1
|
Novello G, Souza FF, Canisso IF. Platelet-Rich Plasma Proteome of Mares Susceptible to Persistent-Breeding-Induced Endometritis Differs from Resistant Mares. Animals (Basel) 2024; 14:2100. [PMID: 39061562 PMCID: PMC11273647 DOI: 10.3390/ani14142100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Persistent-breeding-induced endometritis (PBIE) is the leading cause of subfertility and poor reproductive efficiency in mares. Platelet-rich plasma (PRP) treatment has been shown to mitigate PBIE, reduce uterine infections, and improve fertility in mares. However, the proteome of PRP in mares, particularly those susceptible to PBIE, remains unknown. This study aimed to fill this knowledge gap by comparing the most abundant proteins present in PRP prepared from mares with histories of being susceptible or resistant to PBIE. The study involved twelve light-breed mares: seven susceptible and five resistant to PBIE. A complete blood count and physical examination were performed on each mare before blood drawing to ensure good health. The PRP was prepared following collection in a blood transfusion bag and double centrifugation. Platelet counts in the PRP were compared across the groups. The PRP was cryopreserved in liquid nitrogen until proteomics could be completed. Physical parameters and complete blood cell counts were within normal ranges. The platelet counts for resistant (561 ± 152 × 103) and susceptible mares (768 ± 395 × 103) differed (p < 0.05). One hundred and five proteins were detected in all mares, and four proteins were more abundant in resistant mares (p < 0.05). The proteins were apolipoprotein C-II, serpin family G member 1, protection of telomeres protein 1, and non-specific serine/threonine protein kinase. All these proteins are linked to the immune response. These results suggest that PRP prepared from mares resistant to PBIE may be more beneficial in mitigating PBIE in mares, offering a promising avenue for improving equine reproductive health. However, this remains to be determined with in vivo studies.
Collapse
Affiliation(s)
- Guilherme Novello
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Sao Paulo State University (UNESP), Botucatu 01419-901, SP, Brazil; (G.N.); (F.F.S.)
| | - Fabiana F. Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Sao Paulo State University (UNESP), Botucatu 01419-901, SP, Brazil; (G.N.); (F.F.S.)
| | - Igor F. Canisso
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Sao Paulo State University (UNESP), Botucatu 01419-901, SP, Brazil; (G.N.); (F.F.S.)
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61822, USA
| |
Collapse
|
2
|
Zhang T, Ma N, Wang J, Min X, Wei L, Li K. C5aR2 Deficiency Lessens C5aR1 Distribution and Expression in Neutrophils and Macrophages. J Immunol Res 2024; 2024:2899154. [PMID: 39021433 PMCID: PMC11254461 DOI: 10.1155/2024/2899154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
As another receptor for complement activation product C5a, C5aR2 has been paid much attention these years. Although controversial and complex, its specific signals or roles in modulating the classic receptor C5aR1 have been investigated and gradually revealed. The hypothesis of the heterodimer of C5aR1 and C5aR2 has also been suggested and observed under extremely high C5a concentrations. In this article, we tried to investigate whether C5aR2 would affect C5aR1 expression under normal or inflammatory conditions in WT and C5ar2 -/- mice of C57BL/6 background. We focused on the innate immune cells-neutrophils and macrophages. The mRNA levels of C5ar1 in normal kidney, liver, and the mRNA or protein levels of naïve-bone marrow and peripheral blood leukocytes and peritoneal Mφs were comparable between WT and C5ar2 -/- mice, indicating the technique of C5aR2 knockout did not affect the transcription of its neighboring gene C5aR1. However, the mean fluorescence intensity of surface C5aR1 on naïve circulating C5ar2 -/- neutrophils detected by FACS was reduced, which might be due to the reduced internalization of C5aR1 on C5ar2 -/- neutrophils. In the peritonitis model induced by i.p. injection of thioglycollate, more neutrophils were raised after 10 hr in C5ar2 -/- peritoneal cavity, indicating the antagonism of C5aR2 on C5aR1 signal in neutrophil chemotaxis. After 3 days of thioglycollate injection, the mainly infiltrating macrophages were comparable between WT and C5ar2 -/- mice, but the C5ar1 mRNA and surface or total C5aR1 protein expression were both reduced in C5ar2 -/- macrophages, combined with our previous study of reduced chemokines and cytokines expression in C5ar2 -/- peritoneal macrophages, indicating that C5aR2 in macrophages may cooperate with C5aR1 inflammatory signals. Our article found C5aR2 deficiency lessened C5aR1 distribution and expression in neutrophils and macrophages with different functions, indicating C5aR2 might function differently in different cells.
Collapse
Affiliation(s)
- Ting Zhang
- Department of PathologyThe Second Affiliated HospitalSchool of MedicineXi'an Jiaotong University, Xi'an 710004, China
- Core Research LaboratoryThe Second Affiliated HospitalSchool of MedicineXi'an Jiaotong University, Xi'an 710004, China
| | - Ning Ma
- Core Research LaboratoryThe Second Affiliated HospitalSchool of MedicineXi'an Jiaotong University, Xi'an 710004, China
| | - Jiaxing Wang
- Institute of HematologySchool of MedicineNorthwest University, Xi'an 710069, China
| | - Xiaoyun Min
- Core Research LaboratoryThe Second Affiliated HospitalSchool of MedicineXi'an Jiaotong University, Xi'an 710004, China
| | - Linlin Wei
- Core Research LaboratoryThe Second Affiliated HospitalSchool of MedicineXi'an Jiaotong University, Xi'an 710004, China
| | - Ke Li
- Core Research LaboratoryThe Second Affiliated HospitalSchool of MedicineXi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
3
|
Székely E, Molnár M, Lihi N, Várnagy K. Characterization of Copper(II) and Zinc(II) Complexes of Peptides Mimicking the CuZnSOD Enzyme. Molecules 2024; 29:795. [PMID: 38398547 PMCID: PMC10892282 DOI: 10.3390/molecules29040795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Antimicrobial peptides are short cationic peptides that are present on biological surfaces susceptible to infection, and they play an important role in innate immunity. These peptides, like other compounds with antimicrobial activity, often have significant superoxide dismutase (SOD) activity. One direction of our research is the characterization of peptides modeling the CuZnSOD enzyme and the determination of their biological activity, and these results may contribute to the development of novel antimicrobial peptides. In the framework of this research, we have synthesized 10, 15, and 16-membered model peptides containing the amino acid sequence corresponding to the Cu(II) and Zn(II) binding sites of the CuZnSOD enzyme, namely the Zn(II)-binding HVGD sequence (80-83. fragments), the Cu(II)-binding sequence HVH (fragments 46-48), and the histidine (His63), which links the two metal ions as an imidazolate bridge: Ac-FHVHEGPHFN-NH2 (L1(10)), Ac-FHVHAGPHFNGGHVG-NH2 (L2(15)), and Ac-FHVHEGPHFNGGHVGD-NH2 (L3(16)). pH-potentiometric, UV-Vis-, and CD-spectroscopy studies of the Cu(II), Zn(II), and Cu(II)-Zn(II) mixed complexes of these peptides were performed, and the SOD activity of the complexes was determined. The binding sites preferred by Cu(II) and Zn(II) were identified by means of CD-spectroscopy. From the results obtained for these systems, it can be concluded that in equimolar solution, the -(NGG)HVGD- sequence of the peptides is the preferred binding site for copper(II) ion. However, in the presence of both metal ions, according to the native enzyme, the -HVGD- sequence offers the main binding site for Zn(II), while the majority of Cu(II) binds to the -FHVH- sequence. Based on the SOD activity assays, complexes of the 15- and 16-membered peptide have a significant SOD activity. Although this activity is smaller than that of the native CuZnSOD enzyme, the complexes showed better performance in the degradation of superoxide anion than other SOD mimics. Thus, the incorporation of specific amino acid sequences mimicking the CuZnSOD enzyme increases the efficiency of model systems in the catalytic decomposition of superoxide anion.
Collapse
Affiliation(s)
| | | | | | - Katalin Várnagy
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary
| |
Collapse
|
4
|
Vllahu M, Voli A, Licursi V, Zagami C, D'Amore A, Traulsen J, Woelffling S, Schmid M, Crickley R, Lisle R, Link A, Tosco A, Meyer TF, Boccellato F. Inflammation promotes stomach epithelial defense by stimulating the secretion of antimicrobial peptides in the mucus. Gut Microbes 2024; 16:2390680. [PMID: 39244776 PMCID: PMC11382725 DOI: 10.1080/19490976.2024.2390680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
The mucus serves as a protective barrier in the gastrointestinal tract against microbial attacks. While its role extends beyond merely being a physical barrier, the extent of its active bactericidal properties remains unclear, and the mechanisms regulating these properties are not yet understood. We propose that inflammation induces epithelial cells to secrete antimicrobial peptides, transforming mucus into an active bactericidal agent. To investigate the properties of mucus, we previously developed mucosoid culture models that mimic the healthy human stomach epithelium. Similar to organoids, mucosoids are stem cell-driven cultures; however, the cells are cultivated on transwells at air-liquid interface. The epithelial cells of mucosoids form a polarized monolayer, allowing differentiation into all stomach lineages, including mucus-secreting cells. This setup facilitates the secretion and accumulation of mucus on the apical side of the mucosoids, enabling analysis of its bactericidal effects and protein composition, including antimicrobial peptides. Our findings show that TNFα, IL1β, and IFNγ induce the secretion of antimicrobials such as lactotransferrin, lipocalin2, complement component 3, and CXCL9 into the mucus. This antimicrobial-enriched mucus can partially eliminate Helicobacter pylori, a key stomach pathogen. The bactericidal activity depends on the concentration of each antimicrobial and their gene expression is higher in patients with inflammation and H.pylori-associated chronic gastritis. However, we also find that H. pylori infection can reduce the expression of antimicrobial encoding genes promoted by inflammation. These findings suggest that controlling antimicrobial secretion in the mucus is a critical component of epithelial immunity. However, pathogens like H. pylori can overcome these defenses and survive in the mucosa.
Collapse
Affiliation(s)
- Megi Vllahu
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Antonia Voli
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy c/o Department of Biology and Biotechnology ''C. Darwin'', Sapienza University, Rome, Italy
| | - Claudia Zagami
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Antonella D'Amore
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jan Traulsen
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Sara Woelffling
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Monika Schmid
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Robbie Crickley
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Richard Lisle
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrecht University of Kiel and University Hospital Schleswig-Holstein - Campus Kiel, Kiel, Germany
| | - Francesco Boccellato
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Rodriguez P, Laskowski LJ, Pallais JP, Bock HA, Cavalco NG, Anderson EI, Calkins MM, Razzoli M, Sham YY, McCorvy JD, Bartolomucci A. Functional profiling of the G protein-coupled receptor C3aR1 reveals ligand-mediated biased agonism. J Biol Chem 2024; 300:105549. [PMID: 38072064 PMCID: PMC10796979 DOI: 10.1016/j.jbc.2023.105549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 12/29/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are leading druggable targets for several medicines, but many GPCRs are still untapped for their therapeutic potential due to poor understanding of specific signaling properties. The complement C3a receptor 1 (C3aR1) has been extensively studied for its physiological role in C3a-mediated anaphylaxis/inflammation, and in TLQP-21-mediated lipolysis, but direct evidence for the functional relevance of the C3a and TLQP-21 ligands and signal transduction mechanisms are still limited. In addition, C3aR1 G protein coupling specificity is still unclear, and whether endogenous ligands, or drug-like compounds, show ligand-mediated biased agonism is unknown. Here, we demonstrate that C3aR1 couples preferentially to Gi/o/z proteins and can recruit β-arrestins to cause internalization. Furthermore, we showed that in comparison to C3a63-77, TLQP-21 exhibits a preference toward Gi/o-mediated signaling compared to β-arrestin recruitment and internalization. We also show that the purported antagonist SB290157 is a very potent C3aR1 agonist, where antagonism of ligand-stimulated C3aR1 calcium flux is caused by potent β-arrestin-mediated internalization. Finally, ligand-mediated signaling bias impacted cell function as demonstrated by the regulation of calcium influx, lipolysis in adipocytes, phagocytosis in microglia, and degranulation in mast cells. Overall, we characterize C3aR1 as a Gi/o/z-coupled receptor and demonstrate the functional relevance of ligand-mediated signaling bias in key cellular models. Due to C3aR1 and its endogenous ligands being implicated in inflammatory and metabolic diseases, these results are of relevance toward future C3aR1 drug discovery.
Collapse
Affiliation(s)
- Pedro Rodriguez
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lauren J Laskowski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jean Pierre Pallais
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hailey A Bock
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Natalie G Cavalco
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Emilie I Anderson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maggie M Calkins
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
6
|
Liu X, Hu YZ, Pan YR, Liu J, Jiang YB, Zhang YA, Zhang XJ. Comparative study on antibacterial characteristics of the multiple liver expressed antimicrobial peptides (LEAPs) in teleost fish. Front Immunol 2023; 14:1128138. [PMID: 36891317 PMCID: PMC9986249 DOI: 10.3389/fimmu.2023.1128138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
Antimicrobial peptides are important components of the host innate immune system, forming the first line of defense against infectious microorganisms. Among them, liver-expressed antimicrobial peptides (LEAPs) are a family of antimicrobial peptides that widely exist in vertebrates. LEAPs include two types, named LEAP-1 and LEAP-2, and many teleost fish have two or more LEAP-2s. In this study, LEAP-2C from rainbow trout and grass carp were discovered, both of which are composed of 3 exons and 2 introns. The antibacterial functions of the multiple LEAPs were systematically compared in rainbow trout and grass carp. The gene expression pattern revealed that rainbow trout and grass carp LEAP-1, LEAP-2A, LEAP-2B and/or LEAP-2C were differentially expressed in various tissues/organs, mainly in liver. After bacterial infection, the expression levels of LEAP-1, LEAP-2A, LEAP-2B and/or LEAP-2C in the liver and gut of rainbow trout and grass carp increased to varying degrees. Moreover, the antibacterial assay and bacterial membrane permeability assay showed that rainbow trout and grass carp LEAP-1, LEAP-2A, LEAP-2B and LEAP-2C all have antibacterial activities against a variety of Gram-positive and Gram-negative bacteria with varying levels through membrane rupture. Furthermore, cell transfection assay showed that only rainbow trout LEAP-1, but not LEAP-2, can lead to the internalization of ferroportin, the only iron exporter on cell surface, indicating that only LEAP-1 possess iron metabolism regulation activity in teleost fish. Taken together, this study systematically compared the antibacterial function of LEAPs in teleost fish and the results suggest that multiple LEAPs can enhance the immunity of teleost fish through different expression patterns and different antibacterial activities to various bacteria.
Collapse
Affiliation(s)
- Xun Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Zhen Hu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yi-Ru Pan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jia Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - You-Bo Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Zhang XJ, Zhong YQ, Ma ZY, Hu YZ, Su JG, Zhang YA. Insights into the Antibacterial Properties of Complement Peptides C3a, C4a, and C5a across Vertebrates. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:ji2101019. [PMID: 36280254 DOI: 10.4049/jimmunol.2101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 09/30/2022] [Indexed: 02/17/2024]
Abstract
Complement peptides C3a, C4a, and C5a are important components of innate immunity in vertebrates. Although they diverged from a common ancestor, only C3a and C4a can act as antibacterial peptides in Homo sapiens, suggesting that C5a has evolved into a purely chemotactic molecule; however, the antibacterial properties of C3a, C4a, and C5a across vertebrates still require elucidation. In this article, we show that, unlike those in H. sapiens, Mus musculus C3a, C4a, and C5a all possess antibacterial activities, implying that the antibacterial properties of C3a, C4a, and C5a have evolved divergently in vertebrates. The extremely different net charge, a key factor determining the antibacterial activities of cationic antimicrobial peptides, of vertebrate C3a, C4a, and C5a supports this speculation. Moreover, the antibacterial activity of overlapping peptides covering vertebrate C3a, C4a, and C5a further strongly supports the speculation, because their activity is positively correlated with the net charge of source molecules. Notably, the structures of C3a, C4a, and C5a are conserved in vertebrates, and the inactive overlapping peptides can become antibacterial peptides if mutated to possess enough net positive charges, indicating that net charge is the only factor determining the antibacterial properties of vertebrate C3a, C4a, and C5a. More importantly, many vertebrate C3a-, C4a-, and C5a-derived peptides possess high antibacterial activities yet exhibit no hemolytic activities, suggesting the application potential in anti-infective therapy. Taken together, our findings reveal that vertebrate C3a, C4a, and C5a are all sources of antibacterial peptides that will facilitate the design of excellent peptide antibiotics.
Collapse
Affiliation(s)
- Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China; and
| | - Ya-Qin Zhong
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zi-You Ma
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Zhen Hu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jian-Guo Su
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Gera S, Kankuri E, Kogermann K. Antimicrobial peptides - Unleashing their therapeutic potential using nanotechnology. Pharmacol Ther 2021; 232:107990. [PMID: 34592202 DOI: 10.1016/j.pharmthera.2021.107990] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
Antimicrobial peptides (AMPs) are potent, mostly cationic, and amphiphilic broad-spectrum host defense antimicrobials that are produced by all organisms ranging from prokaryotes to humans. In addition to their antimicrobial actions, they modulate inflammatory and immune responses and promote wound healing. Although they have clear benefits over traditional antibiotic drugs, their wide therapeutic utilization is compromised by concerns of toxicity, stability, and production costs. Recent advances in nanotechnology have attracted increasing interest to unleash the AMPs' immense potential as broad-spectrum antibiotics and anti-biofilm agents, against which the bacteria have less chances to develop resistance. Topical application of AMPs promotes migration of keratinocytes and fibroblasts, and contributes significantly to an accelerated wound healing process. Delivery of AMPs by employing nanotechnological approaches avoids the major disadvantages of AMPs, such as instability and toxicity, and provides a controlled delivery profile together with prolonged activity. In this review, we provide an overview of the key properties of AMPs and discuss the latest developments in topical AMP therapy using nanocarriers. We use chronic hard-to-heal wounds-complicated by infections, inflammation, and stagnated healing-as an example of an unmet medical need for which the AMPs' wide range of therapeutic actions could provide the most potential benefit. The use of innovative materials and sophisticated nanotechnological approaches offering various possibilities are discussed in more depth.
Collapse
Affiliation(s)
- Sonia Gera
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
| | - Karin Kogermann
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| |
Collapse
|
9
|
Shinjyo N, Kagaya W, Pekna M. Interaction Between the Complement System and Infectious Agents - A Potential Mechanistic Link to Neurodegeneration and Dementia. Front Cell Neurosci 2021; 15:710390. [PMID: 34408631 PMCID: PMC8365172 DOI: 10.3389/fncel.2021.710390] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022] Open
Abstract
As part of the innate immune system, complement plays a critical role in the elimination of pathogens and mobilization of cellular immune responses. In the central nervous system (CNS), many complement proteins are locally produced and regulate nervous system development and physiological processes such as neural plasticity. However, aberrant complement activation has been implicated in neurodegeneration, including Alzheimer's disease. There is a growing list of pathogens that have been shown to interact with the complement system in the brain but the short- and long-term consequences of infection-induced complement activation for neuronal functioning are largely elusive. Available evidence suggests that the infection-induced complement activation could be protective or harmful, depending on the context. Here we summarize how various infectious agents, including bacteria (e.g., Streptococcus spp.), viruses (e.g., HIV and measles virus), fungi (e.g., Candida spp.), parasites (e.g., Toxoplasma gondii and Plasmodium spp.), and prion proteins activate and manipulate the complement system in the CNS. We also discuss the potential mechanisms by which the interaction between the infectious agents and the complement system can play a role in neurodegeneration and dementia.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Wataru Kagaya
- Department of Parasitology and Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
10
|
Pozolotin VA, Umnyakova ES, Kopeykin PM, Komlev AS, Dubrovskii YA, Krenev IA, Shamova OV, Berlov MN. Evaluation of Antimicrobial Activity of the C3f Peptide, a Derivative of Human C3 Protein. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Appiah SA, Foxx CL, Langgartner D, Palmer A, Zambrano CA, Braumüller S, Schaefer EJ, Wachter U, Elam BL, Radermacher P, Stamper CE, Heinze JD, Salazar SN, Luthens AK, Arnold AL, Reber SO, Huber-Lang M, Lowry CA, Halbgebauer R. Evaluation of the gut microbiome in association with biological signatures of inflammation in murine polytrauma and shock. Sci Rep 2021; 11:6665. [PMID: 33758228 PMCID: PMC7988149 DOI: 10.1038/s41598-021-85897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/05/2021] [Indexed: 12/03/2022] Open
Abstract
Severe injuries are frequently accompanied by hemorrhagic shock and harbor an increased risk for complications. Local or systemic inflammation after trauma/hemorrhage may lead to a leaky intestinal epithelial barrier and subsequent translocation of gut microbiota, potentially worsening outcomes. To evaluate the extent with which trauma affects the gut microbiota composition, we performed a post hoc analysis of a murine model of polytrauma and hemorrhage. Four hours after injury, organs and plasma samples were collected, and the diversity and composition of the cecal microbiome were evaluated using 16S rRNA gene sequencing. Although cecal microbial alpha diversity and microbial community composition were not found to be different between experimental groups, norepinephrine support in shock animals resulted in increased alpha diversity, as indicated by higher numbers of distinct microbial features. We observed that the concentrations of proinflammatory mediators in plasma and intestinal tissue were associated with measures of microbial alpha and beta diversity and the presence of specific microbial drivers of inflammation, suggesting that the composition of the gut microbiome at the time of trauma, or shortly after trauma exposure, may play an important role in determining physiological outcomes. In conclusion, we found associations between measures of gut microbial alpha and beta diversity and the severity of systemic and local gut inflammation. Furthermore, our data suggest that four hours following injury is too early for development of global changes in the alpha diversity or community composition of the intestinal microbiome. Future investigations with increased temporal-spatial resolution are needed in order to fully elucidate the effects of trauma and shock on the gut microbiome, biological signatures of inflammation, and proximal and distal outcomes.
Collapse
Affiliation(s)
- Sandra A Appiah
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Christine L Foxx
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University Ulm, 89081, Ulm, Germany
| | - Annette Palmer
- Institute of Clinical and Experimental Trauma Immunology, Centre for Biomedical Research, University Hospital Ulm, University Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Cristian A Zambrano
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Sonja Braumüller
- Institute of Clinical and Experimental Trauma Immunology, Centre for Biomedical Research, University Hospital Ulm, University Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Evan J Schaefer
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Ulrich Wachter
- Institute for Anaesthesiological Pathophysiology and Process Development, University of Ulm, Ulm, Germany
| | - Brooke L Elam
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Peter Radermacher
- Institute for Anaesthesiological Pathophysiology and Process Development, University of Ulm, Ulm, Germany
| | - Christopher E Stamper
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Jared D Heinze
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Stephanie N Salazar
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Amalia K Luthens
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Andrea L Arnold
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University Ulm, 89081, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Centre for Biomedical Research, University Hospital Ulm, University Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany.
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz, Medical Campus, Aurora, CO, 80045, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, Centre for Biomedical Research, University Hospital Ulm, University Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany
| |
Collapse
|
12
|
Bowden TJ, Kraev I, Lange S. Post-translational protein deimination signatures and extracellular vesicles (EVs) in the Atlantic horseshoe crab (Limulus polyphemus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103714. [PMID: 32335073 DOI: 10.1016/j.dci.2020.103714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
The horseshoe crab is a living fossil and a species of marine arthropod with unusual immune system properties which are also exploited commercially. Given its ancient status dating to the Ordovician period (450 million years ago), its standing in phylogeny and unusual immunological characteristics, the horseshoe crab may hold valuable information for comparative immunology studies. Peptidylarginine deiminases (PADs) are calcium dependent enzymes that are phylogenetically conserved and cause protein deimination via conversion of arginine to citrulline. This post-translational modification can lead to structural and functional protein changes contributing to protein moonlighting in health and disease. PAD-mediated regulation of extracellular vesicle (EV) release, a critical component of cellular communication, has furthermore been identified to be a phylogenetically conserved mechanism. PADs, protein deimination and EVs have hitherto not been studied in the horseshoe crab and were assessed in the current study. Horseshoe crab haemolymph serum-EVs were found to be a poly-dispersed population in the 20-400 nm size range, with the majority of EVs falling within 40-123 nm. Key immune proteins were identified to be post-translationally deiminated in horseshoe crab haemolymph serum, providing insights into protein moonlighting function of Limulus and phylogenetically conserved immune proteins. KEGG (Kyoto encyclopaedia of genes and genomes) and GO (gene ontology) enrichment analysis of deiminated proteins identified in Limulus revealed KEGG pathways relating to complement and coagulation pathways, Staphylococcus aureus infection, glycolysis/gluconeogenesis and carbon metabolism, while GO pathways of biological and molecular pathways related to a range of immune and metabolic functions, as well as developmental processes. The characterisation of EVs, and post-translational deimination signatures, revealed here in horseshoe crab, contributes to current understanding of protein moonlighting functions and EV-mediated communication in this ancient arthropod and throughout phylogeny.
Collapse
Affiliation(s)
- Timothy J Bowden
- Aquaculture Research Institute, School of Food & Agriculture, University of Maine, University of Maine, Orono, ME, USA.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science Technology, Engineering and Mathematics Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
13
|
Winnicki W, Pichler P, Mechtler K, Imre R, Steinmacher I, Sengölge G, Knafl D, Beilhack G, Wagner L. A novel approach to immunoapheresis of C3a/C3 and proteomic identification of associates. PeerJ 2019; 7:e8218. [PMID: 31871840 PMCID: PMC6921979 DOI: 10.7717/peerj.8218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023] Open
Abstract
Background Complement factor C3 represents the central component of the complement cascade and its activation split product C3a plays an important role in inflammation and disease. Many human disorders are linked to dysregulation of the complement system and alteration in interaction molecules. Therefore, various therapeutic approaches to act on the complement system have been initiated. Methods and Results Aiming to develop a tool to eliminate C3a/C3 from the circulation, in a first step a high affine murine monoclonal antibody (mAb) (3F7E2-mAb) was generated against complement factor C3 and selected for binding to the C3a region to serve as immunoaffinity reagent. Functional testing of the 3F7E2-mAb revealed an inhibition of Zymosan-induced cleavage of C3a from C3. Subsequently, a C3a/C3 specific 3F7E2-immunoaffinity column was developed and apheresis of C3a/C3 and associates was performed. Finally, a proteomic analysis was carried out for identification of apheresis products. C3a/C3 was liberated from the 3F7E2-column together with 278 proteins. C3a/C3 interaction specificity was validated by using a haptoglobin immunoaffinity column as control and biostatistic analysis revealed 39 true C3a/C3 interactants. Conclusion A novel and functionally active mAb was developed against complement factor C3a/C3 and used in a specific immunoaffinity column that allows apheresis of C3a/C3 and associates and their identification by proteomic analysis. This methodological approach of developing specific antibodies that can be used as immunoaffinity reagents to design immunoaffinity columns for elimination and further identification of associated proteins could open new avenues for the development of tailored immunotherapy in various complement-mediated or autoimmune diseases.
Collapse
Affiliation(s)
- Wolfgang Winnicki
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Peter Pichler
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Karl Mechtler
- ProtChem Facility, Research Institute of Molecular Pathology, Vienna, Austria
| | - Richard Imre
- ProtChem Facility, Research Institute of Molecular Pathology, Vienna, Austria
| | - Ines Steinmacher
- ProtChem Facility, Research Institute of Molecular Pathology, Vienna, Austria
| | - Gürkan Sengölge
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Daniela Knafl
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Georg Beilhack
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Ludwig Wagner
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Xenobiotic Binding Domain of Glutathione S-Transferase Has Cryptic Antimicrobial Peptides. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9793-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Dasari P, Shopova IA, Stroe M, Wartenberg D, Martin-Dahse H, Beyersdorf N, Hortschansky P, Dietrich S, Cseresnyés Z, Figge MT, Westermann M, Skerka C, Brakhage AA, Zipfel PF. Aspf2 From Aspergillus fumigatus Recruits Human Immune Regulators for Immune Evasion and Cell Damage. Front Immunol 2018; 9:1635. [PMID: 30166981 PMCID: PMC6106110 DOI: 10.3389/fimmu.2018.01635] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/03/2018] [Indexed: 12/11/2022] Open
Abstract
The opportunistic fungal pathogen Aspergillus fumigatus can cause life-threatening infections, particularly in immunocompromised patients. Most pathogenic microbes control host innate immune responses at the earliest time, already before infiltrating host immune cells arrive at the site of infection. Here, we identify Aspf2 as the first A. fumigatus Factor H-binding protein. Aspf2 recruits several human plasma regulators, Factor H, factor-H-like protein 1 (FHL-1), FHR1, and plasminogen. Factor H contacts Aspf2 via two regions located in SCRs6–7 and SCR20. FHL-1 binds via SCRs6–7, and FHR1 via SCRs3–5. Factor H and FHL-1 attached to Aspf2-maintained cofactor activity and assisted in C3b inactivation. A Δaspf2 knockout strain was generated which bound Factor H with 28% and FHL-1 with 42% lower intensity. In agreement with less immune regulator acquisition, when challenged with complement-active normal human serum, Δaspf2 conidia had substantially more C3b (>57%) deposited on their surface. Consequently, Δaspf2 conidia were more efficiently phagocytosed (>20%) and killed (44%) by human neutrophils as wild-type conidia. Furthermore, Aspf2 recruited human plasminogen and, when activated by tissue-type plasminogen activator, newly generated plasmin cleaved the chromogenic substrate S2251 and degraded fibrinogen. Furthermore, plasmin attached to conidia damaged human lung epithelial cells, induced cell retraction, and caused matrix exposure. Thus, Aspf2 is a central immune evasion protein and plasminogen ligand of A. fumigatus. By blocking host innate immune attack and by disrupting human lung epithelial cell layers, Aspf2 assists in early steps of fungal infection and likely allows tissue penetration.
Collapse
Affiliation(s)
- Prasad Dasari
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Iordana A Shopova
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Maria Stroe
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Dirk Wartenberg
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Hans Martin-Dahse
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Niklas Beyersdorf
- University of Würzburg, Institute for Virology and Immunobiology, Würzburg, Germany
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Stefanie Dietrich
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany.,Faculty for Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Zoltán Cseresnyés
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Marc Thilo Figge
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany.,Faculty for Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Martin Westermann
- Electron Microscopy Center of the University Hospital, Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany.,Faculty for Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Faculty for Biological Sciences, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
16
|
Exploiting a novel conformational switch to control innate immunity mediated by complement protein C3a. Nat Commun 2017; 8:351. [PMID: 28839129 PMCID: PMC5570900 DOI: 10.1038/s41467-017-00414-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/28/2017] [Indexed: 01/02/2023] Open
Abstract
Complement C3a is an important protein in innate and adaptive immunity, but its specific roles in vivo remain uncertain because C3a degrades rapidly to form the C3a-desArg protein, which does not bind to the C3a receptor and is indistinguishable from C3a using antibodies. Here we develop the most potent, stable and highly selective small molecule modulators of C3a receptor, using a heterocyclic hinge to switch between agonist and antagonist ligand conformations. This enables characterization of C3 areceptor-selective pro- vs. anti-inflammatory actions in human mast cells and macrophages, and in rats. A C3a receptor-selective agonist induces acute rat paw inflammation by first degranulating mast cells before activating macrophages and neutrophils. An orally administered C3a receptor-selective antagonist inhibits mast cell degranulation, thereby blocking recruitment and activation of macrophages and neutrophils, expression of inflammatory mediators and inflammation in a rat paw edema model. These novel tools reveal the mechanism of C3a-induced inflammation and provide new insights to complement-based medicines. Complement C3a is an important protein in innate and adaptive immunity, but its roles in vivo are unclear. Here the authors develop novel chemical agonists and antagonists for the C3a receptor, and show that they modulate mast cell degranulation and inflammation in a rat paw edema model
Collapse
|
17
|
Abstract
The complement system is an important part of the innate and adaptive immune systems. Originally characterized as a single serum component contributing to the killing of bacteria, we now know that there are close to sixty complement proteins, multiple activation pathways and a wide range of effector functions mediated by complement. The system plays a critical role in host defense against bacteria, viruses, fungi and other pathogens. However, inappropriate complement activation contributes to the pathophysiology of autoimmune diseases and many inflammatory syndromes. Over the last several decades, therapeutic approaches to inhibit complement activation at various steps in the pathways have met with initial success, particularly at the level of the terminal pathway. This success, combined with insight from animal model studies, has lead to an unprecedented effort by biotech and pharmaceutical companies to begin developing complement inhibitors. As a result, complement has been brought for the first time to the attention of pharmacologists, toxicologists, project managers and others in the drug development industry, as well as those in the investment world. The purpose of this primer is to provide a broad overview of complement immunobiology to help those new to complement understand the rationale behind the current therapeutic directions and the investment potential of these new therapeutics.
Collapse
Affiliation(s)
- Scott R Barnum
- Department of Microbiology, University of Alabama at Birmingham, 845 19th St. S., BBRB/744, Birmingham, AL 35294, United States; Department of Neurology, University of Alabama at Birmingham, 845 19th St. S., BBRB/744, Birmingham, AL 35294, United States.
| |
Collapse
|
18
|
Setty SC, Horam S, Pasupuleti M, Haq W. Modulating the Antimicrobial Activity of Temporin L Through Introduction of Fluorinated Phenylalanine. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9553-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Kothary MH, Franco AA, Tall BD, Gopinath GR, Datta AR. Purification and Characterization of a Rabbit Serum Factor That Kills Listeria Species and Other Foodborne Bacterial Pathogens. Foodborne Pathog Dis 2016; 13:441-7. [PMID: 27455064 DOI: 10.1089/fpd.2015.2109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In an in-vitro assay, rabbit serum, but not human serum, killed Listeria monocytogenes, a foodborne pathogen. The aim of our study was to purify and partially characterize this killing factor. Listericidin was purified from rabbit serum by a single-step ion-exchange chromatography with DEAE-Sephadex A-50 and its antimicrobial activity was assessed by a microdilution method. Listericidin is a protein with a molecular weight of 9 kDa and an isoelectric point of 8.1. It kills L. monocytogenes at 4°C, 25°C, and 37°C, and its activity is resistant to heat (boiling) and acidic conditions (pH <2). Listericidin's activity is inhibited by sodium chloride and various growth media, is sensitive to proteolytic enzymes and is enhanced by calcium chloride, and is neutralized by monoclonal antibodies to human complement C3a. However, the listericidin reacts weakly with these antibodies in an ELISA. The first 33 N-terminal residues of listericidin (SVQLTEKRMDKVGQYTNKELRKXXEDGMRDNPM) have homology to various complement C3a components. Listericidin also kills other Listeria spp., Vibrio spp., Salmonella spp., Escherichia spp., Cronobacter spp., and Bacillus spp. The listericidin peptide purified in a single-step chromatography is pH and heat stable, and has a broad antimicrobial spectrum against major foodborne pathogens in addition to L. monocytogenes.
Collapse
Affiliation(s)
- Mahendra H Kothary
- Division of Virulence Assessment, Food and Drug Administration , Laurel, Maryland
| | - Augusto A Franco
- Division of Virulence Assessment, Food and Drug Administration , Laurel, Maryland
| | - Ben D Tall
- Division of Virulence Assessment, Food and Drug Administration , Laurel, Maryland
| | - Gopal R Gopinath
- Division of Virulence Assessment, Food and Drug Administration , Laurel, Maryland
| | - Atin R Datta
- Division of Virulence Assessment, Food and Drug Administration , Laurel, Maryland
| |
Collapse
|
20
|
Myamoto DT, Pidde-Queiroz G, Pedroso A, Gonçalves-de-Andrade RM, van den Berg CW, Tambourgi DV. Characterization of the gene encoding component C3 of the complement system from the spider Loxosceles laeta venom glands: Phylogenetic implications. Immunobiology 2016; 221:953-63. [PMID: 27259372 DOI: 10.1016/j.imbio.2016.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/28/2016] [Accepted: 05/23/2016] [Indexed: 01/02/2023]
Abstract
A transcriptome analysis of the venom glands of the spider Loxosceles laeta, performed by our group, in a previous study (Fernandes-Pedrosa et al., 2008), revealed a transcript with a sequence similar to the human complement component C3. Here we present the analysis of this transcript. cDNA fragments encoding the C3 homologue (Lox-C3) were amplified from total RNA isolated from the venom glands of L. laeta by RACE-PCR. Lox-C3 is a 5178 bps cDNA sequence encoding a 190kDa protein, with a domain configuration similar to human C3. Multiple alignments of C3-like proteins revealed two processing sites, suggesting that Lox-C3 is composed of three chains. Furthermore, the amino acids consensus sequences for the thioester was found, in addition to putative sequences responsible for FB binding. The phylogenetic analysis showed that Lox-C3 belongs to the same group as two C3 isoforms from the spider Hasarius adansoni (Family Salcitidae), showing 53% homology with these. This is the first characterization of a Loxosceles cDNA sequence encoding a human C3 homologue, and this finding, together with our previous finding of the expression of a FB-like molecule, suggests that this spider species also has a complement system. This work will help to improve our understanding of the innate immune system in these spiders and the ancestral structure of C3.
Collapse
Affiliation(s)
- D T Myamoto
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | - G Pidde-Queiroz
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | - A Pedroso
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | | | - C W van den Berg
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - D V Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil.
| |
Collapse
|
21
|
Papareddy P, Kasetty G, Kalle M, Bhongir RKV, Mörgelin M, Schmidtchen A, Malmsten M. NLF20: an antimicrobial peptide with therapeutic potential against invasivePseudomonas aeruginosainfection. J Antimicrob Chemother 2015; 71:170-80. [DOI: 10.1093/jac/dkv322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/07/2015] [Indexed: 12/13/2022] Open
|
22
|
Barnum SR. C4a: An Anaphylatoxin in Name Only. J Innate Immun 2015; 7:333-9. [PMID: 25659340 DOI: 10.1159/000371423] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/08/2014] [Indexed: 12/31/2022] Open
Abstract
Activation of complement leads to generation of the 3 anaphylatoxins C3a, C4a, and C5a. Although all 3 peptides are structurally similar, only C3a and C5a share a similar functional profile that includes the classic inflammatory activities and, more recently, developmental homing and regenerative properties among others. In contrast, the functional profile of C4a is questionable in most cases owing to contamination of C4a preparations with physiologically relevant levels of C3a and/or C5a. Combined with the absence of an identified C4a receptor and the inability of C4a to signal through the C3a and C5a receptors, it is clear that C4a should not be included in the family of complement anaphylatoxins.
Collapse
Affiliation(s)
- Scott R Barnum
- Departments of Microbiology and Neurobiology, University of Alabama at Birmingham, Birmingham, Ala., USA
| |
Collapse
|
23
|
Zimmer J, Hobkirk J, Mohamed F, Browning MJ, Stover CM. On the Functional Overlap between Complement and Anti-Microbial Peptides. Front Immunol 2015; 5:689. [PMID: 25646095 PMCID: PMC4298222 DOI: 10.3389/fimmu.2014.00689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/22/2014] [Indexed: 12/19/2022] Open
Abstract
Intriguingly, activated complement and anti-microbial peptides share certain functionalities; lytic, phagocytic, and chemo-attractant activities and each may, in addition, exert cell instructive roles. Each has been shown to have distinct LPS detoxifying activity and may play a role in the development of endotoxin tolerance. In search of the origin of complement, a functional homolog of complement C3 involved in opsonization has been identified in horseshoe crabs. Horseshoe crabs possess anti-microbial peptides able to bind to acyl chains or phosphate groups/saccharides of endotoxin, LPS. Complement activity as a whole is detectable in marine invertebrates. These are also a source of anti-microbial peptides with potential pharmaceutical applicability. Investigating the locality for the production of complement pathway proteins and their role in modulating cellular immune responses are emerging fields. The significance of local synthesis of complement components is becoming clearer from in vivo studies of parenchymatous disease involving specifically generated, complement-deficient mouse lines. Complement C3 is a central component of complement activation. Its provision by cells of the myeloid lineage varies. Their effector functions in turn are increased in the presence of anti-microbial peptides. This may point to a potentiating range of activities, which should serve the maintenance of health but may also cause disease. Because of the therapeutic implications, this review will consider closely studies dealing with complement activation and anti-microbial peptide activity in acute inflammation (e.g., dialysis-related peritonitis, appendicitis, and ischemia).
Collapse
Affiliation(s)
- Jana Zimmer
- Department of Infectious Diseases - Medical Microbiology and Hygiene, Ruprecht-Karls-University of Heidelberg , Heidelberg , Germany
| | - James Hobkirk
- Department of Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, University of Hull , Hull , UK
| | - Fatima Mohamed
- Department of Infection, Immunity and Inflammation, University of Leicester , Leicester , UK
| | - Michael J Browning
- Department of Infection, Immunity and Inflammation, University of Leicester , Leicester , UK ; Department of Immunology, Leicester Royal Infirmary , Leicester , UK
| | - Cordula M Stover
- Department of Infection, Immunity and Inflammation, University of Leicester , Leicester , UK
| |
Collapse
|
24
|
Chaurasia MK, Palanisamy R, Bhatt P, Kumaresan V, Gnanam AJ, Pasupuleti M, Kasi M, Harikrishnan R, Arockiaraj J. A prawn core histone 4: Derivation of N- and C-terminal peptides and their antimicrobial properties, molecular characterization and mRNA transcription. Microbiol Res 2015; 170:78-86. [DOI: 10.1016/j.micres.2014.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 08/19/2014] [Accepted: 08/27/2014] [Indexed: 11/30/2022]
|
25
|
Reid RC, Yau MK, Singh R, Hamidon JK, Lim J, Stoermer MJ, Fairlie DP. Potent Heterocyclic Ligands for Human Complement C3a Receptor. J Med Chem 2014; 57:8459-70. [DOI: 10.1021/jm500956p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Robert C. Reid
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mei-Kwan Yau
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ranee Singh
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Johan K. Hamidon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Junxian Lim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Martin J. Stoermer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
26
|
González-Navajas JM, Corr MP, Raz E. The immediate protective response to microbial challenge. Eur J Immunol 2014; 44:2536-49. [PMID: 24965684 DOI: 10.1002/eji.201344291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 06/02/2014] [Accepted: 06/20/2014] [Indexed: 03/20/2024]
Abstract
The innate immune system detects infection and tissue injury through different families of pattern-recognition receptors (PRRs), such as Toll-like receptors. Most PRR-mediated responses initiate elaborate processes of signaling, transcription, translation, and secretion of effector mediators, which together require time to achieve. Therefore, PRR-mediated processes are not active in the early phases of infection. These considerations raise the question of how the host limits microbial replication and invasion during this critical period. Here, we examine the crucial defense mechanisms, such as antimicrobial peptides or extracellular traps, typically activated within minutes of the initial infection phase, which we term the "immediate protective response". Deficiencies in different components of the immediate protective response are often associated with severe and recurrent infectious diseases in humans, highlighting their physiologic importance.
Collapse
Affiliation(s)
- José M González-Navajas
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Hospital General de Alicante, Alicante, Spain; Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
27
|
Reid RC, Yau MK, Singh R, Hamidon JK, Reed AN, Chu P, Suen JY, Stoermer MJ, Blakeney JS, Lim J, Faber JM, Fairlie DP. Downsizing a human inflammatory protein to a small molecule with equal potency and functionality. Nat Commun 2014; 4:2802. [PMID: 24257095 DOI: 10.1038/ncomms3802] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/21/2013] [Indexed: 01/20/2023] Open
Abstract
A significant challenge in chemistry is to rationally reproduce the functional potency of a protein in a small molecule, which is cheaper to manufacture, non-immunogenic, and also both stable and bioavailable. Synthetic peptides corresponding to small bioactive protein surfaces do not form stable structures in water and do not exhibit the functional potencies of proteins. Here we describe a novel approach to growing small molecules with protein-like potencies from a functionally important amino acid of a protein. A 77-residue human inflammatory protein (complement C3a) important in innate immunity is rationally transformed to equipotent small molecules, using peptide surrogates that incorporate a turn-inducing heterocycle with correctly positioned hydrogen-bond-accepting atoms. Small molecule agonists (molecular weight <500 Da) examined for receptor affinity and cellular responses have the same high potencies, functional profile and specificity of action as C3a protein, but greater plasma stability and bioavailability.
Collapse
Affiliation(s)
- Robert C Reid
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang Z, Zhou Y, Sun J, Mao P, Jing X, Ma X, Ma L. Four novel antimicrobial peptides derived from human C8α-MACPF. Biotechnol Lett 2013; 36:319-25. [PMID: 24101243 DOI: 10.1007/s10529-013-1359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/18/2013] [Indexed: 11/24/2022]
Abstract
Antimicrobial peptides are active against a diverse spectrum of microorganisms. Using a bioinformatics method, six potential novel antimicrobial peptides, A1, C1, A2, A3, C2 and A4, were identified in the C8α complement component. The corresponding genes were then cloned into a new vector as fusions with the self-cleavage protein N(pro) protein mutant EDDIE gene. The expressed or synthetic peptides, A1, A2, A3 and A4, showed antimicrobial activities against several bacteria, while peptides C1 and C2 did not. Peptides A1 to A4 showed no hemolytic activities over 3 h when at 500 μg/ml. Thus, A1, A2, A3 and A4, derived from the C8α complement system, are novel antimicrobial peptides.
Collapse
Affiliation(s)
- Zhen Zhang
- Hubei Key Laboratory of Industrial Biotechnology, College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Gao Z, Li M, Wu J, Zhang S. Interplay between invertebrate C3a with vertebrate macrophages: functional characterization of immune activities of amphioxus C3a. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1249-1259. [PMID: 23954696 DOI: 10.1016/j.fsi.2013.07.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 06/02/2023]
Abstract
Our current knowledge of the structure and function of C3a comes from the study of vertebrate C3a anaphylatoxins, virtually nothing is known about the structure and function of C3a molecules in invertebrates. Here we demonstrated that C3a from the invertebrate chordate Branchiostoma japonicum, BjC3a, was similar to vertebrate C3a possessing potential antibacterial activity, as revealed by sequence analysis and computational modeling. The antibacterial activity of BjC3a was definitely confirmed by both antibacterial assay and TEM observation showing that recombinant BjC3a was directly bactericidal. Additionally, recombinant BjC3a, like vertebrate C3a, was capable of inducing sea bass macrophage migration and enhancing macrophage phagocytosis and respiratory burst response. Moreover, recombinant BjC3a-desArg (generated by removal of the C-terminal arginine), like mammalian C3a-desArg, retained the immunological activities of BjC3a such as antibacterial and respiratory burst-stimulating activities, indicating that the immunological functions of C3a-desArg were conserved throughout chordate evolution. Altogether, our findings show that invertebrate (amphioxus) BjC3a is able to interact with vertebrate (sea bass) macrophages and mediate immune activities, suggesting the emergence of the inflammatory pathway of the complement system similar to that of vertebrates in the basal chordate amphioxus.
Collapse
Affiliation(s)
- Zhan Gao
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | | | | | | |
Collapse
|
30
|
Jusko M, Potempa J, Kantyka T, Bielecka E, Miller HK, Kalinska M, Dubin G, Garred P, Shaw LN, Blom AM. Staphylococcal proteases aid in evasion of the human complement system. J Innate Immun 2013; 6:31-46. [PMID: 23838186 DOI: 10.1159/000351458] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/15/2013] [Indexed: 01/01/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that presents severe health care concerns due to the prevalence of multiple antibiotic-resistant strains. New treatment strategies are urgently needed, which requires an understanding of disease causation mechanisms. Complement is one of the first lines of defense against bacterial pathogens, and S. aureus expresses several specific complement inhibitors. The effect of extracellular proteases from this bacterium on complement, however, has been the subject of limited investigation, except for a recent report regarding cleavage of the C3 component by aureolysin (Aur). We demonstrate here that four major extracellular proteases of S. aureus are potent complement inhibitors. Incubation of human serum with the cysteine proteases staphopain A and staphopain B, the serine protease V8 and the metalloproteinase Aur resulted in a drastic decrease in the hemolytic activity of serum, whereas two staphylococcal serine proteases D and E, had no effect. These four proteases were found to inhibit all pathways of complement due to the efficient degradation of several crucial components. Furthermore, S. aureus mutants lacking proteolytic enzymes were found to be more efficiently killed in human blood. Taken together, the major proteases of S. aureus appear to be important for pathogen-mediated evasion of the human complement system.
Collapse
Affiliation(s)
- Monika Jusko
- Section of Medical Protein Chemistry, Department of Laboratory Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Klos A, Wende E, Wareham KJ, Monk PN. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol Rev 2013; 65:500-43. [PMID: 23383423 DOI: 10.1124/pr.111.005223] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The activation of the complement cascade, a cornerstone of the innate immune response, produces a number of small (74-77 amino acid) fragments, originally termed anaphylatoxins, that are potent chemoattractants and secretagogues that act on a wide variety of cell types. These fragments, C5a, C4a, and C3a, participate at all levels of the immune response and are also involved in other processes such as neural development and organ regeneration. Their primary function, however, is in inflammation, so they are important targets for the development of antiinflammatory therapies. Only three receptors for complement peptides have been found, but there are no satisfactory antagonists as yet, despite intensive investigation. In humans, there is a single receptor for C3a (C3a receptor), no known receptor for C4a, and two receptors for C5a (C5a₁ receptor and C5a₂ receptor). The most recently characterized receptor, the C5a₂ receptor (previously known as C5L2 or GPR77), has been regarded as a passive binding protein, but signaling activities are now ascribed to it, so we propose that it be formally identified as a receptor and be given a name to reflect this. Here, we describe the complex biology of the complement peptides, introduce a new suggested nomenclature, and review our current knowledge of receptor pharmacology.
Collapse
Affiliation(s)
- Andreas Klos
- Department for Medical Microbiology, Medical School Hannover, Hannover, Germany
| | | | | | | |
Collapse
|
32
|
Eliasson M, Olin AI, Malmström JA, Mörgelin M, Bodelsson M, Collin M, Egesten A. Characterization of released polypeptides during an interferon-γ-dependent antibacterial response in airway epithelial cells. J Interferon Cytokine Res 2012; 32:524-33. [PMID: 22909116 DOI: 10.1089/jir.2012.0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
When pathogenic bacteria breach the epithelial lining at mucosal surfaces, rapidly available innate immune mechanisms are critical to halt the infection. In the present study, we characterized the production of antibacterial polypeptides released by epithelial cells. IFN-γ, but neither TNF nor IL-1β alone, induced release of antibacterial activity to a cell culture medium, causing a lytic appearance of killed bacteria as revealed by electron microscopy. Addition of the protein streptococcal inhibitor of complement, derived from Streptococcus pyogenes, known for its ability to neutralize antimicrobial polypeptides (AMPs), reduced the antibacterial activity of the medium. Characterization of the antibacterial incubation medium using mass spectrometric approaches and ELISAs, displayed presence of several classical AMPs, antibacterial chemokines, as well as complement factors and proteases that may interfere with bacterial killing. Many were constitutively produced, that is, being released by cells incubated in a medium alone. While a combination of IFN-γ and TNF did not increase bacterial killing, the presence of TNF boosted the amounts and detectable number of AMPs, including antibacterial chemokines. However, the methods applied in the study failed to single out certain AMPs as critical mediators, but rather demonstrate the broad range of molecules involved. Since many AMPs are highly amphiphatic in nature (i.e., cationic and hydrophobic), it is possible that difficulties in optimizing recovery present limitations in the context investigated. The findings demonstrate that epithelial cells have a constitutive production of AMPs and that IFN-γ is an important inducer of an antibacterial response in which is likely to be a critical part of the innate host defense against pathogenic bacteria at mucosal surfaces.
Collapse
Affiliation(s)
- Mette Eliasson
- Section for Respiratory Medicine & Allergology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Sweden
| | | | | | | | | | | | | |
Collapse
|
33
|
Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 2011; 32:143-71. [PMID: 22074402 DOI: 10.3109/07388551.2011.594423] [Citation(s) in RCA: 514] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Life-threatening infectious diseases are on their way to cause a worldwide crisis, as treating them effectively is becoming increasingly difficult due to the emergence of antibiotic resistant strains. Antimicrobial peptides (AMPs) form an ancient type of innate immunity found universally in all living organisms, providing a principal first-line of defense against the invading pathogens. The unique diverse function and architecture of AMPs has attracted considerable attention by scientists, both in terms of understanding the basic biology of the innate immune system, and as a tool in the design of molecular templates for new anti-infective drugs. AMPs are gene-encoded short (<100 amino acids), amphipathic molecules with hydrophobic and cationic amino acids arranged spatially, which exhibit broad spectrum antimicrobial activity. AMPs have been the subject of natural evolution, as have the microbes, for hundreds of millions of years. Despite this long history of co-evolution, AMPs have not lost their ability to kill or inhibit the microbes totally, nor have the microbes learnt to avoid the lethal punch of AMPs. AMPs therefore have potential to provide an important breakthrough and form the basis for a new class of antibiotics. In this review, we would like to give an overview of cationic antimicrobial peptides, origin, structure, functions, and mode of action of AMPs, which are highly expressed and found in humans, as well as a brief discussion about widely abundant, well characterized AMPs in mammals, in addition to pharmaceutical aspects and the additional functions of AMPs.
Collapse
Affiliation(s)
- Mukesh Pasupuleti
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
34
|
Veneskoski M, Turunen SP, Kummu O, Nissinen A, Rannikko S, Levonen AL, Hörkkö S. Specific recognition of malondialdehyde and malondialdehyde acetaldehyde adducts on oxidized LDL and apoptotic cells by complement anaphylatoxin C3a. Free Radic Biol Med 2011; 51:834-43. [PMID: 21683785 DOI: 10.1016/j.freeradbiomed.2011.05.029] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/23/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
Abstract
Oxidatively modified low-density lipoproteins (Ox-LDL) and complement anaphylatoxins C3a and C5a are colocalized in atherosclerotic lesions. Anaphylatoxin C3a also binds and breaks bacterial lipid membranes and phosphatidylcholine liposomes. The role of oxidized lipid adducts in C3a binding to Ox-LDL and apoptotic cells was investigated. Recombinant human C3a bound specifically to low-density lipoprotein and bovine serum albumin modified with malondialdehyde (MDA) and malondialdehyde acetaldehyde (MAA) in chemiluminescence immunoassays. No binding was observed to native proteins, LDL oxidized with copper ions (CuOx-LDL), or phosphocholine. C3a binding to MAA-LDL was inhibited by two monoclonal antibodies specific for MAA-LDL. On agarose gel electrophoresis, C3a comigrated with MDA-LDL and MAA-LDL, but not with native LDL or CuOx-LDL. C3a bound to apoptotic cells in flow cytometry. C3a opsonized MAA-LDL and was taken up by J774A.1 macrophages in immunofluorescence analysis. Complement-activated human serum samples (n=30) showed increased C3a binding to MAA-LDL (P<0.001) and MDA-LDL (P<0.001) compared to nonactivated samples. The amount of C3a bound to MAA-LDL was associated with total complement activity, C3a desArg concentration, and IgG antibody levels to MAA-LDL. Proteins containing MDA adducts or MAA adducts may bind C3a in vivo and contribute to inflammatory processes involving activation of the complement system in atherosclerosis.
Collapse
Affiliation(s)
- Marja Veneskoski
- Institute of Diagnostics, Department of Medical Microbiology and Immunology, University of Oulu, 90014 Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
35
|
Structure-activity studies and therapeutic potential of host defense peptides of human thrombin. Antimicrob Agents Chemother 2011; 55:2880-90. [PMID: 21402837 DOI: 10.1128/aac.01515-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Peptides of the C-terminal region of human thrombin are released upon proteolysis and identified in human wounds. In this study, we wanted to investigate minimal determinants, as well as structural features, governing the antimicrobial and immunomodulating activity of this peptide region. Sequential amino acid deletions of the peptide GKYGFYTHVFRLKKWIQKVIDQFGE (GKY25), as well as substitutions at strategic and structurally relevant positions, were followed by analyses of antimicrobial activity against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive bacterium Staphylococcus aureus, and the fungus Candida albicans. Furthermore, peptide effects on lipopolysaccharide (LPS)-, lipoteichoic acid-, or zymosan-induced macrophage activation were studied. The thrombin-derived peptides displayed length- and sequence-dependent antimicrobial as well as immunomodulating effects. A peptide length of at least 20 amino acids was required for effective anti-inflammatory effects in macrophage models, as well as optimal antimicrobial activity as judged by MIC assays. However, shorter (>12 amino acids) variants also displayed significant antimicrobial effects. A central K14 residue was important for optimal antimicrobial activity. Finally, one peptide variant, GKYGFYTHVFRLKKWIQKVI (GKY20) exhibiting improved selectivity, i.e., low toxicity and a preserved antimicrobial as well as anti-inflammatory effect, showed efficiency in mouse models of LPS shock and P. aeruginosa sepsis. The work defines structure-activity relationships of C-terminal host defense peptides of thrombin and delineates a strategy for selecting peptide epitopes of therapeutic interest.
Collapse
|
36
|
Malmsten M, Kasetty G, Pasupuleti M, Alenfall J, Schmidtchen A. Highly selective end-tagged antimicrobial peptides derived from PRELP. PLoS One 2011; 6:e16400. [PMID: 21298015 PMCID: PMC3029338 DOI: 10.1371/journal.pone.0016400] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/15/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Antimicrobial peptides (AMPs) are receiving increasing attention due to resistance development against conventional antibiotics. Pseudomonas aeruginosa and Staphylococcus aureus are two major pathogens involved in an array of infections such as ocular infections, cystic fibrosis, wound and post-surgery infections, and sepsis. The goal of the study was to design novel AMPs against these pathogens. METHODOLOGY AND PRINCIPAL FINDINGS Antibacterial activity was determined by radial diffusion, viable count, and minimal inhibitory concentration assays, while toxicity was evaluated by hemolysis and effects on human epithelial cells. Liposome and fluorescence studies provided mechanistic information. Protease sensitivity was evaluated after subjection to human leukocyte elastase, staphylococcal aureolysin and V8 proteinase, as well as P. aeruginosa elastase. Highly active peptides were evaluated in ex vivo skin infection models. C-terminal end-tagging by W and F amino acid residues increased antimicrobial potency of the peptide sequences GRRPRPRPRP and RRPRPRPRP, derived from proline arginine-rich and leucine-rich repeat protein (PRELP). The optimized peptides were antimicrobial against a range of gram-positive S. aureus and gram-negative P. aeruginosa clinical isolates, also in the presence of human plasma and blood. Simultaneously, they showed low toxicity against mammalian cells. Particularly W-tagged peptides displayed stability against P. aeruginosa elastase, and S. aureus V8 proteinase and aureolysin, and the peptide RRPRPRPRPWWWW-NH(2) was effective against various "superbugs" including vancomycin-resistant enterococci, multi-drug resistant P. aeruginosa, and methicillin-resistant S. aureus, as well as demonstrated efficiency in an ex vivo skin wound model of S. aureus and P. aeruginosa infection. CONCLUSIONS/SIGNIFICANCE Hydrophobic C-terminal end-tagging of the cationic sequence RRPRPRPRP generates highly selective AMPs with potent activity against multiresistant bacteria and efficiency in ex vivo wound infection models. A precise "tuning" of toxicity and proteolytic stability may be achieved by changing tag-length and adding W- or F-amino acid tags.
Collapse
Affiliation(s)
| | - Gopinath Kasetty
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Mukesh Pasupuleti
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
37
|
Frick IM, Shannon O, Åkesson P, Mörgelin M, Collin M, Schmidtchen A, Björck L. Antibacterial activity of the contact and complement systems is blocked by SIC, a protein secreted by Streptococcus pyogenes. J Biol Chem 2011; 286:1331-40. [PMID: 21068386 PMCID: PMC3020741 DOI: 10.1074/jbc.m110.178350] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/21/2010] [Indexed: 01/05/2023] Open
Abstract
Recent studies have shown that activation of complement and contact systems results in the generation of antibacterial peptides. Streptococcus pyogenes, a major bacterial pathogen in humans, exists in >100 different serotypes due to sequence variation in the surface-associated M protein. Cases of invasive and life-threatening S. pyogenes infections are commonly associated with isolates of the M1 serotype, and in contrast to the large majority of M serotypes, M1 isolates all secrete the SIC protein. Here, we show that SIC interferes with the activation of the contact system and blocks the activity of antibacterial peptides generated through complement and contact activation. This effect promotes the growth of S. pyogenes in human plasma, and in a mouse model of S. pyogenes sepsis, SIC enhances bacterial dissemination, results which help explain the high frequency of severe S. pyogenes infections caused by isolates of the M1 serotype.
Collapse
Affiliation(s)
- Inga-Maria Frick
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
38
|
Spotlight on Human LL-37, an Immunomodulatory Peptide with Promising Cell-Penetrating Properties. Pharmaceuticals (Basel) 2010. [PMCID: PMC4034075 DOI: 10.3390/ph3113435] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cationic antimicrobial peptides are major components of innate immunity and help control the initial steps of the infectious process. They are expressed not only by immunocytes, but also by epithelial cells. They share an amphipathic secondary structure with a polar cationic site, which explains their tropism for prokaryote membranes and their hydrophobic site contributing to the destructuration of these membranes. LL-37 is the only cationic antimicrobial peptide derived from human cathelicidin. LL-37 can also cross the plasma membrane of eukaryotic cells, probably through special domains of this membrane called lipid rafts. This transfer could be beneficial in the context of vaccination: the activation of intracellular toll-like receptors by a complex formed between CpG oligonucleotides and LL-37 could conceivably play a major role in the building of a cellular immunity involving NK cells.
Collapse
|
39
|
Abstract
The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host's innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections.
Collapse
Affiliation(s)
- Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | | |
Collapse
|
40
|
Papareddy P, Rydengård V, Pasupuleti M, Walse B, Mörgelin M, Chalupka A, Malmsten M, Schmidtchen A. Proteolysis of human thrombin generates novel host defense peptides. PLoS Pathog 2010; 6:e1000857. [PMID: 20421939 PMCID: PMC2858699 DOI: 10.1371/journal.ppat.1000857] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 03/15/2010] [Indexed: 11/25/2022] Open
Abstract
The coagulation system is characterized by the sequential and highly localized activation of a series of serine proteases, culminating in the conversion of fibrinogen into fibrin, and formation of a fibrin clot. Here we show that C-terminal peptides of thrombin, a key enzyme in the coagulation cascade, constitute a novel class of host defense peptides, released upon proteolysis of thrombin in vitro, and detected in human wounds in vivo. Under physiological conditions, these peptides exert antimicrobial effects against Gram-positive and Gram-negative bacteria, mediated by membrane lysis, as well as immunomodulatory functions, by inhibiting macrophage responses to bacterial lipopolysaccharide. In mice, they are protective against P. aeruginosa sepsis, as well as lipopolysaccharide-induced shock. Moreover, the thrombin-derived peptides exhibit helical structures upon binding to lipopolysaccharide and can also permeabilize liposomes, features typical of “classical” helical antimicrobial peptides. These findings provide a novel link between the coagulation system and host-defense peptides, two fundamental biological systems activated in response to injury and microbial invasion. Wounding of the skin and other epithelial barriers represents an ever-present challenge and poses a potential threat for invasive infection and sepsis. Therefore, it is not surprising that evolutionary pressure has maintained and developed multiple host defense systems, involving initial hemostasis and fibrin formation, and the subsequent action of multiple proteins and peptides of our innate immune system. In humans, the coagulation pathways and those mediating innate immune responses to infections have so far been seen as separate entities. This view is challenged by the present study, which discloses novel host defense functions of C-terminal peptides of thrombin, a key enzyme in the coagulation cascade. The thrombin-derived peptides, which are detected in human wounds and fibrin, effectively kill microbes by membrane lysis, but also exert potent immunomodulatory and anti-endotoxic functions. Importantly, these peptides protect against P. aeruginosa sepsis, as well as lipopolysaccharide-induced shock in animal models. Thus, from the perspective of wounding and infection, thrombin, after fulfilling its primary function by generating a first line of defense, the fibrin clot, serves an additional role by the generation of antimicrobial and anti-endotoxic host-defense peptides.
Collapse
Affiliation(s)
- Praveen Papareddy
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
| | - Victoria Rydengård
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
| | - Mukesh Pasupuleti
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
| | | | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
| | - Anna Chalupka
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Martin Malmsten
- Department of Pharmacy, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
- * E-mail:
| |
Collapse
|
41
|
Bysell H, Hansson P, Schmidtchen A, Malmsten M. Effect of Hydrophobicity on the Interaction between Antimicrobial Peptides and Poly(acrylic acid) Microgels. J Phys Chem B 2010; 114:1307-13. [DOI: 10.1021/jp910068t] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Helena Bysell
- Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23 Uppsala, Sweden, Section of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Per Hansson
- Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23 Uppsala, Sweden, Section of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Artur Schmidtchen
- Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23 Uppsala, Sweden, Section of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Martin Malmsten
- Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23 Uppsala, Sweden, Section of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| |
Collapse
|
42
|
Abstract
This review article is an attempt to trace the evolution of mast cells (MCs). These immune cells have been identified in all vertebrate classes as single-lobed cells containing variable amounts of membrane-bound secretory granules which store a large series of mediators, namely histamine, proteases, cytokines and growth factors. Other MC features, at least in mammals, are the c-kit receptor for the stem cell factor and the high-affinity receptor, FcepsilonRI, for immunoglobulin E (IgE). The c-kit receptor also has been identified in fish MCs. The FcepsilonRI receptor seems to be a more recent acquisition in MC phylogenesis given that IgE originated in mammalian species. Tryptase and histamine have also been recognized in MCs of teleost fish. Thus, a cell population with the overall characteristics of higher vertebrate MCs is identifiable in the most evolutionarily advanced fish species. Two potential MC progenitors have been identified in ascidians (urochordates which appeared approximately 500 million years ago): the basophil/MC-like granular haemocyte and the test cell. Both contain histamine and heparin, and provide defensive functions. Some granular haemocytes in Arthropoda also closely approximate the ultrastructure of modern MCs. The origin of MCs is probably to be found in a leukocyte ancestor operating in the context of a primitive local innate immunity and involved in phagocytic and killing activity against pathogens. From this type of defensive cell, the MC phylogenetic progenitor evolved into a tissue regulatory and remodelling cell, which was incorporated into the networks of recombinase activating genes (RAG)-mediated adaptive immunity in the Cambrian era, some 550 million years ago. Early MCs probably appeared in the last common ancestor we shared with hagfish, lamprey and sharks about 450-500 million years ago.
Collapse
|
43
|
Pasupuleti M, Roupe M, Rydengård V, Surewicz K, Surewicz WK, Chalupka A, Malmsten M, Sörensen OE, Schmidtchen A. Antimicrobial activity of human prion protein is mediated by its N-terminal region. PLoS One 2009; 4:e7358. [PMID: 19809501 PMCID: PMC2752989 DOI: 10.1371/journal.pone.0007358] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 09/14/2009] [Indexed: 02/06/2023] Open
Abstract
Background Cellular prion-related protein (PrPc) is a cell-surface protein that is ubiquitously expressed in the human body. The multifunctionality of PrPc, and presence of an exposed cationic and heparin-binding N-terminus, a feature characterizing many antimicrobial peptides, made us hypotesize that PrPc could exert antimicrobial activity. Methodology and Principal Findings Intact recombinant PrP exerted antibacterial and antifungal effects at normal and low pH. Studies employing recombinant PrP and N- and C-terminally truncated variants, as well as overlapping peptide 20mers, demonstrated that the antimicrobial activity is mediated by the unstructured N-terminal part of the protein. Synthetic peptides of the N-terminus of PrP killed the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and the Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungus Candida parapsilosis. Fluorescence studies of peptide-treated bacteria, paired with analysis of peptide effects on liposomes, showed that the peptides exerted membrane-breaking effects similar to those seen after treatment with the “classical” human antimicrobial peptide LL-37. In contrast to LL-37, however, no marked helix induction was detected for the PrP-derived peptides in presence of negatively charged (bacteria-mimicking) liposomes. PrP furthermore showed an inducible expression during wounding of human skin ex vivo and in vivo, as well as stimulation of keratinocytes with TGF-α in vitro. Conclusions The demonstration of an antimicrobial activity of PrP, localisation of its activity to the N-terminal and heparin-binding region, combined with results showing an increased expression of PrP during wounding, indicate that PrPs could have a previously undisclosed role in host defense.
Collapse
Affiliation(s)
- Mukesh Pasupuleti
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
- * E-mail: (AS); (MP)
| | - Markus Roupe
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Victoria Rydengård
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Krystyna Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Witold K. Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Anna Chalupka
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Ole E. Sörensen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
- * E-mail: (AS); (MP)
| |
Collapse
|
44
|
Incorporation of antimicrobial compounds in mesoporous silica film monolith. Biomaterials 2009; 30:5729-36. [PMID: 19628277 DOI: 10.1016/j.biomaterials.2009.07.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 07/06/2009] [Indexed: 12/18/2022]
Abstract
Incorporation of the antimicrobial peptide LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES), as well as low molecular weight antimicrobial chlorhexidine, into mesoporous silica was obtained using an EISA one-pot synthesis method. FTIR confirmed efficient encapsulation of both LL-37 and chlorhexidine into mesoporous silica, while XRD and TEM showed that antimicrobial agent incorporation can be achieved without greatly affecting the structure of the mesoporous silica. The modified mesoporous silica released LL-37 and chlorhexidine slowly, reaching maximum release after about 200 h. The release rate could also be controlled through incorporation of SH groups in the pore walls, adding to pore hydrophobicity and reducing the release rate by about 50% compared to the unmodified mesoporous silica. Mesoporous silica containing either LL-37 or chlorhexidine displayed potent bactericidal properties against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. While chlorhexidine-loaded mesoporous silica displayed an accompanying high toxicity, as judged from hemolysis, LDH release, and MTT assay, the corresponding material containing LL-37 showed very low toxicity by all these assays, comparable to that observed for mesoporous silica in the absence of antibacterial drug, as well as to the negative controls in the respective assays. Mesoporous silica containing LL-37 therefore holds potential as an implantable material or a surface coating for such materials, as it combines potent bactericidal action with low toxicity, important features for controlling implant-related infections, e.g., for multi-resistant pathogens or for cases where access to the infection site of systemically administered antibiotics is limited due to collagen capsule formation or other factors.
Collapse
|
45
|
Pasupuleti M, Davoudi M, Malmsten M, Schmidtchen A. Antimicrobial activity of a C-terminal peptide from human extracellular superoxide dismutase. BMC Res Notes 2009; 2:136. [PMID: 19604396 PMCID: PMC2717103 DOI: 10.1186/1756-0500-2-136] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 07/15/2009] [Indexed: 11/15/2022] Open
Abstract
Background Antimicrobial peptides (AMP) are important effectors of the innate immune system. Although there is increasing evidence that AMPs influence bacteria in a multitude of ways, bacterial wall rupture plays the pivotal role in the bactericidal action of AMPs. Structurally, AMPs share many similarities with endogenous heparin-binding peptides with respect to secondary structure, cationicity, and amphipathicity. Findings In this study, we show that RQA21 (RQAREHSERKKRRRESECKAA), a cationic and hydrophilic heparin-binding peptide corresponding to the C-terminal region of extracellular superoxide dismutase (SOD), exerts antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis and Candida albicans. The peptide was also found to induce membrane leakage of negatively charged liposomes. However, its antibacterial effects were abrogated in physiological salt conditions as well as in plasma. Conclusion The results provide further evidence that heparin-binding peptide regions are multifunctional, but also illustrate that cationicity alone is not sufficient for AMP function at physiological conditions. However, our observation, apart from providing a link between heparin-binding peptides and AMPs, raises the hypothesis that proteolytically generated C-terminal SOD-derived peptides could interact with, and possibly counteract bacteria. Further studies are therefore merited to study a possible role of SOD in host defence.
Collapse
Affiliation(s)
- Mukesh Pasupuleti
- Division of Dermatology and Venereology, Department of Clinical Sciences, Biomedical Center B14, Lund University, Tornavägen 10, SE-22184 Lund, Sweden.
| | | | | | | |
Collapse
|
46
|
Zipfel PF, Reuter M. Complement Activation Products C3a and C4a as Endogenous Antimicrobial Peptides. Int J Pept Res Ther 2009. [DOI: 10.1007/s10989-009-9180-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Pasupuleti M, Schmidtchen A, Chalupka A, Ringstad L, Malmsten M. End-tagging of ultra-short antimicrobial peptides by W/F stretches to facilitate bacterial killing. PLoS One 2009; 4:e5285. [PMID: 19381271 PMCID: PMC2667214 DOI: 10.1371/journal.pone.0005285] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 03/24/2009] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Due to increasing resistance development among bacteria, antimicrobial peptides (AMPs), are receiving increased attention. Ideally, AMP should display high bactericidal potency, but low toxicity against (human) eukaryotic cells. Additionally, short and proteolytically stable AMPs are desired to maximize bioavailability and therapeutic versatility. METHODOLOGY AND PRINCIPAL FINDINGS A facile approach is demonstrated for reaching high potency of ultra-short antimicrobal peptides through end-tagging with W and F stretches. Focusing on a peptide derived from kininogen, KNKGKKNGKH (KNK10) and truncations thereof, end-tagging resulted in enhanced bactericidal effect against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Through end-tagging, potency and salt resistance could be maintained down to 4-7 amino acids in the hydrophilic template peptide. Although tagging resulted in increased eukaryotic cell permeabilization at low ionic strength, the latter was insignificant at physiological ionic strength and in the presence of serum. Quantitatively, the most potent peptides investigated displayed bactericidal effects comparable to, or in excess of, that of the benchmark antimicrobial peptide LL-37. The higher bactericidal potency of the tagged peptides correlated to a higher degree of binding to bacteria, and resulting bacterial wall rupture. Analogously, tagging enhanced peptide-induced rupture of liposomes, particularly anionic ones. Additionally, end-tagging facilitated binding to bacterial lipopolysaccharide, both effects probably contributing to the selectivity displayed by these peptides between bacteria and eukaryotic cells. Importantly, W-tagging resulted in peptides with maintained stability against proteolytic degradation by human leukocyte elastase, as well as staphylococcal aureolysin and V8 proteinase. The biological relevance of these findings was demonstrated ex vivo for pig skin infected by S. aureus and E. coli. CONCLUSIONS/SIGNIFICANCE End-tagging by hydrophobic amino acid stretches may be employed to enhance bactericidal potency also of ultra-short AMPs at maintained limited toxicity. The approach is of general applicability, and facilitates straightforward synthesis of hydrophobically modified AMPs without the need for post-peptide synthesis modifications.
Collapse
Affiliation(s)
- Mukesh Pasupuleti
- Section of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Artur Schmidtchen
- Section of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anna Chalupka
- Section of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Martin Malmsten
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
48
|
Rydengård V, Shannon O, Lundqvist K, Kacprzyk L, Chalupka A, Olsson AK, Mörgelin M, Jahnen-Dechent W, Malmsten M, Schmidtchen A. Histidine-rich glycoprotein protects from systemic Candida infection. PLoS Pathog 2008; 4:e1000116. [PMID: 18797515 PMCID: PMC2537934 DOI: 10.1371/journal.ppat.1000116] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 07/07/2008] [Indexed: 12/21/2022] Open
Abstract
Fungi, such as Candida spp., are commonly found on the skin and at mucosal surfaces. Yet, they rarely cause invasive infections in immunocompetent individuals, an observation reflecting the ability of our innate immune system to control potentially invasive microbes found at biological boundaries. Antimicrobial proteins and peptides are becoming increasingly recognized as important effectors of innate immunity. This is illustrated further by the present investigation, demonstrating a novel antifungal role of histidine-rich glycoprotein (HRG), an abundant and multimodular plasma protein. HRG bound to Candida cells, and induced breaks in the cell walls of the organisms. Correspondingly, HRG preferentially lysed ergosterol-containing liposomes but not cholesterol-containing ones, indicating a specificity for fungal versus other types of eukaryotic membranes. Both antifungal and membrane-rupturing activities of HRG were enhanced at low pH, and mapped to the histidine-rich region of the protein. Ex vivo, HRG-containing plasma as well as fibrin clots exerted antifungal effects. In vivo, Hrg−/− mice were susceptible to infection by C. albicans, in contrast to wild-type mice, which were highly resistant to infection. The results demonstrate a key and previously unknown antifungal role of HRG in innate immunity. It has been estimated that humans contain about 1 kg of microbes, an observation that reflects our coexistence with colonizing microbes such as bacteria and fungi. The fungal species Candida is present as a commensal at mucosal surfaces and on skin. Although it may cause life-threatening infections, such as sepsis, particularly in immunocompromised individuals, it seldom causes disease in normal individuals. In order to control our microbial flora, humans as well as virtually all life forms are armoured with various proteins and peptides that comprise integral parts of our innate immune system. Here we describe a new component in this system; histidine-rich glycoprotein (HRG), an abundant plasma protein. We show, using a combination of microbiological, biochemical, and biophysical methods, that HRG exerts a potent antifungal activity, which is mediated via a histidine-rich region of the protein, and targets ergosterol-rich membrane structures such as those of Candida. HRG killed Candida both in plasma as well as when incorporated into fibrin clots. In mouse infection models, HRG was protective against systemic infection by Candida, indicating a novel antifungal role of HRG in innate immunity.
Collapse
Affiliation(s)
- Victoria Rydengård
- Section of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ringstad L, Protopapa E, Lindholm-Sethson B, Schmidtchen A, Nelson A, Malmsten M. An electrochemical study into the interaction between complement-derived peptides and DOPC mono- and bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:208-216. [PMID: 18052298 DOI: 10.1021/la702538k] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Electrochemical methods employing the hanging mercury drop electrode were used to study the interaction between variants of the complement-derived antimicrobial peptide CNY21 (CNYITELRRQH ARASHLGLAR) and dioleoyl phosphatidylcholine (DOPC) monolayers. Capacitance potential and impedance measurements showed that the CNY21 analogues investigated interact with DOPC monolayers coating the mercury drop. Increasing the peptide hydrophobicity by substituting the two histidine residues with leucine resulted in a deeper peptide penetration into the hydrophobic region of the DOPC monolayer, indicated by an increase in the dielectric constant of the lipid monolayer (Deltaepsilon = 2.0 after 15 min interaction). Increasing the peptide net charge from +3 to +5 by replacing the histidines by lysines, on the other hand, arrests the peptide in the lipid head group region. Reduction of electroactive ions (Tl+, Pb2+, Cd2+, and Eu3+) at the monolayer-coated electrode was employed to further characterize the types of defects induced by the peptides. All peptides studied permeabilize the monolayer to Tl+ to an appreciable extent, but this effect is more pronounced for the more hydrophobic peptide (CNY21L), which also allows penetration of larger ions and ions of higher valency. The results for the various ions indicate that charge repulsion rather than ion size is the determining factor for cation penetration through peptide-induced defects in the DOPC monolayer. The effects obtained for monolayers were compared to results obtained with bilayers from liposome leakage and circular dichroism studies for unilamellar DOPC vesicles, and in situ ellipsometry for supported DOPC bilayers. Trends in peptide-induced liposome leakage were similar to peptide effects on electrochemical impedance and permeability of electroactive ions for the monolayer system, demonstrating that formation of transmembrane pores alone does not constitute the mechanism of action for the peptides investigated. Instead, our results point to the importance of local packing defects in the lipid membrane in close proximity to the adsorbed peptide molecules.
Collapse
Affiliation(s)
- Lovisa Ringstad
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
50
|
Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:715-27. [PMID: 17640961 PMCID: PMC1959484 DOI: 10.2353/ajpath.2007.070166] [Citation(s) in RCA: 462] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Our understanding of the biology of the complement system has undergone a drastic metamorphosis since its original discovery. This system, which was traditionally primarily described as a "complement" to humoral immunity, is now perceived as a central constituent of innate immunity, defending the host against pathogens, coordinating various events during inflammation, and bridging innate and adaptive immune responses. Complement is an assembly of proteins found in the blood and body fluids and on cell surfaces. Soluble complement components form the proteolytic cascade, whose activation leads to the generation of complement effectors that target various cells involved in the immune response. Membrane-bound receptors and regulators transmit signals from complement effectors to target cells and limit complement activation to the surfaces of pathogens and damaged or activated host cells. The multiple interconnections among complement proteins, immune cells, and mediators provide an excellent mechanism to protect the organism against infections and support the repair of damaged tissues. However, disturbances in this "defense machinery" contribute to the pathogenesis of various diseases. The role of complement in various inflammatory disorders is multifaceted; for example, the activation of complement can significantly contribute to inflammation-mediated tissue damage, whereas inherited or acquired complement deficiencies highly favor the development of autoimmunity.
Collapse
Affiliation(s)
- Maciej M Markiewski
- Department of Pathology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|