1
|
Zhao N, Ma Y, Liang X, Zhang Y, Hong D, Wang Y, Bai D. Efficacy and Mechanism of Qianshan Huoxue Gao in Acute Coronary Syndrome via Regulation of Intestinal Flora and Metabolites. Drug Des Devel Ther 2023; 17:579-595. [PMID: 36855515 PMCID: PMC9968440 DOI: 10.2147/dddt.s396649] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Purpose To study the efficacy of Qianshan Huoxue Gao (QS) in treating acute coronary syndrome (ACS) and to explore the mechanism of action from the perspective of intestinal flora regulation. Methods Male Sprague-Dawley rats were divided into control, model, QS, and atorvastatin groups; except for the control group, rats underwent ligation of the left anterior descending branch of the coronary artery. Following treatment for 28 days, cardiac function was evaluated using an echocardiographic assay; ELISAs for serum creatine kinase isoenzyme (CK-MB), cardiac troponin I (cTnI), high-sensitivity C-reactive protein (hs-CRP), interleukin (IL)-2 (IL-2), IL-6, and tumor necrosis factor-α (TNF-α); assessment of cardiac enzymes and inflammatory response; hematoxylin and eosin (HE) staining for histopathological changes in the heart, skin, and viscera; 16S rRNA gene sequencing for intestinal flora diversity and structural differences analysis; and we further investigated intestinal contents using metabolomics. Results Compared with controls, CK-MB and cTnI were increased (P<0.01); ejection factor and fractional shortening were decreased (P<0.01); left ventricular internal end-diastolic dimension and left ventricular internal end-systolic dimension were increased (P<0.01); and IL-2, IL-6, TNF-α, and hs-CRP were increased in the model group. Myocardial damage and inflammation were also observed by HE staining. QS improved these indexes, similar to the atorvastatin group; therefore, QS could effectively treat ACS. QS modulates the structure and abundance of the intestinal flora in ACS model rats, among which Bacteroides, Lactobacillus, and Rikenellaceae_RC9_gut_group are associated with cardiovascular disease. Metabolomics revealed that the intestinal metabolite content changed in ACS, with ethanolamine (EA) being the most relevant metabolite for ACS treatment by QS. EA was significantly positively correlated with Eubacterium xylanophilum group, Ruminococcus, unclassified f__Oscillospiraceae, Intestinimonas, Eubacterium siraeum group, Lachnospiraceae NK4A136 group, and norank f__Desulfovibrionaceae. Conclusion QS can effectively treat ACS and can restore regulation of the intestinal flora. EA may be the primary metabolite of QS, exerting a therapeutic effect in ACS.
Collapse
Affiliation(s)
- Ning Zhao
- Department of Pharmacy, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China,Formula-Syndrome Research Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yan Ma
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Xiaoxue Liang
- Formula-Syndrome Research Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yu Zhang
- Beijing Xiuzheng Pharmaceutical Company, Beijing, People’s Republic of China
| | - Dacheng Hong
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Ying Wang
- Formula-Syndrome Research Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Dong Bai
- Formula-Syndrome Research Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China,Correspondence: Dong Bai, Tel +86 13552343081, Fax +8610 64089002, Email
| |
Collapse
|
2
|
Gao Y, Zhu J, Sun M, Wang S, Liu H. Metabolomics study based on GC-MS reveals a protective function of luteolin against glutamate-induced PC12 cell injury. Biomed Chromatogr 2023; 37:e5537. [PMID: 36287211 DOI: 10.1002/bmc.5537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 01/18/2023]
Abstract
Oxidative stress response is closely related to neurodegenerative diseases. This study aimed to investigate the cytoprotective effects of luteolin on glutamate-induced oxidative stress injury in PC12 cells. GC-MS combined with multivariate statistical approaches was used to perform metabolomics studies to assess the possible mechanisms. Our results identified 23 metabolites as differential expressed metabolites in the glutamate group, including cysteine content in cells that decreased drastically. This suggests that glutathione synthesis, which balances the redox state of cells, was affected. Luteolin inhibits the reduction in viability in glutamate-induced PC12 cells and regulates 13 differential expressed metabolites in glutamate-induced cell damage. These metabolites associated with luteolin included glycine, serine, and threonine metabolism; glyoxylate and dicarboxylate metabolism; aminoacyl-tRNA biosynthesis; cysteine and methionine metabolism; inositol phosphate metabolism; and starch and sucrose metabolism. In summary, the systemic antioxidant capacity of luteolin in PC12 cells is related to its regulation of amino acid, glucose, and nucleotide metabolism pathways.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Molecular Selective Control Construction and Application, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jinfeng Zhu
- Institute of Molecular Selective Control Construction and Application, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mengyao Sun
- Department of Environmental Engineering, School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shaomin Wang
- Institute of Molecular Selective Control Construction and Application, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hongmin Liu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
3
|
Piras C, Pibiri M, Conte S, Ferranti G, Leoni VP, Liggi S, Spada M, Muntoni S, Caboni P, Atzori L. Metabolomics analysis of plasma samples of patients with fibromyalgia and electromagnetic sensitivity using GC-MS technique. Sci Rep 2022; 12:21923. [PMID: 36535959 PMCID: PMC9763344 DOI: 10.1038/s41598-022-25588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Fibromyalgia (FM) is a chronic and systemic condition that causes widespread chronic pain, asthenia, and muscle stiffness, as well as in some cases depression, anxiety, and disorders of the autonomic system. The exact causes that lead to the development of FM are still unknown today. In a percentage of individuals, the symptoms of FM are often triggered and/or exacerbated by proximity to electrical and electromagnetic devices. Plasma metabolomic profile of 54 patients with fibromyalgia and self-reported electromagnetic sensitivity (IEI-EMF) were compared to 23 healthy subjects using gas chromatography-mass spectrometry (GC-MS) coupled with multivariate statistical analysis techniques. Before the GC-MS analysis the plasma samples were extracted with a modified Folch method and then derivatized with methoxamine hydrochloride in pyridine solution and N-trimethylsilyltrifuoroacetamide. The combined analysis allowed to identify a metabolomic profile able of distinguishing IEI-EMF patients and healthy subjects. IEI-EMF patients were therefore characterized by the alteration of 19 metabolites involved in different metabolic pathways such as energy metabolism, muscle, and pathways related to oxidative stress defense and chronic pain. The results obtained in this study complete the metabolomic "picture" previously investigated on the same cohort of IEI-EMF patients with 1H-NMR spectroscopy, placing a further piece for better understanding the pathophysiological mechanisms in patients with IEI-EMF.
Collapse
Affiliation(s)
- Cristina Piras
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Clinical Metabolomics Unit, University of Cagliari, Blocco A, Cittadella Universitaria, Monserrato, CA Italy
| | - Monica Pibiri
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Clinical Metabolomics Unit, University of Cagliari, Blocco A, Cittadella Universitaria, Monserrato, CA Italy
| | - Stella Conte
- grid.7763.50000 0004 1755 3242Department of Education, Psychology and Philosophy, University of Cagliari, Cagliari, Italy
| | - Gabriella Ferranti
- grid.7763.50000 0004 1755 3242Department of Education, Psychology and Philosophy, University of Cagliari, Cagliari, Italy
| | - Vera Piera Leoni
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Clinical Metabolomics Unit, University of Cagliari, Blocco A, Cittadella Universitaria, Monserrato, CA Italy
| | - Sonia Liggi
- grid.7445.20000 0001 2113 8111Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Martina Spada
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Clinical Metabolomics Unit, University of Cagliari, Blocco A, Cittadella Universitaria, Monserrato, CA Italy
| | - Sandro Muntoni
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Clinical Metabolomics Unit, University of Cagliari, Blocco A, Cittadella Universitaria, Monserrato, CA Italy
| | - Pierluigi Caboni
- grid.7763.50000 0004 1755 3242Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Luigi Atzori
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Clinical Metabolomics Unit, University of Cagliari, Blocco A, Cittadella Universitaria, Monserrato, CA Italy
| |
Collapse
|
4
|
Mangal N, Erridge S, Habib N, Sadanandam A, Reebye V, Sodergren MH. Cannabinoids in the landscape of cancer. J Cancer Res Clin Oncol 2021; 147:2507-2534. [PMID: 34259916 PMCID: PMC8310855 DOI: 10.1007/s00432-021-03710-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cannabinoids are a group of terpenophenolic compounds derived from the Cannabis sativa L. plant. There is a growing body of evidence from cell culture and animal studies in support of cannabinoids possessing anticancer properties. METHOD A database search of peer reviewed articles published in English as full texts between January 1970 and April 2021 in Google Scholar, MEDLINE, PubMed and Web of Science was undertaken. References of relevant literature were searched to identify additional studies to construct a narrative literature review of oncological effects of cannabinoids in pre-clinical and clinical studies in various cancer types. RESULTS Phyto-, endogenous and synthetic cannabinoids demonstrated antitumour effects both in vitro and in vivo. However, these effects are dependent on cancer type, the concentration and preparation of the cannabinoid and the abundance of receptor targets. The mechanism of action of synthetic cannabinoids, (-)-trans-Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) has mainly been described via the traditional cannabinoid receptors; CB1 and CB2, but reports have also indicated evidence of activity through GPR55, TRPM8 and other ion channels including TRPA1, TRPV1 and TRPV2. CONCLUSION Cannabinoids have shown to be efficacious both as a single agent and in combination with antineoplastic drugs. These effects have occurred through various receptors and ligands and modulation of signalling pathways involved in hallmarks of cancer pathology. There is a need for further studies to characterise its mode of action at the molecular level and to delineate efficacious dosage and route of administration in addition to synergistic regimes.
Collapse
Affiliation(s)
- Nagina Mangal
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0HS, UK
- Systems and Precision Cancer Medicine Team, Division of Molecular Pathology, Institute of Cancer Research, London, SM2 5NG, UK
| | - Simon Erridge
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0HS, UK
| | - Nagy Habib
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0HS, UK
| | - Anguraj Sadanandam
- Systems and Precision Cancer Medicine Team, Division of Molecular Pathology, Institute of Cancer Research, London, SM2 5NG, UK
| | - Vikash Reebye
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0HS, UK
| | - Mikael Hans Sodergren
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0HS, UK.
| |
Collapse
|
5
|
Jaiswal S, Ayyannan SR. Anticancer Potential of Small-Molecule Inhibitors of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase. ChemMedChem 2021; 16:2172-2187. [PMID: 33834617 DOI: 10.1002/cmdc.202100120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/08/2021] [Indexed: 12/18/2022]
Abstract
Recently fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) inhibitors have been in the limelight due to their anticancer potential. Both FAAH and MAGL are the endocannabinoid degrading enzymes that hydrolyze several endogenous ligands, mainly anandamide (AEA) and 2-arachidonic glycerol (2-AG), which regulate various pathophysiological conditions in the body such as emotion, cognition, energy balance, pain sensation, neuroinflammation, and cancer cell proliferation. FAAH and MAGL inhibitors block the metabolism of AEA and 2-AG, increase endogenous levels of fatty acid amides, and exert various therapeutic effects including chronic pain, metabolic disorders, psychoses, nausea and vomiting, depression, and anxiety disorders. FAAH and MAGL are primarily neurotherapeutic targets, but their contribution to various types of carcinomas are significant. Inhibitors of these enzymes either alone or as multitarget agents, or with supra-additive effects show the potential effect in ovarian, breast, prostate, and colorectal cancers. Besides highlighting the role of FAAH and MAGL in cancer progression, this review provides an update on the anticancer capabilities of known and newly discovered FAAH and MAGL inhibitors and also provides further directions to develop FAAH and MAGL inhibitors as new candidates for cancer therapy.
Collapse
Affiliation(s)
- Shivani Jaiswal
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
6
|
Therapeutic potential of cannabinoids in combination cancer therapy. Adv Biol Regul 2021; 79:100774. [PMID: 33422460 DOI: 10.1016/j.jbior.2020.100774] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Derivatives of the plant Cannabis sativa have been used for centuries for both medical and recreational purposes, as well as industrial. The first proof of its medicinal use comes from ancient China, although there is evidence of its earlier utilization in Europe and Asia. In the 19th century, European practitioners started to employ cannabis extracts to treat tetanus, convulsions, and mental diseases and, in 1851, cannabis made its appearance in the Pharmacopoeia of the United States as an analgesic, hypnotic and anticonvulsant. It was only in 1937 that the Marijuana Tax Act prohibited the use of this drug in the USA. The general term Cannabis is commonly used by the scientific and scholar community to indicate derivatives of the plant Cannabis sativa. The word cannabinoid is a term describing chemical compounds that are either derivate of Cannabis (phytocannabinoids) or artificial analogues (synthetic) or are produced endogenously by the body (endocannabinoids). A more casual term "marijuana" or "weed", a compound derived from dried Cannabis flower tops and leaves, has progressively superseded the term cannabis when referred to its recreational use. The 2018 World health organisation (WHO) data suggest that nearly 2.5% of the global population (147 million) uses marijuana and some countries, such as Canada and Uruguay, have already legalised it. Due to its controversial history, the medicinal use of cannabinoids has always been a centre of debate. The isolation and characterisation of Δ9 tetrahydrocannabinol (THC), the major psychoactive component of cannabis and the detection of two human cannabinoid receptor (CBRs) molecules renewed interest in the medical use of cannabinoids, boosting research and commercial heed in this sector. Some cannabinoid-based drugs have been approved as medications, mainly as antiemetic, antianorexic, anti-seizure remedies and in cancer and multiple sclerosis patients' palliative care. Nevertheless, due to the stigma commonly associated with these compounds, cannabinoids' potential in the treatment of conditions such as cancer is still largely unknown and therefore underestimated.
Collapse
|
7
|
Gwanyanya A, Godsmark CN, Kelly-Laubscher R. Ethanolamine: A Potential Promoiety with Additional Effects in the Brain. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 21:108-117. [PMID: 33319663 DOI: 10.2174/1871527319999201211204645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/14/2020] [Accepted: 09/11/2020] [Indexed: 11/22/2022]
Abstract
Ethanolamine is a bioactive molecule found in several cells, including those in the central nervous system (CNS). In the brain, ethanolamine and ethanolamine-related molecules have emerged as prodrug moieties that can promote drug movement across the blood-brain barrier. This improvement in the ability to target drugs to the brain may also mean that in the process ethanolamine concentrations in the brain are increased enough for ethanolamine to exert its own neurological ac-tions. Ethanolamine and its associated products have various positive functions ranging from cell signaling to molecular storage, and alterations in their levels have been linked to neurodegenerative conditions such as Alzheimer's disease. This mini-review focuses on the effects of ethanolamine in the CNS and highlights the possible implications of these effects for drug design.
Collapse
Affiliation(s)
- Asfree Gwanyanya
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town,. South Africa
| | - Christie Nicole Godsmark
- School of Public Health, College of Medicine and Health, University College Cork, Cork,. Ireland
| | - Roisin Kelly-Laubscher
- Department of Pharmacology and Therapeutics, School of Medicine, College of Medicine and Health, University College Cork, Cork,. Ireland
| |
Collapse
|
8
|
Lal S, Shekher A, Puneet, Narula AS, Abrahamse H, Gupta SC. Cannabis and its constituents for cancer: History, biogenesis, chemistry and pharmacological activities. Pharmacol Res 2020; 163:105302. [PMID: 33246167 DOI: 10.1016/j.phrs.2020.105302] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/03/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
Cannabis has long been used for healing and recreation in several regions of the world. Over 400 bioactive constituents, including more than 100 phytocannabinoids, have been isolated from this plant. The non-psychoactive cannabidiol (CBD) and the psychoactive Δ9-tetrahydrocannabinol (Δ9-THC) are the major and widely studied constituents from this plant. Cannabinoids exert their effects through the endocannabinoid system (ECS) that comprises cannabinoid receptors (CB1, CB2), endogenous ligands, and metabolizing enzymes. Several preclinical studies have demonstrated the potential of cannabinoids against leukemia, lymphoma, glioblastoma, and cancers of the breast, colorectum, pancreas, cervix and prostate. Cannabis and its constituents can modulate multiple cancer related pathways such as PKB, AMPK, CAMKK-β, mTOR, PDHK, HIF-1α, and PPAR-γ. Cannabinoids can block cell growth, progression of cell cycle and induce apoptosis selectively in tumour cells. Cannabinoids can also enhance the efficacy of cancer therapeutics. These compounds have been used for the management of anorexia, queasiness, and pain in cancer patients. Cannabinoid based products such as dronabinol, nabilone, nabiximols, and epidyolex are now approved for medical use in cancer patients. Cannabinoids are reported to produce a favourable safety profile. However, psychoactive properties and poor bioavailability limit the use of some cannabinoids. The Academic Institutions across the globe are offering training courses on cannabis. How cannabis and its constituents exert anticancer activities is discussed in this article. We also discuss areas that require attention and more extensive research.
Collapse
Affiliation(s)
- Samridhi Lal
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, 122413, India
| | - Anusmita Shekher
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Puneet
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | | | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
9
|
Ferreira C, Almeida C, Tenreiro S, Quintas A. Neuroprotection or Neurotoxicity of Illicit Drugs on Parkinson's Disease. Life (Basel) 2020; 10:life10060086. [PMID: 32545328 PMCID: PMC7344445 DOI: 10.3390/life10060086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022] Open
Abstract
Parkinson's Disease (PD) is currently the most rapid growing neurodegenerative disease and over the past generation, its global burden has more than doubled. The onset of PD can arise due to environmental, sporadic or genetic factors. Nevertheless, most PD cases have an unknown etiology. Chemicals, such as the anthropogenic pollutant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amphetamine-type stimulants, have been associated with the onset of PD. Conversely, cannabinoids have been associated with the treatment of the symptoms'. PD and medical cannabis is currently under the spotlight, and research to find its benefits on PD is on-going worldwide. However, the described clinical applications and safety of pharmacotherapy with cannabis products are yet to be fully supported by scientific evidence. Furthermore, the novel psychoactive substances are currently a popular alternative to classical drugs of abuse, representing an unknown health hazard for young adults who may develop PD later in their lifetime. This review addresses the neurotoxic and neuroprotective impact of illicit substance consumption in PD, presenting clinical evidence and molecular and cellular mechanisms of this association. This research area is utterly important for contemporary society since illicit drugs' legalization is under discussion which may have consequences both for the onset of PD and for the treatment of its symptoms.
Collapse
Affiliation(s)
- Carla Ferreira
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, P-2825-084 Caparica, Portugal; (C.F.); (C.A.)
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário–Quinta da Granja, Monte de Caparica, P-2825-084 Caparica, Portugal
- Faculty of Medicine of Porto University, Al. Prof. Hernâni Monteiro, P-4200–319 Porto, Portugal
| | - Catarina Almeida
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, P-2825-084 Caparica, Portugal; (C.F.); (C.A.)
| | - Sandra Tenreiro
- CEDOC–Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, P-1150-082 Lisboa, Portugal;
| | - Alexandre Quintas
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, P-2825-084 Caparica, Portugal; (C.F.); (C.A.)
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário–Quinta da Granja, Monte de Caparica, P-2825-084 Caparica, Portugal
- Correspondence:
| |
Collapse
|
10
|
Mahmoud M, Laufer S, Deigner HP. Visual aptamer-based capillary assay for ethanolamine using magnetic particles and strand displacement. Mikrochim Acta 2019; 186:690. [PMID: 31595372 DOI: 10.1007/s00604-019-3795-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/07/2019] [Indexed: 12/17/2022]
Abstract
This work describes an aptamer-based capillary assay for ethanolamine (EA). It is making use of strand displacement format and magnetic particles. The capillary tubes are coated with three layers, viz. (a) first with short oligonucleotides complementary to the aptamer (EA-comp.); (b) then with magnetic particles (Dynabeads) coated with EA-binding aptamer (EA-aptamer), and (c) with short oligonucleotide-coated magnetic particles (EA-comp.). On exposure to a sample containing ethanolamine, the DNA-coated magnetic particles are released and subsequently collected and spatially separated using a permanent magnet. This results in the formation of a characteristic black/brown spots. The assay has a visual limit of detection of 5 nM and only requires 5 min of incubation. Quantification is possible through capture and analysis of digital (RGB) photos in the 5 to 75 nM EA concentration range. Furthermore, results from tap water and serum spiked with EA samples showed that the platform performs well in complex samples and can be applied to real sample analysis. The combined use of plastic capillaries, visual detection and passive flow make the method suited for implementation into a point-of-care device. Graphical abstract Schematic representation of the capillary assay steps.
Collapse
Affiliation(s)
- Mostafa Mahmoud
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany.
- EXIM Department, Fraunhofer Institute IZI, Leipzig, Schillingallee 68, D-18057, Rostock, Germany.
| |
Collapse
|
11
|
Morales P, Jagerovic N. Antitumor Cannabinoid Chemotypes: Structural Insights. Front Pharmacol 2019; 10:621. [PMID: 31214034 PMCID: PMC6555086 DOI: 10.3389/fphar.2019.00621] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/15/2019] [Indexed: 12/19/2022] Open
Abstract
Cannabis has long been known to limit or prevent nausea and vomiting, lack of appetite, and pain. For this reason, cannabinoids have been successfully used in the treatment of some of the unwanted side effects caused by cancer chemotherapy. Besides their palliative effects, research from the past two decades has demonstrated their promising potential as antitumor agents in a wide variety of tumors. Cannabinoids of endogenous, phytogenic, and synthetic nature have been shown to impact the proliferation of cancer through the modulation of different proteins involved in the endocannabinoid system such as the G protein-coupled receptors CB1, CB2, and GRP55, the ionotropic receptor TRPV1, or the fatty acid amide hydrolase (FAAH). In this article, we aim to structurally classify the antitumor cannabinoid chemotypes described so far according to their targets and types of cancer. In a drug discovery approach, their in silico pharmacokinetic profile has been evaluated in order to identify appropriate drug-like profiles, which should be taken into account for further progress toward the clinic. This analysis may provide structural insights into the selection of specific cannabinoid scaffolds for the development of antitumor drugs for the treatment of particular types of cancer.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Quimica Medica, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Nadine Jagerovic
- Instituto de Quimica Medica, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| |
Collapse
|
12
|
Ethanolamine and Phosphatidylethanolamine: Partners in Health and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4829180. [PMID: 28785375 PMCID: PMC5529665 DOI: 10.1155/2017/4829180] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022]
Abstract
Phosphatidylethanolamine (PE) is the second most abundant phospholipid in mammalian cells. PE comprises about 15–25% of the total lipid in mammalian cells; it is enriched in the inner leaflet of membranes, and it is especially abundant in the inner mitochondrial membrane. PE has quite remarkable activities: it is a lipid chaperone that assists in the folding of certain membrane proteins, it is required for the activity of several of the respiratory complexes, and it plays a key role in the initiation of autophagy. In this review, we focus on PE's roles in lipid-induced stress in the endoplasmic reticulum (ER), Parkinson's disease (PD), ferroptosis, and cancer.
Collapse
|
13
|
Di Scala C, Mazzarino M, Yahi N, Varini K, Garmy N, Fantini J, Chahinian H. Ceramide binding to anandamide increases its half-life and potentiates its cytotoxicity in human neuroblastoma cells. Chem Phys Lipids 2017; 205:11-17. [DOI: 10.1016/j.chemphyslip.2017.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/20/2017] [Accepted: 04/01/2017] [Indexed: 11/28/2022]
|
14
|
Dhule SS, Penfornis P, Frazier T, Walker R, Feldman J, Tan G, He J, Alb A, John V, Pochampally R. Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 8:440-51. [PMID: 21839055 DOI: 10.1016/j.nano.2011.07.011] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 06/28/2011] [Accepted: 07/28/2011] [Indexed: 11/27/2022]
Abstract
UNLABELLED The delivery of curcumin, a broad-spectrum anticancer drug, has been explored in the form of liposomal nanoparticles to treat osteosarcoma (OS). Curcumin is water insoluble and an effective delivery route is through encapsulation in cyclodextrins followed by a second encapsulation in liposomes. Liposomal curcumin's potential was evaluated against cancer models of mesenchymal (OS) and epithelial origin (breast cancer). The resulting 2-Hydroxypropyl-γ-cyclodextrin/curcumin - liposome complex shows promising anticancer potential both in vitro and in vivo against KHOS OS cell line and MCF-7 breast cancer cell line. An interesting aspect is that liposomal curcumin initiates the caspase cascade that leads to apoptotic cell death in vitro in comparison with DMSO-curcumin induced autophagic cell death. In addition, the efficiency of the liposomal curcumin formulation was confirmed in vivo using a xenograft OS model. Curcumin-loaded γ-cyclodextrin liposomes indicate significant potential as delivery vehicles for the treatment of cancers of different tissue origin. FROM THE CLINICAL EDITOR Curcumin-loaded γ-cyclodextrin liposomes were demonstrated in vitro to have significant potential as delivery vehicles for the treatment of cancers of mesenchymal and epithelial origin. Differences between mechanisms of cell death were also evaluated.
Collapse
Affiliation(s)
- Santosh S Dhule
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bologov A, Gafni M, Keren O, Sarne Y. Dual neuroprotective and neurotoxic effects of cannabinoid drugs in vitro. Cell Mol Neurobiol 2011; 31:195-202. [PMID: 21052827 DOI: 10.1007/s10571-010-9604-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/20/2010] [Indexed: 10/18/2022]
Abstract
Either protective or toxic effects of cannabinoids on cell survival have been reported extensively in the literature; however, the factors that determine the direction of the effect are still obscured. In this study we have used the neuroblastoma cell line N18TG2 that expresses CB1 cannabinoid receptors to investigate several factors that may determine the consequences of exposure to cannabinoid agonists. Cells that were grown under optimal, stressful, or differentiating conditions were exposed to cannabinoid agonists and then assayed for cell viability by measuring MTT, LDH, and caspase-3 activity. Various cannabinoid agonists (CP 55,940, ∆9-THC, HU-210, and WIN 55,212-2) failed to affect cell viability when the cells were grown under optimal conditions. On the other hand, the same agonists significantly reduced cell viability when the cells were grown under stressful conditions (glucose- and serum-free medium), while enhancing the viability of cells grown in differentiation medium (0.5% serum and 1.5% DMSO). The toxic/protective profile was not dependent on the type or the concentration of the cannabinoid agonist that was applied. The cannabinoid agonist CP 55,940 similarly affected the non-neuronal HEK-293 cells that were grown under stressful conditions only when they expressed CB1 receptors. Our results shed light on the conflicting reports regarding the protective or toxic effects of cannabinoids in vitro and indicate that cannabinoids may activate different intracellular signaling mechanisms, depending on the state of the cell, thus leading to different physiological consequences.
Collapse
Affiliation(s)
- Anastasia Bologov
- The Adelson Center for the Biology of Addictive Diseases and The Mauerberger Chair in Neuropharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | | | | | | |
Collapse
|
16
|
Kelly RF, Lamont KT, Somers S, Hacking D, Lacerda L, Thomas P, Opie LH, Lecour S. Ethanolamine is a novel STAT-3 dependent cardioprotective agent. Basic Res Cardiol 2010; 105:763-70. [PMID: 20938668 DOI: 10.1007/s00395-010-0125-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/01/2010] [Accepted: 10/05/2010] [Indexed: 01/09/2023]
Abstract
Ethanolamine is a biogenic amine found naturally in the body as part of membrane lipids and as a metabolite of the cardioprotective substances, sphingosine-1-phosphate (S1P) and anandamide. In the brain, ethanolamine, formed from the breakdown of anandamide protects against ischaemic apoptosis. However, the effects of ethanolamine in the heart are unknown. Signal transducer and activator of transcription 3 (STAT-3) is a critical prosurvival factor in ischaemia/reperfusion (I/R) injury. Therefore, we investigated whether ethanolamine protects the heart via activation of STAT-3. Isolated hearts from wildtype or cardiomyocyte specific STAT-3 knockout (K/O) mice were pre-treated with ethanolamine (Etn) (0.3 mmol/L) before I/R insult. In vivo rat hearts were subjected to 30 min ischaemia/2 h reperfusion in the presence or absence of 5 mg/kg S1P and/or the FAAH inhibitor, URB597. Infarct size was measured at the end of each protocol by triphenyltetrazolium chloride staining. Pre-treatment with ethanolamine decreased infarct size in isolated mouse or rat hearts subjected to I/R but this infarct sparing effect was lost in cardiomyocyte specific STAT-3 deficient mice. Pre-treatment with ethanolamine increased nuclear phosphorylated STAT-3 [control 0.75 ± 0.08 vs. Etn 1.50 ± 0.09 arbitrary units; P < 0.05]. Our findings suggest a novel cardioprotective role for ethanolamine against I/R injury via activation of STAT-3.
Collapse
Affiliation(s)
- Roisin F Kelly
- Hatter Cardiovascular Research Institute, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yang Z, Sun K, Suo W, Yao L, Fu Q, Cui Y, Fu G, Chen H, Lu Y. N-stearoyltyrosine protects primary neurons from Aβ-induced apoptosis through modulating mitogen-activated protein kinase activity. Neuroscience 2010; 169:1840-7. [DOI: 10.1016/j.neuroscience.2010.05.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/26/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
|
18
|
Inhibition by anandamide of 6-hydroxydopamine-induced cell death in PC12 cells. Int J Cell Biol 2010; 2010:818497. [PMID: 20182544 PMCID: PMC2825649 DOI: 10.1155/2010/818497] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/22/2009] [Accepted: 11/10/2009] [Indexed: 11/17/2022] Open
Abstract
6-hydroxydopamine (6-OHDA) is a selective neurotoxin that is widely used to investigate cell death and protective strategies in models of Parkinson's disease. Here, we investigated the effects of the endogenous cannabinoid, anandamide, on 6-OHDA-induced toxicity in rat adrenal phaeochromocytoma PC12 cells. Morphological analysis and caspase-3 activity assay revealed that anandamide inhibited 6-OHDA-induced apoptosis. The protection was not affected by antagonists of either cannabinoid receptors (CB1 or CB2) or the vanilloid receptor TRPV1. Anandamide-dependent protection was reduced by pretreatment with LY294002 (inhibitor of phosphatidylinositol 3-kinase, PI3K) and unaffected by U0126 (inhibitor of extracellularly-regulated kinase). Interestingly, phosphorylation of c-Jun-NH2-terminal kinase (JNK) in cells exposed to 6-OHDA was strongly reduced by anandamide pre-treatment. Furthermore, 6-OHDA induced c-Jun activation and increased Bim expression, both of which were inhibited by anandamide. Together, these data demonstrate antiapoptotic effects of anandamide and also suggest a role for activation of PI3K and inhibition of JNK signalling in anandamide-mediated protection against 6-OHDA.
Collapse
|
19
|
Pietr M, Kozela E, Levy R, Rimmerman N, Lin YH, Stella N, Vogel Z, Juknat A. Differential changes in GPR55 during microglial cell activation. FEBS Lett 2009; 583:2071-6. [PMID: 19464294 DOI: 10.1016/j.febslet.2009.05.028] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 05/14/2009] [Indexed: 01/11/2023]
Abstract
We examined how lipopolysaccharide (LPS) and interferon gamma (IFN-gamma), known to differentially activate microglia, affect the expression of G protein-coupled receptor 55 (GPR55), a novel cannabinoid receptor. We found that GPR55 mRNA is significantly expressed in both primary mouse microglia and the BV-2 mouse microglial cell line, and that LPS down-regulates this message. Conversely, IFN-gamma slightly decreases GPR55 mRNA in primary microglia, while it upregulates this message in BV-2 cells. Moreover, the GPR55 agonist, lysophosphatidylinositol, increases ERK phosphorylation in BV-2 stimulated with IFN-gamma, in correlation with the increased amount of GPR55 mRNA. Remarkably, these stimuli-induced changes in GPR55 expression are similar to those observed with CB(2)-R, suggesting that both receptors might be involved in neuroinflammation and that their expression is concomitantly controlled by the state of microglial activation.
Collapse
Affiliation(s)
- Maciej Pietr
- Neurobiology Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
It has been known for decades that marijuana and its major psychoactive component Δ⁹-tetrahydrocannabinol (THC) alter both male and female reproductive functions in humans and laboratory animals. The discovery of cannabinoid-like molecules (endocannabinoids), anandamide (AEA) and 2-arachidonylglycerol (2AG), as well as G-protein-coupled cannabinoid/endocannabinoid receptors CB₁ and CB₂, created an opportunity to study the adverse and beneficial effects of cannabinoids/endocannabinoids on fertility using molecular, physiological and genetic approaches. In fact, studies to explore the significance of cannabinoid/endocannabinoid signaling in reproduction have revealed some intriguing physiological roles in early pregnant events. This review summarizes some aspects of these signaling molecules in preimplantation and implantation biology utilizing genetically engineered mouse models.
Collapse
Affiliation(s)
- Xiaofei Sun
- Reproductive Sciences, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, 45229, USA
| | | |
Collapse
|
21
|
Abstract
The human costs of stroke are very large and growing; it is the third largest cause of death in the United States and survivors are often faced with loss of ability to function independently. There is a large need for therapeutic approaches that act to protect neurons from the injury produced by ischemia and reperfusion. The goal of this review is to introduce and discuss the available data that endogenous cannabinoid signaling is altered during ischemia and that it contributes to the consequences of ischemia-induced injury. Overall, the available data suggest that inhibition of CB1 receptor activation together with increased CB2 receptor activation produces beneficial effects.
Collapse
Affiliation(s)
- Cecilia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin; Milwaukee, WI 53226, USA.
| |
Collapse
|
22
|
Sun X, Dey SK. Aspects of endocannabinoid signaling in periimplantation biology. Mol Cell Endocrinol 2008; 286:S3-11. [PMID: 18294762 PMCID: PMC2435201 DOI: 10.1016/j.mce.2008.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/07/2008] [Accepted: 01/08/2008] [Indexed: 12/13/2022]
Abstract
Physiological roles of endocannabinoids, a group of endogenously produced cannabinoid-like lipid molecules that activate G protein-coupled cannabinoid receptors, are being increasingly appreciated in female reproduction. Adverse effects of cannabinoids on female fertility have been suspected for decades; however, underlying molecular and genetic bases by which they exert these effects were not clearly understood. The discovery of cannabinoid receptors (CB1 and CB2), endocannabinoid ligands (anandamide and 2-acylglycerol) as well as their key synthetic and hydrolytic pathways has helped to better understand the roles of cannabinoid/endocannabinoid signaling in preimplantation embryo development, oviductal embryo transport, embryo implantation and postimplantation embryonic growth. This review focuses on various aspects of the endocannabinoid system in female fertility based on studies that used knockout mouse models. The information generated from studies in mice is likely to shed deeper insight into fertility regulation in women.
Collapse
Affiliation(s)
- Xiaofei Sun
- Department of Pediatrics, Division of Reproductive and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
23
|
The endocannabinoid system in cancer-potential therapeutic target? Semin Cancer Biol 2007; 18:176-89. [PMID: 18249558 DOI: 10.1016/j.semcancer.2007.12.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 12/05/2007] [Indexed: 01/13/2023]
Abstract
Endogenous arachidonic acid metabolites with properties similar to compounds of Cannabis sativa Linnaeus, the so-called endocannabinoids, have effects on various types of cancer. Although endocannabinoids and synthetic cannabinoids may have pro-proliferative effects, predominantly inhibitory effects on tumor growth, angiogenesis, migration and metastasis have been described. Remarkably, these effects may be selective for the cancer cells, while normal cells and tissues are spared. Such apparent tumor cell selectivity makes the endocannabinoid system an attractive potential target for cancer therapy. In this review we discuss various means by which the endocannabinoid system may be targeted in cancer and the current knowledge considering the regulation of the endocannabinoid system in malignancy.
Collapse
|
24
|
Fowler CJ. The contribution of cyclooxygenase-2 to endocannabinoid metabolism and action. Br J Pharmacol 2007; 152:594-601. [PMID: 17618306 PMCID: PMC2190012 DOI: 10.1038/sj.bjp.0707379] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/13/2007] [Accepted: 06/14/2007] [Indexed: 11/09/2022] Open
Abstract
The development of sensitive analytical methods for measurement of endocannabinoids, their metabolites, and related lipids, has underlined the complexity of the endocannabinoid system. A case can be made for an 'endocannabinoid soup' (akin to the inflammatory soup) whereby the net effect of a pathological state and/or a pharmacological intervention on this system is the result not only of changes in endocannabinoid levels but also of their metabolites and related compounds that affect their function. With respect to the metabolism of anandamide and 2-arachidonoylglycerol, the main hydrolytic enzymes involved are fatty acid amide hydrolase and monoacylglycerol lipase. However, other pathways can come into play when these are blocked. Cyclooxygenase-2 derived metabolites of anandamide and 2-arachidonoylglycerol have a number of properties, including effects upon cell viability, contraction of the cat iris sphincter (an effect mediated by a novel receptor), mobilization of calcium and modulation of synaptic transmission. Nonsteroidal anti-inflammatory agents, whose primary mode of action is the inhibition of cyclooxygenase, can also interact with the endocannabinoid system both in vitro and in vivo. Other enzymes, such as the lipoxygenase and cytochrome P450 oxidative enzymes, can also metabolize endocannabinoids and produce biologically active compounds. It is concluded that sensitive analytical methods, which allow for measurement of endocannabinoids and related lipids, should provide vital information as to the importance of these alternative metabolic pathways when the primary hydrolytic endocannabinoid metabolizing enzymes are inhibited.
Collapse
Affiliation(s)
- C J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden.
| |
Collapse
|
25
|
Bátkai S, Rajesh M, Mukhopadhyay P, Haskó G, Liaudet L, Cravatt BF, Csiszár A, Ungvári Z, Pacher P. Decreased age-related cardiac dysfunction, myocardial nitrative stress, inflammatory gene expression, and apoptosis in mice lacking fatty acid amide hydrolase. Am J Physiol Heart Circ Physiol 2007; 293:H909-18. [PMID: 17434980 PMCID: PMC2225473 DOI: 10.1152/ajpheart.00373.2007] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recent studies have uncovered important cross talk between inflammation, generation of reactive oxygen and nitrogen species, and lipid metabolism in the pathogenesis of cardiovascular aging. Inhibition of the endocannabinoid anandamide metabolizing enzyme, the fatty acid amide hydrolase (FAAH), is emerging as a promising novel approach for the treatment of various inflammatory disorders. In this study, we have investigated the age-associated decline of cardiac function and changes in inflammatory gene expression, nitrative stress, and apoptosis in FAAH knockout (FAAH(-/-)) mice and their wild-type (FAAH(+/+)) littermates. Additionally, we have explored the effects of anandamide on TNF-alpha-induced ICAM-1 and VCAM-1 expression and monocyte-endothelial adhesion in human coronary artery endothelial cells (HCAECs). There was no difference in the cardiac function (measured by the pressure-volume conductance catheter system) between 2- to 3-mo-old (young) FAAH(-/-) and FAAH(+/+) mice. In contrast, the aging-associated decline in cardiac function and increased myocardial gene expression of TNF-alpha, gp91phox, matrix metalloproteinase (MMP)-2, MMP-9, caspase-3 and caspase-9, myocardial inducible nitric oxide synthase protein expression, nitrotyrosine formation, poly (ADP-ribose)polymerase cleavage and caspase-3/9 activity, observed in 28- to 31-mo-old (aging) FAAH(+/+) mice, were largely attenuated in knockouts. There was no difference in the myocardial cannabinoid CB(1) and CB(2) receptor gene expression between young and aging FAAH(-/-) and FAAH(+/+) mice. Anandamide dose dependently attenuated the TNF-alpha-induced ICAM-1 and VCAM-1 expression, NF-kappaB activation in HCAECs, and the adhesion of monocytes to HCAECs in a CB(1)- and CB(2)-dependent manner. These findings suggest that pharmacological inhibition of FAAH may represent a novel protective strategy against chronic inflammation, oxidative/nitrative stress, and apoptosis associated with cardiovascular aging and atherosclerosis.
Collapse
Affiliation(s)
- Sándor Bátkai
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health/NIAAA, 5625 Fishers Ln., MSC-9413, Bethesda, MD 20892-9413, USA
| | | | | | | | | | | | | | | | | |
Collapse
|