1
|
Gupta A, Gomes I, Osman A, Fujita W, Devi LA. Regulation of Cannabinoid and Opioid Receptor Levels by Endogenous and Pharmacological Chaperones. J Pharmacol Exp Ther 2024; 391:279-288. [PMID: 39103231 PMCID: PMC11493451 DOI: 10.1124/jpet.124.002187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Cannabinoid and opioid receptor activities can be modulated by a variety of post-translational mechanisms including the formation of interacting complexes. This study examines the involvement of endogenous and exogenous chaperones in modulating the abundance and activity of cannabinoid CB1 receptor (CB1R), δ opioid receptor (DOR), and CB1R-DOR interacting complexes. Focusing on endogenous protein chaperones, namely receptor transporter proteins (RTPs), we examined relative mRNA expression in the mouse spinal cord and found RTP4 to be expressed at higher levels compared with other RTPs. Next, we assessed the effect of RTP4 on receptor abundance by manipulating RTP4 expression in cell lines. Overexpression of RTP4 causes an increase and knock-down causes a decrease in the levels of CB1R, DOR, and CB1R-DOR interacting complexes; this is accompanied by parallel changes in signaling. The ability of small molecule lipophilic ligands to function as exogenous chaperones was examined using receptor-selective antagonists. Long-term treatment leads to increases in receptor abundance and activity with no changes in mRNA supporting a role as pharmacological chaperones. Finally, the effect of cannabidiol (CBD), a small molecule ligand and a major active component of cannabis, on receptor abundance and activity in mice was examined. We find that CBD administration leads to increases in receptor abundance and activity in mouse spinal cord. Together, these results highlight a role for chaperones (proteins and small molecules) in modulating levels and activity of CB1R, DOR, and their interacting complexes potentially through mechanisms including receptor maturation and trafficking. SIGNIFICANCE STATEMENT: This study highlights a role for chaperones (endogenous and small membrane-permeable molecules) in modulating levels of cannabinoid CB1 receptor, delta opioid receptor, and their interacting complexes. These chaperones could be developed as therapeutics for pathologies involving these receptors.
Collapse
MESH Headings
- Animals
- Mice
- Molecular Chaperones/metabolism
- Receptor, Cannabinoid, CB1/metabolism
- Mice, Inbred C57BL
- Spinal Cord/metabolism
- Spinal Cord/drug effects
- Humans
- Cannabidiol/pharmacology
- Receptors, Opioid, delta/metabolism
- Male
- Receptors, Opioid/metabolism
- Receptors, Opioid/genetics
- HEK293 Cells
- Receptors, Cannabinoid/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Achla Gupta
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aya Osman
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Wakako Fujita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
2
|
Ojiro I, Katsuyama H, Kaneko R, Ogasawara S, Murata T, Terada Y, Ito K. Enhancement of transcription efficiency by TAR-Tat system increases the functional expression of human olfactory receptors. PLoS One 2024; 19:e0306029. [PMID: 38917199 PMCID: PMC11198769 DOI: 10.1371/journal.pone.0306029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Humans have approximately 400 different olfactory receptors (hORs) and recognize odorants through the repertoire of hOR responses. Although the cell surface expression of hORs is critical to evaluate their response, hORs are poorly expressed on the surface of heterologous cells. To address this problem, previous studies have focused on hOR transportation to the membrane. Nevertheless, the response pattern of hORs to odorants has yet to be successfully linked, and the response sensitivity still remains to be improved. In this study, we demonstrate that increasing the transcriptional level can result in a significant increase in cell surface and functional expression of hORs. We used the TAR-Tat system, which increases the transcription efficiency through positive feedback, and found that OR1A1, OR6N2, and OR51M1 exhibited robust expression. Moreover, this system induces enhanced hOR responses to odorants, thus defining four hORs as novel n-hexanal receptors and n-hexanal is an inverse agonist to one of them. Our results suggested that using the TAR-Tat system and increasing the transcriptional level of hORs can help understanding the relationship between hORs and odorants that were previously undetectable. This finding could facilitate the understanding of the sense of smell by decoding the repertoire of hOR responses.
Collapse
Affiliation(s)
- Ichie Ojiro
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hibiki Katsuyama
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Ryusei Kaneko
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Satoshi Ogasawara
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Yuko Terada
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Keisuke Ito
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
3
|
Wang J, Wang D, Huang M, Sun B, Ren F, Wu J, Zhang J, Li H, Sun X. Decoding Molecular Mechanism Underlying Human Olfactory Receptor OR8D1 Activation by Sotolone Enantiomers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5403-5415. [PMID: 38386648 DOI: 10.1021/acs.jafc.3c09142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Sotolone, a chiral compound, plays an important role in the food industry. Herein, (R)-/(S)-sotolone were separated to determine their odor characteristics and thresholds in air (R-form: smoky, burned, herb, and green aroma, 0.0514 μg/m3; S-form: sweet, milk, acid, and nutty aroma, 0.0048 μg/m3). OR8D1 responses to (R)-/(S)-sotolone were detected in a HEK293 cell-based luminescence assay. (S)-Sotolone was a more potent agonist than (R)-sotolone (EC50 values of 84.98 ± 1.05 and 167.20 ± 0.25 μmol/L, respectively). Molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area analyses confirmed that the combination of (S)-sotolone and OR8D1 was more stable than that of (R)-sotolone. Odorant docking, multiple sequence alignments, site-directed mutagenesis, and functional studies with recombinant odorant receptors (ORs) in a cell-based luminescence assay identified 11 amino-acid residues that influence the enantioselectivity of OR8D1 toward sotolone significantly and that N2065.46 was indispensable to the activation of OR8D1 by (S)-sotolone.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Danqing Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Jinglin Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Hehe Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Xiaotao Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| |
Collapse
|
4
|
Agron S, de March CA, Weissgross R, Mishor E, Gorodisky L, Weiss T, Furman-Haran E, Matsunami H, Sobel N. A chemical signal in human female tears lowers aggression in males. PLoS Biol 2023; 21:e3002442. [PMID: 38127837 PMCID: PMC10734982 DOI: 10.1371/journal.pbio.3002442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Rodent tears contain social chemosignals with diverse effects, including blocking male aggression. Human tears also contain a chemosignal that lowers male testosterone, but its behavioral significance was unclear. Because reduced testosterone is associated with reduced aggression, we tested the hypothesis that human tears act like rodent tears to block male aggression. Using a standard behavioral paradigm, we found that sniffing emotional tears with no odor percept reduced human male aggression by 43.7%. To probe the peripheral brain substrates of this effect, we applied tears to 62 human olfactory receptors in vitro. We identified 4 receptors that responded in a dose-dependent manner to this stimulus. Finally, to probe the central brain substrates of this effect, we repeated the experiment concurrent with functional brain imaging. We found that sniffing tears increased functional connectivity between the neural substrates of olfaction and aggression, reducing overall levels of neural activity in the latter. Taken together, our results imply that like in rodents, a human tear-bound chemosignal lowers male aggression, a mechanism that likely relies on the structural and functional overlap in the brain substrates of olfaction and aggression. We suggest that tears are a mammalian-wide mechanism that provides a chemical blanket protecting against aggression.
Collapse
Affiliation(s)
- Shani Agron
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Claire A. de March
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Reut Weissgross
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eva Mishor
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lior Gorodisky
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Weiss
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Edna Furman-Haran
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Noam Sobel
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Pallotti S, Picciolini M, Antonini M, Renieri C, Napolioni V. Genome-wide scan for runs of homozygosity in South American Camelids. BMC Genomics 2023; 24:470. [PMID: 37605116 PMCID: PMC10440933 DOI: 10.1186/s12864-023-09547-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Alpaca (Vicugna pacos), llama (Lama glama), vicugna (Vicugna vicugna) and guanaco (Lama guanicoe), are the camelid species distributed over the Andean high-altitude grasslands, the Altiplano, and the Patagonian arid steppes. Despite the wide interest on these animals, most of the loci under selection are still unknown. Using whole-genome sequencing (WGS) data we investigated the occurrence and the distribution of Runs Of Homozygosity (ROHs) across the South American Camelids (SACs) genome to identify the genetic relationship between the four species and the potential signatures of selection. RESULTS A total of 37 WGS samples covering the four species was included in the final analysis. The multi-dimensional scaling approach showed a clear separation between the four species; however, admixture analysis suggested a strong genetic introgression from vicugna and llama to alpaca. Conversely, very low genetic admixture of the guanaco with the other SACs was found. The four species did not show significant differences in the number, length of ROHs (100-500 kb) and genomic inbreeding values. Longer ROHs (> 500 kb) were found almost exclusively in alpaca. Seven overlapping ROHs were shared by alpacas, encompassing nine loci (FGF5, LOC107034918, PRDM8, ANTXR2, LOC102534792, BSN, LOC116284892, DAG1 and RIC8B) while nine overlapping ROHs were found in llama with twenty-five loci annotated (ERC2, FZD9, BAZ1B, BCL7B, LOC116284208, TBL2, MLXIPL, PHF20, TRNAD-AUC, LOC116284365, RBM39, ARFGEF2, DCAF5, EXD2, HSPB11, LRRC42, LDLRAD1, TMEM59, LOC107033213, TCEANC2, LOC102545169, LOC116278408, SMIM15, NDUFAF2 and RCOR1). Four overlapping ROHs, with three annotated loci (DLG1, KAT6B and PDE4D) and three overlapping ROHs, with seven annotated genes (ATP6V1E1, BCL2L13, LOC116276952, BID, KAT6B, LOC116282667 and LOC107034552), were detected for vicugna and guanaco, respectively. CONCLUSIONS The signatures of selection revealed genomic areas potentially selected for production traits as well as for natural adaptation to harsh environment. Alpaca and llama hint a selection driven by environment as well as by farming purpose while vicugna and guanaco showed selection signals for adaptation to harsh environment. Interesting, signatures of selection on KAT6B gene were identified for both vicugna and guanaco, suggesting a positive effect on wild populations fitness. Such information may be of interest to further ecological and animal production studies.
Collapse
Affiliation(s)
- Stefano Pallotti
- Genomic And Molecular Epidemiology (GAME) Lab, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy.
| | | | - Marco Antonini
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Roma, Italy
| | - Carlo Renieri
- School of Pharmacy and Health Products, University of Camerino, Camerino, Italy
| | - Valerio Napolioni
- Genomic And Molecular Epidemiology (GAME) Lab, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
6
|
Fukutani Y, Abe M, Saito H, Eguchi R, Tazawa T, de March CA, Yohda M, Matsunami H. Antagonistic interactions between odorants alter human odor perception. Curr Biol 2023; 33:2235-2245.e4. [PMID: 37220745 PMCID: PMC10394640 DOI: 10.1016/j.cub.2023.04.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/19/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
The olfactory system uses hundreds of odorant receptors (ORs), the largest group of the G-protein-coupled receptor (GPCR) superfamily, to detect a vast array of odorants. Each OR is activated by specific odorous ligands, and like other GPCRs, antagonism can block activation of ORs. Recent studies suggest that odorant antagonisms in mixtures influence olfactory neuron activities, but it is unclear how this affects perception of odor mixtures. In this study, we identified a set of human ORs activated by methanethiol and hydrogen sulfide, two potent volatile sulfur malodors, through large-scale heterologous expression. Screening odorants that block OR activation in heterologous cells identified a set of antagonists, including β-ionone. Sensory evaluation in humans revealed that β-ionone reduced the odor intensity and unpleasantness of methanethiol. Additionally, suppression was not observed when methanethiol and β-ionone were introduced simultaneously to different nostrils. Our study supports the hypothesis that odor sensation is altered through antagonistic interactions at the OR level.
Collapse
Affiliation(s)
- Yosuke Fukutani
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
| | - Masashi Abe
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Haruka Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Ryo Eguchi
- Research Section, R & D Division, S.T. Corporation, Shinjuku, Tokyo 161-0033, Japan
| | - Toshiaki Tazawa
- Research Section, R & D Division, S.T. Corporation, Shinjuku, Tokyo 161-0033, Japan
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Institute of Chemistry of the Natural Substances, Université Paris Saclay, CNRS UPR2301, Gif-sur-Yvette 91190, France
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
| | - Hiroaki Matsunami
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27705, USA.
| |
Collapse
|
7
|
Inoue R, Fukutani Y, Niwa T, Matsunami H, Yohda M. Identification and Characterization of Proteins That Are Involved in RTP1S-Dependent Transport of Olfactory Receptors. Int J Mol Sci 2023; 24:ijms24097829. [PMID: 37175532 PMCID: PMC10177996 DOI: 10.3390/ijms24097829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Olfaction is mediated via olfactory receptors (ORs) that are expressed on the cilia membrane of olfactory sensory neurons in the olfactory epithelium. The functional expression of most ORs requires the assistance of receptor-transporting proteins (RTPs). We examined the interactome of RTP1S and OR via proximity biotinylation. Deubiquitinating protein VCIP135, the F-actin-capping protein sub-unit alpha-2, and insulin-like growth factor 2 mRNA-binding protein 2 were biotinylated via AirID fused with OR, RTP1S-AirID biotinylated heat shock protein A6 (HSPA6), and double-stranded RNA-binding protein Staufen homolog 2 (STAU2). Co-expression of HSPA6 partially enhanced the surface expression of Olfr544. The surface expression of Olfr544 increased by 50-80%. This effect was also observed when RTP1S was co-expressed. Almost identical results were obtained from the co-expression of STAU2. The interactions of HSPA6 and STAU2 with RTP1S were examined using a NanoBit assay. The results show that the RTP1S N-terminus interacted with the C-terminal domain of HSP6A and the N-terminal domain of STAU2. In contrast, OR did not significantly interact with STAU2 and HSPA6. Thus, HSP6A and STAU2 appear to be involved in the process of OR traffic through interaction with RTP1S.
Collapse
Affiliation(s)
- Ryosuke Inoue
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Yosuke Fukutani
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
8
|
Application of artificial intelligence to decode the relationships between smell, olfactory receptors and small molecules. Sci Rep 2022; 12:18817. [PMID: 36335231 PMCID: PMC9637086 DOI: 10.1038/s41598-022-23176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Deciphering the relationship between molecules, olfactory receptors (ORs) and corresponding odors remains a challenging task. It requires a comprehensive identification of ORs responding to a given odorant. With the recent advances in artificial intelligence and the growing research in decoding the human olfactory perception from chemical features of odorant molecules, the applications of advanced machine learning have been revived. In this study, Convolutional Neural Network (CNN) and Graphical Convolutional Network (GCN) models have been developed on odorant molecules-odors and odorant molecules-olfactory receptors using a large set of 5955 molecules, 160 odors and 106 olfactory receptors. The performance of such models is promising with a Precision/Recall Area Under Curve of 0.66 for the odorant-odor and 0.91 for the odorant-olfactory receptor GCN models respectively. Furthermore, based on the correspondence of odors and ORs associated for a set of 389 compounds, an odor-olfactory receptor pairwise score was computed for each odor-OR combination allowing to suggest a combinatorial relationship between olfactory receptors and odors. Overall, this analysis demonstrate that artificial intelligence may pave the way in the identification of the smell perception and the full repertoire of receptors for a given odorant molecule.
Collapse
|
9
|
Zhu KW, Burton SD, Nagai MH, Silverman JD, de March CA, Wachowiak M, Matsunami H. Decoding the olfactory map through targeted transcriptomics links murine olfactory receptors to glomeruli. Nat Commun 2022; 13:5137. [PMID: 36050313 PMCID: PMC9437035 DOI: 10.1038/s41467-022-32267-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/21/2022] [Indexed: 12/12/2022] Open
Abstract
Sensory processing in olfactory systems is organized across olfactory bulb glomeruli, wherein axons of peripheral sensory neurons expressing the same olfactory receptor co-terminate to transmit receptor-specific activity to central neurons. Understanding how receptors map to glomeruli is therefore critical to understanding olfaction. High-throughput spatial transcriptomics is a rapidly advancing field, but low-abundance olfactory receptor expression within glomeruli has previously precluded high-throughput mapping of receptors to glomeruli in the mouse. Here we combined sequential sectioning along the anteroposterior, dorsoventral, and mediolateral axes with target capture enrichment sequencing to overcome low-abundance target expression. This strategy allowed us to spatially map 86% of olfactory receptors across the olfactory bulb and uncover a relationship between OR sequence and glomerular position.
Collapse
Affiliation(s)
- Kevin W Zhu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shawn D Burton
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, 18015, USA
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Maira H Nagai
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Justin D Silverman
- College of Information Science and Technology, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Statistics, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
- Institute for Computational and Data Science, Pennsylvania State University, University Park, PA, 16802, USA
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Matt Wachowiak
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Institute for Brain Sciences, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
10
|
Wireless portable bioelectronic nose device for multiplex monitoring toward food freshness/spoilage. Biosens Bioelectron 2022; 215:114551. [PMID: 35839622 DOI: 10.1016/j.bios.2022.114551] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023]
Abstract
Monitoring food freshness/spoilage is important to ensure food quality and safety. Current methods of food quality monitoring are mostly time-consuming and labor intensive processes that require massive analytical equipment. In this study, we developed a portable bioelectronic nose (BE-nose) integrated with trace amine-associated receptor (TAAR) nanodiscs (NDs), allowing food quality monitoring via the detection of food spoilage indicators, including the biogenic amines cadaverine (CV) and putrescine (PT). The olfactory receptors TAAR13c and TAAR13d, which have specific affinities for CV and PT, were produced and successfully reconstituted in ND structures. TAAR13 NDs BE-nose-based side-gated field-effect transistor (SG-FET) system was constructed by utilizing a graphene micropattern (GM) into which two types of olfactory NDs (TAAR13c ND and TAAR13d ND) were introduced, and this system showed ultrahigh sensitivity for a limit of detection (LOD) of 1 fM for CV and PT. Moreover, the binding affinities between the TAAR13 NDs and the indicators were confirmed by a tryptophan fluorescence quenching assay and biosimulations, in which the specific binding site was confirmed. Gas-phase indicators were detected by the TAAR13 NDs BE-nose platform, and the LODs for CV and PT were confirmed to be 26.48 and 7.29 ppb, respectively. In addition, TAAR13 NDs BE-nose was fabricated with commercial gas sensors as a portable platform for the measurement of NH3 and H2S, multiplexed monitoring was achieved with similar performance, and the change ratio of the indicators was observed in a real sample. The integration of commercial gas sensors on a BE-nose enhanced the accuracy and reliability for the quality monitoring of real food samples. These results indicate that the portable TAAR13 NDs BE-nose can be used to monitor CV and PT over a wide range of concentrations, therefore, the electronic nose platform can be utilized for monitoring the freshness/spoilage step in various foods.
Collapse
|
11
|
He M, Liu W, Zhang C, Liu Y, Zhuang H, O'Hagan D. Selectively Fluorinated Citronellol Analogues Support a Hydrogen Bonding Donor Interaction with the Human OR1A1 Olfactory Receptor. Org Lett 2022; 24:4415-4420. [PMID: 35686936 PMCID: PMC9237825 DOI: 10.1021/acs.orglett.2c01635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
C-2 fluorinated and
methylated stereoisomers of the fragrance citronellol 1 and its oxalate esters were prepared from (R)-pulegone 11 and explored as agonists of the human
olfactory receptor OR1A1 and assayed also against site-specific mutants.
There were clear isomer preferences and C-2 difluorination as in 18 led to the most active compound suggesting an important
hydrogen bond donor role for citronellol 1. C-2 methylation
and the corresponding oxalate ester analogues were less active.
Collapse
Affiliation(s)
- Mengfan He
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, U.K
| | - Weihong Liu
- Intelligent Perception Lab, Hanwang Technology Co., Ltd., Beijing, 100193, China
| | - Chen Zhang
- Intelligent Perception Lab, Hanwang Technology Co., Ltd., Beijing, 100193, China
| | - Yingjian Liu
- Intelligent Perception Lab, Hanwang Technology Co., Ltd., Beijing, 100193, China
| | - Hanyi Zhuang
- Intelligent Perception Lab, Hanwang Technology Co., Ltd., Beijing, 100193, China
| | - David O'Hagan
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, U.K
| |
Collapse
|
12
|
Xu R, Cong X, Zheng Q, Xu L, Ni MJ, de March CA, Matsunami H, Golebiowski J, Ma M, Yu Y. Interactions among key residues regulate mammalian odorant receptor trafficking. FASEB J 2022; 36:e22384. [PMID: 35639289 DOI: 10.1096/fj.202200116rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/11/2022]
Abstract
Odorant receptors (ORs) expressed in mammalian olfactory sensory neurons are essential for the sense of smell. However, structure-function studies of many ORs are hampered by unsuccessful heterologous expression. To understand and eventually overcome this bottleneck, we performed heterologous expression and functional assays of over 80 OR variants and chimeras. Combined with literature data and machine learning, we found that the transmembrane domain 4 (TM4) and its interactions with neighbor residues are important for OR functional expression. The data highlight critical roles of T4.62 therein. ORs that fail to reach the cell membrane can be rescued by modifications in TM4. Consequently, such modifications in MOR256-3 (Olfr124) also alter OR responses to odorants. T1614.62 P causes the retention of MOR256-3 in the endoplasmic reticulum (ER), while T1614.62 P/T1484.49 A reverses the retention and makes receptor trafficking to cell membrane. This study offers new clues toward wide-range functional studies of mammalian ORs.
Collapse
Affiliation(s)
- Rui Xu
- School of Life Sciences, Shanghai University, Shanghai, People's Republic of China
| | - Xiaojing Cong
- Institut de Chimie de Nice UMR7272, CNRS, Université Côte d'Azur, Nice, France.,Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 5, 34094, France
| | - Qian Zheng
- School of Life Sciences, Shanghai University, Shanghai, People's Republic of China
| | - Lun Xu
- Ear, Nose & Throat Institute, Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People's Republic of China
| | - Mengjue J Ni
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jérôme Golebiowski
- Institut de Chimie de Nice UMR7272, CNRS, Université Côte d'Azur, Nice, France.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yiqun Yu
- Ear, Nose & Throat Institute, Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People's Republic of China.,Clinical and Research Center for Olfactory Disorders, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Ruiz Tejada Segura ML, Abou Moussa E, Garabello E, Nakahara TS, Makhlouf M, Mathew LS, Wang L, Valle F, Huang SSY, Mainland JD, Caselle M, Osella M, Lorenz S, Reisert J, Logan DW, Malnic B, Scialdone A, Saraiva LR. A 3D transcriptomics atlas of the mouse nose sheds light on the anatomical logic of smell. Cell Rep 2022; 38:110547. [PMID: 35320714 PMCID: PMC8995392 DOI: 10.1016/j.celrep.2022.110547] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 12/26/2022] Open
Abstract
The sense of smell helps us navigate the environment, but its molecular architecture and underlying logic remain understudied. The spatial location of odorant receptor genes (Olfrs) in the nose is thought to be independent of the structural diversity of the odorants they detect. Using spatial transcriptomics, we create a genome-wide 3D atlas of the mouse olfactory mucosa (OM). Topographic maps of genes differentially expressed in space reveal that both Olfrs and non-Olfrs are distributed in a continuous and overlapping fashion over at least five broad zones in the OM. The spatial locations of Olfrs correlate with the mucus solubility of the odorants they recognize, providing direct evidence for the chromatographic theory of olfaction. This resource resolves the molecular architecture of the mouse OM and will inform future studies on mechanisms underlying Olfr gene choice, axonal pathfinding, patterning of the nervous system, and basic logic for the peripheral representation of smell.
Collapse
Affiliation(s)
- Mayra L Ruiz Tejada Segura
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | | | - Elisa Garabello
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy; Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Thiago S Nakahara
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | | | | | - Li Wang
- Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Filippo Valle
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy
| | | | - Joel D Mainland
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michele Caselle
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy
| | - Matteo Osella
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy
| | - Stephan Lorenz
- Sidra Medicine, P.O. Box 26999, Doha, Qatar; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Johannes Reisert
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Darren W Logan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Bettina Malnic
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Luis R Saraiva
- Sidra Medicine, P.O. Box 26999, Doha, Qatar; Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
14
|
Li B, Kamarck ML, Peng Q, Lim FL, Keller A, Smeets MAM, Mainland JD, Wang S. From musk to body odor: Decoding olfaction through genetic variation. PLoS Genet 2022; 18:e1009564. [PMID: 35113854 PMCID: PMC8812863 DOI: 10.1371/journal.pgen.1009564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022] Open
Abstract
The olfactory system combines input from multiple receptor types to represent odor information, but there are few explicit examples relating olfactory receptor (OR) activity patterns to odor perception. To uncover these relationships, we performed genome-wide scans on odor-perception phenotypes for ten odors in 1000 Han Chinese and validated results for six of these odors in an ethnically diverse population (n = 364). In both populations, consistent with previous studies, we replicated three previously reported associations (β-ionone/OR5A1, androstenone/OR7D4, cis-3-hexen-1-ol/OR2J3 LD-band), but not for odors containing aldehydes, suggesting that olfactory phenotype/genotype studies are robust across populations. Two novel associations between an OR and odor perception contribute to our understanding of olfactory coding. First, we found a SNP in OR51B2 that associated with trans-3-methyl-2-hexenoic acid, a key component of human underarm odor. Second, we found two linked SNPs associated with the musk Galaxolide in a novel musk receptor, OR4D6, which is also the first human OR shown to drive specific anosmia to a musk compound. We noticed that SNPs detected for odor intensity were enriched with amino acid substitutions, implying functional changes of odor receptors. Furthermore, we also found that the derived alleles of the SNPs tend to be associated with reduced odor intensity, supporting the hypothesis that the primate olfactory gene repertoire has degenerated over time. This study provides information about coding for human body odor, and gives us insight into broader mechanisms of olfactory coding, such as how differential OR activation can converge on a similar percept.
Collapse
Affiliation(s)
- Bingjie Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Skin and Cosmetics Research, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Marissa L. Kamarck
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Qianqian Peng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fei-Ling Lim
- Unilever Research & Development, Colworth, United Kingdom
| | - Andreas Keller
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York State, United States of America
| | | | - Joel D. Mainland
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
15
|
Hot Spot Mutagenesis Improves the Functional Expression of Unique Mammalian Odorant Receptors. Int J Mol Sci 2021; 23:ijms23010277. [PMID: 35008703 PMCID: PMC8745346 DOI: 10.3390/ijms23010277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
Vertebrate animals detect odors through olfactory receptors (ORs), members of the G protein-coupled receptor (GPCR) family. Due to the difficulty in the heterologous expression of ORs, studies of their odor molecule recognition mechanisms have progressed poorly. Functional expression of most ORs in heterologous cells requires the co-expression of their chaperone proteins, receptor transporting proteins (RTPs). Yet, some ORs were found to be functionally expressed without the support of RTP (RTP-independent ORs). In this study, we investigated whether amino acid residues highly conserved among RTP-independent ORs improve the functional expression of ORs in heterologous cells. We found that a single amino acid substitution at one of two sites (NBW3.39 and 3.43) in their conserved residues (E and L, respectively) significantly improved the functional expression of ORs in heterologous cells. E3.39 and L3.43 also enhanced the membrane expression of RTP-dependent ORs in the absence of RTP. These changes did not alter the odorant responsiveness of the tested ORs. Our results showed that specific sites within transmembrane domains regulate the membrane expression of some ORs.
Collapse
|
16
|
Jabeen A, de March CA, Matsunami H, Ranganathan S. Machine Learning Assisted Approach for Finding Novel High Activity Agonists of Human Ectopic Olfactory Receptors. Int J Mol Sci 2021; 22:ijms222111546. [PMID: 34768977 PMCID: PMC8583936 DOI: 10.3390/ijms222111546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/29/2022] Open
Abstract
Olfactory receptors (ORs) constitute the largest superfamily of G protein-coupled receptors (GPCRs). ORs are involved in sensing odorants as well as in other ectopic roles in non-nasal tissues. Matching of an enormous number of the olfactory stimulation repertoire to its counterpart OR through machine learning (ML) will enable understanding of olfactory system, receptor characterization, and exploitation of their therapeutic potential. In the current study, we have selected two broadly tuned ectopic human OR proteins, OR1A1 and OR2W1, for expanding their known chemical space by using molecular descriptors. We present a scheme for selecting the optimal features required to train an ML-based model, based on which we selected the random forest (RF) as the best performer. High activity agonist prediction involved screening five databases comprising ~23 M compounds, using the trained RF classifier. To evaluate the effectiveness of the machine learning based virtual screening and check receptor binding site compatibility, we used docking of the top target ligands to carefully develop receptor model structures. Finally, experimental validation of selected compounds with significant docking scores through in vitro assays revealed two high activity novel agonists for OR1A1 and one for OR2W1.
Collapse
Affiliation(s)
- Amara Jabeen
- Applied BioSciences, Macquarie University, Sydney, NSW 2109, Australia;
| | - Claire A. de March
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA
- Correspondence: (H.M.); (S.R.)
| | - Shoba Ranganathan
- Applied BioSciences, Macquarie University, Sydney, NSW 2109, Australia;
- Correspondence: (H.M.); (S.R.)
| |
Collapse
|
17
|
Francia S, Lodovichi C. The role of the odorant receptors in the formation of the sensory map. BMC Biol 2021; 19:174. [PMID: 34452614 PMCID: PMC8394594 DOI: 10.1186/s12915-021-01116-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
In the olfactory system, odorant receptors (ORs) expressed at the cell membrane of olfactory sensory neurons detect odorants and direct sensory axons toward precise target locations in the brain, reflected in the presence of olfactory sensory maps. This dual role of ORs is corroborated by their subcellular expression both in cilia, where they bind odorants, and at axon terminals, a location suitable for axon guidance cues. Here, we provide an overview and discuss previous work on the role of ORs in establishing the topographic organization of the olfactory system and recent findings on the mechanisms of activation and function of axonal ORs.
Collapse
Affiliation(s)
- Simona Francia
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy
| | - Claudia Lodovichi
- Veneto Institute of Molecular Medicine, Padua, Italy. .,Neuroscience Institute CNR, Via Orus 2, 35129, Padua, Italy. .,Department of Biomedical Sciences, University of Padua, Padua, Italy. .,Padova Neuroscience Center, Padua, Italy.
| |
Collapse
|
18
|
Hirata Y, Oda H, Osaki T, Takeuchi S. Biohybrid sensor for odor detection. LAB ON A CHIP 2021; 21:2643-2657. [PMID: 34132291 DOI: 10.1039/d1lc00233c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biohybrid odorant sensors that directly integrate a biological olfactory system have been increasingly studied and are suggested to be the next generation of ultrasensitive sensors by taking advantage of the sensitivity and selectivity of living organisms. In this review, we provide a detailed description of the recent developments of biohybrid odorant sensors, especially considering the requisites for their perspective of on-site applications. We introduce the methodologies to effectively capture the biological signals from olfactory systems by readout devices, and describe the essential properties regarding the gaseous detection, stability, quality control, and portability. Moreover, we address the recent progress on multiple odorant recognition using multiple sensors as well as the current screening approaches for pairs of orphan receptors and ligands necessary for the extension of the currently available range of biohybrid sensors. Finally, we discuss our perspectives for the future for the development of practical odorant sensors.
Collapse
Affiliation(s)
- Yusuke Hirata
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Haruka Oda
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan and Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Shoji Takeuchi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. and Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan and Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
19
|
Kotthoff M, Bauer J, Haag F, Krautwurst D. Conserved C-terminal motifs in odorant receptors instruct their cell surface expression and cAMP signaling. FASEB J 2021; 35:e21274. [PMID: 33464692 DOI: 10.1096/fj.202000182rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 11/11/2022]
Abstract
The highly individual plasma membrane expression and cAMP signaling of odorant receptors have hampered their ligand assignment and functional characterization in test cell systems. Chaperones have been identified to support the cell surface expression of only a portion of odorant receptors, with mechanisms remaining unclear. The presence of amino acid motifs that might be responsible for odorant receptors' individual intracellular retention or cell surface expression, and thus, for cAMP signaling, is under debate: so far, no such protein motifs have been suggested. Here, we demonstrate the existence of highly conserved C-terminal amino acid motifs, which discriminate at least between class-I and class-II odorant receptors, with their numbers of motifs increasing during evolution, by comparing C-terminal protein sequences from 4808 receptors across eight species. Truncation experiments and mutation analysis of C-terminal motifs, largely overlapping with helix 8, revealed single amino acids and their combinations to have differential impact on the cell surface expression and on stimulus-dependent cAMP signaling of odorant receptors in NxG 108CC15 cells. Our results demonstrate class-specific and individual C-terminal motif equipment of odorant receptors, which instruct their functional expression in a test cell system, and in situ may regulate their individual cell surface expression and intracellular cAMP signaling.
Collapse
Affiliation(s)
| | - Julia Bauer
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Franziska Haag
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
20
|
Tsuchiya S, Terada Y, Matsuyama M, Yamazaki-Ito T, Ito K. A new screening method for identifying chemosensory receptors responding to agonist. Biosci Biotechnol Biochem 2021; 85:1521-1525. [PMID: 33693463 DOI: 10.1093/bbb/zbab035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/01/2021] [Indexed: 11/12/2022]
Abstract
Humans sense taste and smell of various chemical substances through approximately 430 chemosensory receptors. The overall picture of ligand-chemosensory receptor interactions has been partially clarified because of numerous interactions. This study presents a new method that enables a rapid and simple screening of chemosensory receptors. It would be useful for identifying chemosensory receptors activated by taste and odor substances.
Collapse
Affiliation(s)
- Sakura Tsuchiya
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Yuko Terada
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Minami Matsuyama
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Toyomi Yamazaki-Ito
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Keisuke Ito
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
21
|
Choi YR, Shim J, Park JH, Kim YS, Kim MJ. Discovery of Orphan Olfactory Receptor 6M1 as a New Anticancer Target in MCF-7 Cells by a Combination of Surface Plasmon Resonance-Based and Cell-Based Systems. SENSORS 2021; 21:s21103468. [PMID: 34065710 PMCID: PMC8156394 DOI: 10.3390/s21103468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
Olfactory receptors (ORs) account for 49% of all G protein-coupled receptors (GPCRs), which are important targets for drug discovery, and hence ORs may also be potential drug targets. Various ORs are expressed in breast cancer cells; however, most of them are orphan receptors, and thus, their functions are unknown. Herein, we present an experimental strategy using a surface plasmon resonance (SPR) system and a cell-based assay that allowed the identification of orphan OR6M1 as a new anticancer target in the MCF-7 breast cancer cell line. After the construction of stable OR6M1-expressing cells, the SPR-based screening of 108 chemicals for ligand activity was performed against OR6M1-expressing whole cells (primary screening) or membrane fragments (secondary screening). As a result, anthraquinone (AQ) and rutin were discovered to be new OR6M1 ligands. Based on calcium imaging in OR6M1-expressing Hana3A cells, AQ and rutin were classified as an OR6M1 agonist and antagonist, respectively. Cell viability and live/dead assays showed that AQ induced the death of MCF-7 cells, which was inhibited by rutin. Therefore, OR6M1 may be considered an anticancer target, and AQ may be considered a chemotherapeutic agent. This combined method can be widely used to discover the ligands and functions of other orphan GPCRs.
Collapse
Affiliation(s)
- Yae Rim Choi
- Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanju 55365, Korea; (Y.R.C.); (J.S.)
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea;
| | - Jaewon Shim
- Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanju 55365, Korea; (Y.R.C.); (J.S.)
- Department of Biochemistry, Collage of Medicine, Kosin University, Busan 49267, Korea
| | - Jae-Ho Park
- Research Group of Healthcare, Korea Food Research Institute, Wanju 55365, Korea;
| | - Young-Suk Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea;
| | - Min Jung Kim
- Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanju 55365, Korea; (Y.R.C.); (J.S.)
- Correspondence: ; Tel.: +82-63-219-9380
| |
Collapse
|
22
|
Corey EA, Zolotukhin S, Ache BW, Ukhanov K. Mixture interactions at mammalian olfactory receptors are dependent on the cellular environment. Sci Rep 2021; 11:9278. [PMID: 33927269 PMCID: PMC8085013 DOI: 10.1038/s41598-021-88601-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Functional characterization of mammalian olfactory receptors (ORs) remains a major challenge to ultimately understanding the olfactory code. Here, we compare the responses of the mouse Olfr73 ectopically expressed in olfactory sensory neurons using AAV gene delivery in vivo and expressed in vitro in cell culture. The response dynamics and concentration-dependence of agonists for the ectopically expressed Olfr73 were similar to those reported for the endogenous Olfr73, however the antagonism previously reported between its cognate agonist and several antagonists was not replicated in vivo. Expressing the OR in vitro reproduced the antagonism reported for short odor pulses, but not for prolonged odor exposure. Our findings suggest that both the cellular environment and the stimulus dynamics shape the functionality of Olfr73 and argue that characterizing ORs in 'native' conditions, rather than in vitro, provides a more relevant understanding of ligand-OR interactions.
Collapse
Affiliation(s)
- Elizabeth A Corey
- Whitney Laboratory, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Sergei Zolotukhin
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Barry W Ache
- Whitney Laboratory, University of Florida, Gainesville, FL, USA
- Department of Biology and Neuroscience, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
23
|
Lodovichi C. Topographic organization in the olfactory bulb. Cell Tissue Res 2021; 383:457-472. [PMID: 33404841 PMCID: PMC7873094 DOI: 10.1007/s00441-020-03348-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022]
Abstract
The ability of the olfactory system to detect and discriminate a broad spectrum of odor molecules with extraordinary sensitivity relies on a wide range of odorant receptors and on the distinct architecture of neuronal circuits in olfactory brain areas. More than 1000 odorant receptors, distributed almost randomly in the olfactory epithelium, are plotted out in two mirror-symmetric maps of glomeruli in the olfactory bulb, the first relay station of the olfactory system. How does such a precise spatial arrangement of glomeruli emerge from a random distribution of receptor neurons? Remarkably, the identity of odorant receptors defines not only the molecular receptive range of sensory neurons but also their glomerular target. Despite their key role, odorant receptors are not the only determinant, since the specificity of neuronal connections emerges from a complex interplay between several molecular cues and electrical activity. This review provides an overview of the mechanisms underlying olfactory circuit formation. In particular, recent findings on the role of odorant receptors in regulating axon targeting and of spontaneous activity in the development and maintenance of synaptic connections are discussed.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Neuroscience Institute CNR, Department of Biomedical Science, Veneto Institute of Molecular Medicine, Padova Neuroscience Center, Padova, Italy.
| |
Collapse
|
24
|
Corey EA, Ukhanov K, Bobkov YV, McIntyre JC, Martens JR, Ache BW. Inhibitory signaling in mammalian olfactory transduction potentially mediated by Gα o. Mol Cell Neurosci 2020; 110:103585. [PMID: 33358996 DOI: 10.1016/j.mcn.2020.103585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023] Open
Abstract
Olfactory GPCRs (ORs) in mammalian olfactory receptor neurons (ORNs) mediate excitation through the Gαs family member Gαolf. Here we tentatively associate a second G protein, Gαo, with inhibitory signaling in mammalian olfactory transduction by first showing that odor evoked phosphoinositide 3-kinase (PI3K)-dependent inhibition of signal transduction is absent in the native ORNs of mice carrying a conditional OMP-Cre based knockout of Gαo. We then identify an OR from native rat ORNs that are activated by octanol through cyclic nucleotide signaling and inhibited by citral in a PI3K-dependent manner. We show that the OR activates cyclic nucleotide signaling and PI3K signaling in a manner that reflects its functionality in native ORNs. Our findings lay the groundwork to explore the interesting possibility that ORs can interact with two different G proteins in a functionally identified, ligand-dependent manner to mediate opponent signaling in mature mammalian ORNs.
Collapse
Affiliation(s)
- Elizabeth A Corey
- Whitney Laboratory, Center for Smell and Taste, University of Florida, Gainesville, FL 32610, United States of America
| | - Kirill Ukhanov
- Dept. of Pharmacology and Therapeutics, Center for Smell and Taste, University of Florida, Gainesville, FL 32610, United States of America
| | - Yuriy V Bobkov
- Whitney Laboratory, Center for Smell and Taste, University of Florida, Gainesville, FL 32610, United States of America
| | - Jeremy C McIntyre
- Dept. of Neuroscience, Center for Smell and Taste, University of Florida, Gainesville, FL 32610, United States of America
| | - Jeffrey R Martens
- Dept. of Pharmacology and Therapeutics, Center for Smell and Taste, University of Florida, Gainesville, FL 32610, United States of America
| | - Barry W Ache
- Whitney Laboratory, Dept. of Biology, Center for Smell and Taste, University of Florida, Gainesville, FL 32610, United States of America; Whitney Laboratory, Dept. of Neuroscience, Center for Smell and Taste, University of Florida, Gainesville, FL 32610, United States of America.
| |
Collapse
|
25
|
Axonal Odorant Receptors Mediate Axon Targeting. Cell Rep 2020; 29:4334-4348.e7. [PMID: 31875544 PMCID: PMC6941231 DOI: 10.1016/j.celrep.2019.11.099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 08/26/2019] [Accepted: 11/21/2019] [Indexed: 12/05/2022] Open
Abstract
In mammals, odorant receptors not only detect odors but also define the target in the olfactory bulb, where sensory neurons project to give rise to the sensory map. The odorant receptor is expressed at the cilia, where it binds odorants, and at the axon terminal. The mechanism of activation and function of the odorant receptor at the axon terminal is, however, still unknown. Here, we identify phosphatidylethanolamine-binding protein 1 as a putative ligand that activates the odorant receptor at the axon terminal and affects the turning behavior of sensory axons. Genetic ablation of phosphatidylethanolamine-binding protein 1 in mice results in a strongly disturbed olfactory sensory map. Our data suggest that the odorant receptor at the axon terminal of olfactory neurons acts as an axon guidance cue that responds to molecules originating in the olfactory bulb. The dual function of the odorant receptor links specificity of odor perception and axon targeting. Axonal odorant receptors respond to cues elaborated in the olfactory bulb PEBP1, expressed in the olfactory bulb, is a putative ligand of axonal receptors Genetic ablation of PEBP1 results in disrupted olfactory map in vivo Axonal odorant receptors modulate axon targeting in the sensory map formation
Collapse
|
26
|
Armanino N, Charpentier J, Flachsmann F, Goeke A, Liniger M, Kraft P. Heiße Luft oder cooler Duft? Die Trends der letzten 20 Jahre in der Riechstoffchemie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nicolas Armanino
- Givaudan Schweiz AGFragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Schweiz
| | - Julie Charpentier
- Givaudan Schweiz AGFragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Schweiz
| | - Felix Flachsmann
- Givaudan Schweiz AGFragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Schweiz
| | - Andreas Goeke
- Givaudan Schweiz AGFragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Schweiz
| | - Marc Liniger
- Givaudan Schweiz AGFragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Schweiz
| | - Philip Kraft
- Givaudan Schweiz AGFragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Schweiz
| |
Collapse
|
27
|
Armanino N, Charpentier J, Flachsmann F, Goeke A, Liniger M, Kraft P. What's Hot, What's Not: The Trends of the Past 20 Years in the Chemistry of Odorants. Angew Chem Int Ed Engl 2020; 59:16310-16344. [DOI: 10.1002/anie.202005719] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Nicolas Armanino
- Givaudan Schweiz AG Fragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Switzerland
| | - Julie Charpentier
- Givaudan Schweiz AG Fragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Switzerland
| | - Felix Flachsmann
- Givaudan Schweiz AG Fragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Switzerland
| | - Andreas Goeke
- Givaudan Schweiz AG Fragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Switzerland
| | - Marc Liniger
- Givaudan Schweiz AG Fragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Switzerland
| | - Philip Kraft
- Givaudan Schweiz AG Fragrances S&T, Ingredients Research Kemptpark 50 8310 Kemptthal Switzerland
| |
Collapse
|
28
|
Nagai MH, Xavier VPS, Gutiyama LM, Machado CF, Reis AH, Donnard ER, Galante PAF, Abreu JG, Festuccia WT, Malnic B. Depletion of Ric-8B leads to reduced mTORC2 activity. PLoS Genet 2020; 16:e1008255. [PMID: 32392211 PMCID: PMC7252638 DOI: 10.1371/journal.pgen.1008255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 05/27/2020] [Accepted: 02/24/2020] [Indexed: 11/19/2022] Open
Abstract
mTOR, a serine/threonine protein kinase that is involved in a series of critical cellular processes, can be found in two functionally distinct complexes, mTORC1 and mTORC2. In contrast to mTORC1, little is known about the mechanisms that regulate mTORC2. Here we show that mTORC2 activity is reduced in mice with a hypomorphic mutation of the Ric-8B gene. Ric-8B is a highly conserved protein that acts as a non-canonical guanine nucleotide exchange factor (GEF) for heterotrimeric Gαs/olf type subunits. We found that Ric-8B hypomorph embryos are smaller than their wild type littermates, fail to close the neural tube in the cephalic region and die during mid-embryogenesis. Comparative transcriptome analysis revealed that signaling pathways involving GPCRs and G proteins are dysregulated in the Ric-8B mutant embryos. Interestingly, this analysis also revealed an unexpected impairment of the mTOR signaling pathway. Phosphorylation of Akt at Ser473 is downregulated in the Ric-8B mutant embryos, indicating a decreased activity of mTORC2. Knockdown of the endogenous Ric-8B gene in cultured cell lines leads to reduced phosphorylation levels of Akt (Ser473), further supporting the involvement of Ric-8B in mTORC2 activity. Our results reveal a crucial role for Ric-8B in development and provide novel insights into the signals that regulate mTORC2. Gene inactivation in mice can be used to identify genes that are involved in important biological processes and that may contribute to disease. We used this approach to study the Ric-8B gene, which is highly conserved in mammals, including humans. We found that Ric-8B is essential for embryogenesis and for the proper development of the nervous system. Ric-8B mutant mouse embryos are smaller than their wild type littermates and show neural tube defects at the cranial region. This approach also allowed us to identify the biological pathways that potentially contribute to the observed phenotypes, and uncover a novel role for Ric-8B in the mTORC2 signaling pathway. mTORC2 plays particular important roles in the adult brain, and has been implicated in neurological disorders. Our mutant mice provide a model to study the complex molecular and cellular processes underlying the interplay between Ric-8B and mTORC2 in neuronal function.
Collapse
Affiliation(s)
- Maíra H. Nagai
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Alice H. Reis
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elisa R. Donnard
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Jose G. Abreu
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - William T. Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bettina Malnic
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
29
|
Lee N, Jae Y, Kim M, Cho T, Lee C, Hong YR, Hyeon DY, Ahn S, Kwon H, Kim K, Jung JH, Chae S, Shin JO, Bok J, Byun Y, Hwang D, Koo J. A pathogen-derived metabolite induces microglial activation via odorant receptors. FEBS J 2020; 287:3841-3870. [PMID: 32003140 DOI: 10.1111/febs.15234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/10/2019] [Accepted: 01/27/2020] [Indexed: 12/21/2022]
Abstract
Microglia (MG), the principal neuroimmune sentinels in the brain, continuously sense changes in their environment and respond to invading pathogens, toxins, and cellular debris, thereby affecting neuroinflammation. Microbial pathogens produce small metabolites that influence neuroinflammation, but the molecular mechanisms that determine whether pathogen-derived small metabolites affect microglial activation of neuroinflammation remain to be elucidated. We hypothesized that odorant receptors (ORs), the largest subfamily of G protein-coupled receptors, are involved in microglial activation by pathogen-derived small metabolites. We found that MG express high levels of two mouse ORs, Olfr110 and Olfr111, which recognize a pathogenic metabolite, 2-pentylfuran, secreted by Streptococcus pneumoniae. These interactions activate MG to engage in chemotaxis, cytokine production, phagocytosis, and reactive oxygen species generation. These effects were mediated through the Gαs -cyclic adenosine monophosphate-protein kinase A-extracellular signal-regulated kinase and Gβγ -phospholipase C-Ca2+ pathways. Taken together, our results reveal a novel interplay between the pathogen-derived metabolite and ORs, which has major implications for our understanding of microglial activation by pathogen recognition. DATABASE: Model data are available in the PMDB database under the accession number PM0082389.
Collapse
Affiliation(s)
- NaHye Lee
- Department of New Biology, DGIST, Daegu, Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Korea
| | - YoonGyu Jae
- Department of New Biology, DGIST, Daegu, Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Korea
| | - Minhyung Kim
- Center for Plant Aging Research, DGIST, Daegu, Korea
| | - TaeHo Cho
- Department of New Biology, DGIST, Daegu, Korea
| | - ChaeEun Lee
- Department of New Biology, DGIST, Daegu, Korea
| | - Yu Ri Hong
- Department of New Biology, DGIST, Daegu, Korea
| | | | - Sanghyun Ahn
- Center for Plant Aging Research, DGIST, Daegu, Korea
| | - Hongmok Kwon
- College of Pharmacy, Korea University, Sejong, Korea
| | - Kyul Kim
- College of Pharmacy, Korea University, Sejong, Korea
| | - Jae Hoon Jung
- Center for Plant Aging Research, DGIST, Daegu, Korea
| | - Sehyun Chae
- Center for Plant Aging Research, DGIST, Daegu, Korea
| | - Jeong-Oh Shin
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong, Korea
| | - Daehee Hwang
- Center for Plant Aging Research, DGIST, Daegu, Korea.,Department of Biological Sciences, Seoul National University, Korea
| | | |
Collapse
|
30
|
Abstract
Olfactory and taste receptors are expressed primarily in the nasal olfactory epithelium and gustatory taste bud cells, where they transmit real-time sensory signals to the brain. However, they are also expressed in multiple extra-nasal and extra-oral tissues, being implicated in diverse biological processes including sperm chemotaxis, muscle regeneration, bronchoconstriction and bronchodilatation, inflammation, appetite regulation and energy metabolism. Elucidation of the physiological roles of these ectopic receptors is revealing potential therapeutic and diagnostic applications in conditions including wounds, hair loss, asthma, obesity and cancers. This Review outlines current understanding of the diverse functions of ectopic olfactory and taste receptors and assesses their potential to be therapeutically exploited.
Collapse
|
31
|
Fukutani Y, Tamaki R, Inoue R, Koshizawa T, Sakashita S, Ikegami K, Ohsawa I, Matsunami H, Yohda M. The N-terminal region of RTP1S plays important roles in dimer formation and odorant receptor-trafficking. J Biol Chem 2019; 294:14661-14673. [PMID: 31395660 PMCID: PMC6779431 DOI: 10.1074/jbc.ra118.007110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
Receptor-transporting protein 1S (RTP1S) is an accessory protein that mediates the transport of mammalian odorant receptors (ORs) into the plasma membrane. Although most ORs fail to localize to the cell surface when expressed alone in nonolfactory cells, functional expression of ORs is achieved with the coexpression of RTP1S. However, the mechanism for RTP1S-mediated OR trafficking remains unclear. In this study, we attempted to reveal the mode of action and critical residues of RTP1S in OR trafficking. Experiments using N-terminal truncation and Ala substitution mutants of RTP1S demonstrated that four N-terminal amino acids have essential roles in OR trafficking. Additionally, using recombinant proteins and split luciferase assays in mammalian cells, we provided evidence for the dimer formation of RTP1S. Furthermore, we determined that the 2nd Cys residue is required for the efficient dimerization of RTP1S. Altogether, these findings provide insights into the mechanism for plasma membrane transport of ORs by RTP1S.
Collapse
Affiliation(s)
- Yosuke Fukutani
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Ryohei Tamaki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Ryosuke Inoue
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Tomoyo Koshizawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Shuto Sakashita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Kentaro Ikegami
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Ikuroh Ohsawa
- Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710.,Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina 27705.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan .,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
32
|
Halperin Kuhns VL, Sanchez J, Sarver DC, Khalil Z, Rajkumar P, Marr KA, Pluznick JL. Characterizing novel olfactory receptors expressed in the murine renal cortex. Am J Physiol Renal Physiol 2019; 317:F172-F186. [PMID: 31042061 DOI: 10.1152/ajprenal.00624.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The kidney uses specialized G protein-coupled receptors, including olfactory receptors (ORs), to act as sensors of molecules and metabolites. In the present study, we cloned and studied seven renal ORs, which we previously found to be expressed in the murine renal cortex. As most ORs are orphan receptors, our goal was to identify ligands for these ORs in the hope that this will guide future research into their functional roles. We identified novel ligands for two ORs: Olfr558 and Olfr90. For Olfr558, we confirmed activation by previously reported ligands and identified 16 additional carboxylic acids that activated this OR. The strongest activation of Olfr558 was produced by butyric, cyclobutanecarboxylic, isovaleric, 2-methylvaleric, 3-methylvaleric, 4-methylvaleric, and valeric acids. The primary in vivo source of both butyric and isovaleric acids is gut microbial metabolism. We also identified 14 novel ligands that activated Olfr90, the strongest of which were 2-methyl-4-propyl-1,3-oxathiane, 1-octen-3-ol, 2-octanol, and 3-octanol. Interestingly, 8 of these 14 ligands are of fungal origin. We also investigated the tissue distribution of these receptors and found that they are each found in a subset of "nonsensory" tissues. Finally, we examined the putative human orthologs of Olfr558 and Olfr90 and found that the human ortholog of Olfr558 (OR51E1) has a similar ligand profile, indicating that the role of this OR is likely evolutionarily conserved. In summary, we examined seven novel renal ORs and identified new ligands for Olfr558 and Olfr90, which imply that both of these receptors serve to detect metabolites produced by microorganisms.
Collapse
Affiliation(s)
- Victoria L Halperin Kuhns
- Department of Physiology, Johns Hopkins University School of Medicine , Baltimore, Maryland.,Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Jason Sanchez
- Department of Physiology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Zoya Khalil
- Department of Physiology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Premraj Rajkumar
- Department of Physiology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Kieren A Marr
- Transplant and Oncology Infectious Diseases, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
33
|
Jones EM, Jajoo R, Cancilla D, Lubock NB, Wang J, Satyadi M, Chong R, de March C, Bloom JS, Matsunami H, Kosuri S. A Scalable, Multiplexed Assay for Decoding GPCR-Ligand Interactions with RNA Sequencing. Cell Syst 2019; 8:254-260.e6. [PMID: 30904378 PMCID: PMC6907015 DOI: 10.1016/j.cels.2019.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/16/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) are central to how mammalian cells sense and respond to chemicals. Mammalian olfactory receptors (ORs), the largest family of GPCRs, mediate the sense of smell through activation by small molecules, though for most bonafide ligands, they have not been identified. Here, we introduce a platform to screen large chemical panels against multiplexed GPCR libraries using next-generation sequencing of barcoded genetic reporters in stably engineered human cell lines. We mapped 39 mammalian ORs against 181 odorants and identified 79 interactions that have not been reported to our knowledge, including ligands for 15 previously orphaned receptors. This multiplexed receptor assay allows the cost-effective mapping of large chemical libraries to receptor repertoires at scale.
Collapse
Affiliation(s)
- Eric M Jones
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Rishi Jajoo
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Daniel Cancilla
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Nathan B Lubock
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Jeffrey Wang
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Megan Satyadi
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Rockie Chong
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Claire de March
- Department of Molecular Genetics and Microbiology, and Department of Neurobiology, and Duke Institute for Brain Sciences, Duke University Medical Center, Research Drive, Durham, NC 27710, USA
| | - Joshua S Bloom
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, and Department of Neurobiology, and Duke Institute for Brain Sciences, Duke University Medical Center, Research Drive, Durham, NC 27710, USA
| | - Sriram Kosuri
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
34
|
Abstract
Olfaction is the primary sense used by most animals to perceive the external world. The mouse olfactory system is composed of several sensory structures, the largest of which is the main olfactory epithelium (MOE). Olfactory sensory neurons (OSNs) located within the MOE detect odors and pheromones using dedicated seven-transmembrane G protein-coupled receptors (GPCRs). Two families of GPCRs are expressed in the MOE and are conserved in humans and other vertebrates: odorant receptors (ORs) and trace amine-associated receptors (TAARs). TAARs are distantly related to biogenic amine receptors, such as dopamine and serotonin receptors. Several TAARs detect volatile amines including ethological odors that evoke innate animal behavioral responses. Mouse TAAR4 recognizes the aversive predator odor 2-phenylethylamine, while mouse TAAR5 detects the attractive male mouse odor trimethylamine. In zebrafish, TAAR13c detects the foul death-associated odor cadaverine that mediates innate avoidance behavior. TAARs thus provide an excellent model subsystem to study odor valence. And identification of additional high-affinity ligands for TAARs will provide extra tools for such study. Therefore, this chapter focuses on the so-called SEAP assay that has been successfully applied for TAAR deorphanization in different species.
Collapse
Affiliation(s)
- Qian Li
- Neuroscience Division, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
35
|
Abstract
Unraveling the sense of smell relies on understanding how odorant receptors recognize odorant molecules. Given the vastness of the odorant chemical space and the complexity of the odorant receptor space, computational methods are in line to propose rules connecting them. We hereby propose an in silico and an in vitro approach, which, when combined are extremely useful for assessing chemogenomic links. In this chapter we mostly focus on the mining of already existing data through machine learning methods. This approach allows establishing predictions that map the chemical space and the receptor space. Then, we describe the method for assessing the activation of odorant receptors and their mutants through luciferase reporter gene functional assays.
Collapse
|
36
|
Ihara S, Touhara K. G Protein-Coupled Receptor Kinase 3 (GRK3) in Olfaction. Methods Mol Biol 2019; 1820:33-41. [PMID: 29884935 DOI: 10.1007/978-1-4939-8609-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Like in other sensory systems, adaptation is an essential process in the olfactory system, required for its proper functioning. However, the precise molecular mechanism underlying the adaptation process has not been fully understood, especially at the receptor level. Here, we describe methods to evaluate the role of GRK3, one of the members of the GRK family responsible for the desensitization of non-olfactory G-protein-coupled receptor (GPCR), in desensitization of olfactory receptor (OR) using a heterologous expression system. As a parameter to characterize the degree of desensitization, we measure (1) the maximal response to an agonist by either cAMP or Ca2+ imaging assay and (2) the kinetic time course for recovery to basal levels by Ca2+ imaging assay. Differences in the degree of desensitization in the presence or absence of GRK3 can be examined by comparing these parameters, leading to evaluation of GRK3.
Collapse
Affiliation(s)
- Sayoko Ihara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan. .,ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
37
|
Bushdid C, de March CA, Topin J, Do M, Matsunami H, Golebiowski J. Mammalian class I odorant receptors exhibit a conserved vestibular-binding pocket. Cell Mol Life Sci 2019; 76:995-1004. [PMID: 30599066 PMCID: PMC7313674 DOI: 10.1007/s00018-018-2996-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022]
Abstract
Odorant receptors represent the largest family of mammalian G protein-coupled receptors. Phylogenetically, they are split into two classes (I and II). By analyzing the entire subclass I odorant receptors sequences, we identified two class I-specific and highly conserved motifs. These are predicted to face each other at the extra-cellular portion of the transmembrane domain, forming a vestibular site at the entrance to the orthosteric-binding cavity. Molecular dynamics simulation combined with site-directed mutagenesis and in vitro functional assays confirm the functional role of this vestibular site in ligand-driven activation. Mutations at this part of the receptor differentially affect the receptor response to four agonists. Since this vestibular site is involved in ligand recognition, it could serve ligand design that targets specifically this sub-genome of mammalian odorant receptors.
Collapse
Affiliation(s)
- Caroline Bushdid
- Institute of Chemistry - Nice, UMR CNRS 7272, Université Côte d'Azur, Nice, France
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jérémie Topin
- Institute of Chemistry - Nice, UMR CNRS 7272, Université Côte d'Azur, Nice, France
| | - Matthew Do
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC, 27710, USA.
| | - Jérôme Golebiowski
- Institute of Chemistry - Nice, UMR CNRS 7272, Université Côte d'Azur, Nice, France.
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea.
| |
Collapse
|
38
|
Abstract
Olfaction plays a critical role in several aspects of life. Olfactory disorders are very common in the general population, and can lead to malnutrition, weight loss, food poisoning, depression, and other disturbances. Odorants are first detected in the upper region of the nose by the main olfactory epithelium (OE). In this region, millions of olfactory sensory neurons (OSNs) interact with odor molecules through the odorant receptors (ORs), which belong to the superfamily of G protein-coupled receptors. The binding of odors to the ORs initiates an electrical signal that travels along the axons to the main olfactory bulb of the brain. The information is then transmitted to other regions of the brain, leading to odorant perception and emotional and behavioral responses. In the OE, OSNs die and are continuously replaced from stem cells localized in the epithelium's basal region. Damage to this epithelium can be caused by multiple factors, leading to anosmia (smell loss). In this chapter, we introduce the basic organization of the OE and focus on the molecular mechanisms involved in odorant perception. We also describe recent experiments that address the mechanisms of OSNs regeneration in response to neuronal injury.
Collapse
Affiliation(s)
- Isaías Glezer
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bettina Malnic
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
39
|
Maßberg D, Hatt H. Human Olfactory Receptors: Novel Cellular Functions Outside of the Nose. Physiol Rev 2018; 98:1739-1763. [PMID: 29897292 DOI: 10.1152/physrev.00013.2017] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Olfactory receptors (ORs) are not exclusively expressed in the olfactory sensory neurons; they are also observed outside of the olfactory system in all other human tissues tested to date, including the testis, lung, intestine, skin, heart, and blood. Within these tissues, certain ORs have been determined to be exclusively expressed in only one tissue, whereas other ORs are more widely distributed in many different tissues throughout the human body. For most of the ectopically expressed ORs, limited data are available for their functional roles. They have been shown to be involved in the modulation of cell-cell recognition, migration, proliferation, the apoptotic cycle, exocytosis, and pathfinding processes. Additionally, there is a growing body of evidence that they have the potential to serve as diagnostic and therapeutic tools, as ORs are highly expressed in different cancer tissues. Interestingly, in addition to the canonical signaling pathways activated by ORs in olfactory sensory neurons, alternative pathways have been demonstrated in nonolfactory tissues. In this review, the existing data concerning the expression, as well as the physiological and pathophysiological functions, of ORs outside of the nose are highlighted to provide insights into future lines of research.
Collapse
Affiliation(s)
- Désirée Maßberg
- Ruhr-University Bochum, Department of Cell Physiology , Bochum , Germany
| | - Hanns Hatt
- Ruhr-University Bochum, Department of Cell Physiology , Bochum , Germany
| |
Collapse
|
40
|
Cave JW, Wickiser JK, Mitropoulos AN. Progress in the development of olfactory-based bioelectronic chemosensors. Biosens Bioelectron 2018; 123:211-222. [PMID: 30201333 DOI: 10.1016/j.bios.2018.08.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/18/2018] [Accepted: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Artificial chemosensory devices have a wide range of applications in industry, security, and medicine. The development of these devices has been inspired by the speed, sensitivity, and selectivity by which the olfactory system in animals can probe the chemical nature of the environment. In this review, we examine how molecular and cellular components of natural olfactory systems have been incorporated into artificial chemosensors, or bioelectronic sensors. We focus on the biological material that has been combined with signal transduction systems to develop artificial chemosensory devices. The strengths and limitations of different biological chemosensory material at the heart of these devices, as well as the reported overall effectiveness of the different bioelectronic sensor designs, is examined. This review also discusses future directions and challenges for continuing to advance development of bioelectronic sensors.
Collapse
Affiliation(s)
- John W Cave
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States; Burke Neurological Institute, White Plains, NY, United States; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - J Kenneth Wickiser
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Alexander N Mitropoulos
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States; Department of Mathematical Sciences, United States Military Academy, West Point, NY, United States.
| |
Collapse
|
41
|
Zhang X, Cheng J, Wu L, Mei Y, Jaffrezic-Renault N, Guo Z. An overview of an artificial nose system. Talanta 2018; 184:93-102. [PMID: 29674088 DOI: 10.1016/j.talanta.2018.02.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/31/2018] [Accepted: 02/28/2018] [Indexed: 12/22/2022]
Abstract
The present review describes recent advances in the development of an artificial nose system based on olfactory receptors and various sensing platforms. The kind of artificial nose, the production of olfactory receptors, the sensor platform for signal conversion and the application of the artificial nose system based on olfactory receptors and various sensing platforms are presented. The associated transduction modes are also discussed. The paper presents a review of the latest achievements and a critical evaluation of the state of the art in the field of artificial nose systems.
Collapse
Affiliation(s)
- Xiu Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Jing Cheng
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Lei Wu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Yong Mei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| | - Nicole Jaffrezic-Renault
- Institute of Analytical Sciences, UMR-CNRS 5280, University of Lyon, 5, La Doua Street, Villeurbanne 69100, France.
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| |
Collapse
|
42
|
Tsai T, Veitinger S, Peek I, Busse D, Eckardt J, Vladimirova D, Jovancevic N, Wojcik S, Gisselmann G, Altmüller J, Ständer S, Luger T, Paus R, Cheret J, Hatt H. Two olfactory receptors-OR2A4/7 and OR51B5-differentially affect epidermal proliferation and differentiation. Exp Dermatol 2018; 26:58-65. [PMID: 27315375 DOI: 10.1111/exd.13132] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2016] [Indexed: 12/20/2022]
Abstract
Olfactory receptors (ORs), which belong to the G-protein coupled receptor family, are expressed in various human tissues, including skin. Cells in non-olfactory tissues tend to express more than one individual OR gene, but function and interaction of two or more ORs in the same cell type has only been marginally analysed. Here, we revealed OR2A4/7 and OR51B5 as two new ORs in human skin cells and identified cyclohexyl salicylate and isononyl alcohol as agonists of these receptors. In cultured human keratinocytes, both odorants induce strong Ca2+ signals that are mediated by OR2A4/7 and OR51B5, as demonstrated by the receptor knockdown experiments. Activation of corresponding receptors induces a cAMP-dependent pathway. Localization studies and functional characterization of both receptors revealed several differences. OR2A4/7 is expressed in suprabasal keratinocytes and basal melanocytes of the epidermis and influences cytokinesis, cell proliferation, phosphorylation of AKT and Chk-2 and secretion of IL-1. In contrast, OR51B5 is exclusively expressed in suprabasal keratinocytes, supports cell migration and regeneration of keratinocyte monolayers, influences Hsp27, AMPK1 and p38MAPK phosphorylation and interestingly, IL-6 secretion. These findings underline that different ORs perform diverse functions in cutaneous cells, and thus offering an approach for the modulated treatment of skin diseases and wound repair.
Collapse
Affiliation(s)
- Teresa Tsai
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Sophie Veitinger
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Irina Peek
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Daniela Busse
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Josephine Eckardt
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | | | | | - Sebastian Wojcik
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Günter Gisselmann
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | | | - Sonja Ständer
- Department of Dermatology, Center for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | | | - Ralf Paus
- Department of Dermatology, Laboratory for Hair Research and Regenerative Medicine, University Hospital of Münster, Münster, Germany
| | - Jeremy Cheret
- Department of Dermatology, Laboratory for Hair Research and Regenerative Medicine, University Hospital of Münster, Münster, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
43
|
Noe F, Geithe C, Fiedler J, Krautwurst D. A bi-functional IL-6-HaloTag ® as a tool to measure the cell-surface expression of recombinant odorant receptors and to facilitate their activity quantification. J Biol Methods 2017; 4:e82. [PMID: 31453236 PMCID: PMC6706140 DOI: 10.14440/jbm.2017.207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/28/2017] [Accepted: 08/25/2017] [Indexed: 11/23/2022] Open
Abstract
The functional cell surface expression of recombinant odorant receptors typically has been investigated by expressing N-terminally extended, "tagged" receptors in test cell systems, using antibody-based immunocytochemistry or flow cytometry, and by measuring odorant/receptor-induced cAMP signaling, mostly by an odorant/receptor-induced and cAMP signaling-dependent transcriptional activation of a luciferase-based luminescence assay. In the present protocol, we explain a method to measure the cell-surface expression and signaling of recombinant odorant receptors carrying a bi-functional, N-terminal 'IL-6-HaloTag®'. IL-6, being a secreted cytokine, facilitates functional cell surface expression of recombinant HaloTag®-odorant receptors, and the HaloTag® protein serves as a highly specific acceptor for cell-impermeant or cell-permeant, fluorophore-coupled ligands, which enable the quantification of odorant receptor expression by antibody-independent, chemical live-cell staining and flow cytometry. Here, we describe how to measure the cell surface expression of recombinant IL-6-HaloTag®-odorant receptors in HEK-293 cells or NxG 108CC15 cells, by live-cell staining and flow cytometry, and how to measure an odorant-induced activation of these receptors by the fast, real-time, luminescence-based GloSensor® cAMP assay.
Collapse
Affiliation(s)
| | | | | | - Dietmar Krautwurst
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, D-85354 Freising, Germany
| |
Collapse
|
44
|
Yano H, Provasi D, Cai NS, Filizola M, Ferré S, Javitch JA. Development of novel biosensors to study receptor-mediated activation of the G-protein α subunits G s and G olf. J Biol Chem 2017; 292:19989-19998. [PMID: 29042444 PMCID: PMC5723988 DOI: 10.1074/jbc.m117.800698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/02/2017] [Indexed: 11/06/2022] Open
Abstract
Gαs (Gs) and Gαolf (Golf) are highly homologous G-protein α subunits that activate adenylate cyclase, thereby serving as crucial mediators of intracellular signaling. Because of their dramatically different brain expression patterns, we studied similarities and differences between their activation processes with the aim of comparing their receptor coupling mechanisms. We engineered novel luciferase- and Venus-fused Gα constructs that can be used in bioluminescence resonance energy transfer assays. In conjunction with molecular simulations, these novel biosensors were used to determine receptor activation-induced changes in conformation. Relative movements in Gs were consistent with the crystal structure of β2 adrenergic receptor in complex with Gs Conformational changes in Golf activation are shown to be similar to those in Gs Overall the current study reveals general similarities between Gs and Golf activation at the molecular level and provides a novel set of tools to search for Gs- and Golf-specific receptor pharmacology. In view of the wide functional and pharmacological roles of Gs- and Golf-coupled dopamine D1 receptor and adenosine A2A receptor in the brain and other organs, elucidating their differential structure-function relationships with Gs and Golf might provide new approaches for the treatment of a variety of neuropsychiatric disorders. In particular, these novel biosensors can be used to reveal potentially therapeutic dopamine D1 receptor and adenosine A2A receptor ligands with functionally selective properties between Gs and Golf signaling.
Collapse
Affiliation(s)
- Hideaki Yano
- National Institute on Drug Abuse, Baltimore, Maryland 21224.
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ning Sheng Cai
- National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Sergi Ferré
- National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Jonathan A Javitch
- Departments of Psychiatry and Pharmacology, College of Physicians & Surgeons, Columbia University, New York, New York 10032; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032.
| |
Collapse
|
45
|
Berry MD, Gainetdinov RR, Hoener MC, Shahid M. Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges. Pharmacol Ther 2017; 180:161-180. [DOI: 10.1016/j.pharmthera.2017.07.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Wolf S, Jovancevic N, Gelis L, Pietsch S, Hatt H, Gerwert K. Dynamical Binding Modes Determine Agonistic and Antagonistic Ligand Effects in the Prostate-Specific G-Protein Coupled Receptor (PSGR). Sci Rep 2017; 7:16007. [PMID: 29167480 PMCID: PMC5700038 DOI: 10.1038/s41598-017-16001-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 11/03/2017] [Indexed: 01/14/2023] Open
Abstract
We analysed the ligand-based activation mechanism of the prostate-specific G-protein coupled receptor (PSGR), which is an olfactory receptor that mediates cellular growth in prostate cancer cells. Furthermore, it is an olfactory receptor with a known chemically near identic antagonist/agonist pair, α- and β-ionone. Using a combined theoretical and experimental approach, we propose that this receptor is activated by a ligand-induced rearrangement of a protein-internal hydrogen bond network. Surprisingly, this rearrangement is not induced by interaction of the ligand with the network, but by dynamic van der Waals contacts of the ligand with the involved amino acid side chains, altering their conformations and intraprotein connectivity. Ligand recognition in this GPCR is therefore highly stereo selective, but seemingly lacks any ligand recognition via polar contacts. A putative olfactory receptor-based drug design scheme will have to take this unique mode of protein/ligand action into account.
Collapse
Affiliation(s)
- Steffen Wolf
- Department of Biophysics, ND 04 North, Ruhr-University Bochum, 44780, Bochum, Germany.
- Department of Biophysics, CAS-MPG Partner Institute for Computational Biology, Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, P.R. China.
| | - Nikolina Jovancevic
- Department of Cellphysiology, ND 4, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Lian Gelis
- Department of Cellphysiology, ND 4, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Sebastian Pietsch
- Department of Biophysics, ND 04 North, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Hanns Hatt
- Department of Cellphysiology, ND 4, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Klaus Gerwert
- Department of Biophysics, ND 04 North, Ruhr-University Bochum, 44780, Bochum, Germany
- Department of Biophysics, CAS-MPG Partner Institute for Computational Biology, Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, P.R. China
| |
Collapse
|
47
|
Noe F, Frey T, Fiedler J, Geithe C, Nowak B, Krautwurst D. IL-6-HaloTag ® enables live-cell plasma membrane staining, flow cytometry, functional expression, and de-orphaning of recombinant odorant receptors. J Biol Methods 2017; 4:e81. [PMID: 31453235 PMCID: PMC6706138 DOI: 10.14440/jbm.2017.206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/19/2017] [Accepted: 07/28/2017] [Indexed: 12/22/2022] Open
Abstract
The assignment of cognate odorant/agonist pairs is a prerequisite for an understanding of odorant coding at the receptor level. However, the identification of new ligands for odorant receptors (ORs) in cell-based assays has been challenging, due to their individual and rather sub-optimal plasma membrane expression, as compared with other G protein-coupled receptors. Accessory proteins, such as the chaperone RTP1S, or Ric8b, have improved the surface expression of at least a portion of ORs. Typically, recombinant ORs carry N-terminal tags, which proved helpful for their functional membrane expression. The most common tag is the 'Rho-tag', representing an N-terminal part of rhodopsin, but also 'Lucy-' or 'Flag-tag' extensions have been described. Here, we used a bi-functional N-terminal tag, called 'interleukin 6 (IL-6)-HaloTag®', with IL-6 facilitating functional cell surface expression of recombinant ORs, and the HaloTag® protein, serving as a highly specific acceptor for cell-impermeant or cell-permeant, fluorophore-coupled ligands, which enable the quantification of odorant receptor expression by live-cell flow cytometry. Our experiments revealed on average an about four-fold increased surface expression, a four-fold higher signaling amplitude, and a significantly higher potency of odorant-induced cAMP signaling of six different human IL-6-HaloTag®-ORs across five different receptor families in NxG 108CC15 cells, as compared to their Rho-tag-HaloTag® constructs. We observed similar results in HEK-293 cells. Moreover, screening an IL-6-HaloTag®-odorant receptor library with allyl phenyl acetate, revealed both known receptors as best responders for this compound. In summary, the IL-6-HaloTag® represents a promising tool for the de-orphaning of ORs.
Collapse
Affiliation(s)
| | | | | | | | | | - Dietmar Krautwurst
- Deutsche Forschungsanstalt für Lebensmittelchemie – Leibniz Institut, D-85354 Freising, Germany
| |
Collapse
|
48
|
Geithe C, Protze J, Kreuchwig F, Krause G, Krautwurst D. Structural determinants of a conserved enantiomer-selective carvone binding pocket in the human odorant receptor OR1A1. Cell Mol Life Sci 2017; 74:4209-4229. [PMID: 28656349 PMCID: PMC11107518 DOI: 10.1007/s00018-017-2576-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/29/2017] [Accepted: 06/16/2017] [Indexed: 12/17/2022]
Abstract
Chirality is a common phenomenon within odorants. Most pairs of enantiomers show only moderate differences in odor quality. One example for enantiomers that are easily discriminated by their odor quality is the carvones: humans significantly distinguish between the spearmint-like (R)-(-)-carvone and caraway-like (S)-(+)-carvone enantiomers. Moreover, for the (R)-(-)-carvone, an anosmia is observed in about 8% of the population, suggesting enantioselective odorant receptors (ORs). With only about 15% de-orphaned human ORs, the lack of OR crystal structures, and few comprehensive studies combining in silico and experimental approaches to elucidate structure-function relations of ORs, knowledge on cognate odorant/OR interactions is still sparse. An adjusted homology modeling approach considering OR-specific proline-caused conformations, odorant docking studies, single-nucleotide polymorphism (SNP) analysis, site-directed mutagenesis, and subsequent functional studies with recombinant ORs in a cell-based, real-time luminescence assay revealed 11 amino acid positions to constitute an enantioselective binding pocket necessary for a carvone function in human OR1A1 and murine Olfr43, respectively. Here, we identified enantioselective molecular determinants in both ORs that discriminate between minty and caraway odor. Comparison with orthologs from 36 mammalian species demonstrated a hominid-specific carvone binding pocket with about 100% conservation. Moreover, we identified loss-of-function SNPs associated with the carvone binding pocket of OR1A1. Given carvone enantiomer-specific receptor activation patterns including OR1A1, our data suggest OR1A1 as a candidate receptor for constituting a carvone enantioselective phenotype, which may help to explain mechanisms underlying a (R)-(-)-carvone-specific anosmia in humans.
Collapse
Affiliation(s)
- Christiane Geithe
- Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institut (DFA), Freising, Germany
| | - Jonas Protze
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Franziska Kreuchwig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Gerd Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| | - Dietmar Krautwurst
- Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institut (DFA), Freising, Germany.
| |
Collapse
|
49
|
Zhang Y, Pan Y, Matsunami H, Zhuang H. Live-cell Measurement of Odorant Receptor Activation Using a Real-time cAMP Assay. J Vis Exp 2017. [PMID: 28994818 DOI: 10.3791/55831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The enormous sizes of the mammalian odorant receptor (OR) families present difficulties to find their cognate ligands among numerous volatile chemicals. To efficiently and accurately deorphanize ORs, we combine the use of a heterologous cell line to express mammalian ORs and a genetically modified biosensor plasmid to measure cAMP production downstream of OR activation in real time. This assay can be used to screen odorants against ORs and vice versa. Positive odorant-receptor interactions from the screens can be subsequently confirmed by testing against various odor concentrations, generating concentration-response curves. Here we used this method to perform a high-throughput screening of an odorous compound against a human OR library expressed in Hana3A cells and confirmed that the positively-responding receptor is the cognate receptor for the compound of interest. We found this high-throughput detection method to be efficient and reliable in assessing OR activation and our data provide an example of its potential use in OR functional studies.
Collapse
Affiliation(s)
- Yuetian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine
| | - Yi Pan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine;
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center; Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center
| | - Hanyi Zhuang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine; Institute of Health Science, Chinese Academy of Science/Shanghai Jiao Tong University School of Medicine;
| |
Collapse
|
50
|
Asakawa M, Fukutani Y, Savangsuksa A, Noguchi K, Matsunami H, Yohda M. Modification of the response of olfactory receptors to acetophenone by CYP1a2. Sci Rep 2017; 7:10167. [PMID: 28860658 PMCID: PMC5579037 DOI: 10.1038/s41598-017-10862-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 08/16/2017] [Indexed: 01/03/2023] Open
Abstract
Olfaction is mediated by the binding of odorant molecules to olfactory receptors (ORs). There are numerous proteins in the nasal mucus, and they contribute to olfaction through various mechanisms. Cytochrome P450 (CYP) family members are known to be present in the olfactory epithelium and are thought to affect olfaction by enzymatic conversion of odorant molecules. In this study, we examined the effects of CYPs on the ligand responses of ORs in heterologous cells. Among the CYPs tested, co-expression of CYP1a2 significantly affected the responses of various ORs, including MOR161-2, to acetophenone. Conversion of acetophenone to methyl salicylate was observed in the medium of CYP1a2-expressing cells. MOR161-2-expressing cells exhibited significantly greater responses to methyl salicylate than to acetophenone. Finally, we analyzed the responses of olfactory neurons expressing MOR161-2 in vivo using the phosphorylated ribosomal protein S6 as a marker. MOR161-2 responded to both acetophenone and methyl salicylate in vivo. When the olfactory mucus was washed out by the injection of PBS to mouse nasal cavity, the response of MOR161-2 to acetophenone was reduced, while that to methyl salicylate did not change. Our data suggest that CYP1a2 affects OR activation by converting acetophenone to methyl salicylate.
Collapse
Affiliation(s)
- Masashi Asakawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Yosuke Fukutani
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Aulaphan Savangsuksa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Keiich Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan. .,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|