1
|
Stölting G, Scholl UI. Adrenal Anion Channels: New Roles in Zona Glomerulosa Physiology and in the Pathophysiology of Primary Aldosteronism. Handb Exp Pharmacol 2024; 283:59-79. [PMID: 37495852 DOI: 10.1007/164_2023_680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The mineralocorticoid aldosterone is produced in the zona glomerulosa of the adrenal cortex. Its synthesis is regulated by the serum concentrations of the peptide hormone angiotensin II and potassium. The primary role of aldosterone is to control blood volume and electrolytes. The autonomous production of aldosterone (primary aldosteronism, PA) is considered the most frequent cause of secondary hypertension. Aldosterone-producing adenomas and (micro-)nodules are frequent causes of PA and often carry somatic mutations in ion channels and transporters. Rare familial forms of PA are due to germline mutations. Both somatic and germline mutations in the chloride channel gene CLCN2, encoding ClC-2, have been identified in PA. Clinical findings and results from cell culture and animal models have advanced our knowledge about the role of anions in PA. The zona glomerulosa of the adrenal gland has now been firmly established as a tissue in which anions play a significant role for signaling. In this overview, we aim to summarize the current knowledge and highlight novel concepts as well as open questions.
Collapse
Affiliation(s)
- Gabriel Stölting
- Center of Functional Genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ute I Scholl
- Center of Functional Genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Karal MAS, Ahamed MK, Mokta NA, Ahmed M, Ahammed S. Influence of cholesterol on electroporation in lipid membranes of giant vesicles. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:361-370. [PMID: 32535676 DOI: 10.1007/s00249-020-01443-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022]
Abstract
Irreversible electroporation (IRE) is primarily a nonthermal ablative technology that uses a series of high-voltage and ultra-short pulses with high-frequency electrical energy to induce cell death. This paper presents the influence of cholesterol on the IRE-induced probability of pore formation and the rate constant of pore formation in giant unilamellar vesicles (GUVs). The GUVs are prepared by a mixture of dioleoylphosphatidylglycerol (DOPG), dioleoylphosphatidylcholine (DOPC) and cholesterol using the natural swelling method. An IRE signal of frequency 1.1 kHz is applied to the membranes of GUVs. The probability of pore formation and the rate constant of pore formation events are obtained using statistical analysis from several single GUVs. The time-dependent fraction of intact GUVs among all those examined is fitted to a single exponential decay function from where the rate constant of pore formation is calculated. The probability of pore formation and the rate constant of pore formation decreases with an increase in cholesterol content in the membranes of GUVs. Theoretical equations are fitted to the tension-dependent rate constant of pore formation and to the probability of pore formation, which allows us to obtain the line tension of membranes. The obtained line tension increases with an increase in cholesterol in the membranes. The increase in the energy barrier of the prepore state, due to the increase of cholesterol in membranes, is the main factor explaining the decrease in the rate constant of pore formation.
Collapse
Affiliation(s)
- Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh.
| | - Md Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Nadia Akter Mokta
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Shareef Ahammed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| |
Collapse
|
3
|
Grieschat M, Guzman RE, Langschwager K, Fahlke C, Alekov AK. Metabolic energy sensing by mammalian CLC anion/proton exchangers. EMBO Rep 2020; 21:e47872. [PMID: 32390228 PMCID: PMC7271328 DOI: 10.15252/embr.201947872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
CLC anion/proton exchangers control the pH and [Cl- ] of the endolysosomal system that is essential for cellular nutrient uptake. Here, we use heterologous expression and whole-cell electrophysiology to investigate the regulation of the CLC isoforms ClC-3, ClC-4, and ClC-5 by the adenylic system components ATP, ADP, and AMP. Our results show that cytosolic ATP and ADP but not AMP and Mg2+ -free ADP enhance CLC ion transport. Biophysical analysis reveals that adenine nucleotides alter the ratio between CLC ion transport and CLC gating charge and shift the CLC voltage-dependent activation. The latter effect is suppressed by blocking the intracellular entrance of the proton transport pathway. We suggest, therefore, that adenine nucleotides regulate the internal proton delivery into the CLC transporter machinery and alter the probability of CLC transporters to undergo silent non-transporting cycles. Our findings suggest that the CBS domains in mammalian CLC transporters serve as energy sensors that regulate vesicular Cl- /H+ exchange by detecting changes in the cytosolic ATP/ADP/AMP equilibrium. Such sensing mechanism links the endolysosomal activity to the cellular metabolic state.
Collapse
Affiliation(s)
| | - Raul E Guzman
- Institute of Complex SystemsZelluläre Biophysik (ICS‐4), Forschungszentrum JülichJülichGermany
| | | | - Christoph Fahlke
- Institute of Complex SystemsZelluläre Biophysik (ICS‐4), Forschungszentrum JülichJülichGermany
| | - Alexi K Alekov
- Institute of NeurophysiologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
4
|
Egorov YV, Lang D, Tyan L, Turner D, Lim E, Piro ZD, Hernandez JJ, Lodin R, Wang R, Schmuck EG, Raval AN, Ralphe CJ, Kamp TJ, Rosenshtraukh LV, Glukhov AV. Caveolae-Mediated Activation of Mechanosensitive Chloride Channels in Pulmonary Veins Triggers Atrial Arrhythmogenesis. J Am Heart Assoc 2019; 8:e012748. [PMID: 31597508 PMCID: PMC6818041 DOI: 10.1161/jaha.119.012748] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Atrial fibrillation often occurs in the setting of hypertension and associated atrial dilation with pathologically increased cardiomyocyte stretch. In the setting of atrial dilation, mechanoelectric feedback has been linked to the development of ectopic beats that trigger paroxysmal atrial fibrillation mainly originating from pulmonary veins (PVs). However, the precise mechanisms remain poorly understood. Methods and Results We identify mechanosensitive, swelling‐activated chloride ion channels (ICl,swell) as a crucial component of the caveolar mechanosensitive complex in rat and human cardiomyocytes. In vitro optical mapping of rat PV, single rat PV, and human cardiomyocyte patch clamp studies showed that stretch‐induced activation of ICl,swell leads to membrane depolarization and decreased action potential amplitude, which trigger conduction discontinuities and both ectopic and reentrant activities within the PV. Reverse transcription quantitative polymerase chain reaction, immunofluorescence, and coimmunoprecipitation studies showed that ICl,swell likely consists of at least 2 components produced by mechanosensitive ClC‐3 (chloride channel‐3) and SWELL1 (also known as LRRC8A [leucine rich repeat containing protein 8A]) chloride channels, which form a macromolecular complex with caveolar scaffolding protein Cav3 (caveolin 3). Downregulation of Cav3 protein expression and disruption of caveolae structures during chronic hypertension in spontaneously hypertensive rats facilitates activation of ICl,swell and increases PV sensitivity to stretch 10‐ to 50‐fold, promoting the development of atrial fibrillation. Conclusions Our findings identify caveolae‐mediated activation of mechanosensitive ICl,swell as a critical cause of PV ectopic beats that can initiate atrial arrhythmias including atrial fibrillation. This mechanism is exacerbated in the setting of chronically elevated blood pressures.
Collapse
Affiliation(s)
- Yuriy V. Egorov
- Laboratory of Heart ElectrophysiologyCardiology Research CentreMoscowRussian Federation
| | - Di Lang
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | - Leonid Tyan
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | - Daniel Turner
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | - Evi Lim
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | - Zachary D. Piro
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | - Jonathan J. Hernandez
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
- Department of PediatricsPediatric CardiologyUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | - Rylie Lodin
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | - Rose Wang
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | - Eric G. Schmuck
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | - Amish N. Raval
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | - Carter J. Ralphe
- Department of PediatricsPediatric CardiologyUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | - Timothy J. Kamp
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | | | - Alexey V. Glukhov
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| |
Collapse
|
5
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
6
|
Delgado-Ramírez M, Sánchez-Armass S, Meza U, Rodríguez-Menchaca AA. Regulation of Kv7.2/Kv7.3 channels by cholesterol: Relevance of an optimum plasma membrane cholesterol content. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1242-1251. [PMID: 29474891 DOI: 10.1016/j.bbamem.2018.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/18/2022]
Abstract
Kv7.2/Kv7.3 channels are the molecular correlate of the M-current, which stabilizes the membrane potential and controls neuronal excitability. Previous studies have shown the relevance of plasma membrane lipids on both M-currents and Kv7.2/Kv7.3 channels. Here, we report the sensitive modulation of Kv7.2/Kv7.3 channels by membrane cholesterol level. Kv7.2/Kv7.3 channels transiently expressed in HEK-293 cells were significantly inhibited by decreasing the cholesterol level in the plasma membrane by three different pharmacological strategies: methyl-β-cyclodextrin (MβCD), Filipin III, and cholesterol oxidase treatment. Surprisingly, Kv7.2/Kv7.3 channels were also inhibited by membrane cholesterol loading with the MβCD/cholesterol complex. Depletion or enrichment of plasma membrane cholesterol differentially affected the biophysical parameters of the macroscopic Kv7.2/Kv7.3 currents. These results indicate a complex mechanism of Kv7.2/Kv7.3 channels modulation by membrane cholesterol. We propose that inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol depletion involves a loss of a direct cholesterol-channel interaction. However, the inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol enrichment could include an additional direct cholesterol-channel interaction, or changes in the physical properties of the plasma membrane. In summary, our results indicate that an optimum cholesterol level in the plasma membrane is required for the proper functioning of Kv7.2/Kv7.3 channels.
Collapse
Affiliation(s)
- Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, Mexico
| | - Sergio Sánchez-Armass
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, Mexico
| | - Ulises Meza
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, Mexico.
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, Mexico.
| |
Collapse
|
7
|
Wang H, Xu M, Kong Q, Sun P, Yan F, Tian W, Wang X. Research and progress on ClC‑2 (Review). Mol Med Rep 2017; 16:11-22. [PMID: 28534947 PMCID: PMC5482133 DOI: 10.3892/mmr.2017.6600] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 02/13/2017] [Indexed: 12/22/2022] Open
Abstract
Chloride channel 2 (ClC-2) is one of the nine mammalian members of the ClC family. The present review discusses the molecular properties of ClC‑2, including CLCN2, ClC‑2 promoter and the structural properties of ClC‑2 protein; physiological properties; functional properties, including the regulation of cell volume. The effects of ClC‑2 on the digestive, respiratory, circulatory, nervous and optical systems are also discussed, in addition to the mechanisms involved in the regulation of ClC‑2. The review then discusses the diseases associated with ClC‑2, including degeneration of the retina, Sjögren's syndrome, age‑related cataracts, degeneration of the testes, azoospermia, lung cancer, constipation, repair of impaired intestinal mucosa barrier, leukemia, cystic fibrosis, leukoencephalopathy, epilepsy and diabetes mellitus. It was concluded that future investigations of ClC‑2 are likely to be focused on developing specific drugs, activators and inhibitors regulating the expression of ClC‑2 to treat diseases associated with ClC‑2. The determination of CLCN2 is required to prevent and treat several diseases associated with ClC‑2.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Ophthalmology, People's Hospital of Jingjiang, Jingjiang, Jiangsu 214500, P.R. China
| | - Minghui Xu
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Qingjie Kong
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Peng Sun
- Department of Ophthalmology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Fengyun Yan
- Assets Division, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, P.R. China
| | - Wenying Tian
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Xin Wang
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
8
|
Zhang L, Xu B, Wang X. Cholesterol Extraction from Cell Membrane by Graphene Nanosheets: A Computational Study. J Phys Chem B 2016; 120:957-64. [PMID: 26812232 DOI: 10.1021/acs.jpcb.5b10330] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The health risk associated with high cholesterol levels in the human body has motivated intensive efforts to lower them by using specialized drugs. However, little research has been reported on utilizing nanomaterials to extract extra cholesterol from living tissues. Graphene possesses great potential for cholesterol extraction from cell membranes due to its distinct porous structure and outstanding surface adhesion. Here we employ dissipative dynamic simulations to explore pathways for cholesterol extraction from a cell membrane by a sheet of graphene using a coarse-grained graphene nanosheets (CGGN) model. We first demonstrate that the self-assembly process among a single layer of graphene and a group of randomly distributed cholesterol molecules in the aqueous environment, which provides a firm foundation for graphene-cholesterol interactions and the dynamic cholesterol extraction process from the cell membrane. Simulations results show that graphene is capable of removing cholesterol molecules from the bilayer membrane. The interaction between graphene and cholesterol molecules plays an important role in determining the amount of extracted cholesterol molecules from the cell membrane. Our findings open up a promising avenue to exploit the capability of graphene for biomedical applications.
Collapse
Affiliation(s)
- Liuyang Zhang
- College of Engineering and NanoSEC, University of Georgia , Athens, Georgia 30602, United States
| | - Bingqian Xu
- College of Engineering and NanoSEC, University of Georgia , Athens, Georgia 30602, United States
| | - Xianqiao Wang
- College of Engineering and NanoSEC, University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
9
|
Stölting G, Fischer M, Fahlke C. CLC channel function and dysfunction in health and disease. Front Physiol 2014; 5:378. [PMID: 25339907 PMCID: PMC4188032 DOI: 10.3389/fphys.2014.00378] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/12/2014] [Indexed: 01/01/2023] Open
Abstract
CLC channels and transporters are expressed in most tissues and fulfill diverse functions. There are four human CLC channels, ClC-1, ClC-2, ClC-Ka, and ClC-Kb, and five CLC transporters, ClC-3 through −7. Some of the CLC channels additionally associate with accessory subunits. Whereas barttin is mandatory for the functional expression of ClC-K, GlialCam is a facultative subunit of ClC-2 which modifies gating and thus increases the functional variability within the CLC family. Isoform-specific ion conduction and gating properties optimize distinct CLC channels for their cellular tasks. ClC-1 preferentially conducts at negative voltages, and the resulting inward rectification provides a large resting chloride conductance without interference with the muscle action potential. Exclusive opening at voltages negative to the chloride reversal potential allows for ClC-2 to regulate intracellular chloride concentrations. ClC-Ka and ClC-Kb are equally suited for inward and outward currents to support transcellular chloride fluxes. Every human CLC channel gene has been linked to a genetic disease, and studying these mutations has provided much information about the physiological roles and the molecular basis of CLC channel function. Mutations in the gene encoding ClC-1 cause myotonia congenita, a disease characterized by sarcolemmal hyperexcitability and muscle stiffness. Loss-of-function of ClC-Kb/barttin channels impairs NaCl resorption in the limb of Henle and causes hyponatriaemia, hypovolemia and hypotension in patients suffering from Bartter syndrome. Mutations in CLCN2 were found in patients with CNS disorders but the functional role of this isoform is still not understood. Recent links between ClC-1 and epilepsy and ClC-Ka and heart failure suggested novel cellular functions of these proteins. This review aims to survey the knowledge about physiological and pathophysiological functions of human CLC channels in the light of recent discoveries from biophysical, physiological, and genetic studies.
Collapse
Affiliation(s)
- Gabriel Stölting
- Institute of Complex Systems-Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich Jülich, Germany
| | - Martin Fischer
- Institut für Neurophysiologie, Medizinische Hochschule Hannover Hannover, Germany
| | - Christoph Fahlke
- Institute of Complex Systems-Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich Jülich, Germany
| |
Collapse
|
10
|
McCarthy NS, Vangjeli C, Cavalleri GL, Delanty N, Shianna KV, Surendran P, O'Brien E, Munroe PB, Masca N, Tomaszewski M, Samani NJ, Stanton AV. Two further blood pressure loci identified in ion channel genes with a gene-centric approach. ACTA ACUST UNITED AC 2014; 7:873-9. [PMID: 25210050 DOI: 10.1161/circgenetics.113.000190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Blood pressure (BP) is highly heritable, but our understanding of the genetic causes underlying variations in BP is incomplete. In this study, we explored whether novel loci associated with BP could be identified using a genecentric approach in 3 community-based cohorts with accurate BP measurements. METHODS AND RESULTS Genotyping of 1857 single nucleotide polymorphisms (SNPs) in 91 ion channel genes was performed in a discovery cohort (n=358). Thirty-four SNPs associated with BP traits (P≤0.01) were followed up in an independent population (n=387); significant SNPs from this analysis were looked up in another independent population (n=1010) and meta-analyzed. Repeated clinic and ambulatory measurements were available for all but the discovery cohort (clinic only). Association analyses were performed, with systolic, diastolic, and pulse pressures as quantitative traits, adjusting for age and sex. Quantile-quantile plots indicated that the genecentric approach resulted in an inflation of association signals. Of the 29 SNPs taken forward from the discovery cohort, 2 SNPs were associated with BP phenotypes with the same direction of effect, with experiment-wide significance, in follow-up cohort I. These were rs2228291, in the chloride channel gene CLCN2, and rs10513488, in the potassium channel gene KCNAB1. Both associations were subsequently replicated in follow-up cohort II. CONCLUSIONS Using a genecentric design and 3 well-phenotyped populations, this study identified 2 previously unreported, biologically plausible, genetic associations with BP. These results suggest that dense genotyping of genes, in pathways known to influence BP, could add to candidate-gene and Genome Wide Association studies in further explaining BP heritability.
Collapse
Affiliation(s)
- Nina S McCarthy
- From the Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland (N.S.M., C.V., G.L.C., N.D., P.S., A.V.S.); Centre for Genetic Origins of Health and Disease, University of Western Australia, Perth, Australia (N.S.M.); Blood Pressure Unit and Department of Neurology, Beaumont Hospital, Beaumont, Dublin, Ireland (N.D., A.V.S.); Center for Human Genome Variation and Department of Medicine, Duke University School of Medicine, Durham, NC (K.V.S.); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland (P.S., E.O.B.); Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London Medical School, and Barts NIHR Biomedical Research Unit, London (P.B.M.); and Department of Cardiovascular Sciences, University of Leicester, and Leicester National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, United Kingdom (N.M., M.T., N.J.S.)
| | - Ciara Vangjeli
- From the Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland (N.S.M., C.V., G.L.C., N.D., P.S., A.V.S.); Centre for Genetic Origins of Health and Disease, University of Western Australia, Perth, Australia (N.S.M.); Blood Pressure Unit and Department of Neurology, Beaumont Hospital, Beaumont, Dublin, Ireland (N.D., A.V.S.); Center for Human Genome Variation and Department of Medicine, Duke University School of Medicine, Durham, NC (K.V.S.); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland (P.S., E.O.B.); Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London Medical School, and Barts NIHR Biomedical Research Unit, London (P.B.M.); and Department of Cardiovascular Sciences, University of Leicester, and Leicester National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, United Kingdom (N.M., M.T., N.J.S.)
| | - Gianpiero L Cavalleri
- From the Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland (N.S.M., C.V., G.L.C., N.D., P.S., A.V.S.); Centre for Genetic Origins of Health and Disease, University of Western Australia, Perth, Australia (N.S.M.); Blood Pressure Unit and Department of Neurology, Beaumont Hospital, Beaumont, Dublin, Ireland (N.D., A.V.S.); Center for Human Genome Variation and Department of Medicine, Duke University School of Medicine, Durham, NC (K.V.S.); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland (P.S., E.O.B.); Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London Medical School, and Barts NIHR Biomedical Research Unit, London (P.B.M.); and Department of Cardiovascular Sciences, University of Leicester, and Leicester National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, United Kingdom (N.M., M.T., N.J.S.)
| | - Norman Delanty
- From the Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland (N.S.M., C.V., G.L.C., N.D., P.S., A.V.S.); Centre for Genetic Origins of Health and Disease, University of Western Australia, Perth, Australia (N.S.M.); Blood Pressure Unit and Department of Neurology, Beaumont Hospital, Beaumont, Dublin, Ireland (N.D., A.V.S.); Center for Human Genome Variation and Department of Medicine, Duke University School of Medicine, Durham, NC (K.V.S.); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland (P.S., E.O.B.); Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London Medical School, and Barts NIHR Biomedical Research Unit, London (P.B.M.); and Department of Cardiovascular Sciences, University of Leicester, and Leicester National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, United Kingdom (N.M., M.T., N.J.S.)
| | - Kevin V Shianna
- From the Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland (N.S.M., C.V., G.L.C., N.D., P.S., A.V.S.); Centre for Genetic Origins of Health and Disease, University of Western Australia, Perth, Australia (N.S.M.); Blood Pressure Unit and Department of Neurology, Beaumont Hospital, Beaumont, Dublin, Ireland (N.D., A.V.S.); Center for Human Genome Variation and Department of Medicine, Duke University School of Medicine, Durham, NC (K.V.S.); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland (P.S., E.O.B.); Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London Medical School, and Barts NIHR Biomedical Research Unit, London (P.B.M.); and Department of Cardiovascular Sciences, University of Leicester, and Leicester National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, United Kingdom (N.M., M.T., N.J.S.)
| | - Praveen Surendran
- From the Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland (N.S.M., C.V., G.L.C., N.D., P.S., A.V.S.); Centre for Genetic Origins of Health and Disease, University of Western Australia, Perth, Australia (N.S.M.); Blood Pressure Unit and Department of Neurology, Beaumont Hospital, Beaumont, Dublin, Ireland (N.D., A.V.S.); Center for Human Genome Variation and Department of Medicine, Duke University School of Medicine, Durham, NC (K.V.S.); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland (P.S., E.O.B.); Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London Medical School, and Barts NIHR Biomedical Research Unit, London (P.B.M.); and Department of Cardiovascular Sciences, University of Leicester, and Leicester National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, United Kingdom (N.M., M.T., N.J.S.)
| | - Eoin O'Brien
- From the Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland (N.S.M., C.V., G.L.C., N.D., P.S., A.V.S.); Centre for Genetic Origins of Health and Disease, University of Western Australia, Perth, Australia (N.S.M.); Blood Pressure Unit and Department of Neurology, Beaumont Hospital, Beaumont, Dublin, Ireland (N.D., A.V.S.); Center for Human Genome Variation and Department of Medicine, Duke University School of Medicine, Durham, NC (K.V.S.); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland (P.S., E.O.B.); Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London Medical School, and Barts NIHR Biomedical Research Unit, London (P.B.M.); and Department of Cardiovascular Sciences, University of Leicester, and Leicester National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, United Kingdom (N.M., M.T., N.J.S.)
| | - Patricia B Munroe
- From the Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland (N.S.M., C.V., G.L.C., N.D., P.S., A.V.S.); Centre for Genetic Origins of Health and Disease, University of Western Australia, Perth, Australia (N.S.M.); Blood Pressure Unit and Department of Neurology, Beaumont Hospital, Beaumont, Dublin, Ireland (N.D., A.V.S.); Center for Human Genome Variation and Department of Medicine, Duke University School of Medicine, Durham, NC (K.V.S.); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland (P.S., E.O.B.); Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London Medical School, and Barts NIHR Biomedical Research Unit, London (P.B.M.); and Department of Cardiovascular Sciences, University of Leicester, and Leicester National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, United Kingdom (N.M., M.T., N.J.S.)
| | - Nicholas Masca
- From the Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland (N.S.M., C.V., G.L.C., N.D., P.S., A.V.S.); Centre for Genetic Origins of Health and Disease, University of Western Australia, Perth, Australia (N.S.M.); Blood Pressure Unit and Department of Neurology, Beaumont Hospital, Beaumont, Dublin, Ireland (N.D., A.V.S.); Center for Human Genome Variation and Department of Medicine, Duke University School of Medicine, Durham, NC (K.V.S.); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland (P.S., E.O.B.); Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London Medical School, and Barts NIHR Biomedical Research Unit, London (P.B.M.); and Department of Cardiovascular Sciences, University of Leicester, and Leicester National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, United Kingdom (N.M., M.T., N.J.S.)
| | - Maciej Tomaszewski
- From the Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland (N.S.M., C.V., G.L.C., N.D., P.S., A.V.S.); Centre for Genetic Origins of Health and Disease, University of Western Australia, Perth, Australia (N.S.M.); Blood Pressure Unit and Department of Neurology, Beaumont Hospital, Beaumont, Dublin, Ireland (N.D., A.V.S.); Center for Human Genome Variation and Department of Medicine, Duke University School of Medicine, Durham, NC (K.V.S.); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland (P.S., E.O.B.); Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London Medical School, and Barts NIHR Biomedical Research Unit, London (P.B.M.); and Department of Cardiovascular Sciences, University of Leicester, and Leicester National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, United Kingdom (N.M., M.T., N.J.S.)
| | - Nilesh J Samani
- From the Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland (N.S.M., C.V., G.L.C., N.D., P.S., A.V.S.); Centre for Genetic Origins of Health and Disease, University of Western Australia, Perth, Australia (N.S.M.); Blood Pressure Unit and Department of Neurology, Beaumont Hospital, Beaumont, Dublin, Ireland (N.D., A.V.S.); Center for Human Genome Variation and Department of Medicine, Duke University School of Medicine, Durham, NC (K.V.S.); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland (P.S., E.O.B.); Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London Medical School, and Barts NIHR Biomedical Research Unit, London (P.B.M.); and Department of Cardiovascular Sciences, University of Leicester, and Leicester National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, United Kingdom (N.M., M.T., N.J.S.)
| | - Alice V Stanton
- From the Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland (N.S.M., C.V., G.L.C., N.D., P.S., A.V.S.); Centre for Genetic Origins of Health and Disease, University of Western Australia, Perth, Australia (N.S.M.); Blood Pressure Unit and Department of Neurology, Beaumont Hospital, Beaumont, Dublin, Ireland (N.D., A.V.S.); Center for Human Genome Variation and Department of Medicine, Duke University School of Medicine, Durham, NC (K.V.S.); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland (P.S., E.O.B.); Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London Medical School, and Barts NIHR Biomedical Research Unit, London (P.B.M.); and Department of Cardiovascular Sciences, University of Leicester, and Leicester National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, United Kingdom (N.M., M.T., N.J.S.).
| |
Collapse
|
11
|
Bi MM, Hong S, Zhou HY, Wang HW, Wang LN, Zheng YJ. Chloride channelopathies of ClC-2. Int J Mol Sci 2013; 15:218-49. [PMID: 24378849 PMCID: PMC3907807 DOI: 10.3390/ijms15010218] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/14/2013] [Accepted: 12/16/2013] [Indexed: 12/15/2022] Open
Abstract
Chloride channels (ClCs) have gained worldwide interest because of their molecular diversity, widespread distribution in mammalian tissues and organs, and their link to various human diseases. Nine different ClCs have been molecularly identified and functionally characterized in mammals. ClC-2 is one of nine mammalian members of the ClC family. It possesses unique biophysical characteristics, pharmacological properties, and molecular features that distinguish it from other ClC family members. ClC-2 has wide organ/tissue distribution and is ubiquitously expressed. Published studies consistently point to a high degree of conservation of ClC-2 function and regulation across various species from nematodes to humans over vast evolutionary time spans. ClC-2 has been intensively and extensively studied over the past two decades, leading to the accumulation of a plethora of information to advance our understanding of its pathophysiological functions; however, many controversies still exist. It is necessary to analyze the research findings, and integrate different views to have a better understanding of ClC-2. This review focuses on ClC-2 only, providing an analytical overview of the available literature. Nearly every aspect of ClC-2 is discussed in the review: molecular features, biophysical characteristics, pharmacological properties, cellular function, regulation of expression and function, and channelopathies.
Collapse
Affiliation(s)
- Miao Miao Bi
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| | - Sen Hong
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| | - Hong Yan Zhou
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| | - Hong Wei Wang
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| | - Li Na Wang
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| | - Ya Juan Zheng
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| |
Collapse
|
12
|
Stauber T, Weinert S, Jentsch TJ. Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol 2013; 2:1701-44. [PMID: 23723021 DOI: 10.1002/cphy.c110038] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins of the CLC gene family assemble to homo- or sometimes heterodimers and either function as Cl(-) channels or as Cl(-)/H(+)-exchangers. CLC proteins are present in all phyla. Detailed structural information is available from crystal structures of bacterial and algal CLCs. Mammals express nine CLC genes, four of which encode Cl(-) channels and five 2Cl(-)/H(+)-exchangers. Two accessory β-subunits are known: (1) barttin and (2) Ostm1. ClC-Ka and ClC-Kb Cl(-) channels need barttin, whereas Ostm1 is required for the function of the lysosomal ClC-7 2Cl(-)/H(+)-exchanger. ClC-1, -2, -Ka and -Kb Cl(-) channels reside in the plasma membrane and function in the control of electrical excitability of muscles or neurons, in extra- and intracellular ion homeostasis, and in transepithelial transport. The mainly endosomal/lysosomal Cl(-)/H(+)-exchangers ClC-3 to ClC-7 may facilitate vesicular acidification by shunting currents of proton pumps and increase vesicular Cl(-) concentration. ClC-3 is also present on synaptic vesicles, whereas ClC-4 and -5 can reach the plasma membrane to some extent. ClC-7/Ostm1 is coinserted with the vesicular H(+)-ATPase into the acid-secreting ruffled border membrane of osteoclasts. Mice or humans lacking ClC-7 or Ostm1 display osteopetrosis and lysosomal storage disease. Disruption of the endosomal ClC-5 Cl(-)/H(+)-exchanger leads to proteinuria and Dent's disease. Mouse models in which ClC-5 or ClC-7 is converted to uncoupled Cl(-) conductors suggest an important role of vesicular Cl(-) accumulation in these pathologies. The important functions of CLC Cl(-) channels were also revealed by human diseases and mouse models, with phenotypes including myotonia, renal loss of salt and water, deafness, blindness, leukodystrophy, and male infertility.
Collapse
Affiliation(s)
- Tobias Stauber
- Leibniz-Institut für Molekulare Pharmakologie FMP and Max-Delbrück-Centrum für Molekulare Medizin MDC, Berlin, Germany
| | | | | |
Collapse
|
13
|
Regulation of ClC-2 gating by intracellular ATP. Pflugers Arch 2013; 465:1423-37. [PMID: 23632988 PMCID: PMC3778897 DOI: 10.1007/s00424-013-1286-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/18/2013] [Accepted: 04/18/2013] [Indexed: 12/27/2022]
Abstract
ClC-2 is a voltage-dependent chloride channel that activates slowly at voltages negative to the chloride reversal potential. Adenosine triphosphate (ATP) and other nucleotides have been shown to bind to carboxy-terminal cystathionine-ß-synthase (CBS) domains of ClC-2, but the functional consequences of binding are not sufficiently understood. We here studied the effect of nucleotides on channel gating using single-channel and whole-cell patch clamp recordings on transfected mammalian cells. ATP slowed down macroscopic activation and deactivation time courses in a dose-dependent manner. Removal of the complete carboxy-terminus abolishes the effect of ATP, suggesting that CBS domains are necessary for ATP regulation of ClC-2 gating. Single-channel recordings identified long-lasting closed states of ATP-bound channels as basis of this gating deceleration. ClC-2 channel dimers exhibit two largely independent protopores that are opened and closed individually as well as by a common gating process. A seven-state model of common gating with altered voltage dependencies of opening and closing transitions for ATP-bound states correctly describes the effects of ATP on macroscopic and microscopic ClC-2 currents. To test for a potential pathophysiological impact of ClC-2 regulation by ATP, we studied ClC-2 channels carrying naturally occurring sequence variants found in patients with idiopathic generalized epilepsy, G715E, R577Q, and R653T. All naturally occurring sequence variants accelerate common gating in the presence but not in the absence of ATP. We propose that ClC-2 uses ATP as a co-factor to slow down common gating for sufficient electrical stability of neurons under physiological conditions.
Collapse
|
14
|
Statins impair glucose uptake in tumor cells. Neoplasia 2012; 14:311-23. [PMID: 22577346 DOI: 10.1593/neo.12444] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 03/22/2012] [Accepted: 03/22/2012] [Indexed: 01/31/2023] Open
Abstract
Statins, HMG-CoA reductase inhibitors, are used in the prevention and treatment of cardiovascular diseases owing to their lipid-lowering effects. Previous studies revealed that, by modulating membrane cholesterol content, statins could induce conformational changes in cluster of differentiation 20 (CD20) tetraspanin. The aim of the presented study was to investigate the influence of statins on glucose transporter 1 (GLUT1)-mediated glucose uptake in tumor cells. We observed a significant concentration- and time-dependent decrease in glucose analogs' uptake in several tumor cell lines incubated with statins. This effect was reversible with restitution of cholesterol synthesis pathway with mevalonic acid as well as with supplementation of plasma membrane with exogenous cholesterol. Statins did not change overall GLUT1 expression at neither transcriptional nor protein levels. An exploratory clinical trial revealed that statin treatment decreased glucose uptake in peripheral blood leukocytes and lowered (18)F-fluorodeoxyglucose ((18)F-FDG) uptake by tumor masses in a mantle cell lymphoma patient. A bioinformatics analysis was used to predict the structure of human GLUT1 and to identify putative cholesterol-binding motifs in its juxtamembrane fragment. Altogether, the influence of statins on glucose uptake seems to be of clinical significance. By inhibiting (18)F-FDG uptake, statins can negatively affect the sensitivity of positron emission tomography, a diagnostic procedure frequently used in oncology.
Collapse
|
15
|
Khatibzadeh N, Gupta S, Farrell B, Brownell WE, Anvari B. Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane. SOFT MATTER 2012; 8:8350-8360. [PMID: 23227105 PMCID: PMC3515074 DOI: 10.1039/c2sm25263e] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this study, we investigated the effects of membrane cholesterol content on the mechanical properties of cell membranes by using optical tweezers. We pulled membrane tethers from human embryonic kidney cells using single and multi-speed protocols, and obtained time-resolved tether forces. We quantified various mechanical characteristics including the tether equilibrium force, bending modulus, effective membrane viscosity, and plasma membrane-cytoskeleton adhesion energy, and correlated them to the membrane cholesterol level. Decreases in cholesterol concentration were associated with increases in the tether equilibrium force, tether stiffness, and adhesion energy. Tether diameter and effective viscosity increased with increasing cholesterol levels. Disruption of cytoskeletal F-actin significantly changed the tether diameters in both non-cholesterol and cholesterol-manipulated cells, while the effective membrane viscosity was unaffected by F-actin disruption. The findings are relevant to inner ear function where cochlear amplification is altered by changes in membrane cholesterol content.
Collapse
Affiliation(s)
- Nima Khatibzadeh
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
| | - Sharad Gupta
- Department of Bioengineering, University of California, Riverside, CA 92521,USA
| | - Brenda Farrell
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, TX 77030, USA
| | - William E. Brownell
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, TX 77030, USA
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, CA 92521,USA
- Tel: 951-827-5726; Fax: 951-827-6416;
| |
Collapse
|
16
|
Kitson SM, Mullen W, Cogdell RJ, Bill RM, Fraser NJ. GPCR production in a novel yeast strain that makes cholesterol-like sterols. Methods 2011; 55:287-92. [PMID: 22001123 DOI: 10.1016/j.ymeth.2011.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/26/2011] [Accepted: 09/28/2011] [Indexed: 02/06/2023] Open
Abstract
The activities of many mammalian membrane proteins including G-protein coupled receptors are cholesterol-dependent. Unlike higher eukaryotes, yeast do not make cholesterol. Rather they make a related molecule called ergosterol. As cholesterol and ergosterol are biologically non-equivalent, the potential of yeast as hosts for overproducing mammalian membrane proteins has never been fully realised. To address this problem, we are trying to engineer a novel strain of Saccharomyces cerevisiae in which the cholesterol biosynthetic pathway of mammalian cells has been fully reconstituted. Thus far, we have created a modified strain that makes cholesterol-like sterols which has an increased capacity to make G-protein coupled receptors compared to control yeast.
Collapse
Affiliation(s)
- Susan M Kitson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | |
Collapse
|
17
|
Agarwal SR, MacDougall DA, Tyser R, Pugh SD, Calaghan SC, Harvey RD. Effects of cholesterol depletion on compartmentalized cAMP responses in adult cardiac myocytes. J Mol Cell Cardiol 2010; 50:500-9. [PMID: 21115018 PMCID: PMC3049871 DOI: 10.1016/j.yjmcc.2010.11.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/27/2010] [Accepted: 11/16/2010] [Indexed: 11/02/2022]
Abstract
β(1)-Adrenergic receptors (β(1)ARs) and E-type prostaglandin receptors (EPRs) both produce compartmentalized cAMP responses in cardiac myocytes. The role of cholesterol-dependent lipid rafts in producing these compartmentalized responses was investigated in adult rat ventricular myocytes. β(1)ARs were found in lipid raft and non-lipid raft containing membrane fractions, while EPRs were only found in non-lipid raft fractions. Furthermore, β(1)AR activation enhanced the L-type Ca(2+) current, intracellular Ca(2+) transient, and myocyte shortening, while EPR activation had no effect, consistent with the idea that these functional responses are regulated by cAMP produced by receptors found in lipid raft domains. Using methyl-β-cyclodextrin to disrupt lipid rafts by depleting membrane cholesterol did not eliminate compartmentalized behavior, but it did selectively alter specific receptor-mediated responses. Cholesterol depletion enhanced the sensitivity of functional responses produced by β(1)ARs without having any effect on EPR activation. Changes in cAMP activity were also measured in intact cells using two different FRET-based biosensors: a type II PKA-based probe to monitor cAMP in subcellular compartments that include microdomains associated with caveolar lipid rafts and a freely diffusible Epac2-based probe to monitor total cytosolic cAMP. β(1)AR and EPR activation elicited responses detected by both FRET probes. However, cholesterol depletion only affected β(1)AR responses detected by the PKA probe. These results indicate that lipid rafts alone are not sufficient to explain the difference between β(1)AR and EPR responses. They also suggest that β(1)AR regulation of myocyte contraction involves the local production of cAMP by a subpopulation of receptors associated with caveolar lipid rafts.
Collapse
Affiliation(s)
- Shailesh R Agarwal
- Department of Pharmacology-MS318, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | | | |
Collapse
|
18
|
Awayda MS, Awayda KL, Pochynyuk O, Bugaj V, Stockand JD, Ortiz RM. Acute cholesterol-induced anti-natriuretic effects: role of epithelial Na+ channel activity, protein levels, and processing. J Biol Chem 2010; 286:1683-95. [PMID: 21041305 DOI: 10.1074/jbc.m110.159194] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epithelial Na(+) channel (ENaC) is modulated by membrane lipid composition. However, the effect of an in vivo change of membrane composition is unknown. We examined the effect of a 70-day enhanced cholesterol diet (ECD) on ENaC and renal Na(+) handling. Rats were fed a standard chow or one supplemented with 1% cholesterol and 0.5% cholic acid (ECD). ECD animals exhibited marked anti-diuresis and anti-natriuresis (40 and 47%), which peaked at 1-3 weeks. Secondary compensation returned urine output and urinary Na(+) excretion to control levels by week 10. During these initial changes, there were no accompanying effects on systolic blood pressure, serum creatinine, or urinary creatinine excretion, indicating that the these effects of ECD preceded those which modify renal filtration and blood pressure. The effects of ECD on ENaC were evaluated by measuring the relative protein content of α, β, and γ subunits. α and γ blots were further examined for subunit cleavage (a process that activates ENaC). No significant changes were observed in α and β levels throughout the study. However, levels of cleaved γ were elevated, suggesting that ENaC was activated. The changes of γ persisted at week 10 and were accompanied by additional subunit fragments, indicating potential changes of γ-cleaving proteases. Enhanced protease activity, and specifically that which could act on the second identified cleavage site in γ, was verified in a newly developed urinary protease assay. These results predict enhanced ENaC activity, an effect that was confirmed in patch clamp experiments of principal cells of split open collecting ducts, where ENaC open probability was increased by 40% in the ECD group. These data demonstrate a complex series of events and a new regulatory paradigm that is initiated by ECD prior to the onset of elevated blood pressure. These events lead to changes of renal Na(+) handling, which occur in part by effects on extracellular γ-ENaC cleavage.
Collapse
Affiliation(s)
- Mouhamed S Awayda
- Department of Physiology and Biophysics, State University of New York, Buffalo, New York 14214, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Helicobacter pylori exploits cholesterol-rich microdomains for induction of NF-kappaB-dependent responses and peptidoglycan delivery in epithelial cells. Infect Immun 2010; 78:4523-31. [PMID: 20713621 DOI: 10.1128/iai.00439-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Infection with Helicobacter pylori cag pathogenicity island (cagPAI)-positive strains is associated with more destructive tissue damage and an increased risk of severe disease. The cagPAI encodes a type IV secretion system (TFSS) that delivers the bacterial effector molecules CagA and peptidoglycan into the host cell cytoplasm, thereby inducing responses in host cells. It was previously shown that interactions between CagL, present on the TFSS pilus, and host α(5)β(1) integrin molecules were critical for CagA translocation and the induction of cytoskeletal rearrangements in epithelial cells. As the α(5)β(1) integrin is found in cholesterol-rich microdomains (known as lipid rafts), we hypothesized that these domains may also be involved in the induction of proinflammatory responses mediated by NOD1 recognition of H. pylori peptidoglycan. Indeed, not only did methyl-β-cyclodextrin depletion of cholesterol from cultured epithelial cells have a significant effect on the levels of NF-κB and interleukin-8 (IL-8) responses induced by H. pylori bacteria with an intact TFSS (P < 0.05), but it also interfered with TFSS-mediated peptidoglycan delivery to cells. Both of these effects could be restored by cholesterol replenishment of the cells. Furthermore, we demonstrated for the first time the involvement of α(5)β(1) integrin in the induction of proinflammatory responses by H. pylori. Taking the results together, we propose that α(5)β(1) integrin, which is associated with cholesterol-rich microdomains at the host cell surface, is required for NOD1 recognition of peptidoglycan and subsequent induction of NF-κB-dependent responses to H. pylori. These data implicate cholesterol-rich microdomains as a novel platform for TFSS-dependent delivery of bacterial products to cytosolic pathogen recognition molecules.
Collapse
|
20
|
Functional Characterization of a ClC-2-Like Cl− Conductance in Surface Epithelial Cells of Rat Rectal Colon. J Membr Biol 2010; 235:27-41. [DOI: 10.1007/s00232-010-9253-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Accepted: 03/28/2010] [Indexed: 01/13/2023]
|
21
|
Abstract
A variety of ion channels, including members of all major ion channel families, have been shown to be regulated by changes in the level of membrane cholesterol and partition into cholesterol-rich membrane domains. In general, several types of cholesterol effects have been described. The most common effect is suppression of channel activity by an increase in membrane cholesterol, an effect that was described for several types of inwardly-rectifying K(+) channels, voltage-gated K(+) channels, Ca(+2) sensitive K(+) channels, voltage-gated Na(+) channels, N-type voltage-gated Ca(+2) channels and volume-regulated anion channels. In contrast, several types of ion channels, such as epithelial amiloride-sensitive Na(+) channels and Transient Receptor Potential channels, as well as some of the types of inwardly-rectifying and voltage-gated K(+) channels were shown to be inhibited by cholesterol depletion. Cholesterol was also shown to alter the kinetic properties and current-voltage dependence of several voltage-gated channels. Finally, maintaining membrane cholesterol level is required for coupling ion channels to signalling cascades. In terms of the mechanisms, three general mechanisms have been proposed: (i) specific interactions between cholesterol and the channel protein, (ii) changes in the physical properties of the membrane bilayer and (iii) maintaining the scaffolds for protein-protein interactions. The goal of this review is to describe systematically the role of cholesterol in regulation of the major types of ion channels and to discuss these effects in the context of the models proposed.
Collapse
Affiliation(s)
- Irena Levitan
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | | | | | | |
Collapse
|
22
|
Cornejo I, Niemeyer MI, Zúñiga L, Yusef YR, Sepúlveda FV, Cid LP. Rapid recycling of ClC-2 chloride channels between plasma membrane and endosomes: role of a tyrosine endocytosis motif in surface retrieval. J Cell Physiol 2009; 221:650-7. [PMID: 19711355 DOI: 10.1002/jcp.21900] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ClC-2 chloride channel is present in the brain and some transporting epithelia where its function is poorly understood. We have now demonstrated that the surface channels are rapidly internalised and approximately the 70% of the surface membrane protein recycles after 4- to 8-min internalisation. Endocytosis of ClC-2 was dependent upon tyrosine 179 located within an endocytic motif. Rapid recycling accompanied by an even faster internalisation could account for the abundant presence of ClC-2 in intracellular membranous structures. At least a proportion of ClC-2 resides in lipid rafts. Use of beta-cyclodextrin led to an increase in cell surface channel, but, surprisingly, a decrease in functionally active channels. We suggest that ClC-2 requires residing in beta-cyclodextrin sensitive clusters with other molecules in order to remain active. Regulation of ClC-2 trafficking to and within the membrane could be a means of modulating its activity.
Collapse
|
23
|
Lam RS, Nahirney D, Duszyk M. Cholesterol-dependent regulation of adenosine A2A receptor-mediated anion secretion in colon epithelial cells. Exp Cell Res 2009; 315:3028-35. [DOI: 10.1016/j.yexcr.2009.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 11/29/2022]
|
24
|
Nighot PK, Moeser AJ, Ryan KA, Ghashghaei T, Blikslager AT. ClC-2 is required for rapid restoration of epithelial tight junctions in ischemic-injured murine jejunum. Exp Cell Res 2008; 315:110-8. [PMID: 18976652 DOI: 10.1016/j.yexcr.2008.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/02/2008] [Accepted: 10/03/2008] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS Involvement of the epithelial chloride channel ClC-2 has been implicated in barrier recovery following ischemic injury, possibly via a mechanism involving ClC-2 localization to the tight junction. The present study investigated mechanisms of intestinal barrier repair following ischemic injury in ClC-2(-/-) mice. METHODS Wild type, ClC-2 heterozygous and ClC-2(-/-) murine jejunal mucosa was subjected to complete ischemia, after which recovery of barrier function was monitored by measuring in vivo blood-to-lumen clearance of (3)H-mannitol. Tissues were examined by light and electron microscopy. The role of ClC-2 in re-assembly of the tight junction during barrier recovery was studied by immunoblotting, immunolocalization and immunoprecipitation. RESULTS Following ischemic injury, ClC-2(-/-) mice had impaired barrier recovery compared to wild type mice, defined by increases in epithelial paracellular permeability independent of epithelial restitution. The recovering ClC-2(-/-) mucosa also had evidence of ultrastructural paracellular defects. The tight junction proteins occludin and claudin-1 shifted significantly to the detergent soluble membrane fraction during post-ischemic recovery in ClC-2(-/-) mice whereas wild type mice had a greater proportion of junctional proteins in the detergent insoluble fraction. Occludin was co-immunoprecipitated with ClC-2 in uninjured wild type mucosa, and the association between occludin and ClC-2 was re-established during ischemic recovery. Based on immunofluorescence studies, re-localization of occludin from diffuse sub-apical areas to apical tight junctions was impaired in ClC-2(-/-) mice. CONCLUSIONS These data demonstrate a pivotal role of ClC-2 in recovery of the intestinal epithelium barrier by anchoring assembly of tight junctions following ischemic injury.
Collapse
Affiliation(s)
- Prashant K Nighot
- Department of Clinical Science, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street Raleigh, NC 27606, USA
| | | | | | | | | |
Collapse
|
25
|
Jentsch TJ. CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit Rev Biochem Mol Biol 2008; 43:3-36. [PMID: 18307107 DOI: 10.1080/10409230701829110] [Citation(s) in RCA: 296] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CLC genes are expressed in species from bacteria to human and encode Cl(-)-channels or Cl(-)/H(+)-exchangers. CLC proteins assemble to dimers, with each monomer containing an ion translocation pathway. Some mammalian isoforms need essential beta -subunits (barttin and Ostm1). Crystal structures of bacterial CLC Cl(-)/H(+)-exchangers, combined with transport analysis of mammalian and bacterial CLCs, yielded surprising insights into their structure and function. The large cytosolic carboxy-termini of eukaryotic CLCs contain CBS domains, which may modulate transport activity. Some of these have been crystallized. Mammals express nine CLC isoforms that differ in tissue distribution and subcellular localization. Some of these are plasma membrane Cl(-) channels, which play important roles in transepithelial transport and in dampening muscle excitability. Other CLC proteins localize mainly to the endosomal-lysosomal system where they may facilitate luminal acidification or regulate luminal chloride concentration. All vesicular CLCs may be Cl(-)/H(+)-exchangers, as shown for the endosomal ClC-4 and -5 proteins. Human diseases and knockout mouse models have yielded important insights into their physiology and pathology. Phenotypes and diseases include myotonia, renal salt wasting, kidney stones, deafness, blindness, male infertility, leukodystrophy, osteopetrosis, lysosomal storage disease and defective endocytosis, demonstrating the broad physiological role of CLC-mediated anion transport.
Collapse
Affiliation(s)
- Thomas J Jentsch
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany.
| |
Collapse
|
26
|
Dhani SU, Kim Chiaw P, Huan LJ, Bear CE. ATP depletion inhibits the endocytosis of ClC-2. J Cell Physiol 2007; 214:273-80. [PMID: 17620322 DOI: 10.1002/jcp.21192] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The chloride channel, ClC-2 is expressed ubiquitously and participates in multiple physiological processes. In particular, ClC-2 has been implicated in the regulation of neuronal chloride ion homeostasis and mutations in ClC-2 are associated with idiopathic generalized epilepsy. Despite the physiological and pathophysiological significance of this channel, its regulation remains incompletely understood. The functional expression of ClC-2 at the cell surface has been shown to be enhanced by depletion of cellular ATP, implicating its possible role in cellular energy sensing. In the present study, biochemical assays of cell surface expression suggest that this gain of function reflects, in part, an increase in channel number due to the reduction in ClC-2 internalization by endocytosis. Cell surface expression of the disease-causing mutant: G715E, thought to lack wild-type nucleotide binding affinity, is similarly affected, suggesting that ATP-depletion modifies the function of proteins in the endocytic pathway rather than ClC-2 directly. Using a combination of immunofluorescence and biochemical studies, we confirmed that ClC-2 is internalized via dynamin-dependent endocytosis and that the change in surface expression evoked by ATP depletion is partially mimicked by inhibition of dynamin function using a dynamin dominant-negative mutant (DynK44A). Furthermore, trafficking via the early endosomal compartment occurs in part through rab5-associated vesicles and recycling of ClC-2 to the cell surface occurs through a rab11 dependent pathway. In summary, we have determined that the internalization of ClC-2 by endocytosis is inhibited by metabolic stress, highlighting the importance for understanding the molecular mechanisms mediating the endosomal trafficking of this channel.
Collapse
Affiliation(s)
- Sonja U Dhani
- Programme in Molecular Structure and Function, Research Institute in the Hospital for Sick Children, Toronto, Canada
| | | | | | | |
Collapse
|
27
|
Rajagopalan L, Greeson JN, Xia A, Liu H, Sturm A, Raphael RM, Davidson AL, Oghalai JS, Pereira FA, Brownell WE. Tuning of the outer hair cell motor by membrane cholesterol. J Biol Chem 2007; 282:36659-70. [PMID: 17933870 DOI: 10.1074/jbc.m705078200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cholesterol affects diverse biological processes, in many cases by modulating the function of integral membrane proteins. We observed that alterations of cochlear cholesterol modulate hearing in mice. Mammalian hearing is powered by outer hair cell (OHC) electromotility, a membrane-based motor mechanism that resides in the OHC lateral wall. We show that membrane cholesterol decreases during maturation of OHCs. To study the effects of cholesterol on hearing at the molecular level, we altered cholesterol levels in the OHC wall, which contains the membrane protein prestin. We show a dynamic and reversible relationship between membrane cholesterol levels and voltage dependence of prestin-associated charge movement in both OHCs and prestin-transfected HEK 293 cells. Cholesterol levels also modulate the distribution of prestin within plasma membrane microdomains and affect prestin self-association in HEK 293 cells. These findings indicate that alterations in membrane cholesterol affect prestin function and functionally tune the outer hair cell.
Collapse
Affiliation(s)
- Lavanya Rajagopalan
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Huffington Center on Aging and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mathay C, Giltaire S, Minner F, Bera E, Hérin M, Poumay Y. Heparin-binding EGF-like growth factor is induced by disruption of lipid rafts and oxidative stress in keratinocytes and participates in the epidermal response to cutaneous wounds. J Invest Dermatol 2007; 128:717-27. [PMID: 17928891 DOI: 10.1038/sj.jid.5701069] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epidermal homeostasis and repair of the skin barrier require that epidermal keratinocytes respond to alterations of their environment. We report that cellular stress with methyl-beta-cyclodextrin (MBCD), a molecule that extracts membrane cholesterol and thereby disrupts the structure of lipid rafts, strongly induces the synthesis of heparin-binding EGF-like growth factor (HB-EGF) in keratinocytes through the activation of p38 mitogen-activated protein kinase. Interesting parallels between lipid raft disruption and oxidative stress can be drawn as hydrogen peroxide induces p38 activation and HB-EGF synthesis in keratinocytes. Consistent with other studies, we show increased HB-EGF expression in keratinocytes located at the margin of wounded skin areas. Analyzing cultured keratinocytes exposed to rhHB-EGF, we report increased HB-EGF mRNA levels and alterations in the expression of differentiation markers. Interestingly, identical alterations in differentiation markers are shown to occur in vivo at the wound margin and in HB-EGF-treated cultures. In addition, in vitro sectioning of skin samples also induces the expression of HB-EGF at the border of the incisions. Altogether, our data suggest that expression of HB-EGF is a marker of the keratinocyte's response to a challenging environment and demonstrate that this growth factor alters the phenotype of keratinocytes in a manner similar to that observed during epidermal repair.
Collapse
Affiliation(s)
- Conny Mathay
- Cell and Tissue Laboratory, URPHYM, University of Namur (FUNDP), Namur, Belgium
| | | | | | | | | | | |
Collapse
|
29
|
Ignoul S, Simaels J, Hermans D, Annaert W, Eggermont J. Human ClC-6 is a late endosomal glycoprotein that associates with detergent-resistant lipid domains. PLoS One 2007; 2:e474. [PMID: 17534424 PMCID: PMC1868598 DOI: 10.1371/journal.pone.0000474] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 04/27/2007] [Indexed: 02/06/2023] Open
Abstract
Background The mammalian CLC protein family comprises nine members (ClC-1 to -7 and ClC-Ka, -Kb) that function either as plasma membrane chloride channels or as intracellular chloride/proton antiporters, and that sustain a broad spectrum of cellular processes, such as membrane excitability, transepithelial transport, endocytosis and lysosomal degradation. In this study we focus on human ClC-6, which is structurally most related to the late endosomal/lysomal ClC-7. Principal Findings Using a polyclonal affinity-purified antibody directed against a unique epitope in the ClC-6 COOH-terminal tail, we show that human ClC-6, when transfected in COS-1 cells, is N-glycosylated in a region that is evolutionary poorly conserved between mammalian CLC proteins and that is located between the predicted helices K and M. Three asparagine residues (N410, N422 and N432) have been defined by mutagenesis as acceptor sites for N-glycosylation, but only two of the three sites seem to be simultaneously N-glycosylated. In a differentiated human neuroblastoma cell line (SH-SY5Y), endogenous ClC-6 colocalizes with LAMP-1, a late endosomal/lysosomal marker, but not with early/recycling endosomal markers such as EEA-1 and transferrin receptor. In contrast, when transiently expressed in COS-1 or HeLa cells, human ClC-6 mainly overlaps with markers for early/recycling endosomes (transferrin receptor, EEA-1, Rab5, Rab4) and not with late endosomal/lysosomal markers (LAMP-1, Rab7). Analogously, overexpression of human ClC-6 in SH-SY5Y cells also leads to an early/recycling endosomal localization of the exogenously expressed ClC-6 protein. Finally, in transiently transfected COS-1 cells, ClC-6 copurifies with detergent-resistant membrane fractions, suggesting its partitioning in lipid rafts. Mutating a juxtamembrane string of basic amino acids (amino acids 71–75: KKGRR) disturbs the association with detergent-resistant membrane fractions and also affects the segregation of ClC-6 and ClC-7 when cotransfected in COS-1 cells. Conclusions We conclude that human ClC-6 is an endosomal glycoprotein that partitions in detergent resistant lipid domains. The differential sorting of endogenous (late endosomal) versus overexpressed (early and recycling endosomal) ClC-6 is reminiscent of that of other late endosomal/lysosomal membrane proteins (e.g. LIMP II), and is consistent with a rate-limiting sorting step for ClC-6 between early endosomes and its final destination in late endosomes.
Collapse
Affiliation(s)
- Sofie Ignoul
- Laboratory of Membrane Transport, Department of Molecular Cell Biology, University of Leuven, Leuven, Belgium
| | - Jeannine Simaels
- Laboratory of Membrane Transport, Department of Molecular Cell Biology, University of Leuven, Leuven, Belgium
| | - Diane Hermans
- Laboratory of Membrane Transport, Department of Molecular Cell Biology, University of Leuven, Leuven, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, Department of Human Genetics, University of Leuven and V.I.B.11, Leuven, Belgium
| | - Jan Eggermont
- Laboratory of Membrane Transport, Department of Molecular Cell Biology, University of Leuven, Leuven, Belgium
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|