1
|
Coulon D, Nacir H, Bahammou D, Jouhet J, Bessoule JJ, Fouillen L, Bréhélin C. Roles of plastoglobules and lipid droplets in leaf neutral lipid accumulation during senescence and nitrogen deprivation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6542-6562. [PMID: 38995052 DOI: 10.1093/jxb/erae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024]
Abstract
Upon abiotic stress or senescence, the size and/or abundance of plastid-localized plastoglobules and cytosolic lipid droplets, both compartments devoted to neutral lipid storage, increase in leaves. Meanwhile, plant lipid metabolism is also perturbed, notably with the degradation of thylakoidal monogalactosyldiacylglycerol (MGDG) and the accumulation of neutral lipids. Although these mechanisms are probably linked, they have never been jointly studied, and the respective roles of plastoglobules and lipid droplets in the plant response to stress are totally unknown. To address this question, we determined and compared the glycerolipid composition of both lipid droplets and plastoglobules, followed their formation in response to nitrogen starvation, and studied the kinetics of lipid metabolism in Arabidopsis leaves. Our results demonstrated that plastoglobules preferentially store phytyl-esters, while triacylglycerols (TAGs) and steryl-esters accumulated within lipid droplets. Thanks to a pulse-chase labeling approach and lipid analyses of the fatty acid desaturase 2 (fad2) mutant, we showed that MGDG-derived C18:3 fatty acids were exported to lipid droplets, while MGDG-derived C16:3 fatty acids were stored within plastoglobules. The export of lipids from plastids to lipid droplets was probably facilitated by the physical contact occurring between both organelles, as demonstrated by our electron tomography study. The accumulation of lipid droplets and neutral lipids was transient, suggesting that stress-induced TAGs were remobilized during the plant recovery phase by a mechanism that remains to be explored.
Collapse
Affiliation(s)
- Denis Coulon
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Houda Nacir
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Delphine Bahammou
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Juliette Jouhet
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Laboratoire de Physiologie Cellulaire et Végétale, F-38000 Grenoble, France
| | - Jean-Jacques Bessoule
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Laëtitia Fouillen
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Claire Bréhélin
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| |
Collapse
|
2
|
Rolo D, Schöttler MA, Sandoval-Ibáñez O, Bock R. Structure, function, and assembly of PSI in thylakoid membranes of vascular plants. THE PLANT CELL 2024; 36:4080-4108. [PMID: 38848316 PMCID: PMC11449065 DOI: 10.1093/plcell/koae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
The photosynthetic apparatus is formed by thylakoid membrane-embedded multiprotein complexes that carry out linear electron transport in oxygenic photosynthesis. The machinery is largely conserved from cyanobacteria to land plants, and structure and function of the protein complexes involved are relatively well studied. By contrast, how the machinery is assembled in thylakoid membranes remains poorly understood. The complexes participating in photosynthetic electron transfer are composed of many proteins, pigments, and redox-active cofactors, whose temporally and spatially highly coordinated incorporation is essential to build functional mature complexes. Several proteins, jointly referred to as assembly factors, engage in the biogenesis of these complexes to bring the components together in a step-wise manner, in the right order and time. In this review, we focus on the biogenesis of the terminal protein supercomplex of the photosynthetic electron transport chain, PSI, in vascular plants. We summarize our current knowledge of the assembly process and the factors involved and describe the challenges associated with resolving the assembly pathway in molecular detail.
Collapse
Affiliation(s)
- David Rolo
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Omar Sandoval-Ibáñez
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
3
|
Romer J, Gutbrod K, Schuppener A, Melzer M, Müller-Schüssele SJ, Meyer AJ, Dörmann P. Tocopherol and phylloquinone biosynthesis in chloroplasts requires the phytol kinase VITAMIN E PATHWAY GENE5 (VTE5) and the farnesol kinase (FOLK). THE PLANT CELL 2024; 36:1140-1158. [PMID: 38124486 PMCID: PMC10980339 DOI: 10.1093/plcell/koad316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Chlorophyll degradation causes the release of phytol, which is converted into phytyl diphosphate (phytyl-PP) by phytol kinase (VITAMIN E PATHWAY GENE5 [VTE5]) and phytyl phosphate (phytyl-P) kinase (VTE6). The kinase pathway is important for tocopherol synthesis, as the Arabidopsis (Arabidopsis thaliana) vte5 mutant contains reduced levels of tocopherol. Arabidopsis harbors one paralog of VTE5, farnesol kinase (FOLK) involved in farnesol phosphorylation. Here, we demonstrate that VTE5 and FOLK harbor kinase activities for phytol, geranylgeraniol, and farnesol with different specificities. While the tocopherol content of the folk mutant is unchanged, vte5-2 folk plants completely lack tocopherol. Tocopherol deficiency in vte5-2 plants can be complemented by overexpression of FOLK, indicating that FOLK is an authentic gene of tocopherol synthesis. The vte5-2 folk plants contain only ∼40% of wild-type amounts of phylloquinone, demonstrating that VTE5 and FOLK both contribute in part to phylloquinone synthesis. Tocotrienol and menaquinone-4 were produced in vte5-2 folk plants after supplementation with homogentisate or 1,4-dihydroxy-2-naphthoic acid, respectively, indicating that their synthesis is independent of the VTE5/FOLK pathway. These results show that phytyl moieties for tocopherol synthesis are completely but, for phylloquinone production, only partially derived from geranylgeranyl-chlorophyll and phytol phosphorylation by VTE5 and FOLK.
Collapse
Affiliation(s)
- Jill Romer
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | - Katharina Gutbrod
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | - Antonia Schuppener
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department Physiology and Cell Biology, 06466 Seeland, OT Gatersleben, Germany
| | | | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
4
|
Stutts L, Latimer S, Batyrshina Z, Dickinson G, Alborn H, Block AK, Basset GJ. The evolution of strictly monofunctional naphthoquinol C-methyltransferases is vital in cyanobacteria and plastids. THE PLANT CELL 2023; 35:3686-3696. [PMID: 37477936 PMCID: PMC10533327 DOI: 10.1093/plcell/koad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/22/2023]
Abstract
Prenylated quinones are membrane-associated metabolites that serve as vital electron carriers for respiration and photosynthesis. The UbiE (EC 2.1.1.201)/MenG (EC 2.1.1.163) C-methyltransferases catalyze pivotal ring methylations in the biosynthetic pathways of many of these quinones. In a puzzling evolutionary pattern, prokaryotic and eukaryotic UbiE/MenG homologs segregate into 2 clades. Clade 1 members occur universally in prokaryotes and eukaryotes, excluding cyanobacteria, and include mitochondrial COQ5 enzymes required for ubiquinone biosynthesis; Clade 2 members are specific to cyanobacteria and plastids. Functional complementation of an Escherichia coli ubiE/menG mutant indicated that Clade 1 members display activity with both demethylbenzoquinols and demethylnaphthoquinols, independently of the quinone profile of their original taxa, while Clade 2 members have evolved strict substrate specificity for demethylnaphthoquinols. Expression of the gene-encoding bifunctional Arabidopsis (Arabidopsis thaliana) COQ5 in the cyanobacterium Synechocystis or its retargeting to Arabidopsis plastids resulted in synthesis of a methylated variant of plastoquinone-9 that does not occur in nature. Accumulation of methylplastoquinone-9 was acutely cytotoxic, leading to the emergence of suppressor mutations in Synechocystis and seedling lethality in Arabidopsis. These data demonstrate that in cyanobacteria and plastids, co-occurrence of phylloquinone and plastoquinone-9 has driven the evolution of monofunctional demethylnaphthoquinol methyltransferases and explains why plants cannot capture the intrinsic bifunctionality of UbiE/MenG to simultaneously synthesize their respiratory and photosynthetic quinones.
Collapse
Affiliation(s)
- Lauren Stutts
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Scott Latimer
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Zhaniya Batyrshina
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Gabriella Dickinson
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Hans Alborn
- Center for Medical, Agricultural and Veterinary Entomology, ARS, USDA, Gainesville, FL 32608, USA
| | - Anna K Block
- Center for Medical, Agricultural and Veterinary Entomology, ARS, USDA, Gainesville, FL 32608, USA
| | - Gilles J Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Quintas-Nunes F, Brandão PR, Barreto Crespo MT, Glick BR, Nascimento FX. Plant Growth Promotion, Phytohormone Production and Genomics of the Rhizosphere-Associated Microalga, Micractinium rhizosphaerae sp. nov. PLANTS (BASEL, SWITZERLAND) 2023; 12:651. [PMID: 36771735 PMCID: PMC9922002 DOI: 10.3390/plants12030651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Microalgae are important members of the soil and plant microbiomes, playing key roles in the maintenance of soil and plant health as well as in the promotion of plant growth. However, not much is understood regarding the potential of different microalgae strains in augmenting plant growth, or the mechanisms involved in such activities. In this work, the functional and genomic characterization of strain NFX-FRZ, a eukaryotic microalga belonging to the Micractinium genus that was isolated from the rhizosphere of a plant growing in a natural environment in Portugal, is presented and analyzed. The results obtained demonstrate that strain NFX-FRZ (i) belongs to a novel species, termed Micractinium rhizosphaerae sp. nov.; (ii) can effectively bind to tomato plant tissues and promote its growth; (iii) can synthesize a wide range of plant growth-promoting compounds, including phytohormones such as indole-3-acetic acid, salicylic acid, jasmonic acid and abscisic acid; and (iv) contains multiple genes involved in phytohormone biosynthesis and signaling. This study provides new insights regarding the relevance of eukaryotic microalgae as plant growth-promoting agents and helps to build a foundation for future studies regarding the origin and evolution of phytohormone biosynthesis and signaling, as well as other plant colonization and plant growth-promoting mechanisms in soil/plant-associated Micractinium.
Collapse
Affiliation(s)
- Francisco Quintas-Nunes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Pedro R. Brandão
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Maria T. Barreto Crespo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Francisco X. Nascimento
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
6
|
Zita W, Bressoud S, Glauser G, Kessler F, Shanmugabalaji V. Chromoplast plastoglobules recruit the carotenoid biosynthetic pathway and contribute to carotenoid accumulation during tomato fruit maturation. PLoS One 2022; 17:e0277774. [PMID: 36472971 PMCID: PMC9725166 DOI: 10.1371/journal.pone.0277774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022] Open
Abstract
Tomato (Solanum lycopersicum) fruit maturation is associated with a developmental transition from chloroplasts (in mature green fruit) to chromoplasts (in red fruit). The hallmark red color of ripe tomatoes is due to carotenogenesis and accumulation of the red carotenoid lycopene inside chromoplasts. Plastoglobules (PG) are lipid droplets in plastids that are involved in diverse lipid metabolic pathways. In tomato, information on the possible role of PG in carotogenesis and the PG proteome is largely lacking. Here, we outline the role of PG in carotenogenesis giving particular attention to tomato fruit PG proteomes and metabolomes. The proteome analysis revealed the presence of PG-typical FBNs, ABC1K-like kinases, and metabolic enzymes, and those were decreased in the PG of tomato chromoplasts compared to chloroplasts. Notably, the complete β-carotene biosynthesis pathway was recruited to chromoplast PG, and the enzymes PHYTOENE SYNTHASE 1 (PSY-1), PHYTOENE DESATURASE (PDS), ZETA-CAROTENE DESATURASE (ZDS), and CAROTENOID ISOMERASE (CRTISO) were enriched up to twelvefold compared to chloroplast PG. We profiled the carotenoid and prenyl lipid changes in PG during the chloroplast to chromoplast transition and demonstrated large increases of lycopene and β-carotene in chromoplast PG. The PG proteome and metabolome are subject to extensive remodeling resulting in high accumulation of lycopene during the chloroplast-to-chromoplast transition. Overall, the results indicate that PGs contribute to carotenoid accumulation during tomato fruit maturation and suggest that they do so by functioning as a biosynthetic platform for carotenogenesis.
Collapse
Affiliation(s)
- Wayne Zita
- Plant Physiology Laboratory, University of Neuchâtel, Neuchâtel, Switzerland
| | - Ségolène Bressoud
- Plant Physiology Laboratory, University of Neuchâtel, Neuchâtel, Switzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Felix Kessler
- Plant Physiology Laboratory, University of Neuchâtel, Neuchâtel, Switzerland
| | | |
Collapse
|
7
|
Buffagni V, Zhang L, Senizza B, Rocchetti G, Ferrarini A, Miras-Moreno B, Lucini L. Metabolomics and lipidomics insight into the effect of different polyamines on tomato plants under non-stress and salinity conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111346. [PMID: 35697150 DOI: 10.1016/j.plantsci.2022.111346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/11/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Polyamines (PAs) are key signaling molecules involved in plant growth and stress acclimation processes. This work investigated the effect of spermidine, spermine, and putrescine (alone and in a mixture) in tomato plants using a combined metabolomics and lipidomics approach. The experiments were carried out under non-stress and 100 mM NaCl salinity conditions. Shoot and root biomass, as well as SPAD values, were increased by the application of exogenous PAs but with differences across treatments. Similarly, root length density (F: 34, p < 0.001), average root diameter (F: 14, p < 0.001), and very fine roots (0.0-0.5 mm) increased in PA-treated plants, compared to control. Metabolomics and lipidomics indicated that, despite being salinity the hierarchically prevalent factor, the different PA treatments imposed distinct remodeling at the molecular level. Plants treated with putrescine showed the broader modulation of metabolite profile, whereas spermidine and spermine induced a comparatively milder effect. The pathway analysis from differential metabolites indicated a broad and multi-level intricate modulation of several signaling molecules together with stress-related compounds like flavonoids and alkaloids. Concerning signaling processes, the complex crosstalk between phytohormones (mainly abscisic acid, cytokinins, the ethylene precursor, and jasmonates), and the membrane lipids signaling cascade (in particular, sphingolipids as well as ceramides and other glycerophospholipids), was involved in such complex response of tomato to PAs. Interestingly, PA-specific processes could be observed, with peculiar responses under either control or salinity conditions.
Collapse
Affiliation(s)
- Valentina Buffagni
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Biancamaria Senizza
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 29122, Piacenza, Italy
| | - Andrea Ferrarini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
8
|
Availability of vitamin B 12 and its lower ligand intermediate α-ribazole impact prokaryotic and protist communities in oceanic systems. THE ISME JOURNAL 2022; 16:2002-2014. [PMID: 35585186 PMCID: PMC9296465 DOI: 10.1038/s41396-022-01250-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 01/22/2023]
Abstract
Genome analyses predict that the cofactor cobalamin (vitamin B12, called B12 herein) is produced by only one-third of all prokaryotes but almost all encode at least one B12-dependent enzyme, in most cases methionine synthase. This implies that the majority of prokaryotes relies on exogenous B12 supply and interacts with producers. B12 consists of a corrin ring centred around a cobalt ion and the lower ligand 5’6-dimethylbenzimidazole (DMB). It has never been tested whether availability of this pivotal cofactor, DMB or its intermediate α-ribazole affect growth and composition of prokaryotic microbial communities. Here we show that in the subtropical, equatorial and polar frontal Pacific Ocean supply of B12 and α-ribazole enhances heterotrophic prokaryotic production and alters the composition of prokaryotic and heterotrophic protist communities. In the polar frontal Pacific, the SAR11 clade and Oceanospirillales increased their relative abundances upon B12 supply. In the subtropical Pacific, Oceanospirillales increased their relative abundance upon B12 supply as well but also downregulated the transcription of the btuB gene, encoding the outer membrane permease for B12. Surprisingly, Prochlorococcus, known to produce pseudo-B12 and not B12, exhibited significant upregulation of genes encoding key proteins of photosystem I + II, carbon fixation and nitrate reduction upon B12 supply in the subtropical Pacific. These findings show that availability of B12 and α-ribazole affect growth and composition of prokaryotic and protist communities in oceanic systems thus revealing far-reaching consequences of methionine biosynthesis and other B12-dependent enzymatic reactions on a community level.
Collapse
|
9
|
Panter F, Popoff A, Garcia R, Krug D, Müller R. Myxobacteria of the Cystobacterineae Suborder Are Producers of New Vitamin K 2 Derived Myxoquinones. Microorganisms 2022; 10:microorganisms10030534. [PMID: 35336107 PMCID: PMC8955186 DOI: 10.3390/microorganisms10030534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
Vitamin K is an essential, lipid soluble vitamin that plays an important role in the human blood coagulation cascade as well as in the life cycle of bacteria and plants. In this study, we report the isolation and structure elucidation of unprecedented polyhydroxylated menaquinone variants named myxoquinones that are produced by myxobacteria and structurally belong to the Vitamin K family. We analyze the occurrence of myxoquinones across an LC-MS data collection from myxobacterial extracts and shed light on the distribution of myxoquinone-type biosynthetic gene clusters among publicly available myxobacterial genomes. Our findings indicate that myxoquinones are specifically produced by strains of the Cystobacterineae suborder within myxobacteria. Furthermore, bioinformatic analysis of the matching gene clusters allowed us to propose a biosynthetic model for myxoquinone formation. Due to their increased water-solubility, the myxoquinones could be a suitable starting point for the development of a better bioavailable treatment of vitamin K deficiency.
Collapse
Affiliation(s)
- Fabian Panter
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (F.P.); (A.P.); (R.G.); (D.K.)
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Lab for Anti-Infectives, Campus E8 1, 66123 Saarbrücken, Germany
| | - Alexander Popoff
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (F.P.); (A.P.); (R.G.); (D.K.)
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Ronald Garcia
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (F.P.); (A.P.); (R.G.); (D.K.)
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Daniel Krug
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (F.P.); (A.P.); (R.G.); (D.K.)
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (F.P.); (A.P.); (R.G.); (D.K.)
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Lab for Anti-Infectives, Campus E8 1, 66123 Saarbrücken, Germany
- Correspondence:
| |
Collapse
|
10
|
Wójtowicz J, Grzyb J, Szach J, Mazur R, Gieczewska KB. Bean and Pea Plastoglobules Change in Response to Chilling Stress. Int J Mol Sci 2021; 22:11895. [PMID: 34769326 PMCID: PMC8584975 DOI: 10.3390/ijms222111895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Plastoglobules (PGs) might be characterised as microdomains of the thylakoid membrane that serve as a platform to recruit proteins and metabolites in their spatial proximity in order to facilitate metabolic channelling or signal transduction. This study provides new insight into changes in PGs isolated from two plant species with different responses to chilling stress, namely chilling-tolerant pea (Pisum sativum) and chilling-sensitive bean (Phaseolus coccineus). Using multiple analytical methods, such as high-performance liquid chromatography and visualisation techniques including transmission electron microscopy and atomic force microscopy, we determined changes in PGs' biochemical and biophysical characteristics as a function of chilling stress. Some of the observed alterations occurred in both studied plant species, such as increased particle size and plastoquinone-9 content, while others were more typical of a particular type of response to chilling stress. Additionally, PGs of first green leaves were examined to highlight differences at this stage of development. Observed changes appear to be a dynamic response to the demands of photosynthetic membranes under stress conditions.
Collapse
Affiliation(s)
- Joanna Wójtowicz
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, I. Miecznikowa 1, PL-02096 Warsaw, Poland; (J.W.); (J.S.)
| | - Joanna Grzyb
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie Street 14a, PL-50383 Wrocław, Poland;
| | - Joanna Szach
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, I. Miecznikowa 1, PL-02096 Warsaw, Poland; (J.W.); (J.S.)
| | - Radosław Mazur
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, I. Miecznikowa 1, PL-02096 Warsaw, Poland;
| | - Katarzyna B. Gieczewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, I. Miecznikowa 1, PL-02096 Warsaw, Poland; (J.W.); (J.S.)
| |
Collapse
|
11
|
Torres-Montilla S, Rodriguez-Concepcion M. Making extra room for carotenoids in plant cells: New opportunities for biofortification. Prog Lipid Res 2021; 84:101128. [PMID: 34530006 DOI: 10.1016/j.plipres.2021.101128] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022]
Abstract
Plant carotenoids are essential for photosynthesis and photoprotection and provide colors in the yellow to red range to non-photosynthetic organs such as petals and ripe fruits. They are also the precursors of biologically active molecules not only in plants (including hormones and retrograde signals) but also in animals (including retinoids such as vitamin A). A carotenoid-rich diet has been associated with improved health and cognitive capacity in humans, whereas the use of carotenoids as natural pigments is widespread in the agrofood and cosmetic industries. The nutritional and economic relevance of carotenoids has spurred a large number of biotechnological strategies to enrich plant tissues with carotenoids. Most of such approaches to alter carotenoid contents in plants have been focused on manipulating their biosynthesis or degradation, whereas improving carotenoid sink capacity in plant tissues has received much less attention. Our knowledge on the molecular mechanisms influencing carotenoid storage in plants has substantially grown in the last years, opening new opportunities for carotenoid biofortification. Here we will review these advances with a particular focus on those creating extra room for carotenoids in plant cells either by promoting the differentiation of carotenoid-sequestering structures within plastids or by transferring carotenoid production to the cytosol.
Collapse
Affiliation(s)
- Salvador Torres-Montilla
- Institute for Plant Molecular and Cell Biology (IBMCP), Agencia Estatal Consejo Superior de Investigaciones Cientificas - Universitat Politècnica de València, 46022 Valencia, Spain
| | - Manuel Rodriguez-Concepcion
- Institute for Plant Molecular and Cell Biology (IBMCP), Agencia Estatal Consejo Superior de Investigaciones Cientificas - Universitat Politècnica de València, 46022 Valencia, Spain.
| |
Collapse
|
12
|
Coulon D, Bréhélin C. Isolation of Plastoglobules for Lipid Analyses. Methods Mol Biol 2021; 2295:321-335. [PMID: 34047984 DOI: 10.1007/978-1-0716-1362-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Plastoglobules are plastid compartments designed for the storage of neutral lipids. They share physical and structural characteristics with cytosolic lipid droplets. Hence, special care must be taken to avoid contamination by cytosolic lipid droplets during plastoglobule purification. We describe the isolation of pure plastoglobules from Arabidopsis thaliana leaves, and the methods we use to determine their lipid composition. After preparation of a crude chloroplast fraction, plastoglobules are isolated from plastid membranes by two steps of ultracentrifugation on discontinuous sucrose gradients. For lipid analyses, total lipids are then extracted by a standard chloroform-methanol protocol, and polar lipids are separated from neutral lipids by liquid-liquid extraction. While polar lipid classes are subsequently separated by thin-layer chromatography (TLC) with the classical Vitiello solvent mix, a double TLC development has to be performed for neutral lipids, to separate phytyl and steryl esters. Lipids are quantified by gas chromatography after conversion of the fatty acids into methyl esters.
Collapse
Affiliation(s)
- Denis Coulon
- CNRS, Laboratoire de Biogenése Membranaire, UMR 5200, Univ. Bordeaux, Villenave d'Ornon, France. .,Bordeaux INP, Talence, France.
| | - Claire Bréhélin
- CNRS, Laboratoire de Biogenése Membranaire, UMR 5200, Univ. Bordeaux, Villenave d'Ornon, France
| |
Collapse
|
13
|
Gu X, Chen IG, Harding SA, Nyamdari B, Ortega MA, Clermont K, Westwood JH, Tsai CJ. Plasma membrane phylloquinone biosynthesis in nonphotosynthetic parasitic plants. PLANT PHYSIOLOGY 2021; 185:1443-1456. [PMID: 33793953 PMCID: PMC8133638 DOI: 10.1093/plphys/kiab031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/13/2021] [Indexed: 05/25/2023]
Abstract
Nonphotosynthetic holoparasites exploit flexible targeting of phylloquinone biosynthesis to facilitate plasma membrane redox signaling. Phylloquinone is a lipophilic naphthoquinone found predominantly in chloroplasts and best known for its function in photosystem I electron transport and disulfide bridge formation of photosystem II subunits. Phylloquinone has also been detected in plasma membrane (PM) preparations of heterotrophic tissues with potential transmembrane redox function, but the molecular basis for this noncanonical pathway is unknown. Here, we provide evidence of PM phylloquinone biosynthesis in a nonphotosynthetic holoparasite Phelipanche aegyptiaca. A nonphotosynthetic and nonplastidial role for phylloquinone is supported by transcription of phylloquinone biosynthetic genes during seed germination and haustorium development, by PM-localization of alternative terminal enzymes, and by detection of phylloquinone in germinated seeds. Comparative gene network analysis with photosynthetically competent parasites revealed a bias of P. aegyptiaca phylloquinone genes toward coexpression with oxidoreductases involved in PM electron transport. Genes encoding the PM phylloquinone pathway are also present in several photoautotrophic taxa of Asterids, suggesting an ancient origin of multifunctionality. Our findings suggest that nonphotosynthetic holoparasites exploit alternative targeting of phylloquinone for transmembrane redox signaling associated with parasitism.
Collapse
Affiliation(s)
- Xi Gu
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Ing-Gin Chen
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Scott A Harding
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Batbayar Nyamdari
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Maria A Ortega
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Kristen Clermont
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - James H Westwood
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Chung-Jui Tsai
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
14
|
Del Mondo A, Smerilli A, Sané E, Sansone C, Brunet C. Challenging microalgal vitamins for human health. Microb Cell Fact 2020; 19:201. [PMID: 33138823 PMCID: PMC7607653 DOI: 10.1186/s12934-020-01459-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/17/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Vitamins' deficiency in humans is an important threat worldwide and requires solutions. In the concept of natural biofactory for bioactive compounds production, microalgae represent one of the most promising targets filling many biotechnological applications, and allowing the development of an eco-sustainable production of natural bioactive metabolites. Vitamins are probably one of the cutting edges of microalgal diversity compounds. MAIN TEXT Microalgae can usefully provide many of the required vitamins in humans, more than terrestrial plants, for instance. Indeed, vitamins D and K, little present in many plants or fruits, are instead available from microalgae. The same occurs for some vitamins B (B12, B9, B6), while the other vitamins (A, C, D, E) are also provided by microalgae. This large panel of vitamins diversity in microalgal cells represents an exploitable platform in order to use them as natural vitamins' producers for human consumption. This study aims to provide an integrative overview on vitamins content in the microalgal realm, and discuss on the great potential of microalgae as sources of different forms of vitamins to be included as functional ingredients in food or nutraceuticals for the human health. We report on the biological roles of vitamins in microalgae, the current knowledge on their modulation by environmental or biological forcing and on the biological activity of the different vitamins in human metabolism and health protection. CONCLUSION Finally, we critically discuss the challenges for promoting microalgae as a relevant source of vitamins, further enhancing the interests of microalgal "biofactory" for biotechnological applications, such as in nutraceuticals or cosmeceuticals.
Collapse
Affiliation(s)
- Angelo Del Mondo
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy
| | - Arianna Smerilli
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy
| | - Elisabet Sané
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy.
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy
| |
Collapse
|
15
|
Foong LC, Chai JY, Ho ASH, Yeo BPH, Lim YM, Tam SM. Comparative transcriptome analysis to identify candidate genes involved in 2-methoxy-1,4-naphthoquinone (MNQ) biosynthesis in Impatiens balsamina L. Sci Rep 2020; 10:16123. [PMID: 32999341 PMCID: PMC7527972 DOI: 10.1038/s41598-020-72997-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 07/10/2020] [Indexed: 11/09/2022] Open
Abstract
Impatiens balsamina L. is a tropical ornamental and traditional medicinal herb rich in natural compounds, especially 2-methoxy-1,4-naphthoquinone (MNQ) which is a bioactive compound with tested anticancer activities. Characterization of key genes involved in the shikimate and 1,4-dihydroxy-2-naphthoate (DHNA) pathways responsible for MNQ biosynthesis and their expression profiles in I. balsamina will facilitate adoption of genetic/metabolic engineering or synthetic biology approaches to further increase production for pre-commercialization. In this study, HPLC analysis showed that MNQ was present in significantly higher quantities in the capsule pericarps throughout three developmental stages (early-, mature- and postbreaker stages) whilst its immediate precursor, 2-hydroxy-1,4-naphthoquinone (lawsone) was mainly detected in mature leaves. Transcriptomes of I. balsamina derived from leaf, flower, and three capsule developmental stages were generated, totalling 59.643 Gb of raw reads that were assembled into 94,659 unigenes (595,828 transcripts). A total of 73.96% of unigenes were functionally annotated against seven public databases and 50,786 differentially expressed genes (DEGs) were identified. Expression profiles of 20 selected genes from four major secondary metabolism pathways were studied and validated using qRT-PCR method. Majority of the DHNA pathway genes were found to be significantly upregulated in early stage capsule compared to flower and leaf, suggesting tissue-specific synthesis of MNQ. Correlation analysis identified 11 candidate unigenes related to three enzymes (NADH-quinone oxidoreductase, UDP-glycosyltransferases and S-adenosylmethionine-dependent O-methyltransferase) important in the final steps of MNQ biosynthesis based on genes expression profiles consistent with MNQ content. This study provides the first molecular insight into the dynamics of MNQ biosynthesis and accumulation across different tissues of I. balsamina and serves as a valuable resource to facilitate further manipulation to increase production of MNQ.
Collapse
Affiliation(s)
- Lian Chee Foong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.,Faculty of Applied Sciences, UCSI University, Jalan Puncak Menara Gading, UCSI Heights, 56000, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Jian Yi Chai
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Anthony Siong Hock Ho
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Brandon Pei Hui Yeo
- Fairview International School, Lot 4178, Jalan 1/27d, Seksyen 6 Wangsa Maju, 53300, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Yang Mooi Lim
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Lot PT 21144, Jalan Sungai Long, Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia
| | - Sheh May Tam
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
16
|
Chen YH, Liu X, Dai R, Ou X, Xu ZF, Zhang KQ, Niu XM. Novel Polyketide-Terpenoid Hybrid Metabolites and Increased Fungal Nematocidal Ability by Disruption of Genes 277 and 279 in Nematode-Trapping Fungus Arthrobotrys oligospora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7870-7879. [PMID: 32525670 DOI: 10.1021/acs.jafc.0c01720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nematode-trapping fungus Arthrobotrys oligospora can produce a type of sesquiterpenyl epoxy-cyclohexenoid (SEC) metabolites that are regarded as characteristic chemtaxonomic markers. Here, we reported investigation on the functions of a putatively cupin-like family gene 277 and a dehydrogenase gene 279 by gene engineering, chemical metabolite profiling and phenotype analysis. Ten targeted metabolites were isolated from two mutants Δ277 and Δ279 and four novel metabolites including three polyketide-terpenoid (PK-TP) hybrid ones were characterized. Metabolite C277-1 from mutant Δ277 shared the characteristic feature of the first and simplest PK-TP hybrid precursor, prenyl toluquinol, and metabolites C279-1 and C279-2 from mutant Δ279 shared the basic carbon skeleton of the key PK-TP hybrid precursor, farnesyl toluquinol, for biosynthesis of SEC metabolites. These results suggested that gene 277 should be involved in biosynthesis of the second prenyl unit for farnesyl toluquinol precursor, and gene 279 might be responsible for the diagnostic epoxy formation. Further analysis revealed that genes 277 and 279 might play roles in fungal conidiation, predatory trap formation, and nematode-capturing ability.
Collapse
Affiliation(s)
- Yong-Hong Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Xiao Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Rong Dai
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Xia Ou
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Zi-Fei Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Xue-Mei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
17
|
Lundquist PK, Shivaiah KK, Espinoza-Corral R. Lipid droplets throughout the evolutionary tree. Prog Lipid Res 2020; 78:101029. [PMID: 32348789 DOI: 10.1016/j.plipres.2020.101029] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
Intracellular lipid droplets are utilized for lipid storage and metabolism in organisms as evolutionarily diverse as animals, fungi, plants, bacteria, and archaea. These lipid droplets demonstrate great diversity in biological functions and protein and lipid compositions, yet fundamentally share common molecular and ultrastructural characteristics. Lipid droplet research has been largely fragmented across the diversity of lipid droplet classes and sub-classes. However, we suggest that there is great potential benefit to the lipid community in better integrating the lipid droplet research fields. To facilitate such integration, we survey the protein and lipid compositions, functional roles, and mechanisms of biogenesis across the breadth of lipid droplets studied throughout the natural world. We depict the big picture of lipid droplet biology, emphasizing shared characteristics and unique differences seen between different classes. In presenting the known diversity of lipid droplets side-by-side it becomes necessary to offer for the first time a consistent system of categorization and nomenclature. We propose a division into three primary classes that reflect their sub-cellular location: i) cytoplasmic lipid droplets (CYTO-LDs), that are present in the eukaryotic cytoplasm, ii) prokaryotic lipid droplets (PRO-LDs), that exist in the prokaryotic cytoplasm, and iii) plastid lipid droplets (PL-LDs), that are found in plant plastids, organelles of photosynthetic eukaryotes. Within each class there is a remarkable array of sub-classes displaying various sizes, shapes and compositions. A more integrated lipid droplet research field will provide opportunities to better build on discoveries and accelerate the pace of research in ways that have not been possible.
Collapse
Affiliation(s)
- Peter K Lundquist
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA.
| | - Kiran-Kumar Shivaiah
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Roberto Espinoza-Corral
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
18
|
Guo S, Zhao S, Sun H, Wang X, Wu S, Lin T, Ren Y, Gao L, Deng Y, Zhang J, Lu X, Zhang H, Shang J, Gong G, Wen C, He N, Tian S, Li M, Liu J, Wang Y, Zhu Y, Jarret R, Levi A, Zhang X, Huang S, Fei Z, Liu W, Xu Y. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nat Genet 2019; 51:1616-1623. [PMID: 31676863 DOI: 10.1038/s41588-019-0518-4] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022]
Abstract
Fruit characteristics of sweet watermelon are largely the result of human selection. Here we report an improved watermelon reference genome and whole-genome resequencing of 414 accessions representing all extant species in the Citrullus genus. Population genomic analyses reveal the evolutionary history of Citrullus, suggesting independent evolutions in Citrullus amarus and the lineage containing Citrullus lanatus and Citrullus mucosospermus. Our findings indicate that different loci affecting watermelon fruit size have been under selection during speciation, domestication and improvement. A non-bitter allele, arising in the progenitor of sweet watermelon, is largely fixed in C. lanatus. Selection for flesh sweetness started in the progenitor of C. lanatus and continues through modern breeding on loci controlling raffinose catabolism and sugar transport. Fruit flesh coloration and sugar accumulation might have co-evolved through shared genetic components including a sugar transporter gene. This study provides valuable genomic resources and sheds light on watermelon speciation and breeding history.
Collapse
Affiliation(s)
- Shaogui Guo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Shengjie Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Honghe Sun
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China.,Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA
| | - Xin Wang
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA
| | - Shan Wu
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA
| | - Tao Lin
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Lei Gao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA
| | - Yun Deng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jie Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Xuqiang Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Haiying Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Jianli Shang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Guoyi Gong
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Changlong Wen
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Nan He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Shouwei Tian
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Maoying Li
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Junpu Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanping Wang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Yingchun Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Robert Jarret
- U.S. Department of Agriculture-Agricultural Research Service, Plant Genetic Resources Conservation Unit, Griffin, GA, USA
| | - Amnon Levi
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Vegetable Lab, Charleston, SC, USA
| | - Xingping Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Sanwen Huang
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China. .,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA. .,U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA.
| | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China.
| |
Collapse
|
19
|
Verdaguer IB, Zafra CA, Crispim M, Sussmann RA, Kimura EA, Katzin AM. Prenylquinones in Human Parasitic Protozoa: Biosynthesis, Physiological Functions, and Potential as Chemotherapeutic Targets. Molecules 2019; 24:molecules24203721. [PMID: 31623105 PMCID: PMC6832408 DOI: 10.3390/molecules24203721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Human parasitic protozoa cause a large number of diseases worldwide and, for some of these diseases, there are no effective treatments to date, and drug resistance has been observed. For these reasons, the discovery of new etiological treatments is necessary. In this sense, parasitic metabolic pathways that are absent in vertebrate hosts would be interesting research candidates for the identification of new drug targets. Most likely due to the protozoa variability, uncertain phylogenetic origin, endosymbiotic events, and evolutionary pressure for adaptation to adverse environments, a surprising variety of prenylquinones can be found within these organisms. These compounds are involved in essential metabolic reactions in organisms, for example, prevention of lipoperoxidation, participation in the mitochondrial respiratory chain or as enzymatic cofactors. This review will describe several prenylquinones that have been previously characterized in human pathogenic protozoa. Among all existing prenylquinones, this review is focused on ubiquinone, menaquinone, tocopherols, chlorobiumquinone, and thermoplasmaquinone. This review will also discuss the biosynthesis of prenylquinones, starting from the isoprenic side chains to the aromatic head group precursors. The isoprenic side chain biosynthesis maybe come from mevalonate or non-mevalonate pathways as well as leucine dependent pathways for isoprenoid biosynthesis. Finally, the isoprenic chains elongation and prenylquinone aromatic precursors origins from amino acid degradation or the shikimate pathway is reviewed. The phylogenetic distribution and what is known about the biological functions of these compounds among species will be described, as will the therapeutic strategies associated with prenylquinone metabolism in protozoan parasites.
Collapse
Affiliation(s)
- Ignasi B. Verdaguer
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
| | - Camila A. Zafra
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
| | - Marcell Crispim
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
| | - Rodrigo A.C. Sussmann
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
- Centro de Formação em Ciências Ambientais, Universidade Federal do Sul da Bahia, Porto Seguro 45810-000 Bahia, Brazil
| | - Emília A. Kimura
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
| | - Alejandro M. Katzin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
- Correspondence: ; Tel.: +55-11-3091-7330; Fax: +5511-3091-7417
| |
Collapse
|
20
|
Li B, Zhao S, Dou J, Ali A, Gebremeskel H, Gao L, He N, Lu X, Liu W. Genetic mapping and development of molecular markers for a candidate gene locus controlling rind color in watermelon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2741-2753. [PMID: 31286160 DOI: 10.1007/s00122-019-03384-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
ClCG08G017810 (ClCGMenG) encoding a 2-phytyl-1,4-beta-naphthoquinone methyltransferase protein is associated with formation of dark green versus light green rind color in watermelon. Rind color is an important agronomic trait in watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai], but the underlying molecular mechanism for this trait is not fully known. In the present study, we identified a single locus on chromosome 8 accounting for watermelon rind color (dark green vs. light green). Genetic analysis of F1, F2, and BC1 populations derived from two parental lines (9904 with dark green rind and Handel with light green rind) revealed that the watermelon rind color (dark green vs. light green) is controlled by a single locus, and dark green is dominant to light green rind. Initial mapping revealed a region of interest spanning 2.07 Mb on chromosome 8. Genetic mapping with CAPS and SNP markers narrowed down the candidate region to 31.4 kb. Gene annotation of the corresponding region in the reference genome revealed the ClCG08G017810 gene sequence encoding the 2-phytyl-1,4-beta-naphthoquinone methyltransferase protein. The sequence alignment of the candidate gene with the two parental lines suggested a nonsynonymous SNP mutation in the coding region of ClCG08G017810, converting an arginine (R) to glycine (G). The SNP might be associated with rind color of 103 watermelon germplasm lines investigated in this study. The qRT-PCR analysis revealed higher expression of ClCG08G017810 in dark green rind than in light green rind. Therefore, ClCG08G017810 is a candidate gene associated with watermelon rind color. The present study facilitates marker-assisted selection useful for the development of cultivars with desirable rind color.
Collapse
Affiliation(s)
- Bingbing Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Shengjie Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Junling Dou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Aslam Ali
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Haileslassie Gebremeskel
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Lei Gao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Nan He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Xuqiang Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| |
Collapse
|
21
|
Abstract
Phytol, the prenyl side chain of chlorophyll, is derived from geranylgeraniol by reduction of three double bonds. Recent results demonstrated that the conversion of geranylgeraniol to phytol is linked to chlorophyll synthesis, which is catalyzed by protein complexes associated with the thylakoid membranes. One of these complexes contains light harvesting chlorophyll binding like proteins (LIL3), enzymes of chlorophyll synthesis (protoporphyrinogen oxidoreductase, POR; chlorophyll synthase, CHLG) and geranylgeranyl reductase (GGR). Phytol is not only employed for the synthesis of chlorophyll, but also for tocopherol (vitamin E), phylloquinol (vitamin K) and fatty acid phytyl ester production. Previously, it was believed that phytol is derived from reduction of geranylgeranyl-diphosphate originating from the 4-methylerythritol-5-phosphate (MEP) pathway. The identification and characterization of two kinases, VTE5 and VTE6, involved in phytol and phytyl-phosphate phosphorylation, respectively, indicated that most phytol employed for tocopherol synthesis is derived from reduction of geranylgeranylated chlorophyll to (phytol-) chlorophyll. After hydrolysis from chlorophyll, free phytol is phosphorylated by the two kinases, and phytyl-diphosphate employed for the synthesis of tocopherol and phylloquinol. The reason why some chloroplast lipids, i.e. chlorophyll, tocopherol and phylloquinol, are derived from phytol, while others, i.e. carotenoids and tocotrienols (in some plant species) are synthesized from geranylgeraniol, remains unclear.
Collapse
|
22
|
Tarento TDC, McClure DD, Talbot AM, Regtop HL, Biffin JR, Valtchev P, Dehghani F, Kavanagh JM. A potential biotechnological process for the sustainable production of vitamin K 1. Crit Rev Biotechnol 2018; 39:1-19. [PMID: 29793354 DOI: 10.1080/07388551.2018.1474168] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The primary objective of this review is to propose an approach for the biosynthesis of phylloquinone (vitamin K1) based upon its known sources, its role in photosynthesis and its biosynthetic pathway. The chemistry, health benefits, market, and industrial production of vitamin K are also summarized. Vitamin K compounds (K vitamers) are required for the normal function of at least 15 proteins involved in diverse physiological processes such as coagulation, tissue mineralization, inflammation, and neuroprotection. Vitamin K is essential for the prevention of Vitamin K Deficiency Bleeding (VKDB), especially in neonates. Increased vitamin K intake may also reduce the severity and/or risk of bone fracture, arterial calcification, inflammatory diseases, and cognitive decline. Consumers are increasingly favoring natural food and therapeutic products. However, the bulk of vitamin K products employed for both human and animal use are chemically synthesized. Biosynthesis of the menaquinones (vitamin K2) has been extensively researched. However, published research on the biotechnological production of phylloquinone is restricted to a handful of available articles and patents. We have found that microalgae are more suitable than plant cell cultures for the biosynthesis of phylloquinone. Many algae are richer in vitamin K1 than terrestrial plants, and algal cells are easier to manipulate. Vitamin K1 can be efficiently recovered from the biomass using supercritical carbon dioxide extraction.
Collapse
Affiliation(s)
- Thomas D C Tarento
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia
| | - Dale D McClure
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia
| | - Andrea M Talbot
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia.,Agricure Scientific Organics Pty. Ltd., Braemar, NSW, Australia
| | - Hubert L Regtop
- Agricure Scientific Organics Pty. Ltd., Braemar, NSW, Australia
| | - John R Biffin
- Agricure Scientific Organics Pty. Ltd., Braemar, NSW, Australia
| | - Peter Valtchev
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia
| | - John M Kavanagh
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
23
|
Abstract
Prenylquinones are isoprenoid compounds with a characteristic quinone structure and isoprenyl tail that are ubiquitous in almost all living organisms. There are four major prenylquinone classes: ubiquinone (UQ), menaquinone (MK), plastoquinone (PQ), and rhodoquinone (RQ). The quinone structure and isoprenyl tail length differ among organisms. UQ, PQ, and RQ contain benzoquinone, while MK contains naphthoquinone. UQ, MK, and RQ are involved in oxidative phosphorylation, while PQ functions in photosynthetic electron transfer. Some organisms possess two types of prenylquinones; Escherichia coli has UQ8 and MK8, and Caenorhabditis elegans has UQ9 and RQ9. Crystal structures of most of the enzymes involved in MK synthesis have been solved. Studies on the biosynthesis and functions of quinones have advanced recently, including for phylloquinone (PhQ), which has a phytyl moiety instead of an isoprenyl tail. Herein, the synthesis and applications of prenylquinones are reviewed.
Collapse
Affiliation(s)
- Makoto Kawamukai
- a Department of Life Science and Biotechnology, Faculty of Life and Environmental Science , Shimane University , Matsue , Japan
| |
Collapse
|
24
|
McCoy RM, Utturkar SM, Crook JW, Thimmapuram J, Widhalm JR. The origin and biosynthesis of the naphthalenoid moiety of juglone in black walnut. HORTICULTURE RESEARCH 2018; 5:67. [PMID: 30393541 PMCID: PMC6210188 DOI: 10.1038/s41438-018-0067-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/14/2018] [Accepted: 06/17/2018] [Indexed: 05/20/2023]
Abstract
Several members of the Juglandaceae family produce juglone, a specialized 1,4-naphthoquinone (1,4-NQ) natural product that is responsible for the notorious allelopathic effects of black walnut (Juglans nigra). Despite its documented ecological roles and potential for being developed as a novel natural product-based herbicide, none of the genes involved in synthesizing juglone have been identified. Based on classical labeling studies, we hypothesized that biosynthesis of juglone's naphthalenoid moiety is shared with biochemical steps of the phylloquinone pathway. Here, using comparative transcriptomics in combination with targeted metabolic profiling of 1,4-NQs in various black walnut organs, we provide evidence that phylloquinone pathway genes involved in 1,4-dihydroxynaphthoic acid (DHNA) formation are expressed in roots for synthesis of a compound other than phylloquinone. Feeding experiments using axenic black walnut root cultures revealed that stable isotopically labeled l-glutamate incorporates into juglone resulting in the same mass shift as that expected for labeling of the quinone ring in phylloquinone. Taken together, these results indicate that in planta, an intermediate from the phylloquinone pathway provides the naphthalenoid moiety of juglone. Moreover, this work shows that juglone can be de novo synthesized in roots without the contribution of immediate precursors translocated from aerial tissues. The present study illuminates all genes involved in synthesizing the juglone naphthoquinone ring and provides RNA-sequencing datasets that can be used with functional screening studies to elucidate the remaining juglone pathway genes. Translation of the generated knowledge is expected to inform future metabolic engineering strategies for harnessing juglone as a novel natural product-based herbicide.
Collapse
Affiliation(s)
- Rachel M. McCoy
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| | - Sagar M. Utturkar
- Bioinformatics Core, Purdue University, 155 South Grant Street, West Lafayette, IN 47907 USA
| | - Joseph W. Crook
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, 155 South Grant Street, West Lafayette, IN 47907 USA
| | - Joshua R. Widhalm
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
25
|
van Wijk KJ, Kessler F. Plastoglobuli: Plastid Microcompartments with Integrated Functions in Metabolism, Plastid Developmental Transitions, and Environmental Adaptation. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:253-289. [PMID: 28125283 DOI: 10.1146/annurev-arplant-043015-111737] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plastoglobuli (PGs) are plastid lipoprotein particles surrounded by a membrane lipid monolayer. PGs contain small specialized proteomes and metabolomes. They are present in different plastid types (e.g., chloroplasts, chromoplasts, and elaioplasts) and are dynamic in size and shape in response to abiotic stress or developmental transitions. PGs in chromoplasts are highly enriched in carotenoid esters and enzymes involved in carotenoid metabolism. PGs in chloroplasts are associated with thylakoids and contain ∼30 core proteins (including six ABC1 kinases) as well as additional proteins recruited under specific conditions. Systems analysis has suggested that chloroplast PGs function in metabolism of prenyl lipids (e.g., tocopherols, plastoquinone, and phylloquinone); redox and photosynthetic regulation; plastid biogenesis; and senescence, including recycling of phytol, remobilization of thylakoid lipids, and metabolism of jasmonate. These functionalities contribute to chloroplast PGs' role in responses to stresses such as high light and nitrogen starvation. PGs are thus lipid microcompartments with multiple functions integrated into plastid metabolism, developmental transitions, and environmental adaptation. This review provides an in-depth overview of PG experimental observations, summarizes the present understanding of PG features and functions, and provides a conceptual framework for PG research and the realization of opportunities for crop improvement.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853;
| | - Felix Kessler
- Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland;
| |
Collapse
|
26
|
Ellis KA, Cohen NR, Moreno C, Marchetti A. Cobalamin-independent Methionine Synthase Distribution and Influence on Vitamin B12 Growth Requirements in Marine Diatoms. Protist 2017; 168:32-47. [DOI: 10.1016/j.protis.2016.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 08/20/2016] [Accepted: 10/11/2016] [Indexed: 01/16/2023]
|
27
|
Wang L, Li Q, Zhang A, Zhou W, Jiang R, Yang Z, Yang H, Qin X, Ding S, Lu Q, Wen X, Lu C. The Phytol Phosphorylation Pathway Is Essential for the Biosynthesis of Phylloquinone, which Is Required for Photosystem I Stability in Arabidopsis. MOLECULAR PLANT 2017; 10:183-196. [PMID: 28007557 DOI: 10.1016/j.molp.2016.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/03/2016] [Accepted: 12/12/2016] [Indexed: 05/16/2023]
Abstract
Phytyl-diphosphate, which provides phytyl moieties as a common substrate in both tocopherol and phylloquinone biosynthesis, derives from de novo isoprenoid biosynthesis or a salvage pathway via phytol phosphorylation. However, very little is known about the role and origin of the phytyl moiety for phylloquinone biosynthesis. Since VTE6, a phytyl-phosphate kinase, is a key enzyme for phytol phosphorylation, we characterized Arabidopsis vte6 mutants to gain insight into the roles of phytyl moieties in phylloquinone biosynthesis and of phylloquinone in photosystem I (PSI) biogenesis. The VTE6 knockout mutants vte6-1 and vte6-2 lacked detectable phylloquinone, whereas the phylloquinone content in the VTE6 knockdown mutant vte6-3 was 90% lower than that in wild-type. In vte6 mutants, PSI function was impaired and accumulation of the PSI complex was defective. The PSI core subunits PsaA/B were efficiently synthesized and assembled into the PSI complex in vte6-3. However, the degradation rate of PSI subunits in the assembled PSI complex was more rapid in vte6-3 than in wild-type. In vte6-3, PSI was more susceptible to high-light damage than in wild-type. Our results provide the first genetic evidence that the phytol phosphorylation pathway is essential for phylloquinone biosynthesis, and that phylloquinone is required for PSI complex stability.
Collapse
Affiliation(s)
- Lei Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingwei Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aihong Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wen Zhou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Jiang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhipan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Huixia Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaochun Qin
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shunhua Ding
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qingtao Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaogang Wen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Center for Plant Gene Research, Beijing 100093, China.
| |
Collapse
|
28
|
Emonds‐Alt B, Coosemans N, Gerards T, Remacle C, Cardol P. Isolation and characterization of mutants corresponding to the MENA, MENB, MENC and MENE enzymatic steps of 5'-monohydroxyphylloquinone biosynthesis in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:141-154. [PMID: 27612091 PMCID: PMC5299476 DOI: 10.1111/tpj.13352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/26/2016] [Indexed: 05/28/2023]
Abstract
Phylloquinone (PhQ), or vitamin K1 , is an essential electron carrier (A1 ) in photosystem I (PSI). In the green alga Chlamydomonas reinhardtii, which is a model organism for the study of photosynthesis, a detailed characterization of the pathway is missing with only one mutant deficient for MEND having been analyzed. We took advantage of the fact that a double reduction of plastoquinone occurs in anoxia in the A1 site in the mend mutant, interrupting photosynthetic electron transfer, to isolate four new phylloquinone-deficient mutants impaired in MENA, MENB, MENC (PHYLLO) and MENE. Compared with the wild type and complemented strains for MENB and MENE, the four men mutants grow slowly in low light and are sensitive to high light. When grown in low light they show a reduced photosynthetic electron transfer due to a specific decrease of PSI. Upon exposure to high light for a few hours, PSI becomes almost completely inactive, which leads in turn to lack of phototrophic growth. Loss of PhQ also fully prevents reactivation of photosynthesis after dark anoxia acclimation. In silico analyses allowed us to propose a PhQ biosynthesis pathway in Chlamydomonas that involves 11 enzymatic steps from chorismate located in the chloroplast and in the peroxisome.
Collapse
Affiliation(s)
- Barbara Emonds‐Alt
- Department of Life Sciences, Genetics and Physiology of MicroalgaePhytoSYSTEMSInBiosUniversity of LiègeB–4000LiègeBelgium
| | - Nadine Coosemans
- Department of Life Sciences, Genetics and Physiology of MicroalgaePhytoSYSTEMSInBiosUniversity of LiègeB–4000LiègeBelgium
| | - Thomas Gerards
- Department of Life Sciences, BioenergeticsPhytoSYSTEMSInBiosUniversity of LiègeB–4000LiègeBelgium
| | - Claire Remacle
- Department of Life Sciences, Genetics and Physiology of MicroalgaePhytoSYSTEMSInBiosUniversity of LiègeB–4000LiègeBelgium
| | - Pierre Cardol
- Department of Life Sciences, Genetics and Physiology of MicroalgaePhytoSYSTEMSInBiosUniversity of LiègeB–4000LiègeBelgium
| |
Collapse
|
29
|
Stabilization and detection of hydrophylloquinone as di-O-methyl derivative. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1033-1034:368-371. [PMID: 27631574 DOI: 10.1016/j.jchromb.2016.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 11/23/2022]
Abstract
Phylloquinone is a redox active naphthoquinone involved in electron transport in plants. The function of this reduced form remains unclear due to its instability, which has precluded detection. Herein, a simple method that permits the stabilization of the reduced form of phylloquinone by di-O-methylation and HPLC detection is described.
Collapse
|
30
|
Nagy I, Knispel RW, Kofler C, Orsini M, Boicu M, Varga S, Weyher-Stingl E, Sun N, Fernandez-Busnadiego R, Kukolya J, Nickell S, Baumeister W. Lipoprotein-like particles in a prokaryote: quinone droplets ofThermoplasma acidophilum. FEMS Microbiol Lett 2016; 363:fnw169. [DOI: 10.1093/femsle/fnw169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2016] [Indexed: 11/12/2022] Open
|
31
|
Widhalm JR, Rhodes D. Biosynthesis and molecular actions of specialized 1,4-naphthoquinone natural products produced by horticultural plants. HORTICULTURE RESEARCH 2016; 3:16046. [PMID: 27688890 PMCID: PMC5030760 DOI: 10.1038/hortres.2016.46] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/23/2016] [Indexed: 05/20/2023]
Abstract
The 1,4-naphthoquinones (1,4-NQs) are a diverse group of natural products found in every kingdom of life. Plants, including many horticultural species, collectively synthesize hundreds of specialized 1,4-NQs with ecological roles in plant-plant (allelopathy), plant-insect and plant-microbe interactions. Numerous horticultural plants producing 1,4-NQs have also served as sources of traditional medicines for hundreds of years. As a result, horticultural species have been at the forefront of many basic studies conducted to understand the metabolism and function of specialized plant 1,4-NQs. Several 1,4-NQ natural products derived from horticultural plants have also emerged as promising scaffolds for developing new drugs. In this review, the current understanding of the core metabolic pathways leading to plant 1,4-NQs is provided with additional emphasis on downstream natural products originating from horticultural species. An overview on the biochemical mechanisms of action, both from an ecological and pharmacological perspective, of 1,4-NQs derived from horticultural plants is also provided. In addition, future directions for improving basic knowledge about plant 1,4-NQ metabolism are discussed.
Collapse
Affiliation(s)
- Joshua R Widhalm
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010, USA
- ()
| | - David Rhodes
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010, USA
| |
Collapse
|
32
|
Spicher L, Kessler F. Unexpected roles of plastoglobules (plastid lipid droplets) in vitamin K1 and E metabolism. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:123-9. [PMID: 26037391 DOI: 10.1016/j.pbi.2015.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 05/09/2023]
Abstract
Tocopherol (vitamin E) and phylloquinone (vitamin K1) are lipid-soluble antioxidants that can only be synthesized by photosynthetic organisms. These compounds function primarily at the thylakoid membrane but are also present in chloroplast lipid droplets, also known as plastoglobules (PG). Depending on environmental conditions and stage of plant development, changes in the content, number and size of PG occur. PG are directly connected to the thylakoid membrane via the outer lipid leaflet. Apart from storage, PG are active in metabolism and likely trafficking of diverse lipid species. This review presents recent advances on how plastoglobules are implicated in the biosynthesis and metabolism of vitamin E and K.
Collapse
Affiliation(s)
- Livia Spicher
- Laboratoire de Physiologie Végétale, Université de Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Felix Kessler
- Laboratoire de Physiologie Végétale, Université de Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
33
|
Fatihi A, Latimer S, Schmollinger S, Block A, Dussault PH, Vermaas WFJ, Merchant SS, Basset GJ. A Dedicated Type II NADPH Dehydrogenase Performs the Penultimate Step in the Biosynthesis of Vitamin K1 in Synechocystis and Arabidopsis. THE PLANT CELL 2015; 27:1730-41. [PMID: 26023160 PMCID: PMC4498204 DOI: 10.1105/tpc.15.00103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/07/2015] [Indexed: 05/04/2023]
Abstract
Mutation of Arabidopsis thaliana NAD(P)H DEHYDROGENASE C1 (NDC1; At5g08740) results in the accumulation of demethylphylloquinone, a late biosynthetic intermediate of vitamin K1. Gene coexpression and phylogenomics analyses showed that conserved functional associations occur between vitamin K biosynthesis and NDC1 homologs throughout the prokaryotic and eukaryotic lineages. Deletion of Synechocystis ndbB, which encodes for one such homolog, resulted in the same defects as those observed in the cyanobacterial demethylnaphthoquinone methyltransferase knockout. Chemical modeling and assay of purified demethylnaphthoquinone methyltransferase demonstrated that, by virtue of the strong electrophilic nature of S-adenosyl-l-methionine, the transmethylation of the demethylated precursor of vitamin K is strictly dependent on the reduced form of its naphthoquinone ring. NDC1 was shown to catalyze such a prerequisite reduction by using NADPH and demethylphylloquinone as substrates and flavine adenine dinucleotide as a cofactor. NDC1 displayed Michaelis-Menten kinetics and was markedly inhibited by dicumarol, a competitive inhibitor of naphthoquinone oxidoreductases. These data demonstrate that the reduction of the demethylnaphthoquinone ring represents an authentic step in the biosynthetic pathway of vitamin K, that this reaction is enzymatically driven, and that a selection pressure is operating to retain type II NAD(P)H dehydrogenases in this process.
Collapse
Affiliation(s)
- Abdelhak Fatihi
- Department of Agronomy and Horticulture, and Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Scott Latimer
- Department of Agronomy and Horticulture, and Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Stefan Schmollinger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Anna Block
- Department of Agronomy and Horticulture, and Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Patrick H Dussault
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Wim F J Vermaas
- School of Life Sciences and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Gilles J Basset
- Department of Agronomy and Horticulture, and Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| |
Collapse
|
34
|
Zhou W, Karcher D, Fischer A, Maximova E, Walther D, Bock R. Multiple RNA processing defects and impaired chloroplast function in plants deficient in the organellar protein-only RNase P enzyme. PLoS One 2015; 10:e0120533. [PMID: 25793367 PMCID: PMC4368725 DOI: 10.1371/journal.pone.0120533] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/23/2015] [Indexed: 01/22/2023] Open
Abstract
Transfer RNA (tRNA) precursors undergo endoribonucleolytic processing of their 5’ and 3’ ends. 5’ cleavage of the precursor transcript is performed by ribonuclease P (RNase P). While in most organisms RNase P is a ribonucleoprotein that harbors a catalytically active RNA component, human mitochondria and the chloroplasts (plastids) and mitochondria of seed plants possess protein-only RNase P enzymes (PRORPs). The plant organellar PRORP (PRORP1) has been characterized to some extent in vitro and by transient gene silencing, but the molecular, phenotypic and physiological consequences of its down-regulation in stable transgenic plants have not been assessed. Here we have addressed the function of the dually targeted organellar PRORP enzyme in vivo by generating stably transformed Arabidopsis plants in which expression of the PRORP1 gene was suppressed by RNA interference (RNAi). PRORP1 knock-down lines show defects in photosynthesis, while mitochondrial respiration is not appreciably affected. In both plastids and mitochondria, the effects of PRORP1 knock-down on the processing of individual tRNA species are highly variable. The drastic reduction in the levels of mature plastid tRNA-Phe(GAA) and tRNA-Arg(ACG) suggests that these two tRNA species limit plastid gene expression in the PRORP1 mutants and, hence, are causally responsible for the mutant phenotype.
Collapse
Affiliation(s)
- Wenbin Zhou
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Axel Fischer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Eugenia Maximova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Dirk Walther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| |
Collapse
|
35
|
Rottet S, Besagni C, Kessler F. The role of plastoglobules in thylakoid lipid remodeling during plant development. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:889-99. [PMID: 25667966 DOI: 10.1016/j.bbabio.2015.02.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/30/2015] [Accepted: 02/03/2015] [Indexed: 12/16/2022]
Abstract
Photosynthesis is the key bioenergetic process taking place in the chloroplast. The components of the photosynthetic machinery are embedded in a highly dynamic matrix, the thylakoid membrane. This membrane has the capacity to adapt during developmental transitions and under stress conditions. The galactolipids are the major polar lipid components of the thylakoid membrane conferring bilayer properties, while neutral thylakoid lipids such as the prenyllipids and carotenoids contribute to essential functions such as electron transport and photoprotection. Despite a large number of studies, the intriguing processes of thylakoid membrane biogenesis and dynamics remain unsolved. Plastoglobules, thylakoid-associated lipid droplets, appear to actively participate in thylakoid function from biogenesis to senescence. Recruitment of specific proteins enables the plastoglobules to act in metabolite synthesis, repair and disposal under changing environmental conditions and developmental stages. In this review, we describe plastoglobules as thylakoid membrane microdomains and discuss their involvement in lipid remodeling during stress and in the conversion from one plastid type to another. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Sarah Rottet
- Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Céline Besagni
- Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Felix Kessler
- Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
36
|
Shibata M, Shimada H. Simultaneous analyses of oxidized and reduced forms of photosynthetic quinones by high-performance liquid chromatography. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2014; 1153:99-113. [PMID: 24777792 DOI: 10.1007/978-1-4939-0606-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plastoquinones and phylloquinones are the major plant quinones localized in chloroplasts, and they act as photosynthetic electron redox mediators in thylakoid membranes. These quinones are analyzed by two processes: extraction with organic solvents and quinone assay by high-performance liquid chromatography (HPLC) analysis. Solvent choice is very important from the viewpoint of stability of the redox state in the extraction processes and during storage of plant quinones. We introduce procedures and solvents to avoid changes in the redox state of quinones, in addition to achieving high extraction efficiency. Traditional methods have problems of low sensitivity and require preparation steps to remove interfering substances, such as plant pigments. HPLC systems have been developed utilizing the fluorescent properties of quinols (reduced forms) to measure quinones. Plastoquinones were detected by reversed-phase HPLC with dual detectors (ultra-violet and fluorescence detection). However, the peak of phylloquinone and plastoquinone isomers with shorter side chains often overlaps with a large peak of fast-eluting pigments. To address these issues, HPLC with fluorescence detection after post-column reduction to convert quinones to fluorescent quinol was applied for measurement of fast-eluting quinones (low hydrophobicity quinones and quinols) such as phylloquinone. Using post-column reduction methods with sodium borohydride or platinum black, not only the reduced forms (fluorescent) but also the oxidized forms (non-fluorescent) could be clearly measured by HPLC with a fluorescence detector.
Collapse
Affiliation(s)
- Masaru Shibata
- Faculty of Education, Biological Institute, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, Japan
| | | |
Collapse
|
37
|
Kozuleva MA, Petrova AA, Mamedov MD, Semenov AY, Ivanov BN. O2 reduction by photosystem I involves phylloquinone under steady-state illumination. FEBS Lett 2014; 588:4364-8. [PMID: 25311539 DOI: 10.1016/j.febslet.2014.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/13/2014] [Accepted: 10/01/2014] [Indexed: 11/29/2022]
Abstract
O2 reduction was investigated in photosystem I (PSI) complexes isolated from cyanobacteria Synechocystis sp. PCC 6803 wild type (WT) and menB mutant strain, which is unable to synthesize phylloquinone and contains plastoquinone at the quinone-binding site A1. PSI complexes from WT and menB mutant exhibited different dependencies of O2 reduction on light intensity, namely, the values of O2 reduction rate in WT did not reach saturation at high intensities, in contrast to the values in menB mutant. The obtained results suggest the immediate phylloquinone involvement in the light-induced O2 reduction by PSI.
Collapse
Affiliation(s)
- Marina A Kozuleva
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russia.
| | - Anastasia A Petrova
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Mahir D Mamedov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russia; A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Yu Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris N Ivanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
38
|
Eugeni Piller L, Glauser G, Kessler F, Besagni C. Role of plastoglobules in metabolite repair in the tocopherol redox cycle. FRONTIERS IN PLANT SCIENCE 2014; 5:298. [PMID: 25018761 PMCID: PMC4071476 DOI: 10.3389/fpls.2014.00298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/06/2014] [Indexed: 05/20/2023]
Abstract
Plants are exposed to ever changing light environments and continuously forced to adapt. Excessive light intensity leads to the production of reactive oxygen species that can have deleterious effects on photosystems and thylakoid membranes. To limit damage, plants increase the production of membrane soluble antioxidants such as tocopherols. Here, untargeted lipidomics after high light treatment showed that among hundreds of lipid compounds alpha-tocopherol is the most strongly induced, underscoring its importance as an antioxidant. As part of the antioxidant mechanism, α-tocopherol undergoes a redox cycle involving oxidative opening of the chromanol ring. The only enzyme currently known to participate in the cycle is tocopherol cyclase (VTE1, At4g32770), that re-introduces the chromanol ring of α-tocopherol. By mutant analysis, we identified the NAD(P)H-dependent quinone oxidoreductase (NDC1, At5g08740) as a second enzyme implicated in this cycle. NDC1 presumably acts through the reduction of quinone intermediates preceding cyclization by VTE1. Exposure to high light also triggered far-ranging changes in prenylquinone composition that we dissect herein using null mutants and lines overexpressing the VTE1 and NDC1 enzymes.
Collapse
Affiliation(s)
- Lucia Eugeni Piller
- Laboratoire de Physiologie Végétale, Institute of Biology, Université de NeuchâtelNeuchâtel, Switzerland
| | - Gaétan Glauser
- Chemical Analytical Service of the Swiss Plant Science Web, Neuchâtel Platform for Analytical Chemistry, Faculty of Sciences, Université de NeuchâtelNeuchâtel, Switzerland
| | - Felix Kessler
- Laboratoire de Physiologie Végétale, Institute of Biology, Université de NeuchâtelNeuchâtel, Switzerland
- *Correspondence: Felix Kessler, Laboratoire de Physiologie Végétale, Université de Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland e-mail:
| | - Céline Besagni
- Laboratoire de Physiologie Végétale, Institute of Biology, Université de NeuchâtelNeuchâtel, Switzerland
| |
Collapse
|
39
|
Lester GE, Makus DJ, Hodges DM, Jifon JL. Summer (subarctic) versus winter (subtropic) production affects spinach (Spinacia oleracea L.) leaf bionutrients: vitamins (C, E, Folate, K1, provitamin A), lutein, phenolics, and antioxidants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7019-7027. [PMID: 23834651 DOI: 10.1021/jf401461z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Comparison of spinach (Spinacia oleracea L.) cultivars Lazio and Samish grown during the summer solstice in the subarctic versus the winter solstice in the subtropics provided insight into interactions between production environment (light intensity), cultivar, and leaf age/maturity/position affecting bionutrient concentrations of vitamins (C, E, folate, K1, provitamin A), lutein, phenolics, and antioxidants. Growing spinach during the winter solstice in the subtropics resulted in increased leaf dry matter %, oxidized (dehydro) ascorbic acid (AsA), α- and γ-tocopherol, and total phenols but lower reduced (free) AsA, α-carotene, folate, and antioxidant capacity compared to summer solstice-grown spinach in the subarctic. Both cultivars had similar bionutrients, except for higher dehydroAsA, and lower α- and γ-tocopherol in 'Samish' compared to 'Lazio'. For most bionutrients measured, there was a linear, and sometimes quadratic, increase in concentrations from bottom to top canopy leaves. However, total phenolics and antioxidant capacity increased basipetally. The current study has thus demonstrated that dehydroAsA, α-tocopherol, and γ-tocopherol were substantially lower in subarctic compared to subtropical-grown spinach, whereas the opposite relationship was found for antioxidant capacity, α-carotene, and folates (vitamin B9). The observations are consistent with previously reported isolated effects of growth environment on bionutrient status of crops. The current results clearly highlight the effect of production environment (predominantly radiation capture), interacting with genetics and plant phenology to alter the bionutrient status of crops. While reflecting the effects of changing growing conditions, these results also indicate potential alterations in the nutritive value of foods with anticipated shifts in global climatic conditions.
Collapse
Affiliation(s)
- Gene E Lester
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture , 10300 Baltimore Avenue, Beltsville, Maryland 20705, United States
| | | | | | | |
Collapse
|
40
|
Ji Q, Zhang L, Jones MB, Sun F, Deng X, Liang H, Cho H, Brugarolas P, Gao YN, Peterson SN, Lan L, Bae T, He C. Molecular mechanism of quinone signaling mediated through S-quinonization of a YodB family repressor QsrR. Proc Natl Acad Sci U S A 2013; 110:5010-5. [PMID: 23479646 PMCID: PMC3612684 DOI: 10.1073/pnas.1219446110] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Quinone molecules are intracellular electron-transport carriers, as well as critical intra- and extracellular signals. However, transcriptional regulation of quinone signaling and its molecular basis are poorly understood. Here, we identify a thiol-stress-sensing regulator YodB family transcriptional regulator as a central component of quinone stress response of Staphylococcus aureus, which we have termed the quinone-sensing and response repressor (QsrR). We also identify and confirm an unprecedented quinone-sensing mechanism based on the S-quinonization of the essential residue Cys-5. Structural characterizations of the QsrR-DNA and QsrR-menadione complexes further reveal that the covalent association of menadione directly leads to the release of QsrR from operator DNA following a 10° rigid-body rotation as well as a 9-Å elongation between the dimeric subunits. The molecular level characterization of this quinone-sensing transcriptional regulator provides critical insights into quinone-mediated gene regulation in human pathogens.
Collapse
Affiliation(s)
- Quanjiang Ji
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Liang Zhang
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Marcus B. Jones
- Infectious Disease Group, Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, MD 20850
| | - Fei Sun
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Xin Deng
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Haihua Liang
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Hoonsik Cho
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408; and
| | - Pedro Brugarolas
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Yihe N. Gao
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Scott N. Peterson
- Infectious Disease Group, Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, MD 20850
| | - Lefu Lan
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408; and
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
41
|
Besagni C, Kessler F. A mechanism implicating plastoglobules in thylakoid disassembly during senescence and nitrogen starvation. PLANTA 2013. [PMID: 23187680 DOI: 10.1007/s00425-012-1813-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plastoglobules are lipid droplets present in all plastid types. In chloroplasts, they are connected to the thylakoid membrane by the outer lipid half-bilayer. The plastoglobule core is composed of neutral lipids most prominently the prenylquinones, triacylglycerols, fatty acid phytyl esters but likely also unknown compounds. During stress and various developmental stages such as senescence, plastoglobule size and number increase due to the accumulation of lipids. However, their role is not limited to lipid storage. Indeed, the characterization of the plastoglobule proteome revealed the presence of enzymes. Importantly it has been demonstrated that these participate in isoprenoid lipid metabolic pathways at the plastoglobule, notably in the metabolism of prenylquinones. Recently, the characterization of two phytyl ester synthases has established a firm metabolic link between PG enzymatic activity and thylakoid disassembly during chloroplast senescence and nitrogen starvation.
Collapse
Affiliation(s)
- Céline Besagni
- Laboratoire de Physiologie Végétale, Université de Neuchâtel, Neuchâtel, Switzerland.
| | | |
Collapse
|
42
|
Reumann S. Biosynthesis of vitamin K1 (phylloquinone) by plant peroxisomes and its integration into signaling molecule synthesis pathways. Subcell Biochem 2013; 69:213-29. [PMID: 23821151 DOI: 10.1007/978-94-007-6889-5_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Vitamin K1 (phylloquinone) is a substituted membrane-anchored naphthoquinone that functions as an essential electron carrier in photosystem I in photosynthetic organisms. While plants can synthesize phylloquinone de novo, humans rely on vitamin K1 uptake from green leafy vegetables as a precursor for the synthesis of its structural derivative, menaquinone-4 (vitamin K2). In vertebrates, menaquinone-4 serves as an enzymatic co-factor that is required for posttranslational protein modification, i.e. the γ-carboxylation of glutamate residues in specific proteins involved in blood coagulation, bone metabolism and vascular biology. Comprehensive knowledge of the subcellular compartmentalization of vitamin K biosynthesis in plants, pathway regulation and its integration in cellular metabolic networks is important to design functional food with elevated vitamin levels and health benefits to human consumers. It had long been assumed that plants obtained all enzymes for phylloquinone biosynthesis from the ancient cyanobacterial endosymbiont and that, upon gene transfer to the nucleus, all biosynthetic enzymes were re-directed to the plastid. This view, however, has been recently challenged by the exclusive localization of the 6th pathway enzyme (MenB/NS) to peroxisomes in Arabidopsis. Soon afterwards, not only the preceding enzyme, acyl-activating enzyme 14 (MenE/AAE14), but also the succeeding thioesterase (DHNAT) were also shown to be peroxisomal. Phylogenetic analysis revealed a heterogeneous evolutionary origin of the peroxisomal enzymes. Phylloquinone biosynthesis reveals several branching points leading to the synthesis of important defence signalling molecules, such as salicylic acid and benzoic acid derivatives. Recent research data demonstrate that, of the two phenylalanine-dependent pathways for benzoic and salicylic acid biosynthesis, the CoA-dependent β-oxidative pathway, which is peroxisomal, is the major route. Hence, peroxisomes emerge as an important cell compartment for the interconnected networks of phylloquinone, benzoic and salicylic acid biosynthesis. Numerous mechanisms to regulate intermediate flux and the fine-tuned inducible production of secondary metabolites, including signalling molecules, await their characterization at the molecular level.
Collapse
Affiliation(s)
- Sigrun Reumann
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway,
| |
Collapse
|
43
|
Karamoko M, Gabilly ST, Hamel PP. Operation of trans-thylakoid thiol-metabolizing pathways in photosynthesis. FRONTIERS IN PLANT SCIENCE 2013; 4:476. [PMID: 24348486 PMCID: PMC3842002 DOI: 10.3389/fpls.2013.00476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/04/2013] [Indexed: 05/08/2023]
Abstract
Thiol oxidation to disulfides and the reverse reaction, i.e., disulfide reduction to free thiols, are under the control of catalysts in vivo. Enzymatically assisted thiol-disulfide chemistry is required for the biogenesis of all energy-transducing membrane systems. However, until recently, this had only been demonstrated for the bacterial plasma membrane. Long considered to be vacant, the thylakoid lumen has now moved to the forefront of photosynthesis research with the realization that its proteome is far more complicated than initially anticipated. Several lumenal proteins are known to be disulfide bonded in Arabidopsis, highlighting the importance of sulfhydryl oxidation in the thylakoid lumen. While disulfide reduction in the plastid stroma is known to activate several enzymatic activities, it appears that it is the reverse reaction, i.e., thiol oxidation that is required for the activity of several lumen-resident proteins. This paradigm for redox regulation in the thylakoid lumen has opened a new frontier for research in the field of photosynthesis. Of particular significance in this context is the discovery of trans-thylakoid redox pathways controlling disulfide bond formation and reduction, which are required for photosynthesis.
Collapse
Affiliation(s)
- Mohamed Karamoko
- Department of Molecular Genetics, The Ohio State UniversityColumbus, OH, USA
- Department of Molecular and Cellular Biochemistry, The Ohio State UniversityColumbus, OH, USA
| | - Stéphane T. Gabilly
- Department of Molecular Genetics, The Ohio State UniversityColumbus, OH, USA
- Department of Molecular and Cellular Biochemistry, The Ohio State UniversityColumbus, OH, USA
| | - Patrice P. Hamel
- Department of Molecular Genetics, The Ohio State UniversityColumbus, OH, USA
- Department of Molecular and Cellular Biochemistry, The Ohio State UniversityColumbus, OH, USA
- *Correspondence: Patrice P. Hamel, Department of Molecular Genetics, The Ohio State University, 500 Aronoff Laboratory, 318 West 12th Avenue, 43210 Columbus, OH, USA e-mail:
| |
Collapse
|
44
|
Liu J, Yang H, Lu Q, Wen X, Chen F, Peng L, Zhang L, Lu C. PsbP-domain protein1, a nuclear-encoded thylakoid lumenal protein, is essential for photosystem I assembly in Arabidopsis. THE PLANT CELL 2012; 24:4992-5006. [PMID: 23221595 PMCID: PMC3556971 DOI: 10.1105/tpc.112.106542] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To gain insights into the molecular details of photosystem I (PSI) biogenesis, we characterized the PsbP-domain protein1 (ppd1) mutant of Arabidopsis thaliana that specifically lacks PSI activity. Deletion of PPD1 results in an inability of the mutant to grow photoautotrophically and a specific loss of the stable PSI complex. Unaltered transcription and translation of plastid-encoded PSI genes indicate that PPD1 acts at the posttranslational level. In vivo protein labeling experiments reveal that the rate of synthesis of PSI reaction center proteins PsaA/B in ppd1 is comparable to that of wild-type plants, whereas the rate of turnover of PsaA/B proteins is higher in ppd1 than in wild-type plants. With increasing leaf age, PPD1 content decreases considerably, while PSI content remains constant. PPD1 is a nuclear-encoded thylakoid lumenal protein and is associated with PSI but is not an integral subunit of PSI. Biochemical and molecular analyses reveal that PPD1 interacts directly and specifically with PsaB and PsaA. Yeast two-hybrid experiments show that PPD1 interacts with some lumenal loops of PsaB and PsaA. Our results suggest that PPD1 is a PSI assembly factor that assists the proper folding and integration of PsaB and PsaA into the thylakoid membrane.
Collapse
Affiliation(s)
- Jun Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huixia Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qingtao Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaogang Wen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Fan Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lianwei Peng
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- National Center for Plant Gene Research, Beijing 100093, China
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- National Center for Plant Gene Research, Beijing 100093, China
- Address correspondence to
| |
Collapse
|
45
|
Singh DK, Laremore TN, Smith PB, Maximova SN, McNellis TW. Knockdown of FIBRILLIN4 gene expression in apple decreases plastoglobule plastoquinone content. PLoS One 2012; 7:e47547. [PMID: 23077632 PMCID: PMC3470590 DOI: 10.1371/journal.pone.0047547] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/18/2012] [Indexed: 11/24/2022] Open
Abstract
Fibrillin4 (FBN4) is a protein component of plastoglobules, which are antioxidant-rich sub-compartments attached to the chloroplast thylakoid membranes. FBN4 is required for normal plant biotic and abiotic stress resistance, including bacterial pathogens, herbicide, high light intensity, and ozone; FBN4 is also required for the accumulation of osmiophilic material inside plastoglobules. In this study, the contribution of FBN4 to plastoglobule lipid composition was examined using cultivated apple trees in which FBN4 gene expression was knocked down using RNA interference. Chloroplasts and plastoglobules were isolated from leaves of wild-type and fbn4 knock-down trees. Total lipids were extracted from chloroplasts and plastoglobules separately, and analyzed using liquid chromatography-mass spectrometry (LC–MS). Three lipids were consistently present at lower levels in the plastoglobules from fbn4 knock-down apple leaves compared to the wild-type as determined by LC-MS multiple ion monitoring. One of these species had a molecular mass and fragmentation pattern that identified it as plastoquinone, a known major component of plastoglobules. The plastoquinone level in fbn4 knock-down plastoglobules was less than 10% of that in wild-type plastoglobules. In contrast, plastoquinone was present at similar levels in the lipid extracts of whole chloroplasts from leaves of wild-type and fbn4 knock-down trees. These results suggest that the partitioning of plastoquinone between the plastoglobules and the rest of the chloroplast is disrupted in fbn4 knock-down leaves. These results indicate that FBN4 is required for high-level accumulation of plastoquinone and some other lipids in the plastoglobule. The dramatic decrease in plastoquinone content in fbn4 knock-down plastoglobules is consistent with the decreased plastoglobule osmiophilicity previously described for fbn4 knock-down plastoglobules. Failure to accumulate the antioxidant plastoquinone in the fbn4 knock-down plastoglobules might contribute to the increased stress sensitivity of fbn4 knock-down trees.
Collapse
Affiliation(s)
- Dharmendra K. Singh
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Tatiana N. Laremore
- The Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Philip B. Smith
- The Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Siela N. Maximova
- Department of Horticulture, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Timothy W. McNellis
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
46
|
Murphy DJ. The dynamic roles of intracellular lipid droplets: from archaea to mammals. PROTOPLASMA 2012; 249:541-85. [PMID: 22002710 DOI: 10.1007/s00709-011-0329-7] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/28/2011] [Indexed: 05/02/2023]
Abstract
During the past decade, there has been a paradigm shift in our understanding of the roles of intracellular lipid droplets (LDs). New genetic, biochemical and imaging technologies have underpinned these advances, which are revealing much new information about these dynamic organelles. This review takes a comparative approach by examining recent work on LDs across the whole range of biological organisms from archaea and bacteria, through yeast and Drosophila to mammals, including humans. LDs probably evolved originally in microorganisms as temporary stores of excess dietary lipid that was surplus to the immediate requirements of membrane formation/turnover. LDs then acquired roles as long-term carbon stores that enabled organisms to survive episodic lack of nutrients. In multicellular organisms, LDs went on to acquire numerous additional roles including cell- and organism-level lipid homeostasis, protein sequestration, membrane trafficking and signalling. Many pathogens of plants and animals subvert their host LD metabolism as part of their infection process. Finally, malfunctions in LDs and associated proteins are implicated in several degenerative diseases of modern humans, among the most serious of which is the increasingly prevalent constellation of pathologies, such as obesity and insulin resistance, which is associated with metabolic syndrome.
Collapse
Affiliation(s)
- Denis J Murphy
- Division of Biological Sciences, University of Glamorgan, Cardiff, CF37 4AT, UK.
| |
Collapse
|
47
|
Widhalm JR, Ducluzeau AL, Buller NE, Elowsky CG, Olsen LJ, Basset GJC. Phylloquinone (vitamin K(1) ) biosynthesis in plants: two peroxisomal thioesterases of Lactobacillales origin hydrolyze 1,4-dihydroxy-2-naphthoyl-CoA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:205-215. [PMID: 22372525 DOI: 10.1111/j.1365-313x.2012.04972.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
It is not known how plants cleave the thioester bond of 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA), a necessary step to form the naphthoquinone ring of phylloquinone (vitamin K(1) ). In fact, only recently has the hydrolysis of DHNA-CoA been demonstrated to be enzyme driven in vivo, and the cognate thioesterase characterized in the cyanobacterium Synechocystis. With a few exceptions in certain prokaryotic (Sorangium and Opitutus) and eukaryotic (Cyanidium, Cyanidioschyzon and Paulinella) organisms, orthologs of DHNA-CoA thioesterase are missing outside of the cyanobacterial lineage. In this study, genomic approaches and functional complementation experiments identified two Arabidopsis genes encoding functional DHNA-CoA thioesterases. The deduced plant proteins display low percentages of identity with cyanobacterial DHNA-CoA thioesterases, and do not even share the same catalytic motif. GFP-fusion experiments demonstrated that the Arabidopsis proteins are targeted to peroxisomes, and subcellular fractionations of Arabidopsis leaves confirmed that DHNA-CoA thioesterase activity occurs in this organelle. In vitro assays with various aromatic and aliphatic acyl-CoA thioester substrates showed that the recombinant Arabidopsis enzymes preferentially hydrolyze DHNA-CoA. Cognate T-DNA knock-down lines display reduced DHNA-CoA thioesterase activity and phylloquinone content, establishing in vivo evidence that the Arabidopsis enzymes are involved in phylloquinone biosynthesis. Extraordinarily, structure-based phylogenies coupled to comparative genomics demonstrate that plant DHNA-CoA thioesterases originate from a horizontal gene transfer with a bacterial species of the Lactobacillales order.
Collapse
Affiliation(s)
- Joshua R Widhalm
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | | | | | | | | | |
Collapse
|
48
|
Krech K, Ruf S, Masduki FF, Thiele W, Bednarczyk D, Albus CA, Tiller N, Hasse C, Schöttler MA, Bock R. The plastid genome-encoded Ycf4 protein functions as a nonessential assembly factor for photosystem I in higher plants. PLANT PHYSIOLOGY 2012; 159:579-91. [PMID: 22517411 PMCID: PMC3375926 DOI: 10.1104/pp.112.196642] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/17/2012] [Indexed: 05/18/2023]
Abstract
Photosystem biogenesis in the thylakoid membrane is a highly complicated process that requires the coordinated assembly of nucleus-encoded and chloroplast-encoded protein subunits as well as the insertion of hundreds of cofactors, such as chromophores (chlorophylls, carotenoids) and iron-sulfur clusters. The molecular details of the assembly process and the identity and functions of the auxiliary factors involved in it are only poorly understood. In this work, we have characterized the chloroplast genome-encoded ycf4 (for hypothetical chloroplast reading frame no. 4) gene, previously shown to encode a protein involved in photosystem I (PSI) biogenesis in the unicellular green alga Chlamydomonas reinhardtii. Using stable transformation of the chloroplast genome, we have generated ycf4 knockout plants in the higher plant tobacco (Nicotiana tabacum). Although these mutants are severely affected in their photosynthetic performance, they are capable of photoautotrophic growth, demonstrating that, different from Chlamydomonas, the ycf4 gene product is not essential for photosynthesis. We further show that ycf4 knockout plants are specifically deficient in PSI accumulation. Unaltered expression of plastid-encoded PSI genes and biochemical analyses suggest a posttranslational action of the Ycf4 protein in the PSI assembly process. With increasing leaf age, the contents of Ycf4 and Y3IP1, another auxiliary factor involved in PSI assembly, decrease strongly, whereas PSI contents remain constant, suggesting that PSI is highly stable and that its biogenesis is restricted to young leaves.
Collapse
Affiliation(s)
- Katharina Krech
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany
| | - Fifi F. Masduki
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany
| | - Wolfram Thiele
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany
| | | | - Christin A. Albus
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany
| | - Nadine Tiller
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany
| | - Claudia Hasse
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany
| | - Mark A. Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany
| |
Collapse
|
49
|
Lundquist PK, Poliakov A, Bhuiyan NH, Zybailov B, Sun Q, van Wijk KJ. The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis. PLANT PHYSIOLOGY 2012; 158:1172-92. [PMID: 22274653 PMCID: PMC3291262 DOI: 10.1104/pp.111.193144] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 01/19/2012] [Indexed: 05/18/2023]
Abstract
Plastoglobules (PGs) in chloroplasts are thylakoid-associated monolayer lipoprotein particles containing prenyl and neutral lipids and several dozen proteins mostly with unknown functions. An integrated view of the role of the PG is lacking. Here, we better define the PG proteome and provide a conceptual framework for further studies. The PG proteome from Arabidopsis (Arabidopsis thaliana) leaf chloroplasts was determined by mass spectrometry of isolated PGs and quantitative comparison with the proteomes of unfractionated leaves, thylakoids, and stroma. Scanning electron microscopy showed the purity and size distribution of the isolated PGs. Compared with previous PG proteome analyses, we excluded several proteins and identified six new PG proteins, including an M48 metallopeptidase and two Absence of bc1 complex (ABC1) atypical kinases, confirmed by immunoblotting. This refined PG proteome consisted of 30 proteins, including six ABC1 kinases and seven fibrillins together comprising more than 70% of the PG protein mass. Other fibrillins were located predominantly in the stroma or thylakoid and not in PGs; we discovered that this partitioning can be predicted by their isoelectric point and hydrophobicity. A genome-wide coexpression network for the PG genes was then constructed from mRNA expression data. This revealed a modular network with four distinct modules that each contained at least one ABC1K and/or fibrillin gene. Each module showed clear enrichment in specific functions, including chlorophyll degradation/senescence, isoprenoid biosynthesis, plastid proteolysis, and redox regulators and phosphoregulators of electron flow. We propose a new testable model for the PGs, in which sets of genes are associated with specific PG functions.
Collapse
Affiliation(s)
- Peter K. Lundquist
- Department of Plant Biology (P.K.L., A.P., N.H.B., B.Z., K.J.v.W.) and Computational Biology Service Unit (Q.S.), Cornell University, Ithaca, New York 14853
| | - Anton Poliakov
- Department of Plant Biology (P.K.L., A.P., N.H.B., B.Z., K.J.v.W.) and Computational Biology Service Unit (Q.S.), Cornell University, Ithaca, New York 14853
| | - Nazmul H. Bhuiyan
- Department of Plant Biology (P.K.L., A.P., N.H.B., B.Z., K.J.v.W.) and Computational Biology Service Unit (Q.S.), Cornell University, Ithaca, New York 14853
| | | | - Qi Sun
- Department of Plant Biology (P.K.L., A.P., N.H.B., B.Z., K.J.v.W.) and Computational Biology Service Unit (Q.S.), Cornell University, Ithaca, New York 14853
| | - Klaas J. van Wijk
- Department of Plant Biology (P.K.L., A.P., N.H.B., B.Z., K.J.v.W.) and Computational Biology Service Unit (Q.S.), Cornell University, Ithaca, New York 14853
| |
Collapse
|
50
|
Eugeni Piller L, Abraham M, Dörmann P, Kessler F, Besagni C. Plastid lipid droplets at the crossroads of prenylquinone metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1609-18. [PMID: 22371323 DOI: 10.1093/jxb/ers016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lipid droplets called plastoglobules (PGs) exist in most plant tissues and plastid types. In chloroplasts, the polar lipid monolayer surrounding these low-density lipoprotein particles is continuous with the outer lipid leaflet of the thylakoid membrane. Often small clusters of two or three PGs, only one of them directly connected to thylakoids, are present. Structural proteins (known as plastid-lipid associated proteins/fibrillins or plastoglobulins) together with lipid metabolic enzymes coat the PGs. The hydrophobic core of PGs contains a range of neutral lipids including the prenylquinones [tocopherols (vitamin E), phylloquinone (vitamin K(1)), and plastoquinone (PQ-9)]. In this review the function of PGs and their associated enzymes in prenylquinone metabolism will be discussed.
Collapse
Affiliation(s)
- Lucia Eugeni Piller
- Laboratoire de Physiologie Végétale, Université de Neuchâtel, 2000 Neuchâtel, Switzerland
| | | | | | | | | |
Collapse
|