimulation. Given that K(+) ions share many properties with Na(+) ions and reach intracellular concentrations of 140-150 mM (essentially the same as extracellular [Na(+)]), we hypothesize that Ae4 could mediate K(+)-dependent Cl(-)/HCO3 (-) exchange. Indeed, we find that Ae4 mediates Cl(-)/HCO3 (-) exchange activity in the presence of K(+) as well as Cs(+), Li(+), and Rb(+) In summary, our results strongly suggest that Ae4 is an electroneutral Cl(-)/nonselective cation-HCO3 (-) exchanger. We postulate that the physiological role of Ae4 in secretory cells is to promote Cl(-) influx in exchange for K(+)(Na(+)) and HCO3 (-) ions.
Collapse
Affiliation(s)
- Gaspar Peña-Münzenmayer
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Alvin T George
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - James E Melvin
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Marcelo A Catalán
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
43
|
Lacruz RS, Habelitz S, Wright JT, Paine ML. DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE. Physiol Rev 2017; 97:939-993. [PMID: 28468833 DOI: 10.1152/physrev.00030.2016] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022] Open
Abstract
Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Stefan Habelitz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - J Timothy Wright
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Michael L Paine
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| |
Collapse
|
44
|
Khakipoor S, Ophoven C, Schrödl‐Häußel M, Feuerstein M, Heimrich B, Deitmer JW, Roussa E. TGF-β signaling directly regulates transcription and functional expression of the electrogenic sodium bicarbonate cotransporter 1, NBCe1 (SLC4A4), via Smad4 in mouse astrocytes. Glia 2017; 65:1361-1375. [PMID: 28568893 PMCID: PMC5518200 DOI: 10.1002/glia.23168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/27/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023]
Abstract
The electrogenic sodium bicarbonate cotransporter NBCe1 (SLC4A4) expressed in astrocytes regulates intracellular and extracellular pH. Here, we introduce transforming growth factor beta (TGF-β) as a novel regulator of NBCe1 transcription and functional expression. Using hippocampal slices and primary hippocampal and cortical astrocyte cultures, we investigated regulation of NBCe1 and elucidated the underlying signaling pathways by RT-PCR, immunoblotting, immunofluorescence, intracellular H(+ ) recording using the H(+ ) -sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein, mink lung epithelial cell (MLEC) assay, and chromatin immunoprecipitation. Activation of TGF-β signaling significantly upregulated transcript, protein, and surface expression of NBCe1. These effects were TGF-β receptor-mediated and suppressed following inhibition of JNK and Smad signaling. Moreover, 4-aminopyridine (4AP)-dependent NBCe1 regulation requires TGF-β. TGF-β increased the rate and amplitude of intracellular H+ changes upon challenging NBCe1 in wild-type astrocytes but not in cortical astrocytes from Slc4a4-deficient mice. A Smad4 binding sequence was identified in the NBCe1 promoter and Smad4 binding increased after activation of TGF-β signaling. The data show for the first time that NBCe1 is a direct target of TGF-β/Smad4 signaling. Through activation of the canonical pathway TGF-β acts directly on NBCe1 by binding of Smad4 to the NBCe1 promoter and regulating its transcription, followed by increased protein expression and transport activity.
Collapse
Affiliation(s)
- Shokoufeh Khakipoor
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Christian Ophoven
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Magdalena Schrödl‐Häußel
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Melanie Feuerstein
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Bernd Heimrich
- Department of NeuroanatomyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Joachim W. Deitmer
- Department of General ZoologyFB Biology, University of KaiserslauternP.B. 3049D‐67653KaiserslauternGermany
| | - Eleni Roussa
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
- Department of NeuroanatomyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| |
Collapse
|
45
|
Mechanisms of CO2/H+ Sensitivity of Astrocytes. J Neurosci 2017; 36:10750-10758. [PMID: 27798130 DOI: 10.1523/jneurosci.1281-16.2016] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/18/2016] [Indexed: 11/21/2022] Open
Abstract
Ventral regions of the medulla oblongata of the brainstem are populated by astrocytes sensitive to physiological changes in PCO2/[H+]. These astrocytes respond to decreases in pH with elevations in intracellular Ca2+ and facilitated exocytosis of ATP-containing vesicles. Released ATP propagates Ca2+ excitation among neighboring astrocytes and activates neurons of the brainstem respiratory network triggering adaptive increases in breathing. The mechanisms linking increases in extracellular and/or intracellular PCO2/[H+] with Ca2+ responses in chemosensitive astrocytes remain unknown. Fluorescent imaging of changes in [Na+]i and/or [Ca2+]i in individual astrocytes was performed in organotypic brainstem slice cultures and acute brainstem slices of adult rats. It was found that astroglial [Ca2+]i responses triggered by decreases in pH are preceded by Na+ entry, markedly reduced by inhibition of Na+/HCO3- cotransport (NBC) or Na+/Ca2+ exchange (NCX), and abolished in Na+-free medium or by combined NBC/NCX blockade. Acidification-induced [Ca2+]i responses were also dramatically reduced in brainstem astrocytes of mice deficient in the electrogenic Na+/HCO3- cotransporter NBCe1. Sensitivity of astrocytes to changes in pH was not affected by inhibition of Na+/H+ exchange or blockade of phospholipase C. These results suggest that in pH-sensitive astrocytes, acidification activates NBCe1, which brings Na+ inside the cell. Raising [Na+]i activates NCX to operate in a reverse mode, leading to Ca2+ entry followed by activation of downstream signaling pathways. Coupled NBC and NCX activities are, therefore, suggested to be responsible for functional CO2/H+ sensitivity of astrocytes that contribute to homeostatic regulation of brain parenchymal pH and control of breathing. SIGNIFICANCE STATEMENT Brainstem astrocytes detect physiological changes in pH, activate neurons of the neighboring respiratory network, and contribute to the development of adaptive respiratory responses to the increases in the level of blood and brain PCO2/[H+]. The mechanisms underlying astroglial pH sensitivity remained unknown and here we show that in brainstem astrocytes acidification activates Na+/HCO3- cotransport, which brings Na+ inside the cell. Raising [Na+]i activates the Na+/Ca2+ exchanger to operate in a reverse mode leading to Ca2+ entry. This identifies a plausible mechanism of functional CO2/H+ sensitivity of brainstem astrocytes, which play an important role in homeostatic regulation of brain pH and control of breathing.
Collapse
|
46
|
Cai YM, Chen T, Ren CH, Huang W, Jiang X, Gao Y, Huo D, Hu CQ. Molecular characterization of Pacific white shrimp (Litopenaeus vannamei) sodium bicarbonate cotransporter (NBC) and its role in response to pH stress. FISH & SHELLFISH IMMUNOLOGY 2017; 64:226-233. [PMID: 28257848 DOI: 10.1016/j.fsi.2017.02.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
The sodium bicarbonate cotransporter (NBC) is an integral membrane ion transporter that can transport HCO3- (or a related species, such as CO32-) across the plasma membrane. Previous researches revealed that NBC might play an important role in the regulation of intracellular pH in vertebrates. In the present study, an NBC cDNA was identified from Pacific white shrimp (Litopenaeus vannamei) and designated as Lv-NBC. The full-length Lv-NBC cDNA is 4479 bp in size, containing a 5'-untranslated region (UTR) of 59 bp, a 3'-UTR of 835 bp and an open reading frame (ORF) of 3585 bp that encodes a protein of 1194 amino acids with a deduced molecular weight of 134.34 kDa. The Lv-NBC protein contains two functional domains (Band_3_cyto and HCO3_cotransp) and twelve transmembrane (TM) domains. Expression of the Lv-NBC mRNA was ubiquitously detected in all selected tissues, with the highest level in the gill. By in situ hybridization (ISH) with Digoxigenin-labeled probe, the Lv-NBC positive cells were shown mainly located in the secondary gill filaments. After low or high pH challenge, the transcript levels of Lv-NBC in the gill were found to be up-regulated. After knockdown of the Lv-NBC level by siRNA, the mortality of shrimp significantly increased under pH stress. Our study, as a whole, may provide evidences for the role of NBC in shrimp responding to pH stress, and give a new insight of the acid/base homeostasis mechanism in crustaceans.
Collapse
Affiliation(s)
- Yi-Ming Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China.
| | - Chun-Hua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China.
| | - Wen Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Yan Gao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Da Huo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Chao-Qun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China.
| |
Collapse
|
47
|
Horita S, Nakamura M, Suzuki M, Satoh N, Suzuki A, Homma Y, Nangaku M. The role of renal proximal tubule transport in the regulation of blood pressure. Kidney Res Clin Pract 2017; 36:12-21. [PMID: 28428931 PMCID: PMC5331971 DOI: 10.23876/j.krcp.2017.36.1.12] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/18/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
The electrogenic sodium/bicarbonate cotransporter 1 (NBCe1) on the basolateral side of the renal proximal tubule plays a pivotal role in systemic acid-base homeostasis. Mutations in the gene encoding NBCe1 cause severe proximal renal tubular acidosis accompanied by other extrarenal symptoms. The proximal tubule reabsorbs most of the sodium filtered in the glomerulus, contributing to the regulation of plasma volume and blood pressure. NBCe1 and other sodium transporters in the proximal tubule are regulated by hormones, such as angiotensin II and insulin. Angiotensin II is probably the most important stimulator of sodium reabsorption. Proximal tubule AT1A receptor is crucial for the systemic pressor effect of angiotensin II. In rodents and rabbits, the effect on proximal tubule NBCe1 is biphasic; at low concentration, angiotensin II stimulates NBCe1 via PKC/cAMP/ERK, whereas at high concentration, it inhibits NBCe1 via NO/cGMP/cGKII. In contrast, in human proximal tubule, angiotensin II has a dose-dependent monophasic stimulatory effect via NO/cGMP/ERK. Insulin stimulates the proximal tubule sodium transport, which is IRS2-dependent. We found that in insulin resistance and overt diabetic nephropathy, stimulatory effect of insulin on proximal tubule transport was preserved. Our results suggest that the preserved stimulation of the proximal tubule enhances sodium reabsorption, contributing to the pathogenesis of hypertension with metabolic syndrome. We describe recent findings regarding the role of proximal tubule transport in the regulation of blood pressure, focusing on the effects of angiotensin II and insulin.
Collapse
Affiliation(s)
- Shoko Horita
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Motonobu Nakamura
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Masashi Suzuki
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Nobuhiko Satoh
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Atsushi Suzuki
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Yukio Homma
- Department of Urology, The University of Tokyo Hospital, Tokyo, Japan
| | - Masaomi Nangaku
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
48
|
Abstract
Acid-base homeostasis is critical to maintenance of normal health. Renal ammonia excretion is the quantitatively predominant component of renal net acid excretion, both under basal conditions and in response to acid-base disturbances. Although titratable acid excretion also contributes to renal net acid excretion, the quantitative contribution of titratable acid excretion is less than that of ammonia under basal conditions and is only a minor component of the adaptive response to acid-base disturbances. In contrast to other urinary solutes, ammonia is produced in the kidney and then is selectively transported either into the urine or the renal vein. The proportion of ammonia that the kidney produces that is excreted in the urine varies dramatically in response to physiological stimuli, and only urinary ammonia excretion contributes to acid-base homeostasis. As a result, selective and regulated renal ammonia transport by renal epithelial cells is central to acid-base homeostasis. Both molecular forms of ammonia, NH3 and NH4+, are transported by specific proteins, and regulation of these transport processes determines the eventual fate of the ammonia produced. In this review, we discuss these issues, and then discuss in detail the specific proteins involved in renal epithelial cell ammonia transport.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
49
|
Theparambil SM, Naoshin Z, Defren S, Schmaelzle J, Weber T, Schneider HP, Deitmer JW. Bicarbonate sensing in mouse cortical astrocytes during extracellular acid/base disturbances. J Physiol 2017; 595:2569-2585. [PMID: 27981578 DOI: 10.1113/jp273394] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/30/2016] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS The present study suggests that the electrogenic sodium-bicarbonate cotransporter, NBCe1, supported by carbonic anhydrase II, CAII, provides an efficient mechanism of bicarbonate sensing in cortical astrocytes. This mechanism is proposed to play a major role in setting the pHi responses to extracellular acid/base challenges in astrocytes. A decrease in extracellular [HCO3- ] during isocapnic acidosis and isohydric hypocapnia, or an increase in intracellular [HCO3- ] during hypercapnic acidosis, was effectively sensed by NBCe1, which carried bicarbonate out of the cells under these conditions, and caused an acidification and sodium fall in WT astrocytes, but not in NBCe1-knockout astrocytes. Isocapnic acidosis, hypercapnic acidosis and isohydric hypocapnia evoked inward currents in NBCe1- and CAII-expressing Xenopus laevis oocytes, but not in native oocytes, suggesting that NBCe1 operates in the outwardly directed mode under these conditions consistent with our findings in astrocytes. We propose that bicarbonate sensing of astrocytes may have functional significance during extracellular acid/base disturbances in the brain, as it not only alters intracellular pH/[HCO3- ]-dependent functions of astrocytes, but also modulates the extracellular pH/[HCO3- ] in brain tissue. ABSTRACT Extracellular acid/base status of the mammalian brain undergoes dynamic changes during many physiological and pathological events. Although intracellular pH (pHi ) of astrocytes responds to extracellular acid/base changes, the mechanisms mediating these changes have remained unresolved. We have previously shown that the electrogenic sodium-bicarbonate cotransporter, NBCe1, is a high-affinity bicarbonate carrier in cortical astrocytes. In the present study, we investigated whether NBCe1 plays a role in bicarbonate sensing in astrocytes, and in determining the pHi responses to extracellular acid/base challenges. We measured changes in intracellular H+ and Na+ in astrocytes from wild-type (WT) and from NBCe1-knockout (KO) mice, using ion-selective dyes, during isocapnic acidosis, hypercapnic acidosis and hypocapnia. We also analysed NBCe1-mediated membrane currents in Xenopus laevis oocytes under similar conditions. Comparing WT and NBCe1-KO astrocytes, we could dissect the contribution of NBCe1, of diffusion of CO2 across the cell membrane and, after blocking carbonic anhydrase (CA) activity with ethoxyzolamide, of the role of CA, for the amplitude and rate of acid/base fluxes. Our results suggest that NBCe1 transport activity in astrocytes, supported by CA activity, renders astrocytes bicarbonate sensors in the mouse cortex. NBCe1 carried bicarbonate into and out of the cell by sensing the variations of transmembrane [HCO3- ], irrespective of the changes in intra- and extracellular pH, and played a major role in setting pHi responses to the extracellular acid/base challenges. We propose that bicarbonate sensing of astrocytes may have potential functional significance during extracellular acid/base alterations in the brain.
Collapse
Affiliation(s)
- Shefeeq M Theparambil
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Pb 3049, D-67653, Kaiserslautern, Germany
| | - Zinnia Naoshin
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Pb 3049, D-67653, Kaiserslautern, Germany
| | - Sabrina Defren
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Pb 3049, D-67653, Kaiserslautern, Germany
| | - Jana Schmaelzle
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Pb 3049, D-67653, Kaiserslautern, Germany
| | - Tobias Weber
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Pb 3049, D-67653, Kaiserslautern, Germany
| | - Hans-Peter Schneider
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Pb 3049, D-67653, Kaiserslautern, Germany
| | - Joachim W Deitmer
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Pb 3049, D-67653, Kaiserslautern, Germany
| |
Collapse
|
50
|
Yamaguchi M, Steward MC, Smallbone K, Sohma Y, Yamamoto A, Ko SBH, Kondo T, Ishiguro H. Bicarbonate-rich fluid secretion predicted by a computational model of guinea-pig pancreatic duct epithelium. J Physiol 2017; 595:1947-1972. [PMID: 27995646 DOI: 10.1113/jp273306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/24/2016] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS The ductal system of the pancreas secretes large volumes of alkaline fluid containing HCO3- concentrations as high as 140 mm during hormonal stimulation. A computational model has been constructed to explore the underlying ion transport mechanisms. Parameters were estimated by fitting the model to experimental data from guinea-pig pancreatic ducts. The model was readily able to secrete 140 mm HCO3- . Its capacity to do so was not dependent upon special properties of the cystic fibrosis transmembrane conductance regulator (CFTR) anion channels and solute carrier family 26 member A6 (SLC26A6) anion exchangers. We conclude that the main requirement for secreting high HCO3- concentrations is to minimize the secretion of Cl- ions. These findings help to clarify the mechanism responsible for pancreatic HCO3- secretion, a vital process that prevents the formation of protein plugs and viscous mucus in the ducts, which could otherwise lead to pancreatic disease. ABSTRACT A computational model of guinea-pig pancreatic duct epithelium was developed to determine the transport mechanism by which HCO3- ions are secreted at concentrations in excess of 140 mm. Parameters defining the contributions of the individual ion channels and transporters were estimated by least-squares fitting of the model predictions to experimental data obtained from isolated ducts and intact pancreas under a range of experimental conditions. The effects of cAMP-stimulated secretion were well replicated by increasing the activities of the basolateral Na+ -HCO3- cotransporter (NBC1) and apical Cl- /HCO3- exchanger (solute carrier family 26 member A6; SLC26A6), increasing the basolateral K+ permeability and apical Cl- and HCO3- permeabilities (CFTR), and reducing the activity of the basolateral Cl- /HCO3- exchanger (anion exchanger 2; AE2). Under these conditions, the model secreted ∼140 mm HCO3- at a rate of ∼3 nl min-1 mm-2 , which is consistent with experimental observations. Alternative 1:2 and 1:1 stoichiometries for Cl- /HCO3- exchange via SLC26A6 at the apical membrane were able to support a HCO3- -rich secretion. Raising the HCO3- /Cl- permeability ratio of CFTR from 0.4 to 1.0 had little impact upon either the secreted HCO3- concentration or the volume flow. However, modelling showed that a reduction in basolateral AE2 activity by ∼80% was essential in minimizing the intracellular Cl- concentration following cAMP stimulation and thereby maximizing the secreted HCO3- concentration. The addition of a basolateral Na+ -K+ -2Cl- cotransporter (NKCC1), assumed to be present in rat and mouse ducts, raised intracellular Cl- and resulted in a lower secreted HCO3- concentration, as is characteristic of those species. We conclude therefore that minimizing the driving force for Cl- secretion is the main requirement for secreting 140 mm HCO3- .
Collapse
Affiliation(s)
- Makoto Yamaguchi
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Kieran Smallbone
- School of Computer Science, University of Manchester, Manchester, UK
| | | | - Akiko Yamamoto
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shigeru B H Ko
- Department of Systems Medicine, Keio University, Tokyo, Japan
| | - Takaharu Kondo
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Ishiguro
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|