1
|
Yin M, Tong X, Feng Y, Zhang Z, Zhu M, Qiu Q, Huang Y, Hao X, Liu Z, Hu X, Gong C. Polyhedrin microcrystals embedded with bFGF promote wound healing. Int J Biol Macromol 2024; 282:136711. [PMID: 39490869 DOI: 10.1016/j.ijbiomac.2024.136711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
Growth factors play a critical role in wound healing, and finding a suitable biosustained-release system has always been a research hotspot. Bombyx mori cypovirus (BmCPV) is an insect virus, which produces polyhedra that encapsulate progeny virions. In this study, we found that the viral structural protein VP7 encoded by the BmCPV genomic dsRNAs S7 segment can interact with polyhedrin (Polh) encoded by the BmCPV genomic dsRNAs S10 segment. We also confirmed that the amino acid sequence at position 331-360 (VP7-tag) of VP7 is needed to interact with Polh. We found that VP7-tag can be used as an immobilization signal to direct the incorporation of foreign proteins into polyhedra. Furthermore, we constructed polyhedra (bFGF-polyhedra) containing basic fibroblast growth factor (bFGF) using a baculovirus expression system co-expressing Polh and bFGF-VP7 (fusion of VP7-tag to C-terminus of bFGF). We found that bFGF-VP7 embedded into polyhedra was difficult to degrade in the natural environment, and bFGF-VP7 was continuously released from the polyhedra, enhancing cell proliferation and migration. The animal model was used to assess the effect of bFGF-polyhedra spray on the healing of full-thickness wounds. bFGF-polyhedra promoted the expression of TGF-β1, α-SMA, and PCNA, inhibited the expression of proinflammatory factors NF-κB and COX-2, promoted the proliferation and differentiation of fibroblasts, enhanced collagen production and epidermal regeneration, and improved wound healing. These results indicated that bFGF-polyhedra has a promising potential for accelerating wound healing.
Collapse
Affiliation(s)
- Mei Yin
- School of Life Science, Soochow University, Suzhou 215123, China
| | - Xinyu Tong
- School of Life Science, Soochow University, Suzhou 215123, China
| | - Yongjie Feng
- School of Life Science, Soochow University, Suzhou 215123, China
| | - Ziyao Zhang
- School of Life Science, Soochow University, Suzhou 215123, China
| | - Min Zhu
- School of Life Science, Soochow University, Suzhou 215123, China
| | - Qunnan Qiu
- School of Life Science, Soochow University, Suzhou 215123, China
| | - Yuqing Huang
- School of Life Science, Soochow University, Suzhou 215123, China
| | - Xinyue Hao
- School of Life Science, Soochow University, Suzhou 215123, China
| | - Zhuo Liu
- School of Life Science, Soochow University, Suzhou 215123, China
| | - Xiaolong Hu
- School of Life Science, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou 215123, China.
| | - Chengliang Gong
- School of Life Science, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Parwana KAK, Kaur Gill P, Njanike R, Yiu HHP, Adams CF, Chari DM, Jenkins SI. Investigating Internalization of Reporter-Protein-Functionalized Polyhedrin Particles by Brain Immune Cells. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2330. [PMID: 38793398 PMCID: PMC11122724 DOI: 10.3390/ma17102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
Achieving sustained drug delivery to the central nervous system (CNS) is a major challenge for neurological injury and disease, and various delivery vehicles are being developed to achieve this. Self-assembling polyhedrin crystals (POlyhedrin Delivery System; PODS) are being exploited for the delivery of therapeutic protein cargo, with demonstrated efficacy in vivo. However, to establish the utility of PODS for neural applications, their handling by neural immune cells (microglia) must be documented, as these cells process and degrade many biomaterials, often preventing therapeutic efficacy. Here, primary mouse cortical microglia were cultured with a GFP-functionalized PODS for 24 h. Cell counts, cell morphology and Iba1 expression were all unaltered in treated cultures, indicating a lack of acute toxicity or microglial activation. Microglia exhibited internalisation of the PODS, with both cytosolic and perinuclear localisation. No evidence of adverse effects on cellular morphology was observed. Overall, 20-40% of microglia exhibited uptake of the PODS, but extracellular/non-internalised PODS were routinely present after 24 h, suggesting that extracellular drug delivery may persist for at least 24 h.
Collapse
Affiliation(s)
| | | | - Runyararo Njanike
- School of Medicine, Keele University, Keele ST5 5BG, UK; (P.K.G.); (R.N.)
| | - Humphrey H. P. Yiu
- School of Engineering & Physical Sciences, University of Edinburgh, Edinburgh EH14 4AS, UK;
| | - Chris F. Adams
- School of Life Sciences, Keele University, Keele ST5 5BG, UK; (K.A.K.P.); (C.F.A.)
- Neural Tissue Engineering Keele (NTEK), Keele University, Keele ST5 5BG, UK
| | - Divya Maitreyi Chari
- School of Medicine, Keele University, Keele ST5 5BG, UK; (P.K.G.); (R.N.)
- Neural Tissue Engineering Keele (NTEK), Keele University, Keele ST5 5BG, UK
| | - Stuart Iain Jenkins
- School of Medicine, Keele University, Keele ST5 5BG, UK; (P.K.G.); (R.N.)
- Neural Tissue Engineering Keele (NTEK), Keele University, Keele ST5 5BG, UK
| |
Collapse
|
3
|
Konevtsova OV, Golushko IY, Podgornik R, Rochal SB. Integration of Cypoviruses into polyhedrin matrix. NANOSCALE ADVANCES 2023; 5:4140-4148. [PMID: 37560430 PMCID: PMC10408579 DOI: 10.1039/d3na00393k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023]
Abstract
Unlike in other viruses, in Cypoviruses the genome is doubly protected since their icosahedral capsids are embedded into a perfect polyhedrin crystal. Current experimental methods cannot resolve the resulting interface structure and we propose a symmetry-based approach to predict it. We reveal a remarkable match between the surfaces of Cypovirus and the outer polyhedrin matrix. The match arises due to the preservation of the common tetragonal symmetry, allowing perfect contacts of polyhedrin trimers with VP1 and VP5 capsid proteins. We highlight a crucial role of the VP5 proteins in embedding the Cypovirus into the polyhedrin matrix and discuss the relationship between the nucleoside triphosphatase activity of the proteins and their role in the superstructure formation. Additionally, we propose an electrostatic mechanism that drives the viral superstructure disassembly occurring in the alkaline environment of the insect intestines. Our study may underpin novel strategies for engineering proteinaceous nanocontainers in diverse biotechnological and chemical applications.
Collapse
Affiliation(s)
| | - Ivan Yu Golushko
- Physics Faculty, Southern Federal University Rostov-on-Don Russia
| | - Rudolf Podgornik
- School of Physical Sciences and Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences Beijing 100190 China
- Wenzhou Institute of the University of Chinese Academy of Sciences Wenzhou Zhejiang 325000 China
| | - Sergei B Rochal
- Physics Faculty, Southern Federal University Rostov-on-Don Russia
| |
Collapse
|
4
|
Boggio E, Gigliotti CL, Stoppa I, Pantham D, Sacchetti S, Rolla R, Grattarola M, Monge C, Pizzimenti S, Dianzani U, Dianzani C, Battaglia L. Exploiting Nanomedicine for Cancer Polychemotherapy: Recent Advances and Clinical Applications. Pharmaceutics 2023; 15:937. [PMID: 36986798 PMCID: PMC10057931 DOI: 10.3390/pharmaceutics15030937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The most important limitations of chemotherapeutic agents are severe side effects and the development of multi-drug resistance. Recently, the clinical successes achieved with immunotherapy have revolutionized the treatment of several advanced-stage malignancies, but most patients do not respond and many of them develop immune-related adverse events. Loading synergistic combinations of different anti-tumor drugs in nanocarriers may enhance their efficacy and reduce life-threatening toxicities. Thereafter, nanomedicines may synergize with pharmacological, immunological, and physical combined treatments, and should be increasingly integrated in multimodal combination therapy regimens. The goal of this manuscript is to provide better understanding and key considerations for developing new combined nanomedicines and nanotheranostics. We will clarify the potential of combined nanomedicine strategies that are designed to target different steps of the cancer growth as well as its microenvironment and immunity interactions. Moreover, we will describe relevant experiments in animal models and discuss issues raised by translation in the human setting.
Collapse
Affiliation(s)
- Elena Boggio
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Casimiro Luca Gigliotti
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Ian Stoppa
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Deepika Pantham
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Sara Sacchetti
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
- Ospedale Universitario Maggiore della Carità, 28100 Novara, Italy
| | - Roberta Rolla
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
- Ospedale Universitario Maggiore della Carità, 28100 Novara, Italy
| | - Margherita Grattarola
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Chiara Monge
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Stefania Pizzimenti
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Umberto Dianzani
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
- Ospedale Universitario Maggiore della Carità, 28100 Novara, Italy
| | - Chiara Dianzani
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Luigi Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
- Centro Interdipartimentale Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, Università degli Studi di Torino, 10124 Torino, Italy
| |
Collapse
|
5
|
Ibuki T, Iwasawa S, Lian AA, Lye PY, Maruta R, Asano SI, Kotani E, Mori H. Development of a cypovirus protein microcrystal-encapsulated Bacillus thuringiensis UV-tolerant and mosquitocidal δ-endotoxin. Biol Open 2022; 11:276429. [PMID: 36017723 PMCID: PMC9548375 DOI: 10.1242/bio.059363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
The δ-endotoxin Cry4Aa from Bacillus thuringiensis israelensis (Bti) has insecticidal characteristics specific to insects of the order Diptera. Although Cry4Aa has shown potential as an effective proteinaceous pesticide against mosquitoes, it has an ultraviolet (UV)-intolerant property that limits its outdoor use. Our previous research showed that protein microcrystal polyhedra from Bombyx mori cypovirus can encapsulate diverse foreign proteins and maintain long-term protein activity under hostile environmental conditions, including UV irradiation. In this study, we report the development of polyhedra encapsulating the Cry4Aa insecticidal activity domain by using a modified baculovirus expression system. We confirmed the oral intake of recombinant polyhedra introduced into the experimental environment by the larvae of a mosquito, Aedes albopictus, and delivery of encapsulated proteins into the digestive tract. The polyhedra encapsulating partial Cry4Aa showed mosquito larvicidal activity during incubation of larvae with 50% lethal-dose value of 23.717×104 cubes for 10 Aedes albopictus larvae in 1 ml water. In addition, polyhedra showed a specific property to reduce the impact of UV-C irradiation on the activity of encapsulated partial Cry4Aa, thus demonstrating the effectiveness of encapsulating Bti δ-endotoxins inside polyhedra to increase the availability of proteinaceous pesticides for outdoor use for mosquito control.
Collapse
Affiliation(s)
- Takumi Ibuki
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Satoshi Iwasawa
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ai Ai Lian
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ping Ying Lye
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Rina Maruta
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shin-Ichiro Asano
- Laboratory of Applied Molecular Entomology, Division of Agrobiology, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Eiji Kotani
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hajime Mori
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
6
|
Whitty C, Pernstich C, Marris C, McCaskie A, Jones M, Henson F. Sustained delivery of the bone morphogenetic proteins BMP-2 and BMP-7 for cartilage repair and regeneration in osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100240. [DOI: 10.1016/j.ocarto.2022.100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 10/19/2022] Open
|
7
|
Swevers L, Kontogiannatos D, Kolliopoulou A, Ren F, Feng M, Sun J. Mechanisms of Cell Entry by dsRNA Viruses: Insights for Efficient Delivery of dsRNA and Tools for Improved RNAi-Based Pest Control. Front Physiol 2021; 12:749387. [PMID: 34858204 PMCID: PMC8632066 DOI: 10.3389/fphys.2021.749387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022] Open
Abstract
While RNAi is often heralded as a promising new strategy for insect pest control, a major obstacle that still remains is the efficient delivery of dsRNA molecules within the cells of the targeted insects. However, it seems overlooked that dsRNA viruses already have developed efficient strategies for transport of dsRNA molecules across tissue barriers and cellular membranes. Besides protecting their dsRNA genomes in a protective shell, dsRNA viruses also display outer capsid layers that incorporate sophisticated mechanisms to disrupt the plasma membrane layer and to translocate core particles (with linear dsRNA genome fragments) within the cytoplasm. Because of the perceived efficiency of the translocation mechanism, it is well worth analyzing in detail the molecular processes that are used to achieve this feat. In this review, the mechanism of cell entry by dsRNA viruses belonging to the Reoviridae family is discussed in detail. Because of the large amount of progress in mammalian versus insect models, the mechanism of infections of reoviruses in mammals (orthoreoviruses, rotaviruses, orbiviruses) will be treated as a point of reference against which infections of reoviruses in insects (orbiviruses in midges, plant viruses in hemipterans, insect-specific cypoviruses in lepidopterans) will be compared. The goal of this discussion is to uncover the basic principles by which dsRNA viruses cross tissue barriers and translocate their cargo to the cellular cytoplasm; such knowledge subsequently can be incorporated into the design of dsRNA virus-based viral-like particles for optimal delivery of RNAi triggers in targeted insect pests.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Dimitrios Kontogiannatos
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Feifei Ren
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Zhang T, Gu Y, Liu X, Yuan R, Zhou Y, Dai Y, Fang P, Feng Y, Cao G, Chen H, Xue R, Hu X, Gong C. Incidence of Carassius auratus Gibelio Gill Hemorrhagic Disease Caused by CyHV-2 Infection Can Be Reduced by Vaccination with Polyhedra Incorporating Antigens. Vaccines (Basel) 2021; 9:vaccines9040397. [PMID: 33923836 PMCID: PMC8072653 DOI: 10.3390/vaccines9040397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 01/09/2023] Open
Abstract
Encapsulation of antigens within protein microcrystals (polyhedra) is a promising approach for the stable delivery of vaccines. In this study, a vaccine was encapsulated into polyhedra against cyprinid herpesvirus II (CyHV-2). CyHV-2 typically infects gibel carp, Carassius auratus gibelio, causing gill hemorrhagic disease. The vaccine was constructed using a codon-optimized sequence, D4ORF, comprising the ORF72 (region 1–186 nt), ORF66 (region 993–1197 nt), ORF81 (region 603–783 nt), and ORF82 (region 85–186 nt) genes of CyHV-2. The H1-D4ORF and D4ORF-VP3 sequences were, respectively, obtained by fusing the H1-helix sequence (region 1–90 nt) ofBombyx mori cypovirus(BmCPV) polyhedrin to the 5′ terminal end of D4ORF and by fusing a partial sequence (1–279 nt) of the BmCPV VP3 gene to the 3′ terminal end of D4ORF. Furthermore, BmNPV-H1-D4ORF-polh and BmNPV-D4ORF-VP3-polh recombinant B. mori nucleopolyhedroviruses (BmNPVs), belonging to the family Baculoviridae, and co-expressing BmCPV polyhedrin and H1-D4ORF or D4ORF-VP3, were constructed. H1-D4ORF and D4ORF-VP3 fusion proteins were confirmed to be encapsulated into recombinant cytoplasmic polyhedra by Western blotting. Degradation of vaccine proteins was assessed by SDS-PAGE, and the results showed that the encapsulated vaccine proteins in polyhedra could be protected from degradation. Furthermore, when gibel carp were vaccinated with the purified polyhedra from BmNPV-H1-D4ORF-polh and BmNPV-D4ORF-VP3-polh via injection, the antibody titers in the serum of the vaccinated fish reached 1:6400–1:12,800 at 3 weeks post-vaccination. Therelative percentage of survival of immunized gibel carp reached 64.71% and 58.82%, respectively, following challenge with CyHV-2. These results suggest that incorporating vaccine protein into BmCPV polyhedra may be a novel approach for developing aquaculture microencapsulated vaccines.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (T.Z.); (Y.G.); (Y.D.); (Y.F.); (G.C.); (R.X.)
| | - Yuchao Gu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (T.Z.); (Y.G.); (Y.D.); (Y.F.); (G.C.); (R.X.)
| | - Xiaohan Liu
- Jiangsu Center for Control and Prevention of Aquatic Animal Infectious Disease, Nanjing 210036, China; (X.L.); (R.Y.); (P.F.); (H.C.)
| | - Rui Yuan
- Jiangsu Center for Control and Prevention of Aquatic Animal Infectious Disease, Nanjing 210036, China; (X.L.); (R.Y.); (P.F.); (H.C.)
| | - Yang Zhou
- Dafeng District Aquaculture Technical Extension Station of Yancheng City, Yancheng 224100, China;
| | - Yaping Dai
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (T.Z.); (Y.G.); (Y.D.); (Y.F.); (G.C.); (R.X.)
| | - Ping Fang
- Jiangsu Center for Control and Prevention of Aquatic Animal Infectious Disease, Nanjing 210036, China; (X.L.); (R.Y.); (P.F.); (H.C.)
| | - Yongjie Feng
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (T.Z.); (Y.G.); (Y.D.); (Y.F.); (G.C.); (R.X.)
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
| | - Guangli Cao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (T.Z.); (Y.G.); (Y.D.); (Y.F.); (G.C.); (R.X.)
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
| | - Hui Chen
- Jiangsu Center for Control and Prevention of Aquatic Animal Infectious Disease, Nanjing 210036, China; (X.L.); (R.Y.); (P.F.); (H.C.)
| | - Renyu Xue
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (T.Z.); (Y.G.); (Y.D.); (Y.F.); (G.C.); (R.X.)
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (T.Z.); (Y.G.); (Y.D.); (Y.F.); (G.C.); (R.X.)
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
- Correspondence: (X.H.); (C.G.)
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (T.Z.); (Y.G.); (Y.D.); (Y.F.); (G.C.); (R.X.)
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
- Correspondence: (X.H.); (C.G.)
| |
Collapse
|
9
|
Maruta R, Takaki K, Yamaji Y, Sezutsu H, Mori H, Kotani E. Effects of transgenic silk materials that incorporate FGF-7 protein microcrystals on the proliferation and differentiation of human keratinocytes. FASEB Bioadv 2020; 2:734-744. [PMID: 33336160 PMCID: PMC7734426 DOI: 10.1096/fba.2020-00078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/18/2022] Open
Abstract
The silk glands of silkworms produce large quantities of fibroin, which is a protein that can be physically processed and used as a biodegradable carrier for cell growth factors in tissue engineering applications. Meanwhile, protein microcrystals known as polyhedra, which are derived from cypovirus 1, have been used as a vehicle to protect and release encapsulated cell growth factors. We report the generation of transgenic silkworms that express recombinant fibroblast growth factor-7 (FGF-7) fused with the polyhedron-encapsulating signal in polyhedra produced in the middle (MSG) and posterior (PSG) silk glands. Immunofluorescence showed that polyhedra from silk glands are associated with FGF-7. The MSG and PSG from transgenic silkworms were processed into fine powdery materials, from which FGF-7 activity was released to stimulate the proliferation of human keratinocyte epidermal cells. Powders from PSGs exhibited higher FGF-7 activity than those from MSGs. Moreover, PSG powder showed a gradual release of FGF-7 activity over a long period and induced keratinocyte proliferation and differentiation in 3D culture to promote the formation of stratified epidermis expressing positive differentiation marker proteins. Our results indicate that powdery materials incorporating the FGF-7-polyhedra microcrystals from silk glands are valuable for developing cell/tissue engineering applications in vivo and in vitro.
Collapse
Affiliation(s)
- Rina Maruta
- Department of Applied BiologyKyoto Institute of TechnologyKyotoJapan
| | - Keiko Takaki
- Department of Applied BiologyKyoto Institute of TechnologyKyotoJapan
| | - Yuka Yamaji
- Department of Applied BiologyKyoto Institute of TechnologyKyotoJapan
| | - Hideki Sezutsu
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaIbarakiJapan
| | - Hajime Mori
- Department of Applied BiologyKyoto Institute of TechnologyKyotoJapan
| | - Eiji Kotani
- Department of Applied BiologyKyoto Institute of TechnologyKyotoJapan
| |
Collapse
|
10
|
Oyane A, Araki H, Nakamura M, Aiki Y, Higuchi K, Pyatenko A, Adachi M, Ito Y. Controlled release of basic fibroblast growth factor from a water-floatable polyethylene nonwoven fabric sheet for maintenance culture of iPSCs. RSC Adv 2019; 10:95-104. [PMID: 35492512 PMCID: PMC9047564 DOI: 10.1039/c9ra06906b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/13/2019] [Indexed: 11/21/2022] Open
Abstract
Basic fibroblast growth factor (bFGF) is an essential supplement for culture media to support the proliferation of human pluripotent stem cells, while preserving their pluripotency. However, it is extremely unstable under cell culture conditions at 37 °C. Therefore, a culture medium supplemented with bFGF needs to be changed every day to maintain an effective concentration of bFGF. This study aimed to create a bFGF-releasing material via simple bFGF adsorption following oxygen plasma treatment by using a water-floatable polyethylene (PE) nonwoven fabric sheet as a bFGF-adsorbent material. Preliminary oxygen plasma treatment enhanced bFGF adsorption onto the sheet by increasing its surface water wettability. Based on the bFGF concentration in the adsorption solution, the resulting bFGF-adsorbed sheet showed different bFGF-release profiles in the culture medium. The bFGF-adsorbed sheet prepared under optimum conditions released bFGF in a sustained manner, maintaining the bFGF concentration in the culture medium of human induced pluripotent stem cells (iPSCs) at ≥10 ng mL-1 even without medium change for as long as 3 d. The bFGF released from the sheet retained its biological activity to support colony formation of iPSCs while preserving their pluripotency. This type of bFGF-releasing sheet can be used as a new form of bFGF supplement for the culture media of stem cells and would make a significant contribution to stem cell-based research and development.
Collapse
Affiliation(s)
- Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Hiroko Araki
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Maki Nakamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Yasuhiko Aiki
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST) Central 6, 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| | - Kumiko Higuchi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST) Central 6, 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| | - Alexander Pyatenko
- National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Masaki Adachi
- R&D Center, Katayama Chemical Industries Co., Ltd. 4-1-7 Ina Minoh Osaka 562-0015 Japan
| | - Yuzuru Ito
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST) Central 6, 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| |
Collapse
|
11
|
Yuasa H, Kotani E, Mori H, Takaki K. New method for immobilising diverse proteins onto cubic micro-protein polyhedrin crystals. Protein Expr Purif 2019; 167:105531. [PMID: 31734266 DOI: 10.1016/j.pep.2019.105531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 11/29/2022]
Abstract
Cypovirus is an insect virus that is encapsulated in stable cubic protein crystals composed of polyhedrin protein produced in virus-infected cells. Molecular technology developed over the last decade is now able to immobilise proteins of interest on polyhedrin crystals. Modified polyhedrin crystals can be used in cell cultures for implantation in animals and vaccines, among other applications. However, this technique does not work for some proteins. Here, we developed and tested an alternative approach for immobilising foreign proteins in polyhedrin crystals using a linker method; diverse proteins, such as fluorescent proteins, enzymes, antibodies, and streptavidin were successfully contained. The immobilised antibodies retained their binding activity on filter paper, implying their potential for new immunochromatography applications. Moreover, this immobilisation method allows enzymes to be collected from one reaction reagent and transferred to another reagent. These results demonstrate the potential of this immobilisation method and the likelihood of expanding the applications of polyhedrin crystals using this approach.
Collapse
Affiliation(s)
- Haruna Yuasa
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| | - Eiji Kotani
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| | - Hajime Mori
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| | - Keiko Takaki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
12
|
Matsuzaki Y, Maruta R, Takaki K, Kotani E, Kato Y, Yoshimura R, Endo Y, Whitty C, Pernstich C, Gandhi R, Jones M, Mori H. Sustained Neurotrophin Release from Protein Nanoparticles Mediated by Matrix Metalloproteinases Induces the Alignment and Differentiation of Nerve Cells. Biomolecules 2019; 9:biom9100510. [PMID: 31546991 PMCID: PMC6843502 DOI: 10.3390/biom9100510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 01/16/2023] Open
Abstract
The spatial and temporal availability of cytokines, and the microenvironments this creates, is critical to tissue development and homeostasis. Creating concentration gradients in vitro using soluble proteins is challenging as they do not provide a self-sustainable source. To mimic the sustained cytokine secretion seen in vivo from the extracellular matrix (ECM), we encapsulated a cargo protein into insect virus-derived proteins to form nanoparticle co-crystals and studied the release of this cargo protein mediated by matrix metalloproteinase-2 (MMP-2) and MMP-8. Specifically, when nerve growth factor (NGF), a neurotrophin, was encapsulated into nanoparticles, its release was promoted by MMPs secreted by a PC12 neuronal cell line. When these NGF nanoparticles were spotted onto a cover slip to create a uniform circular field, movement and alignment of PC12 cells via their extended axons along the periphery of the NGF nanoparticle field was observed. Neural cell differentiation was confirmed by the expression of specific markers of tau, neurofilament, and GAP-43. Connections between the extended axons and the growth cones were also observed, and expression of connexin 43 was consistent with the formation of gap junctions. Extensions and connection of very fine filopodia occurred between growth cones. Our studies indicate that crystalline protein nanoparticles can be utilized to generate a highly stable cytokine gradient microenvironment that regulates the alignment and differentiation of nerve cells. This technique greatly simplifies the creation of protein concentration gradients and may lead to therapies for neuronal injuries and disease.
Collapse
Affiliation(s)
- Yuka Matsuzaki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Rina Maruta
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Keiko Takaki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Eiji Kotani
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Yasuko Kato
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Ryoichi Yoshimura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Yasuhisa Endo
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Ciara Whitty
- Cell Guidance Systems, Maia Building, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Christian Pernstich
- Cell Guidance Systems, Maia Building, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Raj Gandhi
- Cell Guidance Systems, Maia Building, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Michael Jones
- Cell Guidance Systems, Maia Building, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Hajime Mori
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
13
|
Coulibaly F. Polyhedra, spindles, phage nucleus and pyramids: Structural biology of viral superstructures. Adv Virus Res 2019; 105:275-335. [PMID: 31522707 DOI: 10.1016/bs.aivir.2019.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Viral infection causes comprehensive rearrangements of the cell that reflect as much host defense mechanisms as virus-induced structures assembled to facilitate infection. Regardless of their pro- or antiviral role, large intracellular structures are readily detectable by microscopy and often provide a signature characteristic of a specific viral infection. The structural features and localization of these assemblies have thus been commonly used for the diagnostic and classification of viruses since the early days of virology. More recently, characterization of viral superstructures using molecular and structural approaches have revealed very diverse organizations and roles, ranging from dynamic viral factories behaving like liquid organelles to ultra-stable crystals embedding and protecting virions. This chapter reviews the structures, functions and biotechnological applications of virus-induced superstructures with a focus on assemblies that have a regular organization, for which detailed structural descriptions are available. Examples span viruses infecting all domains of life including the assembly of virions into crystalline arrays in eukaryotic and bacterial viruses, nucleus-like compartments involved in the replication of large bacteriophages, and pyramid-like structures mediating the egress of archaeal viruses. Among these superstructures, high-resolution structures are available for crystalline objects produced by insect viruses: viral polyhedra which function as the infectious form of occluded viruses, and spindles which are potent virulence factors of entomopoxviruses. In turn, some of these highly symmetrical objects have been used to develop and validate advanced structural approaches, pushing the boundary of structural biology.
Collapse
Affiliation(s)
- Fasséli Coulibaly
- Infection & Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
14
|
Mori H, Oda N, Abe S, Ueno T, Zhu W, Pernstich C, Pezzotti G. Raman spectroscopy insight into Norovirus encapsulation in Bombyx mori cypovirus cubic microcrystals. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:19-30. [PMID: 29857257 DOI: 10.1016/j.saa.2018.05.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Protein and amino acid structures of Norovirus-like particles (NoVLP) have been investigated by Raman spectroscopy before and after encapsulation into Bombyx mori cypovirus (BmCPV) cubic microcrystals, which are usually referred to as cubes or polyhedra. Two different types of tag were used in co-expression, namely VP3 and H1 tags. VP3 tag is derived from a capsid protein VP4 from BmCPV and H1 tag is N-terminal α-helix of BmCPV polyhedrin, respectively. A major capsid protein VP1 of NoVLP G11.4 was fused with H1 or VP3 tags, and then encapsulated into BmCPV polyhedra. Analyses of the spectroscopic data permitted the assignment of conformation-sensitive Raman bands to viral amino acid constituents and the observation of structural similarities or differences between differently tagged samples. Three separate Raman zones were attentioned, namely, the ring-mode structure region (1000-1500 cm-1), the CO and CC double-bond region and its surroundings (1500-1750 cm-1), and the high-frequency CH stretching region (2800-3100 cm-1). Structural fingerprints could be found in specific spectral zones for differently co-expressed samples. One clear characteristic of the H1-tagged VP1 polyhedra was the increase in tyrosine fraction, which played a critical role in binding neighboring strands through its unpaired negatively charged COO- sites. This feature could consistently be detected in different regions, but it was best represented by Raman signals associated with negatively charged COO- sites and H1 helices in the double-bond region. Such peculiar chemical features were revealed by two relatively broad bands at 1570 and 1630 cm-1, which were assigned to COO- anti-symmetric stretching and amide I in 310-helix extensions to α-helices at N-termini, respectively. These specific features did not display in the spectrum of the VP3-tagged VP1 polyhedra. Concurrently, a strong reduction of CH bond Raman signal was noticed in the high frequency stretching region of the Raman spectrum upon H1-tagged VP1 polyhedra. The Raman activity most strikingly also represented fingerprints of tagged NoVLP VP1 after its encapsulation into BmCPV polyhedra, opening thus the possibility to in situ advanced experiments in the fields of drug delivery and regenerative medicine.
Collapse
Affiliation(s)
- Hajime Mori
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585 Kyoto, Japan; The Center for Advanced Biology, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585 Kyoto, Japan.
| | - Naoki Oda
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585 Kyoto, Japan
| | - Satoshi Abe
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, 226-8501 Yokohama, Japan
| | - Takafumi Ueno
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, 226-8501 Yokohama, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585 Kyoto, Japan
| | - Chris Pernstich
- Cell Guidance Systems, Moneta Building, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585 Kyoto, Japan; Department of Orthopedic Surgery, Tokyo Medical University,6-7-1 Nishi-Shinjuku, Shinjuku-ku, 160-0023 Tokyo, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Yamadaoka, Suita, 565-0871 Osaka, Japan; Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kamigyo-ku, 465 Kajii-cho, Kawaramachi dori, 602-0841 Kyoto, Japan; The Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, 606-8585 Kyoto, Japan.
| |
Collapse
|
15
|
Abe S, Maity B, Ueno T. Design of a confined environment using protein cages and crystals for the development of biohybrid materials. Chem Commun (Camb) 2018; 52:6496-512. [PMID: 27032539 DOI: 10.1039/c6cc01355d] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is growing interest in the design of protein assemblies for use in materials science and bionanotechnology. Protein assemblies, such as cages and crystalline protein structures, provide confined chemical environments that allow immobilization of metal complexes, nanomaterials, and proteins by metal coordination, assembly/disassembly reactions, genetic manipulation and crystallization methods. Protein assembly composites can be used to prepare hybrid materials with catalytic, magnetic and optical properties for cellular applications due to their high stability, solubility and biocompatibility. In this feature article, we focus on the recent development of ferritin as the most promising molecular template protein cage and in vivo and in vitro engineering of protein crystals as solid protein materials with functional properties.
Collapse
Affiliation(s)
- Satoshi Abe
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechonology, Tokyo Institute of Techonology, B-55, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Basudev Maity
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechonology, Tokyo Institute of Techonology, B-55, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Takafumi Ueno
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechonology, Tokyo Institute of Techonology, B-55, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
16
|
The promises and challenges of fusion constructs in protein biochemistry and enzymology. Appl Microbiol Biotechnol 2016; 100:8273-81. [PMID: 27541749 DOI: 10.1007/s00253-016-7795-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 01/05/2023]
Abstract
Fusion constructs are used to improve the properties of or impart novel functionality to proteins for biotechnological applications. The biochemical characteristics of enzymes or functional proteins optimized by fusion include catalytic efficiency, stability, activity, expression, secretion, and solubility. In this review, we summarize the parameters of enzymes or functional proteins that can be modified by fusion constructs. For each parameter, fusion strategies and molecular partners are examined using examples from recent studies. Future prospects in this field are also discussed. This review is expected to increase interest in and advance fusion strategies for optimization of enzymes and other functional proteins.
Collapse
|
17
|
Kotani E, Yamamoto N, Kobayashi I, Uchino K, Muto S, Ijiri H, Shimabukuro J, Tamura T, Sezutsu H, Mori H. Cell proliferation by silk gut incorporating FGF-2 protein microcrystals. Sci Rep 2015; 5:11051. [PMID: 26053044 PMCID: PMC4459171 DOI: 10.1038/srep11051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/14/2015] [Indexed: 11/09/2022] Open
Abstract
Silk gut processed from the silk glands of the silkworm could be an ideal biodegradable carrier for cell growth factors. We previously demonstrated that polyhedra, microcrystals of Cypovirus 1 polyhedrin, can serve as versatile carrier proteins. Here, we report the generation of a transgenic silkworm that expresses polyhedrin together with human basic fibroblast growth factor (FGF-2) in its posterior silk glands to utilize silk gut as a proteinaceous carrier to protect and slowly release active cell growth factors. In the posterior silk glands, polyhedrin formed polyhedral microcrystals, and FGF-2 became encapsulated within the polyhedra due to a polyhedron-immobilization signal. Silk gut powder prepared from posterior silk glands containing polyhedron-encapsulated FGF-2 stimulated the phosphorylation of p44/p42 MAP kinase and induced the proliferation of serum-starved NIH3T3 cells by releasing bioactive FGF-2. Even after a one-week incubation at 25 °C, significantly higher biological activity of FGF-2 was observed for silk gut powder incorporating polyhedron-encapsulated FGF-2 relative to silk gut powder with non-encapsulated FGF-2. Our results demonstrate that posterior silk glands incorporating polyhedron-encapsulated FGF-2 are applicable to the preparation of biodegradable silk gut, which can protect and release FGF-2 that is produced in a virus- and serum-free expression system with significant application potential.
Collapse
Affiliation(s)
- Eiji Kotani
- 1] Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan [2] Insect Biomedical Centre, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Naoto Yamamoto
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Isao Kobayashi
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Keiro Uchino
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Sayaka Muto
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroshi Ijiri
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Junji Shimabukuro
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Toshiki Tamura
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Hajime Mori
- 1] Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan [2] Insect Biomedical Centre, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
18
|
Hasegawa Y, Tang D, Takahashi N, Hayashizaki Y, Forrest ARR, Suzuki H. CCL2 enhances pluripotency of human induced pluripotent stem cells by activating hypoxia related genes. Sci Rep 2014; 4:5228. [PMID: 24957798 PMCID: PMC4067614 DOI: 10.1038/srep05228] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/04/2014] [Indexed: 12/22/2022] Open
Abstract
Standard culture of human induced pluripotent stem cells (hiPSCs) requires basic Fibroblast Growth Factor (bFGF) to maintain the pluripotent state, whereas hiPSC more closely resemble epiblast stem cells than true naïve state ES which requires LIF to maintain pluripotency. Here we show that chemokine (C-C motif) ligand 2 (CCL2) enhances the expression of pluripotent marker genes through the phosphorylation of the signal transducer and activator of transcription 3 (STAT3) protein. Moreover, comparison of transcriptomes between hiPSCs cultured with CCL2 versus with bFGF, we found that CCL2 activates hypoxia related genes, suggesting that CCL2 enhanced pluripotency by inducing a hypoxic-like response.Further, we show that hiPSCs cultured with CCL2 can differentiate at a higher efficiency than culturing withjust bFGF and we show CCL2 can be used in feeder-free conditions [corrected]. Taken together, our finding indicates the novel functions of CCL2 in enhancing its pluripotency in hiPSCs.
Collapse
Affiliation(s)
- Yuki Hasegawa
- 1] Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan [2] RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan
| | - Dave Tang
- 1] Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan [2] RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan
| | - Naoko Takahashi
- 1] Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan [2] RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan
| | - Yoshihide Hayashizaki
- 1] Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan [2] RIKEN Preventive Medicine and Diagnosis Innovation Program, 2-1 Hirosawa, Wako-shi, Saitama, 551-0198 Japan
| | - Alistair R R Forrest
- 1] Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan [2] RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan
| | | | - Harukazu Suzuki
- 1] Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan [2] RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
19
|
Shimabukuro J, Yamaoka A, Murata KI, Kotani E, Hirano T, Nakajima Y, Matsumoto G, Mori H. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:64-9. [PMID: 25063093 DOI: 10.1016/j.msec.2014.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/20/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
Abstract
Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase-Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6.
Collapse
Affiliation(s)
- Junji Shimabukuro
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Ayako Yamaoka
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Ken-Ichi Murata
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Eiji Kotani
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan; Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Japan
| | - Tomoko Hirano
- Venture Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Yumiko Nakajima
- Functional Genomics Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Goichi Matsumoto
- Division of Oral Surgery, Yokohama Clinical Education Center of Kanagawa Dental University, Yokohama, Japan
| | - Hajime Mori
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan; Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Japan.
| |
Collapse
|
20
|
Nonvirus encoded proteins could be embedded into Bombyx mori cypovirus polyhedra. Mol Biol Rep 2014; 41:2657-66. [PMID: 24469718 DOI: 10.1007/s11033-014-3124-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 01/11/2014] [Indexed: 10/25/2022]
Abstract
To explore whether the nonvirus encoded protein could be embedded into Bombyx mori cypovirus (BmCPV) polyhedra. The stable transformants of BmN cells expressing a polyhedrin (Polh) gene of BmCPV were constructed by transfection with a non-transposon derived vector containing a polh gene. The polyhedra were purified from the midguts of BmCPV-infected silkworms and the transformed BmN cells, respectively. The proteins embedded into polyhedra were determined by mass spectrometry analysis. Host derived proteins were detected in the purified polyhedra. Analysis of structure and hydrophilicity of embedded proteins indicated that the hydrophilic proteins, in structure, were similar to the left-handed structure of polyhedrin or the N-terminal domain of BmCPV structural protein VP3, which were easily embedded into the BmCPV polyhedra. The lysate of polyhedra purified from the infected transformation of BmN cells with modified B. mori baculovirus BmPAK6 could infect BmN cells, indicating that B. mori baculovirus could be embedded into BmCPV polyhedra. Both the purified polyhedra and its lysate could be coloured by X-gal, indicating that the β-galactosidase expressed by BmPAK6 could be incorporated into BmCPV polyhedra. These results suggested that some heterologous proteins and baculovirus could be embedded into polyhedra in an unknown manner.
Collapse
|
21
|
Cabanas-Danés J, Huskens J, Jonkheijm P. Chemical strategies for the presentation and delivery of growth factors. J Mater Chem B 2014; 2:2381-2394. [DOI: 10.1039/c3tb20853b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Chen L, Xiang X, Yang R, Hu X, Cao C, Malik FA, Wu X. Immobilization of foreign protein in BmNPV polyhedra by fusion expression with partial polyhedrin fragments. J Virol Methods 2013; 194:185-9. [DOI: 10.1016/j.jviromet.2013.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 08/13/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
|
23
|
Matsumoto G, Hirohata R, Hayashi K, Sugimoto Y, Kotani E, Shimabukuro J, Hirano T, Nakajima Y, Kawamata S, Mori H. Control of angiogenesis by VEGF and endostatin-encapsulated protein microcrystals and inhibition of tumor angiogenesis. Biomaterials 2013; 35:1326-33. [PMID: 24210874 DOI: 10.1016/j.biomaterials.2013.10.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/19/2013] [Indexed: 11/18/2022]
Abstract
Encapsulation of cytokines within protein microcrystals (polyhedra) is a promising approach for the stabilization and delivery of therapeutic proteins. Here, we investigate the influence of vascular endothelial growth factor (VEGF) microcrystals and endostatin microcrystals on angiogenesis. VEGF was successfully encapsulated into microcrystals derived from insect cypovirus with overexpression of protein disulfide bond isomerase. VEGF microcrystals were observed to increase the phosphorylation of p42/p44 MAP kinase and to stimulate the proliferation, migration, and network and tube formation of human umbilical vein endothelial cells (HUVECs). Endostatin was also successfully encapsulated into microcrystals. Endostatin microcrystals showed antiangiogenesis activities and inhibited the migration, and network and tube formation of HUVECs. Local administration of endostatin microcrystals in mice inhibited both angiogenesis and tumor growth with clear significant differences between treatment and control groups. Endostatin microcrystals only affected angiogenesis, but had no significant effect on lymphangiogenesis compared to controls. Local therapy using endostatin microcrystals offers a potential approach to achieve sustained therapeutic release of antiangiogenic molecules for cancer treatment.
Collapse
Affiliation(s)
- Goichi Matsumoto
- Division of Oral Surgery, Yokohama Clinical Education Center of Kanagawa Dental University, 3-31-6 Tsuruya-cho, Kanagawa-ku, Yokohama 221-0835, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhou D, Ito Y. Inorganic material surfaces made bioactive by immobilizing growth factors for hard tissue engineering. RSC Adv 2013. [DOI: 10.1039/c3ra23313h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
25
|
Chiu E, Coulibaly F, Metcalf P. Insect virus polyhedra, infectious protein crystals that contain virus particles. Curr Opin Struct Biol 2012; 22:234-40. [PMID: 22475077 DOI: 10.1016/j.sbi.2012.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/31/2012] [Accepted: 02/23/2012] [Indexed: 11/30/2022]
Abstract
High-resolution atomic structures have been reported recently for two types of viral polyhedra, intracellular protein crystals produced by ubiquitous insect viruses. Polyhedra contain embedded virus particles and function as the main infectious form for baculoviruses and cypoviruses, two distinct classes of viruses that infect mainly Lepitoptera species (butterflies and moths). Polyhedra are extremely stable and protect the virus particles once released in the environment. The extensive crystal contacts observed in the structures explain the remarkable stability of viral polyhedra and provide hints about how these crystals dissolve in the alkaline midgut, releasing embedded virus particles to infect feeding larvae. The stage is now set to answer intriguing questions about the in vivo crystallization of polyhedra, how virus particles are incorporated into polyhedra, and what determines the size and shape of the crystals. Large quantities of polyhedra can be obtained from infected larvae and polyhedra can also be produced using insect cell expression systems. Modified polyhedra encapsulating other entities in place of virus particles have potential applications as a means to stabilize proteins such as enzymes or growth factors, and the extremely stable polyhedrin lattice may provide a framework for future engineered micro-crystal devices.
Collapse
Affiliation(s)
- Elaine Chiu
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | | | | |
Collapse
|
26
|
Shimizu T, Ishikawa T, Iwai S, Ueki A, Sugihara E, Onishi N, Kuninaka S, Miyamoto T, Toyama Y, Ijiri H, Mori H, Matsuzaki Y, Yaguchi T, Nishio H, Kawakami Y, Ikeda Y, Saya H. Fibroblast growth factor-2 is an important factor that maintains cellular immaturity and contributes to aggressiveness of osteosarcoma. Mol Cancer Res 2012; 10:454-68. [PMID: 22228819 DOI: 10.1158/1541-7786.mcr-11-0347] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Osteosarcoma is the most frequent, nonhematopoietic, primary malignant tumor of bone. Histopathologically, osteosarcoma is characterized by complex mixtures of different cell types with bone formation. The role of environmental factors in the formation of such a complicated tissue structure as osteosarcoma remains to be elucidated. Here, a newly established murine osteosarcoma model was used to clarify the roles of environmental factors such as fibroblast growth factor-2 (Fgf2) or leukemia-inhibitory factor (Lif) in the maintenance of osteosarcoma cells in an immature state. These factors were highly expressed in tumor environmental stromal cells, rather than in osteosarcoma cells, and they potently suppressed osteogenic differentiation of osteosarcoma cells in vitro and in vivo. Further investigation revealed that the hyperactivation of extracellular signal-regulated kinase (Erk)1/2 induced by these factors affected in the process of osteosarcoma differentiation. In addition, Fgf2 enhanced both proliferation and migratory activity of osteosarcoma cells and modulated the sensitivity of cells to an anticancer drug. The results of the present study suggest that the histology of osteosarcoma tumors which consist of immature tumor cells and pathologic bone formations could be generated dependent on the distribution of such environmental factors. The combined blockade of the signaling pathways of several growth factors, including Fgf2, might be useful in controlling the aggressiveness of osteosarcoma.
Collapse
Affiliation(s)
- Takatsune Shimizu
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yu X, Ge P, Jiang J, Atanasov I, Zhou ZH. Atomic model of CPV reveals the mechanism used by this single-shelled virus to economically carry out functions conserved in multishelled reoviruses. Structure 2011; 19:652-61. [PMID: 21565700 DOI: 10.1016/j.str.2011.03.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/28/2011] [Accepted: 03/05/2011] [Indexed: 10/18/2022]
Abstract
Unlike the multishelled viruses in the Reoviridae, cytoplasmic polyhedrosis virus (CPV) is single shelled, yet stable and fully capable of carrying out functions conserved within Reoviridae. Here, we report a 3.1 Å resolution cryo electron microscopy structure of CPV and derive its atomic model, consisting of 60 turret proteins (TPs), 120 each of capsid shell proteins (CSPs) and large protrusion proteins (LPPs). Two unique segments of CSP contribute to CPV's stability: an inserted protrusion domain interacting with neighboring proteins, and an N-anchor tying up CSPs together through strong interactions such as β sheet augmentation. Without the need to interact with outer shell proteins, LPP retains only the N-terminal two-third region containing a conserved helix-barrel core and interacts exclusively with CSP. TP is also simplified, containing only domains involved in RNA capping. Our results illustrate how CPV proteins have evolved in a coordinative manner to economically carry out their conserved functions.
Collapse
Affiliation(s)
- Xuekui Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095-7364, USA
| | | | | | | | | |
Collapse
|
28
|
Electron tomography reveals polyhedrin binding and existence of both empty and full cytoplasmic polyhedrosis virus particles inside infectious polyhedra. J Virol 2011; 85:6077-81. [PMID: 21471233 DOI: 10.1128/jvi.00103-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have described the structure of purified cytoplasmic polyhedrosis virus (CPV) and that of polyhedrin protein. However, how polyhedrin molecules embed CPV particles inside infectious polyhedra is not known. By using electron tomography, we show that CPV particles are occluded within the polyhedrin crystalline lattice with a random spatial distribution and interact with the polyhedrin protein through the A-spike rather than as previously thought through the B-spike. Furthermore, both full (with RNA) and empty (no RNA) capsids were found inside polyhedra, suggesting a spontaneous RNA encapsidating process for CPV assembly in vivo.
Collapse
|
29
|
Matsushima K, Suyama T, Takenaka C, Nishishita N, Ikeda K, Ikada Y, Sawa Y, Jakt LM, Mori H, Kawamata S. Secreted frizzled related protein 4 reduces fibrosis scar size and ameliorates cardiac function after ischemic injury. Tissue Eng Part A 2010; 16:3329-41. [PMID: 20528676 DOI: 10.1089/ten.tea.2009.0739] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Expression of the Wnt modulator secreted frizzled related protein 4 (Sfrp4) is upregulated after heart ischemic injury. We show that intramuscular administration of recombinant Sfrp4 to rat heart ischemic injury and recanalization models prevents further deterioration of cardiac function after the ischemic injury. The effect of Sfrp4 persisted for at least 20 weeks when Sfrp4 was administered in a slow release system (Sfrp4-polyhedra) to both acute and subacute ischemic models. The histology of the dissected heart showed that the cardiac wall was thicker and the area of acellular scarring was smaller in Sfrp4-treated hearts than in controls. Increased amounts of both the inactive serine 9-phosphorylated form of glycogen synthase kinase (GSK)-3β and the active form of β-catenin were observed by immunohistology 3 days after lateral anterior descendant ligation in control, but not in Sfrp4-treated hearts. All together, we show that administration of Sfrp4 interferes with canonical Wnt signaling that could mediate the formation of acellular scar and consequently contributes to the prevention of aggravation of cardiac function.
Collapse
|
30
|
Allori AC, Sailon AM, Warren SM. Biological basis of bone formation, remodeling, and repair-part I: biochemical signaling molecules. TISSUE ENGINEERING PART B-REVIEWS 2009; 14:259-73. [PMID: 18665803 DOI: 10.1089/ten.teb.2008.0082] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The bony biochemical environment is an active and dynamic system that permits and promotes cellular functions that lead to matrix production and ossification. Each component is capable of conveying important regulatory cues to nearby cells, thus effecting gene expression and changes at the cytostructural level. Here, we review the various signaling molecules that contribute to the active and dynamic nature of the biochemical system. These components include hormones, cytokines, and growth factors. We describe their role in regulating bone metabolism. Certain growth factors (i.e., TGF-beta, IGF-1, and VEGF) are described in greater detail because of their potential importance in developing successful tissue-engineering strategies.
Collapse
Affiliation(s)
- Alexander C Allori
- Institute of Reconstructive Plastic Surgery, New York University Medical Center, New York, New York, USA
| | | | | |
Collapse
|
31
|
Ijiri H, Coulibaly F, Nishimura G, Nakai D, Chiu E, Takenaka C, Ikeda K, Nakazawa H, Hamada N, Kotani E, Metcalf P, Kawamata S, Mori H. Structure-based targeting of bioactive proteins into cypovirus polyhedra and application to immobilized cytokines for mammalian cell culture. Biomaterials 2009; 30:4297-308. [PMID: 19477509 DOI: 10.1016/j.biomaterials.2009.04.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Accepted: 04/28/2009] [Indexed: 12/13/2022]
Abstract
Certain insect viruses produce stable infectious micro-crystals called polyhedra which function to protect the virus after the death of infected larvae. Polyhedra form within infected cells and contain numerous virus particles embedded in a crystalline lattice of the viral protein polyhedrin. We have previously demonstrated that the N-terminal 75 amino acids of the Bombx mori cypovirus (BmCPV) turret protein (VP3) can function as a polyhedrin recognition signal leading to the incorporation of foreign proteins into polyhedra. Foreign proteins tagged with the VP3 polyhedrin recognition signal were incorporated into polyhedra by co-expression with polyhedrin in insect cells. We have used this method to encapsulate a wide variety of foreign proteins into polyhedra. The atomic structure of BmCPV polyhedrin showed that the N-terminal H1 alpha-helix of polyhedrin plays a significant role in cross-linking and stabilizing polyhedra. Here we show that the polyhedrin H1-helix can also function as a polyhedrin recognition signal and can be used like the VP3 N-terminal sequence to target foreign proteins into polyhedra. In addition, the two targeting methods can be used together to produce polyhedra containing both EGFP and Discosoma sp. Red Fluorescent Protein (DsRed). The modified polyhedra were imaged using dual-wavelength confocal microscopy showing that the two foreign proteins are uniformly incorporated into polyhedra at similar levels. We have investigated the biological and physiological properties of fibroblast growth factor-2 (FGF-2), FGF-7 and epidermal growth factor (EGF) immobilized on polyhedra with either the H1 or the VP3 tag. Growth factors produced by both methods were functional, inducing the growth of fibroblast cells and keratinocytes. The results demonstrate the utility and flexibility of modified polyhedra for encapsulating and stabilizing bioactive proteins.
Collapse
Affiliation(s)
- Hiroshi Ijiri
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tan L, Zhang J, Li Y, Li Y, Jiang H, Cao X, Hu Y. The complete nucleotide sequence of the type 5 Helicoverpa armigera cytoplasmic polyhedrosis virus genome. Virus Genes 2008; 36:587-93. [PMID: 18368473 DOI: 10.1007/s11262-008-0222-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 03/11/2008] [Indexed: 12/01/2022]
Abstract
The S1-6, S8, and S9 segments of the type 5 Helicoverpa armigera cytoplasmic polyhedrosis virus (HaCPV-5, Chinese strain) were cloned and sequenced, completing the HaCPV-5 genome. We found that each HaCPV-5 segment exhibits the conserved terminal sequences AGUU and UUGC located at the 5' and 3' ends, respectively. We also analyzed the translation initiation codon of the HaCPV-5 genome and compared it with the available cypovirus sequences in GenBank. We postulated that the conserved purine at the -3 position in relation to the AUG codon is probably the most important nucleotide for efficient translation initiation in cypovirus. Although the nucleotide sequences of the HaCPV-5 segments S1-10 exhibit no significant similarity to other viruses, blast searches did reveal some similarities between predicted HaCPV-5 amino acid sequences and those of other viruses.
Collapse
Affiliation(s)
- Li Tan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | | | | | | | | | | | | |
Collapse
|