1
|
Fu Z, Yang G, Yun SY, Jang JM, Ha HC, Shin IC, Back MJ, Piao Y, Kim DK. Hyaluronan and proteoglycan link protein 1 - A novel signaling molecule for rejuvenating aged skin. Matrix Biol 2024; 134:30-47. [PMID: 39226945 DOI: 10.1016/j.matbio.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
The skin seems to rejuvenate upon exposure to factors within the circulation of young organisms. Intrinsic factors that modulate skin aging are poorly understood. We used heterochronic parabiosis and aptamer-based proteomics to identify serum-derived rejuvenating factors. We discovered a novel extracellular function of hyaluronan and proteoglycan link protein 1 (HAPLN1). Its serum levels decreased with age, disturbing the integrity of the skin extracellular matrix, which is predominantly composed of collagen I and hyaluronan; levels of various markers, which decrease in aged skin, were significantly restored in vivo and in vitro by the administration of recombinant human HAPLN1 (rhHAPLN1). rhHAPLN1 protected transforming growth factor beta receptor 2 on the cell surface from endocytic degradation via mechanisms such as regulation of viscoelasticity, CD44 clustering. Moreover, rhHAPLN1 regulated the levels of nuclear factor erythroid 2-related factor 2, phosphorylated nuclear factor kappa B, and some cyclin-dependent kinase inhibitors such as p16 and p21. Therefore, rhHAPLN1 may act as a novel biomechanical signaling protein to rejuvenate aged skin.
Collapse
Affiliation(s)
- Zhicheng Fu
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - Goowon Yang
- HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - So Yoon Yun
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - Ji Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hae Chan Ha
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - In Chul Shin
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Moon Jung Back
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yongwei Piao
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea.
| |
Collapse
|
2
|
Offeddu GS, Cambria E, Shelton SE, Haase K, Wan Z, Possenti L, Nguyen HT, Gillrie MR, Hickman D, Knutson CG, Kamm RD. Personalized Vascularized Models of Breast Cancer Desmoplasia Reveal Biomechanical Determinants of Drug Delivery to the Tumor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402757. [PMID: 39041892 PMCID: PMC11481247 DOI: 10.1002/advs.202402757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/01/2024] [Indexed: 07/24/2024]
Abstract
Desmoplasia in breast cancer leads to heterogeneity in physical properties of the tissue, resulting in disparities in drug delivery and treatment efficacy among patients, thus contributing to high disease mortality. Personalized in vitro breast cancer models hold great promise for high-throughput testing of therapeutic strategies to normalize the aberrant microenvironment in a patient-specific manner. Here, tumoroids assembled from breast cancer cell lines (MCF7, SKBR3, and MDA-MB-468) and patient-derived breast tumor cells (TCs) cultured in microphysiological systems including perfusable microvasculature reproduce key aspects of stromal and vascular dysfunction causing impaired drug delivery. Models containing SKBR3 and MDA-MB-468 tumoroids show higher stromal hyaluronic acid (HA) deposition, vascular permeability, interstitial fluid pressure (IFP), and degradation of vascular HA relative to models containing MCF7 tumoroids or models without tumoroids. Interleukin 8 (IL8) secretion is found responsible for vascular dysfunction and loss of vascular HA. Interventions targeting IL8 or stromal HA normalize vascular permeability, perfusion, and IFP, and ultimately enhance drug delivery and TC death in response to perfusion with trastuzumab and cetuximab. Similar responses are observed in patient-derived models. These microphysiological systems can thus be personalized by using patient-derived cells and can be applied to discover new molecular therapies for the normalization of the tumor microenvironment.
Collapse
Affiliation(s)
- Giovanni S. Offeddu
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Elena Cambria
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah E. Shelton
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Kristina Haase
- European Molecular Biology LaboratoryEuropean Molecular Biology Laboratory BarcelonaBarcelona08003Spain
| | - Zhengpeng Wan
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Luca Possenti
- LaBSDepartment of ChemistryMaterials and Chemical EngineeringPolitecnico di MilanoMilan20133Italy
- Data Science UnitFondazione IRCCS Istituto Nazionale dei TumoriMilan20133Italy
| | - Huu Tuan Nguyen
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Mark R. Gillrie
- Department of MedicineSnyder Institute for Chronic DiseasesUniversity of CalgaryCalgaryAlbertaT2N 2T9Canada
| | - Dean Hickman
- Amgen ResearchAmgen Inc.360 Binney StreetCambridgeMA02142USA
| | | | - Roger D. Kamm
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
3
|
Peros I, Haneke E. Fibrotic reaction to hyaluronic acid fillers in the face. J Cosmet Dermatol 2024; 23:2543-2546. [PMID: 38890804 DOI: 10.1111/jocd.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Hyaluronic acids (HAs) can have very different actions not only depending on injector and host factors but also depending on their molecular weight. Whereas short chain HA has immunological activity long chain HA influences fibroblasts and may stimulate them to produce collagen. Although this is generally thought to be a positive feature it may be disadvantageous in certain localizations. PATIENTS AND METHODS We have encountered 23 patients who developed fibrous tissue next to the nasolabial folds accentuating them and becoming very obvious while smiling. Hyaluronidase injection did not reduce this mass. RESULTS Intralesional triamcinolone acetonide injection led to rapid improvement. DISCUSSION Fibrotic tissue reaction not responding to hyaluronidase may be the result of HA injection and can effectively be treated with intralesional steroid injection.
Collapse
Affiliation(s)
- Ioannis Peros
- Private Dermatology Practice, Zürich, Switzerland
- Private Practice, Athens, Greece
| | - Eckart Haneke
- Department of Dermatology, Inselspital, University of Bern, Bern, Switzerland
- Private Dermatology Practice Dermaticum, Freiburg, Germany
- Centro de Dermatología Epidermis, Instituto CUF, Porto, Portugal
| |
Collapse
|
4
|
Abe M, Masuda M, Mizukami Y, Inoue S, Mizutani Y. Epidermal keratinocytes regulate hyaluronan metabolism via extracellularly secreted hyaluronidase 1 and hyaluronan synthase 3. J Biol Chem 2024; 300:107449. [PMID: 38844132 PMCID: PMC11292368 DOI: 10.1016/j.jbc.2024.107449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024] Open
Abstract
Hyaluronan (HA) is a high-molecular-weight (HMW) glycosaminoglycan, which is a fundamental component of the extracellular matrix that is involved in a variety of biological processes. We previously showed that the HYBID/KIAA1199/CEMIP axis plays a key role in the depolymerization of HMW-HA in normal human dermal fibroblasts (NHDFs). However, its roles in normal human epidermal keratinocytes (NHEKs) remained unclear. HYBID mRNA expression in NHEKs was lower than that in NHDFs, and NHEKs showed no depolymerization of extracellular HMW-HA in culture, indicating that HYBID does not contribute to extracellular HA degradation. In this study, we found that the cell-free conditioned medium of NHEKs degraded HMW-HA under weakly acidic conditions (pH 4.8). This degrading activity was abolished by hyaluronidase 1 (HYAL1) knockdown but not by HYAL2 knockdown. Newly synthesized HYAL1 was mainly secreted extracellularly, and the secretion of HYAL1 was increased during differentiation, suggesting that epidermal interspace HA is physiologically degraded by HYAL1 according to pH decrease during stratum corneum formation. In HA synthesis, hyaluronan synthase 3 (HAS3) knockdown reduced HA production by NHEKs, and interferon-γ-dependent HA synthesis was correlated with increased HAS3 expression. Furthermore, HA production was increased by TMEM2 knockdown through enhanced HAS3 expression. These results indicate that NHEKs regulate HA metabolism via HYAL1 and HAS3, and TMEM2 is a regulator of HAS3-dependent HA production.
Collapse
Affiliation(s)
- Minori Abe
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Manami Masuda
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoichi Mizukami
- Institute of Gene Research, Yamaguchi University Science Research Center, Ube, Yamaguchi, Japan
| | - Shintaro Inoue
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.
| | - Yukiko Mizutani
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
5
|
Kotulkar M, Robarts DR, Lin-Rahardja K, McQuillan T, Surgnier J, Tague SE, Czerwinski M, Dennis KL, Pritchard MT. Hyaluronan synthesis inhibition normalizes ethanol-enhanced hepatic stellate cell activation. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1544-1559. [PMID: 37332093 DOI: 10.1111/acer.15127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/14/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Chronic ethanol overconsumption promotes alcohol-associated liver disease (ALD), characterized by hepatocyte injury, inflammation, hepatic stellate cell (HSC) activation, and fibrosis. Hyaluronan (HA) concentration is greater in livers and blood from advanced ALD patients than patients with advanced non-ALD. In the liver, HSCs are the major HA producers. The relationship between ethanol, HA, and HSC activation is incompletely understood. Thus, here, we tested the hypothesis that ethanol enhances HSC activation in a HA-dependent manner. METHODS Liver tissue microarrays (TMAs) containing steatotic livers from donors with or without a history of alcohol consumption were used to measure HA and collagen content. Mice were fed a moderate (2%, v/v) ethanol-containing diet or pair-fed control diet for 2 days, after which they were given a single carbon tetrachloride (CCl4 ) injection. To inhibit HA synthesis, we provided 4-methylumbelliferone (4MU) daily. We used LX2 cells, a human HSC cell line, to determine the impact ethanol had on LPS responses, with or without concurrent 4MU exposure. RESULTS CCl4 induced liver injury, but it did not differ between ethanol or control diet fed mice with or without 4MU treatment. Ethanol feeding enhanced CCl4 -induced hepatic HA content, which was paralleled by HA synthase (Has)2 transcript abundance; 4MU treatment normalized both. Consistently, HSC activation, assessed by measuring αSMA mRNA and protein, was induced by CCl4 exposure, enhanced by ethanol feeding, and normalized by 4MU. Hepatic transcripts, but not protein, for Ccl2 were enhanced by ethanol feeding and normalized by 4MU exposure. Finally, ethanol-exposed LX2 cells made more LPS-stimulated CCL2 mRNA and protein than cells not exposed to ethanol; 4MU prevented this. CONCLUSION These data show that ethanol augments HSC activation through HA synthesis and enhances hepatic profibrogenic features. Therefore, targeting HSC HA production could potentially attenuate liver disease in ALD patients.
Collapse
Affiliation(s)
- Manasi Kotulkar
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Dakota R Robarts
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kristi Lin-Rahardja
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Tara McQuillan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jordan Surgnier
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sarah E Tague
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Katie L Dennis
- Department of Pathology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
- The Liver Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
6
|
Kocurkova A, Kerberova M, Nesporova K, Lehka K, Sandanusova M, Simek M, Velebny V, Kubala L, Ambrozova G. Endogenously produced hyaluronan contributes to the regulation of peritoneal adhesion development. Biofactors 2023; 49:940-955. [PMID: 37154260 DOI: 10.1002/biof.1957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023]
Abstract
Peritoneal adhesions are postsurgical fibrotic complications connected to peritoneal inflammation. The exact mechanism of development is unknown; however, an important role is attributed to activated mesothelial cells (MCs) overproducing macromolecules of extracellular matrix (ECM), including hyaluronic acid (HA). It was suggested that endogenously-produced HA contributes to the regulation of different fibrosis-related pathologies. However, little is known about the role of altered HA production in peritoneal fibrosis. We focused on the consequences of the increased turnover of HA in the murine model of peritoneal adhesions. Changes of HA metabolism were observed in early phases of peritoneal adhesion development in vivo. To study the mechanism, human MCs MeT-5A and murine MCs isolated from the peritoneum of healthy mice were pro-fibrotically activated by transforming growth factor β (TGFβ), and the production of HA was attenuated by two modulators of carbohydrate metabolism, 4-methylumbelliferone (4-MU) and 2-deoxyglucose (2-DG). The attenuation of HA production was mediated by upregulation of HAS2 and downregulation of HYAL2 and connected to the lower expression of pro-fibrotic markers, including fibronectin and α-smooth muscle actin (αSMA). Moreover, the inclination of MCs to form fibrotic clusters was also downregulated, particularly in 2-DG-treated cells. The effects of 2-DG, but not 4-MU, were connected to changes in cellular metabolism. Importantly, the inhibition of AKT phosphorylation was observed after the use of both HA production inhibitors. In summary, we identified endogenous HA as an important regulator of peritoneal fibrosis, not just a passive player during this pathological process.
Collapse
Affiliation(s)
- Anna Kocurkova
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Michaela Kerberova
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | | | | | - Miriam Sandanusova
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Matej Simek
- Contipro a.s., Dolni Dobrouc, Czech Republic
| | | | - Lukas Kubala
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Gabriela Ambrozova
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
7
|
Lohana P, Suryaprawira A, Woods EL, Dally J, Gait-Carr E, Alaidaroos NYA, Heard CM, Lee KY, Ruge F, Farrier JN, Enoch S, Caley MP, Peake MA, Davies LC, Giles PJ, Thomas DW, Stephens P, Moseley R. Role of Enzymic Antioxidants in Mediating Oxidative Stress and Contrasting Wound Healing Capabilities in Oral Mucosal/Skin Fibroblasts and Tissues. Antioxidants (Basel) 2023; 12:1374. [PMID: 37507914 PMCID: PMC10375950 DOI: 10.3390/antiox12071374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Unlike skin, oral mucosal wounds are characterized by rapid healing and minimal scarring, attributable to the "enhanced" healing properties of oral mucosal fibroblasts (OMFs). As oxidative stress is increasingly implicated in regulating wound healing outcomes, this study compared oxidative stress biomarker and enzymic antioxidant profiles between patient-matched oral mucosal/skin tissues and OMFs/skin fibroblasts (SFs) to determine whether superior oral mucosal antioxidant capabilities and reduced oxidative stress contributed to these preferential healing properties. Oral mucosa and skin exhibited similar patterns of oxidative protein damage and lipid peroxidation, localized within the lamina propria/dermis and oral/skin epithelia, respectively. SOD1, SOD2, SOD3 and catalase were primarily localized within epithelial tissues overall. However, SOD3 was also widespread within the lamina propria localized to OMFs, vasculature and the extracellular matrix. OMFs were further identified as being more resistant to reactive oxygen species (ROS) generation and oxidative DNA/protein damage than SFs. Despite histological evaluation suggesting that oral mucosa possessed higher SOD3 expression, this was not fully substantiated for all OMFs examined due to inter-patient donor variability. Such findings suggest that enzymic antioxidants have limited roles in mediating privileged wound healing responses in OMFs, implying that other non-enzymic antioxidants could be involved in protecting OMFs from oxidative stress overall.
Collapse
Affiliation(s)
- Parkash Lohana
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
- Canniesburn Plastic Surgery Unit, Glasgow Royal Infirmary, Glasgow G4 0SF, UK
| | - Albert Suryaprawira
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Emma L Woods
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Jordanna Dally
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Edward Gait-Carr
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Nadia Y A Alaidaroos
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Charles M Heard
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Kwok Y Lee
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Fiona Ruge
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Jeremy N Farrier
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
- Oral and Maxilliofacial Surgery, Gloucestershire Royal General Hospital, Gloucester GL1 3NN, UK
| | - Stuart Enoch
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
- Department of Burns and Plastic Surgery, University Hospital of South Manchester, Manchester M23 9LT, UK
| | - Matthew P Caley
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
- Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Matthew A Peake
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
- School of Biology, Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Lindsay C Davies
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Biomedicum, 17165 Solna, Sweden
| | - Peter J Giles
- Division of Medical Genetics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XN, UK
| | - David W Thomas
- Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Phil Stephens
- Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Ryan Moseley
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| |
Collapse
|
8
|
Wang Y, Mack JA, Hascall VC, Maytin EV. Transforming Growth Factor-β Receptor-Mediated, p38 Mitogen-Activated Protein Kinase-Dependent Signaling Drives Enhanced Myofibroblast Differentiation during Skin Wound Healing in Mice Lacking Hyaluronan Synthases 1 and 3. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1683-1698. [PMID: 36063901 PMCID: PMC9765314 DOI: 10.1016/j.ajpath.2022.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 12/31/2022]
Abstract
Normal myofibroblast differentiation is critical for proper skin wound healing. Neoexpression of α-smooth muscle actin (α-SMA), a marker for myofibroblast differentiation, is driven by transforming growth factor (TGF)-β receptor-mediated signaling. Hyaluronan and its three synthesizing enzymes, hyaluronan synthases (Has 1, 2, and 3), also participate in this process. Closure of skin wounds is significantly accelerated in Has1/3 double-knockout (Has1/3-null) mice. Herein, TGF-β activity and dermal collagen maturation were increased in Has1/3-null healing skin. Cultures of primary skin fibroblasts isolated from Has1/3-null mice had higher levels of TGF-β activity, α-SMA expression, and phosphorylation of p38 mitogen-activated protein kinase at Thr180/Tyr182, compared with wild-type fibroblasts. p38α mitogen-activated protein kinase was a necessary element in a noncanonical TGF-β receptor signaling pathway driving α-SMA expression in Has1/3-null fibroblasts. Myocardin-related transcription factor (MRTF), a cofactor that binds to the transcription factor serum response factor (SRF), was also critical. Nuclear localization of MRTF was increased, and MRTF binding to SRF was enhanced in Has1/3-null fibroblasts. Inhibition of MRTF or SRF expression by RNA interference suppresses α-SMA expression at baseline and diminished its overexpression in Has1/3-null fibroblasts. Interestingly, total matrix metalloproteinase activity was increased in healing skin and fibroblasts from Has1/3-null mice, possibly explaining the increased TGF-β activation.
Collapse
Affiliation(s)
- Yan Wang
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.
| | - Judith A Mack
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio; Department of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio
| | - Vincent C Hascall
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Edward V Maytin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio; Department of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
9
|
Khegai II. Hyaluronan Metabolism and Tumor Progression. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022050119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Knight R, Board-Davies E, Brown H, Clayton A, Davis T, Karatas B, Burston J, Tabi Z, Falcon-Perez JM, Paisey S, Stephens P. Oral Progenitor Cell Line-Derived Small Extracellular Vesicles as a Treatment for Preferential Wound Healing Outcome. Stem Cells Transl Med 2022; 11:861-875. [PMID: 35716044 PMCID: PMC9397654 DOI: 10.1093/stcltm/szac037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/28/2022] [Indexed: 12/11/2022] Open
Abstract
Scar formation during wound repair can be devastating for affected individuals. Our group previously documented the therapeutic potential of novel progenitor cell populations from the non-scarring buccal mucosa. These Oral Mucosa Lamina Propria-Progenitor Cells (OMLP-PCs) are multipotent, immunosuppressive, and antibacterial. Small extracellular vesicles (sEVs) may play important roles in stem cell-mediated repair in varied settings; hence, we investigated sEVs from this source for wound repair. We created an hTERT immortalized OMLP-PC line (OMLP-PCL) and confirmed retention of morphology, lineage plasticity, surface markers, and functional properties. sEVs isolated from OMLP-PCL were analyzed by nanoparticle tracking analysis, Cryo-EM and flow cytometry. Compared to bone marrow-derived mesenchymal stromal cells (BM-MSC) sEVs, OMLP-PCL sEVs were more potent at driving wound healing functions, including cell proliferation and wound repopulation and downregulated myofibroblast formation. A reduced scarring potential was further demonstrated in a preclinical in vivo model. Manipulation of OMLP-PCL sEVs may provide novel options for non-scarring wound healing in clinical settings.
Collapse
Affiliation(s)
- Rob Knight
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK,Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK,PETIC, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Emma Board-Davies
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK,Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK
| | - Helen Brown
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK,Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK
| | - Aled Clayton
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK,Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Terence Davis
- PETIC, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Ben Karatas
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK,Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - James Burston
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK,Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK,Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Zsuzsanna Tabi
- PETIC, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Juan M Falcon-Perez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain,Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain,IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Stephen Paisey
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK,PETIC, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Phil Stephens
- Corresponding author: Phil Stephens, Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, CF14 4XY, Wales, UK.
| |
Collapse
|
11
|
Menko AS, Romisher A, Walker JL. The Pro-fibrotic Response of Mesenchymal Leader Cells to Lens Wounding Involves Hyaluronic Acid, Its Receptor RHAMM, and Vimentin. Front Cell Dev Biol 2022; 10:862423. [PMID: 35386200 PMCID: PMC8977891 DOI: 10.3389/fcell.2022.862423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/08/2022] [Indexed: 12/31/2022] Open
Abstract
Hyaluronic Acid/Hyaluronan (HA) is a major component of the provisional matrix deposited by cells post-wounding with roles both in regulating cell migration to repair a wound and in promoting a fibrotic outcome to wounding. Both are mediated through its receptors CD44 and RHAMM. We now showed that HA is present in the provisional matrix assembled on the substrate surface in a lens post-cataract surgery explant wound model in which mesenchymal leader cells populate the wound edges to direct migration of the lens epithelium across the adjacent culture substrate onto which this matrix is assembled. Inhibiting HA expression with 4-MU blocked assembly of FN-EDA and collagen I by the wound-responsive mesenchymal leader cells and their migration. These cells express both the HA receptors CD44 and RHAMM. CD44 co-localized with HA at their cell-cell interfaces. RHAMM was predominant in the lamellipodial protrusions extended by the mesenchymal cells at the leading edge, and along HA fibrils organized on the substrate surface. Within a few days post-lens wounding the leader cells are induced to transition to αSMA+ myofibroblasts. Since HA/RHAMM is implicated in both cell migration and inducing fibrosis we examined the impact of blocking HA synthesis on myofibroblast emergence and discovered that it was dependent on HA. While RHAMM has not been previously linked to the intermediate filament protein vimentin, our studies with these explant cultures have shown that vimentin in the cells’ lamellipodial protrusions regulate their transition to myofibroblast. PLA studies now revealed that RHAMM was complexed with both HA and vimentin in the lamellipodial protrusions of leader cells, implicating this HA/RHAMM/vimentin complex in the regulation of leader cell function post-wounding, both in promoting cell migration and in the transition of these cells to myofibroblasts. These results increase our understanding of how the post-wounding matrix environment interacts with receptor/cytoskeletal complexes to determine whether injury outcomes are regenerative or fibrotic.
Collapse
Affiliation(s)
- A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alison Romisher
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Janice L Walker
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
12
|
Singer AJ. Healing Mechanisms in Cutaneous Wounds: Tipping the Balance. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1151-1167. [PMID: 34915757 PMCID: PMC9587785 DOI: 10.1089/ten.teb.2021.0114] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute and chronic cutaneous wounds pose a significant health and economic burden. Cutaneous wound healing is a complex process that occurs in four distinct, yet overlapping, highly coordinated stages: hemostasis, inflammation, proliferation, and remodeling. Postnatal wound healing is reparative, which can lead to the formation of scar tissue. Regenerative wound healing occurs during fetal development and in restricted postnatal tissues. This process can restore the wound to an uninjured state by producing new skin cells from stem cell reservoirs, resulting in healing with minimal or no scarring. Focusing on the pathophysiology of acute burn wounds, this review highlights reparative and regenerative healing mechanisms (including the role of cells, signaling molecules, and the extracellular matrix) and discusses how components of regenerative healing are being used to drive the development of novel approaches and therapeutics aimed at improving clinical outcomes. Important components of regenerative healing, such as stem cells, growth factors, and decellularized dermal matrices, are all being evaluated to recapitulate more closely the natural regenerative healing process.
Collapse
Affiliation(s)
- Adam J Singer
- Department of Emergency Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
13
|
Kocurkova A, Nesporova K, Sandanusova M, Kerberova M, Lehka K, Velebny V, Kubala L, Ambrozova G. Endogenously-Produced Hyaluronan and Its Potential to Regulate the Development of Peritoneal Adhesions. Biomolecules 2021; 12:biom12010045. [PMID: 35053193 PMCID: PMC8773905 DOI: 10.3390/biom12010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
Formation of peritoneal adhesions (PA) is one of the major complications following intra-abdominal surgery. It is primarily caused by activation of the mesothelial layer and underlying tissues in the peritoneal membrane resulting in the transition of mesothelial cells (MCs) and fibroblasts to a pro-fibrotic phenotype. Pro-fibrotic transition of MCs—mesothelial-to-mesenchymal transition (MMT), and fibroblasts activation to myofibroblasts are interconnected to changes in cellular metabolism and culminate in the deposition of extracellular matrix (ECM) in the form of fibrotic tissue between injured sides in the abdominal cavity. However, ECM is not only a mechanical scaffold of the newly synthetized tissue but reciprocally affects fibrosis development. Hyaluronan (HA), an important component of ECM, is a non-sulfated glycosaminoglycan consisting of N-acetyl-D-glucosamine (GlcNAc) and D-glucuronic acid (GlcUA) that can affect the majority of processes involved in PA formation. This review considers the role of endogenously produced HA in the context of different fibrosis-related pathologies and its overlap in the development of PA.
Collapse
Affiliation(s)
- Anna Kocurkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Kristina Nesporova
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Miriam Sandanusova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Michaela Kerberova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
| | - Katerina Lehka
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Vladimir Velebny
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Lukas Kubala
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Gabriela Ambrozova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Correspondence:
| |
Collapse
|
14
|
Tai Y, Zhao C, Gao J, Lan T, Tong H. Identification of miRNA-target gene regulatory networks in liver fibrosis based on bioinformatics analysis. PeerJ 2021; 9:e11910. [PMID: 34434654 PMCID: PMC8351572 DOI: 10.7717/peerj.11910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/14/2021] [Indexed: 02/05/2023] Open
Abstract
Background Liver cirrhosis is one of the leading causes of death worldwide. MicroRNAs (miRNAs) can regulate liver fibrosis, but the underlying mechanisms are not fully understood, and the interactions between miRNAs and mRNAs are not clearly elucidated. Methods miRNA and mRNA expression arrays of cirrhotic samples and control samples were acquired from the Gene Expression Omnibus database. miRNA-mRNA integrated analysis, functional enrichment analysis and protein-protein interaction (PPI) network construction were performed to identify differentially expressed miRNAs (DEMs) and mRNAs (DEGs), miRNA-mRNA interaction networks, enriched pathways and hub genes. Finally, the results were validated with in vitro cell models. Results By bioinformatics analysis, we identified 13 DEMs between cirrhotic samples and control samples. Among these DEMs, six upregulated (hsa-miR-146b-5p, hsa-miR-150-5p, hsa-miR-224-3p, hsa-miR-3135b, hsa-miR-3195, and hsa-miR-4725-3p) and seven downregulated (hsa-miR-1234-3p, hsa-miR-30b-3p, hsa-miR-3162-3p, hsa-miR-548aj-3p, hsa-miR-548x-3p, hsa-miR-548z, and hsa-miR-890) miRNAs were further validated in activated LX2 cells. miRNA-mRNA interaction networks revealed a total of 361 miRNA-mRNA pairs between 13 miRNAs and 245 corresponding target genes. Moreover, PPI network analysis revealed the top 20 hub genes, including COL1A1, FBN1 and TIMP3, which were involved in extracellular matrix (ECM) organization; CCL5, CXCL9, CXCL12, LCK and CD24, which participated in the immune response; and CDH1, PECAM1, SELL and CAV1, which regulated cell adhesion. Functional enrichment analysis of all DEGs as well as hub genes showed similar results, as ECM-associated pathways, cell surface interaction and adhesion, and immune response were significantly enriched in both analyses. Conclusions We identified 13 differentially expressed miRNAs as potential biomarkers of liver cirrhosis. Moreover, we identified 361 regulatory pairs of miRNA-mRNA and 20 hub genes in liver cirrhosis, most of which were involved in collagen and ECM components, immune response, and cell adhesion. These results would provide novel mechanistic insights into the pathogenesis of liver cirrhosis and identify candidate targets for its treatment.
Collapse
Affiliation(s)
- Yang Tai
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Chong Zhao
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Lan
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Tong
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
CD147 mediates the CD44s-dependent differentiation of myofibroblasts driven by transforming growth factor-β 1. J Biol Chem 2021; 297:100987. [PMID: 34364871 PMCID: PMC8405944 DOI: 10.1016/j.jbc.2021.100987] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/16/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022] Open
Abstract
Progressive fibrosis leads to loss of organ function and affects many organs as a result of excessive extracellular matrix production. The ubiquitous matrix polysaccharide hyaluronan (HA) is central to this through association with its primary receptor, CD44, which exists as standard CD44 (CD44s) or multiple splice variants. Mediators such as profibrotic transforming growth factor (TGF)-β1 and proinflammatory interleukin (IL)-1β are widely associated with fibrotic progression. TGF-β1 induces myofibroblast differentiation, while IL-1β induces a proinflammatory fibroblast phenotype that promotes fibroblast binding to monocyte/macrophages. CD44 expression is essential for both responses. Potential CD44 splice variants involved, however, are unidentified. The TGF-β1-activated CD44/epidermal growth factor receptor complex induces differentiation of metastatic cells through interactions with the matrix metalloproteinase inducer, CD147. This study aimed to determine the CD44 variants involved in TGF-β1- and IL-1β-mediated responses and to investigate the potential profibrotic role of CD147. Using immunocytochemistry and quantitative PCR, standard CD44s were shown to be essential for both TGF-β1-induced fibroblast/myofibroblast differentiation and IL-1β-induced monocyte binding. Co-immunoprecipitation identified that CD147 associated with CD44s. Using CD147-siRNA and confocal microscopy, we also determined that incorporation of the myofibroblast marker, αSMA, into F-actin stress fibers was prevented in the absence of CD147 and myofibroblast-dependent collagen gel contraction was inhibited. CD147 did not associate with HA, but removal of HA prevented the association of CD44s with CD147 at points of cell–cell contact. Taken together, our data suggest that CD44s/CD147 colocalization is essential in regulating the mechanical tension required for the αSMA incorporation into F-actin stress fibers that regulates myofibroblast phenotype.
Collapse
|
16
|
Pereira D, Sequeira I. A Scarless Healing Tale: Comparing Homeostasis and Wound Healing of Oral Mucosa With Skin and Oesophagus. Front Cell Dev Biol 2021; 9:682143. [PMID: 34381771 PMCID: PMC8350526 DOI: 10.3389/fcell.2021.682143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Epithelial tissues are the most rapidly dividing tissues in the body, holding a natural ability for renewal and regeneration. This ability is crucial for survival as epithelia are essential to provide the ultimate barrier against the external environment, protecting the underlying tissues. Tissue stem and progenitor cells are responsible for self-renewal and repair during homeostasis and following injury. Upon wounding, epithelial tissues undergo different phases of haemostasis, inflammation, proliferation and remodelling, often resulting in fibrosis and scarring. In this review, we explore the phenotypic differences between the skin, the oesophagus and the oral mucosa. We discuss the plasticity of these epithelial stem cells and contribution of different fibroblast subpopulations for tissue regeneration and wound healing. While these epithelial tissues share global mechanisms of stem cell behaviour for tissue renewal and regeneration, the oral mucosa is known for its outstanding healing potential with minimal scarring. We aim to provide an updated review of recent studies that combined cell therapy with bioengineering exporting the unique scarless properties of the oral mucosa to improve skin and oesophageal wound healing and to reduce fibrotic tissue formation. These advances open new avenues toward the ultimate goal of achieving scarless wound healing.
Collapse
Affiliation(s)
| | - Inês Sequeira
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
17
|
Myofibroblasts: Function, Formation, and Scope of Molecular Therapies for Skin Fibrosis. Biomolecules 2021; 11:biom11081095. [PMID: 34439762 PMCID: PMC8391320 DOI: 10.3390/biom11081095] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Myofibroblasts are contractile, α-smooth muscle actin-positive cells with multiple roles in pathophysiological processes. Myofibroblasts mediate wound contractions, but their persistent presence in tissues is central to driving fibrosis, making them attractive cell targets for the development of therapeutic treatments. However, due to shared cellular markers with several other phenotypes, the specific targeting of myofibroblasts has long presented a scientific and clinical challenge. In recent years, myofibroblasts have drawn much attention among scientific research communities from multiple disciplines and specialisations. As further research uncovers the characterisations of myofibroblast formation, function, and regulation, the realisation of novel interventional routes for myofibroblasts within pathologies has emerged. The research community is approaching the means to finally target these cells, to prevent fibrosis, accelerate scarless wound healing, and attenuate associated disease-processes in clinical settings. This comprehensive review article describes the myofibroblast cell phenotype, their origins, and their diverse physiological and pathological functionality. Special attention has been given to mechanisms and molecular pathways governing myofibroblast differentiation, and updates in molecular interventions.
Collapse
|
18
|
Correa-Gallegos D, Rinkevich Y. Cutting into wound repair. FEBS J 2021; 289:5034-5048. [PMID: 34137168 DOI: 10.1111/febs.16078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
The skin is home to an assortment of fibroblastic lineages that shape the wound repair response toward scars or regeneration. In this review, we discuss the distinct embryonic origins, anatomic locations, and functions of fibroblastic lineages, and how these distinct lineages of fibroblasts dictate the skin's wound response across injury depths, anatomic locations, and embryonic development to promote either scarring or regeneration. We highlight the supportive role of the fascia in dictating scarring outcomes; we then discuss recent findings that indicate fascia mobilization by its resident fibroblasts supersede the classical de novo deposition program of wound matrix formation. These recent findings reconfigure our traditional view of wound repair and present exciting new therapeutic avenues to treat scarring and fibrosis across a range of medical settings.
Collapse
Affiliation(s)
- Donovan Correa-Gallegos
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
19
|
Distinct fibroblasts in scars and regeneration. Curr Opin Genet Dev 2021; 70:7-14. [PMID: 34022662 DOI: 10.1016/j.gde.2021.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
The skin is home to a collection of fibroblastic cell types from varying embryonic origins. These varying fibroblastic lineages display unique genetic programs and in vivo functions. Studying the diversity of fibroblastic cells is emerging as an important area for cutaneous biology, wound repair and regenerative medicine. In this mini-review we discuss the distinct embryonic origins, microenvironments, and transcriptomic profiles of fibroblastic lineages, and how these varying lineages shape the skin's wound response across injury depths, anatomic locations, and developmental time to promote either scarring or regeneration. We outline how the development of single cell sequencing has led to our improved understanding of fibroblastic lineages at the molecular level and discuss existing challenges and future outlook on developing regenerative therapies that are based on this emerging field of eclectic fibroblasts.
Collapse
|
20
|
desJardins-Park HE, Mascharak S, Longaker MT, Wan DC. Endogenous Mechanisms of Craniomaxillofacial Repair: Toward Novel Regenerative Therapies. FRONTIERS IN ORAL HEALTH 2021; 2:676258. [PMID: 35048022 PMCID: PMC8757793 DOI: 10.3389/froh.2021.676258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
In the fields of oral and craniomaxillofacial surgery, regeneration of multiple tissue types-including bone, skin, teeth, and mucosal soft tissue-is often a desired outcome. However, limited endogenous capacity for regeneration, as well as predisposition of many tissues to fibrotic healing, may prevent recovery of normal form and function for patients. Recent basic science research has advanced our understanding of molecular and cellular pathways of repair in the oral/craniofacial region and how these are influenced by local microenvironment and embryonic origin. Here, we review the current state of knowledge in oral and craniomaxillofacial tissue repair/regeneration in four key areas: bone (in the context of calvarial defects and mandibular regeneration during distraction osteogenesis); skin (in the context of cleft lip/palate surgery); oral mucosa (in the context of minimally scarring repair of mucosal injuries); and teeth (in the context of dental disease/decay). These represent four distinct healing processes and outcomes. We will discuss both divergent and conserved pathways of repair in these contexts, with an eye toward fundamental mechanisms of regeneration vs. fibrosis as well as translational research directions. Ultimately, this knowledge can be leveraged to develop new cell-based and molecular treatment strategies to encourage bone and soft tissue regeneration in oral and craniomaxillofacial surgery.
Collapse
Affiliation(s)
- Heather E. desJardins-Park
- Division of Plastic and Reconstructive Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford School of Medicine, Department of Surgery, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, United States
| | - Shamik Mascharak
- Division of Plastic and Reconstructive Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford School of Medicine, Department of Surgery, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, United States
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford School of Medicine, Department of Surgery, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, United States
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford School of Medicine, Department of Surgery, Stanford, CA, United States
| |
Collapse
|
21
|
Blessing WA, Williamson AK, Kirsch JR, Grinstaff MW. The Prognosis of Arthrofibroses: Prevalence, Clinical Shortcomings, and Future Prospects. Trends Pharmacol Sci 2021; 42:398-415. [PMID: 33795150 DOI: 10.1016/j.tips.2021.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/18/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is the dysregulated biosynthesis of connective tissue that results from persistent infection, high serum cholesterol, surgery, trauma, or prolonged joint immobilization. As a disease that impacts connective tissue, it is prevalent across the body and disrupts normal extracellular and tissue organization. Ultimately, fibrosis impairs the tissue structural, mechanical, or biochemical function. This review describes the clinical landscape of joint fibrosis, that is, arthrofibrosis, including the risk factors and causes, as well as current clinical treatments and their shortcomings. Because treating arthrofibrosis remains an unmet clinical challenge, we present several animal models used for exploration of the physiopathology of arthrofibrosis and summarize their use for testing novel treatments. We then discuss therapeutics for the prevention or treatment of arthrofibrosis that are in preclinical development and in ongoing clinical trials. We conclude with recent findings from molecular biological studies of arthrofibroses that shed insight on future areas of research for improved treatments.
Collapse
Affiliation(s)
- William A Blessing
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Amanda K Williamson
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA 02215, USA
| | - Jack R Kirsch
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA 02215, USA
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
22
|
Sezgin B, Tatar S, Karahuseyinoglu S, Sahin GN, Ergun Y, Meric G, Ersoy K. The effects of oral mucosa-derived heterotopic fibroblasts on cutaneous wound healing. J Plast Reconstr Aesthet Surg 2021; 74:2751-2758. [PMID: 33935009 DOI: 10.1016/j.bjps.2021.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 12/20/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
An intriguing observation that has recently found support through clinical and experimental studies is that wounds of the oral mucosa tend to display faster healing and result in less scarring than in the skin. We aimed to investigate the potential of heterotopic oral mucosal fibroblasts in cutaneous wounds while determining the main differences between wounds conditioned with either the oral mucosa or dermis-derived human fibroblasts. A total of 48 nude mice were divided into four groups: control, sham, dermal fibroblast (DF), and oral fibroblast (OF). Fibroblasts were isolated, cultured, and seeded onto fibrin scaffolds for transfer to full-thickness dorsal wounds. Cell viability, wound area, healing rate, vascularization, cellular proliferation, dermal thickness, collagen architecture, and subtypes were evaluated. Both cell groups had a viability of 95% in fibrin gel prior to transfer. None of the wounds fully epithelialized on day 10, while all were epithelialized by day 21, which resulted in scars of different sizes and quality. Healing rate and scars were similar between the control and sham groups, whereas fastest healing and least scarring were noted in the OF group. Dermal thickness was highest in the DF group, which was also supported by highest levels of collagen types I and III. Proliferative cells and vascular density were highest in the OF group. DF result in healing through a thick dermal component, while oral fibroblasts result in faster healing and less scarring through potentially privileged angiogenic and regenerative gene expression.
Collapse
Affiliation(s)
- Billur Sezgin
- Koc University School of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Istanbul, Turkey.
| | - Sedat Tatar
- Koc University School of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Istanbul, Turkey
| | | | - Gizem Nur Sahin
- Koc University Graduate School of Health Sciences, Department of Reproductive Medicine/Biology, Istanbul, Turkey
| | - Yagmur Ergun
- Koc University Graduate School of Health Sciences, Department of Reproductive Medicine/Biology, Istanbul, Turkey
| | - Gizem Meric
- Koc University School of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Istanbul, Turkey
| | - Kaan Ersoy
- Koc University School of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Istanbul, Turkey
| |
Collapse
|
23
|
Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol 2021; 18:151-166. [PMID: 33128017 DOI: 10.1038/s41575-020-00372-7] [Citation(s) in RCA: 1025] [Impact Index Per Article: 256.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 01/18/2023]
Abstract
Chronic liver injury leads to liver inflammation and fibrosis, through which activated myofibroblasts in the liver secrete extracellular matrix proteins that generate the fibrous scar. The primary source of these myofibroblasts are the resident hepatic stellate cells. Clinical and experimental liver fibrosis regresses when the causative agent is removed, which is associated with the elimination of these activated myofibroblasts and resorption of the fibrous scar. Understanding the mechanisms of liver fibrosis regression could identify new therapeutic targets to treat liver fibrosis. This Review summarizes studies of the molecular mechanisms underlying the reversibility of liver fibrosis, including apoptosis and the inactivation of hepatic stellate cells, the crosstalk between the liver and the systems that orchestrate the recruitment of bone marrow-derived macrophages (and other inflammatory cells) driving fibrosis resolution, and the interactions between various cell types that lead to the intracellular signalling that induces fibrosis or its regression. We also discuss strategies to target hepatic myofibroblasts (for example, via apoptosis or inactivation) and the myeloid cells that degrade the matrix (for example, via their recruitment to fibrotic liver) to facilitate fibrosis resolution and liver regeneration.
Collapse
Affiliation(s)
- Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA.
| | - David Brenner
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
24
|
Vinshtok Y, Cassuto D. Biochemical and physical actions of hyaluronic acid delivered by intradermal jet injection route. J Cosmet Dermatol 2020; 19:2505-2512. [PMID: 32799371 DOI: 10.1111/jocd.13674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 11/29/2022]
Abstract
Administration of exogenous hyaluronic acid (HA) by liquid jet injection is considered as a beneficial therapy for dermatology conditions. This paper reviews variety of the factors which would optimize the clinical output of hyaluronic acid in this treatment modality. A pneumatically accelerated jet penetrates the epidermis and spherically spreads micro-droplets of HA in the dermis without significant damage to the tissue and blood vessels. Kinetic energy of the jet activates two parallel mechanisms of action-mechanical and biological-which act synergistically to initiate and augment the regenerative effect. Jet-induced micro-trauma stimulates collagen synthesis and tissue repair without inflammation. Aside from the biophysical stimulation of dermal fibroblast, the biomolecular properties of exogenous HA provide excellent clinical results for skin atrophy, remodeling of dermal scarring, and reverse formation of fibrotic tissue. The effect is mediated by HA-specific cell receptors and depends on molecular weight and the rheological properties of HA polymer. Skin mechanical properties play a key role in predicting HA dispersion patterns. Tolerability and safety of the treatment approach are determined by the jet's physical impact on the tissue and/or by the safety profile of the injected material. Although pneumatic jet delivery of a hyaluronic acid has a limited use in clinical practice, this treatment approach has a strong potential for extended implementation in esthetic dermatology. The synergistic mechanism has significant advantages of predictable and rapid clinical outcomes with a low discomfort. Additional well-designed investigations are required for establishing a scientific foundation and guidelines for this treatment modality.
Collapse
|
25
|
Fibroblast Heterogeneity in and Its Implications for Plastic and Reconstructive Surgery: A Basic Science Review. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2020; 8:e2927. [PMID: 32766071 PMCID: PMC7339369 DOI: 10.1097/gox.0000000000002927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Fibroblasts’ integral role in tissue development, maintenance, and disease represents a fast-growing field of basic science research. Although fibroblasts were long thought to be a homogeneous cell population, recent research has illuminated the unforeseen complexity of these cells, giving rise to the rapidly expanding research field of “fibroblast heterogeneity.” Fibroblasts play a critical role in states of tissue fibrosis such as skin scarring, which affects hundreds of millions of patients annually and causes severe aesthetic, developmental, and functional morbidity. Beyond scarring, major organ fibrosis is an enormous public health concern responsible for nearly half of all deaths in the United States. Because fibrosis is a conserved response to tissue damage in all organs, the study of fibroblasts throughout the body may help us to understand their role in the conditions most relevant to plastic and reconstructive surgery—for instance, skin scarring (eg, from burns, traumatic lacerations, or surgical incisions), “pathological” scarring (hypertrophic scars, keloids), and capsular contracture. Here, we present a basic science review of fibroblast heterogeneity in wound healing, cancer, organ fibrosis, and human dermal architecture. The field of fibroblast heterogeneity is young, and many of the insights discussed have yet to be translated clinically. However, plastic surgeons stand in a unique position to bridge these discoveries into clinical realities. We hope this information can spur readers to consider both what questions in plastic surgery can be studied from the lens of fibroblast heterogeneity, and how these preclinical insights can be translated to improving care of our patients.
Collapse
|
26
|
Nikoloudaki G, Creber K, Hamilton DW. Wound healing and fibrosis: a contrasting role for periostin in skin and the oral mucosa. Am J Physiol Cell Physiol 2020; 318:C1065-C1077. [PMID: 32267719 PMCID: PMC7311745 DOI: 10.1152/ajpcell.00035.2020] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/08/2023]
Abstract
Both skin and oral mucosa are characterized by the presence of keratinized epithelium in direct apposition to an underlying collagen-dense connective tissue. Despite significant overlap in structure and physiological function, skin and the oral mucosa exhibit significantly different healing profiles in response to injury. The oral mucosa has a propensity for rapid restoration of barrier function with minimal underlying fibrosis, but in contrast, skin is associated with slower healing and scar formation. Modulators of cell function, matricellular proteins have been shown to play significant roles in cutaneous healing, but their role in restoration of the oral mucosa is poorly defined. As will be discussed in this review, over the last 12 years our research group has been actively investigating the role of the profibrotic matricellular protein periostin in tissue homeostasis and fibrosis, as well as healing, in both skin and gingiva. In the skin, periostin is highly expressed in fibrotic scars and is upregulated during cutaneous wound repair, where it facilitates myofibroblast differentiation. In contrast, in gingival healing, periostin regulates extracellular matrix synthesis but does not appear to be associated with the transition of mesenchymal cells to a contractile phenotype. The significance of these findings will be discussed, with a focus on periostin as a potential therapeutic to augment healing of soft tissues or suppress fibrosis.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Kendal Creber
- School of Biomedical Engineering, University of Western Ontario, London, Ontario, Canada
| | - Douglas W Hamilton
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
- School of Biomedical Engineering, University of Western Ontario, London, Ontario, Canada
- Division of Oral Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
27
|
Midgley AC, Woods EL, Jenkins RH, Brown C, Khalid U, Chavez R, Hascall V, Steadman R, Phillips AO, Meran S. Hyaluronidase-2 Regulates RhoA Signaling, Myofibroblast Contractility, and Other Key Profibrotic Myofibroblast Functions. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1236-1255. [PMID: 32201263 PMCID: PMC7254050 DOI: 10.1016/j.ajpath.2020.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/13/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
Hyaluronidase (HYAL)-2 is a weak, acid-active, hyaluronan-degrading enzyme broadly expressed in somatic tissues. Aberrant HYAL2 expression is implicated in diverse pathology. However, a significant proportion of HYAL2 is enzymatically inactive; thus the mechanisms through which HYAL2 dysregulation influences pathobiology are unclear. Recently, nonenzymatic HYAL2 functions have been described, and nuclear HYAL2 has been shown to influence mRNA splicing to prevent myofibroblast differentiation. Myofibroblasts drive fibrosis, thereby promoting progressive tissue damage and leading to multimorbidity. This study identifies a novel HYAL2 cytoplasmic function in myofibroblasts that is unrelated to its enzymatic activity. In fibroblasts and myofibroblasts, HYAL2 interacts with the GTPase-signaling small molecule ras homolog family member A (RhoA). Transforming growth factor beta 1–driven fibroblast-to-myofibroblast differentiation promotes HYAL2 cytoplasmic relocalization to bind to the actin cytoskeleton. Cytoskeletal-bound HYAL2 functions as a key regulator of downstream RhoA signaling and influences profibrotic myofibroblast functions, including myosin light-chain kinase–mediated myofibroblast contractility, myofibroblast migration, myofibroblast collagen/fibronectin deposition, as well as connective tissue growth factor and matrix metalloproteinase-2 expression. These data demonstrate that, in certain biological contexts, the nonenzymatic effects of HYAL2 are crucial in orchestrating RhoA signaling and downstream pathways that are important for full profibrotic myofibroblast functionality. In conjunction with previous data demonstrating the influence of HYAL2 on RNA splicing, these findings begin to explain the broad biological effects of HYAL2.
Collapse
Affiliation(s)
- Adam C Midgley
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Emma L Woods
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Robert H Jenkins
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Charlotte Brown
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Usman Khalid
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Rafael Chavez
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Vincent Hascall
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Robert Steadman
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Aled O Phillips
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Soma Meran
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
28
|
Zerdoum AB, Fowler EW, Jia X. Induction of Fibrogenic Phenotype in Human Mesenchymal Stem Cells by Connective Tissue Growth Factor in a Hydrogel Model of Soft Connective Tissue. ACS Biomater Sci Eng 2019; 5:4531-4541. [PMID: 33178886 PMCID: PMC7654958 DOI: 10.1021/acsbiomaterials.9b00425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Scar formation is the typical endpoint of wound healing in adult mammalian tissues. An overactive or prolonged fibrogenic response following injury leads to excessive deposition of fibrotic proteins that promote tissue contraction and scar formation. Although well-defined in the dermal tissue, the progression of fibrosis is less explored in other connective tissues, such as the vocal fold. To establish a physiologically relevant 3D model of loose connective tissue fibrosis, we have developed a synthetic extracellular matrix using hyaluronic acid (HA) and peptidic building blocks carrying complementary functional groups. The resultant network was cell adhesive and protease degradable, exhibiting viscoelastic properties similar to the human vocal fold. Human mesenchymal stem cells (hMSCs) were encapsulated in the HA matrix as single cells or multicellular aggregates and cultured in pro-fibrotic media containing connective tissue growth factor (CTGF) for up to 21 days. hMSCs treated with CTGF-supplemented media exhibited an increased expression of fibrogenic markers and ECM proteins associated with scarring. Incorporation of α-smooth muscle actin into F-actin stress fibers was also observed. Furthermore, CTGF treatment increased the migratory capacity of hMSCs as compared to the CTGF-free control groups, indicative of the development of a myofibroblast phenotype. Addition of an inhibitor of the mitogen-activated protein kinase (MAPK) pathway attenuated cellular expression of fibrotic markers and related ECM proteins. Overall, this study demonstrates that CTGF promotes the development of a fibrogenic phenotype in hMSCs encapsulated within an HA matrix and that the MAPK pathway is a potential target for future therapeutic endeavors towards limiting scar formation in loose connective tissues.
Collapse
Affiliation(s)
- Aidan B. Zerdoum
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Eric W. Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Xinqiao Jia
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
29
|
Hertegård S, Nagubothu SR, Malmström E, Ström CE, Tolf A, Davies LC, Le Blanc K. Hyaluronan Hydrogels for the Local Delivery of Mesenchymal Stromal Cells to the Injured Vocal Fold. Stem Cells Dev 2019; 28:1177-1190. [PMID: 31244387 DOI: 10.1089/scd.2019.0102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) promote wound healing by expediting the inflammatory phase. Local injection of MSCs into injured vocal folds (VFs) is effective in animal models, suggesting suitability for clinical translation. Despite their therapeutic potential, MSCs do not persist within the VF. This study evaluates whether hyaluronan (HA) hydrogels offer a safe delivery vehicle for local injection of MSCs into VFs, and increase longevity of the cells within the injured tissue. MSCs ± HA hydrogel were exposed to interleukin (IL)1β, IL8, and chemokine (C-C motif) ligand 4, and evaluated for mRNA expression of matrix remodeling genes and secretion of immunomodulatory/prohealing factors. Chemotaxis/invasion in response to inflammation was evaluated. A lapin model of VF injury evaluated in vivo effects of MSCs ± HA hydrogel on enhancing VF healing. Histological evaluation of inflammation, type I collagen expression, HA hydrogel resorption, and MSC persistence was evaluated at 3 and 25 days after injury. MSCs within HA hydrogel were responsive to their extracellular environment, upregulating immunomodulatory factors when exposed to inflammation. Despite delayed migration out of the gel in vitro, the MSCs did not persist longer within the injured tissue in vivo. MSCs ± HA hydrogel exerted equivalent dampening of inflammation in vivo. The gel was resorbed within 25 days and no edema was evident. HA hydrogels can be safely used in the delivery of MSCs to injured VFs, minimizing leakage of administered cells. MSCs within the HA hydrogel did not persist longer than those in suspension, but did exert comparable therapeutic effects.
Collapse
Affiliation(s)
- Stellan Hertegård
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm. Sweden.,Department of Otorhinolaryngology, Karolinska University Hospital Huddinge, Stockholm. Sweden
| | | | - Emma Malmström
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm. Sweden.,Department of Otorhinolaryngology, Karolinska University Hospital Huddinge, Stockholm. Sweden
| | - Cecilia E Ström
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Tolf
- Department of Pathology, Akademiska University Hospital, Uppsala, Sweden
| | - Lindsay C Davies
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Le Blanc
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Karppinen SM, Heljasvaara R, Gullberg D, Tasanen K, Pihlajaniemi T. Toward understanding scarless skin wound healing and pathological scarring. F1000Res 2019; 8. [PMID: 31231509 PMCID: PMC6556993 DOI: 10.12688/f1000research.18293.1] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 12/18/2022] Open
Abstract
The efficient healing of skin wounds is crucial for securing the vital barrier function of the skin, but pathological wound healing and scar formation are major medical problems causing both physiological and psychological challenges for patients. A number of tightly coordinated regenerative responses, including haemostasis, the migration of various cell types into the wound, inflammation, angiogenesis, and the formation of the extracellular matrix, are involved in the healing process. In this article, we summarise the central mechanisms and processes in excessive scarring and acute wound healing, which can lead to the formation of keloids or hypertrophic scars, the two types of fibrotic scars caused by burns or other traumas resulting in significant functional or aesthetic disadvantages. In addition, we discuss recent developments related to the functions of activated fibroblasts, the extracellular matrix and mechanical forces in the wound environment as well as the mechanisms of scarless wound healing. Understanding the different mechanisms of wound healing is pivotal for developing new therapies to prevent the fibrotic scarring of large skin wounds.
Collapse
Affiliation(s)
- Sanna-Maria Karppinen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ritva Heljasvaara
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Department of Biomedicine, University of Bergen, Bergen, Norway.,Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Donald Gullberg
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Kaisa Tasanen
- Oulu Center for Cell-Matrix Research, PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center and Department of Dermatology, University of Oulu/Oulu University Hospital, Oulu, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
31
|
Carmen L, Maria V, Morales-Medina JC, Vallelunga A, Palmieri B, Iannitti T. Role of proteoglycans and glycosaminoglycans in Duchenne muscular dystrophy. Glycobiology 2019; 29:110-123. [PMID: 29924302 DOI: 10.1093/glycob/cwy058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 06/18/2018] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an inherited fatal X-linked myogenic disorder with a prevalence of 1 in 3500 male live births. It affects voluntary muscles, and heart and breathing muscles. DMD is characterized by continuous degeneration and regeneration cycles resulting in extensive fibrosis and a progressive reduction in muscle mass. Since the identification of a reduction in dystrophin protein as the cause of this disorder, numerous innovative and experimental therapies, focusing on increasing the levels of dystrophin, have been proposed, but the clinical improvement has been unsatisfactory. Dystrophin forms the dystrophin-associated glycoprotein complex and its proteins have been studied as a promising novel therapeutic target to treat DMD. Among these proteins, cell surface glycosaminoglycans (GAGs) are found almost ubiquitously on the surface and in the extracellular matrix (ECM) of mammalian cells. These macromolecules interact with numerous ligands, including ECM constituents, adhesion molecules and growth factors that play a crucial role in muscle development and maintenance. In this article, we have reviewed in vitro, in vivo and clinical studies focused on the functional role of GAGs in the pathophysiology of DMD with the final aim of summarizing the state of the art of GAG dysregulation within the ECM in DMD and discussing future therapeutic perspectives.
Collapse
Affiliation(s)
- Laurino Carmen
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| | - Vadala' Maria
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| | - Julio Cesar Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, CP, AP 62, Mexico
| | - Annamaria Vallelunga
- Department of Medicine and Surgery, Centre for Neurodegenerative Diseases (CEMAND), University of Salerno, Salerno, Italy
| | - Beniamino Palmieri
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| | | |
Collapse
|
32
|
Theocharis AD, Manou D, Karamanos NK. The extracellular matrix as a multitasking player in disease. FEBS J 2019; 286:2830-2869. [PMID: 30908868 DOI: 10.1111/febs.14818] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/06/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
Extracellular matrices (ECMs) are highly specialized and dynamic three-dimensional (3D) scaffolds into which cells reside in tissues. ECM is composed of a variety of fibrillar components, such as collagens, fibronectin, and elastin, and non-fibrillar molecules as proteoglycans, hyaluronan, and glycoproteins including matricellular proteins. These macromolecular components are interconnected forming complex networks that actively communicate with cells through binding to cell surface receptors and/or matrix effectors. ECMs exert diverse roles, either providing tissues with structural integrity and mechanical properties essential for tissue functions or regulating cell phenotype and functions to maintain tissue homeostasis. ECM molecular composition and structure vary among tissues, and is markedly modified during normal tissue repair as well as during the progression of various diseases. Actually, abnormal ECM remodeling occurring in pathologic circumstances drives disease progression by regulating cell-matrix interactions. The importance of matrix molecules to normal tissue functions is also highlighted by mutations in matrix genes that give rise to genetic disorders with diverse clinical phenotypes. In this review, we present critical and emerging issues related to matrix assembly in tissues and the multitasking roles for ECM in diseases such as osteoarthritis, fibrosis, cancer, and genetic diseases. The mechanisms underlying the various matrix-based diseases are also discussed. Research focused on the highly dynamic 3D ECM networks will help to discover matrix-related causative abnormalities of diseases as well as novel diagnostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| |
Collapse
|
33
|
desJardins-Park HE, Mascharak S, Chinta MS, Wan DC, Longaker MT. The Spectrum of Scarring in Craniofacial Wound Repair. Front Physiol 2019; 10:322. [PMID: 30984020 PMCID: PMC6450464 DOI: 10.3389/fphys.2019.00322] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is intimately linked to wound healing and is one of the largest causes of wound-related morbidity. While scar formation is the normal and inevitable outcome of adult mammalian cutaneous wound healing, scarring varies widely between different anatomical sites. The spectrum of craniofacial wound healing spans a particularly diverse range of outcomes. While most craniofacial wounds heal by scarring, which can be functionally and aesthetically devastating, healing of the oral mucosa represents a rare example of nearly scarless postnatal healing in humans. In this review, we describe the typical wound healing process in both skin and the oral cavity. We present clinical correlates and current therapies and discuss the current state of research into mechanisms of scarless healing, toward the ultimate goal of achieving scarless adult skin healing.
Collapse
Affiliation(s)
- Heather E. desJardins-Park
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Shamik Mascharak
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Malini S. Chinta
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
34
|
Kim SS, Nikoloudaki GE, Michelsons S, Creber K, Hamilton DW. Fibronectin synthesis, but not α-smooth muscle expression, is regulated by periostin in gingival healing through FAK/JNK signaling. Sci Rep 2019; 9:2708. [PMID: 30804350 PMCID: PMC6389918 DOI: 10.1038/s41598-018-35805-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/09/2018] [Indexed: 01/09/2023] Open
Abstract
During skin healing, periostin facilitates myofibroblast differentiation through a β1 integrin/FAK dependent mechanism and continued expression is associated with scarring. In contrast to skin, gingival tissue does not typically scar upon injury, but the role of periostin in gingival healing has never been investigated. Using a rat gingivectomy model, we show that the gingival architecture is re-established within 14 days of wounding. Periostin mRNA levels peak at day 7 post-wounding, with persistence of periostin protein in the connective tissue through day 14. Collagen type I and lysyl oxidase mRNA levels peak at day 7 post wounding, which corresponded with the peak of fibroblast proliferation. Although α-smooth muscle actin mRNA levels increased 200-fold in the tissue, no myofibroblasts were detected in the regenerating tissue. In vitro, human gingival fibroblast adhesion on periostin, but not collagen, was inhibited by blocking β1 integrins. Fibroblasts cultured on periostin exhibited similar rates of proliferation and myofibroblast differentiation to cells cultured on collagen only. However, human gingival fibroblasts cultured in the presence of periostin exhibited significantly increased fibronectin and collagen mRNA levels. Increases in fibronectin production were attenuated by pharmacological inhibition of FAK and JNK signaling in human gingival fibroblasts. In vivo, mRNA levels for fibronectin peaked at day 3 and 7 post wounding, with protein immunoreactivity highest at day 7, suggesting periostin is a modulator of fibronectin production during gingival healing.
Collapse
Affiliation(s)
- Shawna S Kim
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada.,Dentistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Georgia E Nikoloudaki
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Sarah Michelsons
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Kendal Creber
- Department of Biomedical Engineering, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Douglas W Hamilton
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada. .,Department of Biomedical Engineering, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada. .,Division of Oral Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada. .,Dentistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| |
Collapse
|
35
|
Johnson P, Arif AA, Lee-Sayer SSM, Dong Y. Hyaluronan and Its Interactions With Immune Cells in the Healthy and Inflamed Lung. Front Immunol 2018; 9:2787. [PMID: 30555472 PMCID: PMC6281886 DOI: 10.3389/fimmu.2018.02787] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022] Open
Abstract
Hyaluronan is a hygroscopic glycosaminoglycan that contributes to both extracellular and pericellular matrices. While the production of hyaluronan is essential for mammalian development, less is known about its interaction and function with immune cells. Here we review what is known about hyaluronan in the lung and how it impacts immune cells, both at homeostasis and during lung inflammation and fibrosis. In the healthy lung, alveolar macrophages provide the first line of defense and play important roles in immunosurveillance and lipid surfactant homeostasis. Alveolar macrophages are surrounded by a coat of hyaluronan that is bound by CD44, a major hyaluronan receptor on immune cells, and this interaction contributes to their survival and the maintenance of normal alveolar macrophage numbers. Alveolar macrophages are conditioned by the alveolar environment to be immunosuppressive, and can phagocytose particulates without alerting an immune response. However, during acute lung infection or injury, an inflammatory immune response is triggered. Hyaluronan levels in the lung are rapidly increased and peak with maximum leukocyte infiltration, suggesting a role for hyaluronan in facilitating leukocyte access to the injury site. Hyaluronan can also be bound by hyaladherins (hyaluronan binding proteins), which create a provisional matrix to facilitate tissue repair. During the subsequent remodeling process hyaluronan concentrations decline and levels return to baseline as homeostasis is restored. In chronic lung diseases, the inflammatory and/or repair phases persist, leading to sustained high levels of hyaluronan, accumulation of associated immune cells and an inability to resolve the inflammatory response.
Collapse
Affiliation(s)
- Pauline Johnson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Arif A Arif
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sally S M Lee-Sayer
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yifei Dong
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
36
|
Kawai Y, Kishimoto Y, Sogami T, Suzuki R, Tsuji T, Hiwatashi N, Tateya I, Kanemaru SI, Nakamura T, Omori K, Hirano S. Characterization of aged rat vocal fold fibroblasts. Laryngoscope 2018; 129:E94-E101. [PMID: 30450675 DOI: 10.1002/lary.27464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVES/HYPOTHESIS To elucidate the aging physiology of the vocal folds, we examined the characters of aged vocal fold fibroblasts (VFFs) in various conditions. STUDY DESIGN In vitro study. METHODS VFFs from young (12-week-old) and aged (19-month-old) Sprague-Dawley rats were compared. Proliferative capacity, ratio of myofibroblast to fibroblast, myofibroblast function, and extracellular matrix production were examined in the following conditions: naïve, basic fibroblast growth factor (bFGF) supplemented, and hepatocyte growth factor (HGF) supplemented. RESULTS Aged VFFs demonstrated reduced proliferation by cell counting, though the ratio of Ki-67-positive cells showed no difference. Aged VFFs exhibited an increased expression of α-smooth muscle actin (α-SMA); however, they demonstrated no enhanced contractile ability in a gel contraction assay. Type I collagen protein was increased age dependently, accompanied with decreased Mmp1 and unchanged Col1a1 transcription. Type I collagen protein and α-SMA represented quite similar reduction patterns to bFGF or HGF administration. CONCLUSIONS The following possible characteristics of aged VFFs were implied: long duration of mitosis, increased myofibroblast population size with certain dysfunctions, reduced type I collagen turnover, and correlation between α-SMA expression and type I collagen metabolism. Further investigations of these features will help to clarify presbyphonia's pathology and establish treatment strategies. LEVEL OF EVIDENCE NA Laryngoscope, 129:E94-E101, 2019.
Collapse
Affiliation(s)
- Yoshitaka Kawai
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tohru Sogami
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Tsuji
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nao Hiwatashi
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ichiro Tateya
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shin-Ichi Kanemaru
- Department of Otolaryngology-Head and Neck Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Tatsuo Nakamura
- Department of Bioartificial Organs, Institute for Frontier Medical Science, Kyoto University, Kyoto, Japan
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
37
|
Dokoshi T, Zhang LJ, Nakatsuji T, Adase CA, Sanford JA, Paladini RD, Tanaka H, Fujiya M, Gallo RL. Hyaluronidase inhibits reactive adipogenesis and inflammation of colon and skin. JCI Insight 2018; 3:123072. [PMID: 30385720 DOI: 10.1172/jci.insight.123072] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022] Open
Abstract
In this study we evaluated the role of hyaluronan (HA) in reactive adipogenesis, a local expansion of preadipocytes that provides host defense by release of antimicrobial peptides. We observed that HA accumulated during maturation of adipocytes in vitro and was associated with increased expression of preadipocyte factor 1, zinc finger protein 423, and early B cell factor 1. Although HA is normally abundant in the extracellular matrix, a further increase in HA staining occurred in mice at sites of reactive adipogenesis following injury of colon by dextran sodium sulfate or injury of skin from infection with Staphylococcus aureus. HA also abundantly accumulated around adipocytes seen in the colons of patients with inflammatory bowel disease. This HA was necessary for adipocyte maturation because digestion of HA by administration of soluble hyaluronidase or transgenic expression of hyaluronidase 1 inhibited adipogenesis in vitro and in vivo. Furthermore, hyaluronidase also suppressed inflammation of both skin and colon and decreased antimicrobial peptide expression by developing preadipocytes. This resulted in increased bacterial transit across the epithelial barrier despite decreased tissue injury from inflammation. These observations suggest HA plays an important role in reactive adipogenesis and host defense after injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hiroki Tanaka
- Department of Legal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Mikihiro Fujiya
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | | |
Collapse
|
38
|
Piperigkou Z, Götte M, Theocharis AD, Karamanos NK. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing. Adv Drug Deliv Rev 2018; 129:16-36. [PMID: 29079535 DOI: 10.1016/j.addr.2017.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/14/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed.
Collapse
|
39
|
Midgley AC, Oltean S, Hascall V, Woods EL, Steadman R, Phillips AO, Meran S. Nuclear hyaluronidase 2 drives alternative splicing of CD44 pre-mRNA to determine profibrotic or antifibrotic cell phenotype. Sci Signal 2017; 10:10/506/eaao1822. [PMID: 29162741 DOI: 10.1126/scisignal.aao1822] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cell surface protein CD44 is involved in diverse physiological processes, and its aberrant function is linked to various pathologies such as cancer, immune dysregulation, and fibrosis. The diversity of CD44 biological activity is partly conferred by the generation of distinct CD44 isoforms through alternative splicing. We identified an unexpected function for the ubiquitous hyaluronan-degrading enzyme, hyaluronidase 2 (HYAL2), as a regulator of CD44 splicing. Standard CD44 is associated with fibrotic disease, and its production is promoted through serine-arginine-rich (SR) protein-mediated exon exclusion. HYAL2 nuclear translocation was stimulated by bone morphogenetic protein 7, which inhibits the myofibroblast phenotype. Nuclear HYAL2 displaced SR proteins from the spliceosome, thus enabling HYAL2, spliceosome components (U1 and U2 small nuclear ribonucleoproteins), and CD44 pre-mRNA to form a complex. This prevented double-exon splicing and facilitated the inclusion of CD44 exons 11 and 12, which promoted the accumulation of the antifibrotic CD44 isoform CD44v7/8 at the cell surface. These data demonstrate previously undescribed mechanisms regulating CD44 alternative splicing events that are relevant to the regulation of cellular phenotypes in progressive fibrosis.
Collapse
Affiliation(s)
- Adam C Midgley
- Wales Kidney Research Unit, Systems Immunity University Research Institute, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School,Exeter EX1 2LU, UK
| | - Vincent Hascall
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Emma L Woods
- Wales Kidney Research Unit, Systems Immunity University Research Institute, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Robert Steadman
- Wales Kidney Research Unit, Systems Immunity University Research Institute, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Aled O Phillips
- Wales Kidney Research Unit, Systems Immunity University Research Institute, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Soma Meran
- Wales Kidney Research Unit, Systems Immunity University Research Institute, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
40
|
Dally J, Khan JS, Voisey A, Charalambous C, John HL, Woods EL, Steadman R, Moseley R, Midgley AC. Hepatocyte Growth Factor Mediates Enhanced Wound Healing Responses and Resistance to Transforming Growth Factor-β₁-Driven Myofibroblast Differentiation in Oral Mucosal Fibroblasts. Int J Mol Sci 2017; 18:ijms18091843. [PMID: 28837064 PMCID: PMC5618492 DOI: 10.3390/ijms18091843] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 01/07/2023] Open
Abstract
Oral mucosal wounds are characterized by rapid healing with minimal scarring, partly attributable to the "enhanced" wound healing properties of oral mucosal fibroblasts (OMFs). Hepatocyte growth factor (HGF) is a pleiotropic growth factor, with potential key roles in accelerating healing and preventing fibrosis. HGF can exist as full-length or truncated (HGF-NK), NK1 and NK2 isoforms. As OMFs display elevated HGF expression compared to dermal fibroblasts (DFs), this study investigated the extent to which HGF mediates the preferential cellular functions of OMFs, and the influence of pro-fibrotic, transforming growth factor-β₁ (TGF-β₁) on these responses. Knockdown of HGF expression in OMFs by short-interfering RNA (siHGF) significantly inhibited OMF proliferative and migratory responses. Supplementation with exogenous TGF-β₁ also significantly inhibited proliferation and migration, concomitant with significantly down-regulated HGF expression. In addition, knockdown abrogated OMF resistance to TGF-β₁-driven myofibroblast differentiation, as evidenced by increased α-smooth muscle actin (α-SMA) expression, F-actin reorganisation, and stress fibre formation. Responses were unaffected in siHGF-transfected DFs. OMFs expressed significantly higher full-length HGF and NK1 levels compared to patient-matched DFs, whilst NK2 expression was similar in both OMFs and DFs. Furthermore, NK2 was preferentially expressed over NK1 in DFs. TGF-β₁ supplementation significantly down-regulated full-length HGF and NK1 expression by OMFs, while NK2 was less affected. This study demonstrates the importance of HGF in mediating "enhanced" OMF cellular function. We also propose that full-length HGF and HGF-NK1 convey desirable wound healing properties, whilst fibroblasts preferentially expressing more HGF-NK2 readily undergo TGF-β₁-driven differentiation into myofibroblasts.
Collapse
Affiliation(s)
- Jordanna Dally
- Stem Cells, Wound Repair & Regeneration, Oral & Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK.
- Cardiff Institute of Tissue Engineering & Repair (CITER), Cardiff University, Cardiff CF10 3AX, UK.
| | - Jabur S Khan
- Stem Cells, Wound Repair & Regeneration, Oral & Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK.
- Cardiff Institute of Tissue Engineering & Repair (CITER), Cardiff University, Cardiff CF10 3AX, UK.
| | - Alex Voisey
- Stem Cells, Wound Repair & Regeneration, Oral & Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK.
- Wales Kidney Research Unit (WKRU), Systems Immunity Research Institute, Division of Infection and Immunity, College of Biomedical & Life Sciences, Cardiff University, Cardiff CF14 4XN, UK.
| | - Chrisandrea Charalambous
- Stem Cells, Wound Repair & Regeneration, Oral & Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK.
- Wales Kidney Research Unit (WKRU), Systems Immunity Research Institute, Division of Infection and Immunity, College of Biomedical & Life Sciences, Cardiff University, Cardiff CF14 4XN, UK.
| | - Hannah L John
- Stem Cells, Wound Repair & Regeneration, Oral & Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK.
- Wales Kidney Research Unit (WKRU), Systems Immunity Research Institute, Division of Infection and Immunity, College of Biomedical & Life Sciences, Cardiff University, Cardiff CF14 4XN, UK.
| | - Emma L Woods
- Stem Cells, Wound Repair & Regeneration, Oral & Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK.
- Cardiff Institute of Tissue Engineering & Repair (CITER), Cardiff University, Cardiff CF10 3AX, UK.
| | - Robert Steadman
- Cardiff Institute of Tissue Engineering & Repair (CITER), Cardiff University, Cardiff CF10 3AX, UK.
- Wales Kidney Research Unit (WKRU), Systems Immunity Research Institute, Division of Infection and Immunity, College of Biomedical & Life Sciences, Cardiff University, Cardiff CF14 4XN, UK.
| | - Ryan Moseley
- Stem Cells, Wound Repair & Regeneration, Oral & Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK.
- Cardiff Institute of Tissue Engineering & Repair (CITER), Cardiff University, Cardiff CF10 3AX, UK.
| | - Adam C Midgley
- Cardiff Institute of Tissue Engineering & Repair (CITER), Cardiff University, Cardiff CF10 3AX, UK.
- Wales Kidney Research Unit (WKRU), Systems Immunity Research Institute, Division of Infection and Immunity, College of Biomedical & Life Sciences, Cardiff University, Cardiff CF14 4XN, UK.
| |
Collapse
|
41
|
Wirsdörfer F, Jendrossek V. Modeling DNA damage-induced pneumopathy in mice: insight from danger signaling cascades. Radiat Oncol 2017; 12:142. [PMID: 28836991 PMCID: PMC5571607 DOI: 10.1186/s13014-017-0865-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/07/2017] [Indexed: 02/08/2023] Open
Abstract
Radiation-induced pneumonitis and fibrosis represent severe and dose-limiting side effects in the radiotherapy of thorax-associated neoplasms leading to decreased quality of life or - as a consequence of treatment with suboptimal radiation doses - to fatal outcomes by local recurrence or metastatic disease. It is assumed that the initial radiation-induced damage to the resident cells triggers a multifaceted damage-signalling cascade in irradiated normal tissues including a multifactorial secretory program. The resulting pro-inflammatory and pro-angiogenic microenvironment triggers a cascade of events that can lead within weeks to a pronounced lung inflammation (pneumonitis) or after months to excessive deposition of extracellular matrix molecules and tissue scarring (pulmonary fibrosis).The use of preclinical in vivo models of DNA damage-induced pneumopathy in genetically modified mice has helped to substantially advance our understanding of molecular mechanisms and signalling molecules that participate in the pathogenesis of radiation-induced adverse late effects in the lung. Herein, murine models of whole thorax irradiation or hemithorax irradiation nicely reproduce the pathogenesis of the human disease with respect to the time course and the clinical symptoms. Alternatively, treatment with the radiomimetic DNA damaging chemotherapeutic drug Bleomycin (BLM) has frequently been used as a surrogate model of radiation-induced lung disease. The advantage of the BLM model is that the symptoms of pneumonitis and fibrosis develop within 1 month.Here we summarize and discuss published data about the role of danger signalling in the response of the lung tissue to DNA damage and its cross-talk with the innate and adaptive immune systems obtained in preclinical studies using immune-deficient inbred mouse strains and genetically modified mice. Interestingly we observed differences in the role of molecules involved in damage sensing (TOLL-like receptors), damage signalling (MyD88) and immune regulation (cytokines, CD73, lymphocytes) for the pathogenesis and progression of DNA damage-induced pneumopathy between the models of pneumopathy induced by whole thorax irradiation or treatment with the radiomimetic drug BLM. These findings underline the importance to pursue studies in the radiation model(s) if we are to unravel the mechanisms driving radiation-induced adverse late effects.A better understanding of the cross-talk of danger perception and signalling with immune activation and repair mechanisms may allow a modulation of these processes to prevent or treat radiation-induced adverse effects. Vice-versa an improved knowledge of the normal tissue response to injury is also particularly important in view of the increasing interest in combining radiotherapy with immune checkpoint blockade or immunotherapies to avoid exacerbation of radiation-induced normal tissue toxicity.
Collapse
Affiliation(s)
- Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstrasse 173, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstrasse 173, Essen, Germany.
| |
Collapse
|
42
|
Hammerman M, Blomgran P, Dansac A, Eliasson P, Aspenberg P. Different gene response to mechanical loading during early and late phases of rat Achilles tendon healing. J Appl Physiol (1985) 2017; 123:800-815. [PMID: 28705996 DOI: 10.1152/japplphysiol.00323.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 11/22/2022] Open
Abstract
Mechanical loading stimulates tendon healing both when applied in the inflammatory phase and in the early remodeling phase of the process, although not necessarily via the same mechanisms. We investigated the gene response to mechanical loading in these two phases of tendon healing. The right Achilles tendon in rats was transected, and the hindlimbs were unloaded by tail suspension. The rats were exposed to 5 min of treadmill running 3 or 14 days after tendon transection. Thereafter, they were resuspended for 15 min or 3 h until euthanasia. The controls were suspended continuously. Gene analysis was first performed by microarray analysis followed by quantitative RT-PCR on selected genes, focusing on inflammation. Fifteen minutes after loading, the most important genes seemed to be the transcription factors EGR1 and C-FOS, regardless of healing phase. These transcription factors might promote tendon cell proliferation and differentiation, stimulate collagen production, and regulate inflammation. Three hours after loading on day 3, inflammation was strongly affected. Seven inflammation-related genes were upregulated according to PCR: CCL20, CCL7, IL-6, NFIL3, PTX3, SOCS1, and TLR2. These genes can be connected to macrophages, T cells, and recruitment of leukocytes. According to Ingenuity Pathway Analysis, the recruitment of leukocytes was increased by loading on day 3, which also was confirmed by histology. This inflammation-related gene response was not seen on day 14 Our results suggest that the immediate gene response after mechanical loading is similar in the early and late phases of healing but the late gene response is different.NEW & NOTEWORTHY This study investigates the direct effect of mechanical loading on gene expression during different healing phases in tendon healing. One isolated episode of mechanical loading was studied in otherwise unloaded healing tendons. This enabled us to study a time sequence, i.e., which genes were the first ones to be regulated after the loading episode.
Collapse
Affiliation(s)
- Malin Hammerman
- Orthopedics, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linkoping University, Linköping, Sweden
| | - Parmis Blomgran
- Orthopedics, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linkoping University, Linköping, Sweden
| | - Arie Dansac
- Orthopedics, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linkoping University, Linköping, Sweden
| | - Pernilla Eliasson
- Orthopedics, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linkoping University, Linköping, Sweden
| | - Per Aspenberg
- Orthopedics, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linkoping University, Linköping, Sweden
| |
Collapse
|
43
|
Ghatak S, Markwald RR, Hascall VC, Dowling W, Lottes RG, Baatz JE, Beeson G, Beeson CC, Perrella MA, Thannickal VJ, Misra S. Transforming growth factor β1 (TGFβ1) regulates CD44V6 expression and activity through extracellular signal-regulated kinase (ERK)-induced EGR1 in pulmonary fibrogenic fibroblasts. J Biol Chem 2017; 292:10465-10489. [PMID: 28389562 DOI: 10.1074/jbc.m116.752451] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 04/06/2017] [Indexed: 01/06/2023] Open
Abstract
The appearance of myofibroblasts is generally thought to be the underlying cause of the fibrotic changes that underlie idiopathic pulmonary fibrosis. However, the cellular/molecular mechanisms that account for the fibroblast-myofibroblast differentiation/activation in idiopathic pulmonary fibrosis remain poorly understood. We investigated the functional role of hyaluronan receptor CD44V6 (CD44 containing variable exon 6 (v6)) for differentiation of lung fibroblast to myofibroblast phenotype. Increased hyaluronan synthesis and CD44 expression have been detected in numerous fibrotic organs. Previously, we found that the TGFβ1/CD44V6 pathway is important in lung myofibroblast collagen-1 and α-smooth-muscle actin synthesis. Because increased EGR1 (early growth response-1) expression has been shown to appear very early and nearly coincident with the expression of CD44V6 found after TGFβ1 treatment, we investigated the mechanism(s) of regulation of CD44V6 expression in lung fibroblasts by TGFβ1. TGFβ1-mediated CD44V6 up-regulation was initiated through EGR1 via ERK-regulated transcriptional activation. We showed that TGFβ1-induced CD44V6 expression is through EGR1-mediated AP-1 (activator protein-1) activity and that the EGR1- and AP-1-binding sites in the CD44v6 promoter account for its responsiveness to TGFβ1 in lung fibroblasts. We also identified a positive-feedback loop in which ERK/EGR1 signaling promotes CD44V6 splicing and found that CD44V6 then sustains ERK signaling, which is important for AP-1 activity in lung fibroblasts. Furthermore, we identified that HAS2-produced hyaluronan is required for CD44V6 and TGFβRI co-localization and subsequent CD44V6/ERK1/EGR1 signaling. These results demonstrate a novel positive-feedback loop that links the myofibroblast phenotype to TGFβ1-stimulated CD44V6/ERK/EGR1 signaling.
Collapse
Affiliation(s)
- Shibnath Ghatak
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425,
| | - Roger R Markwald
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Vincent C Hascall
- the Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195
| | - William Dowling
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425.,the College of Charleston, Charleston, South Carolina 29424
| | | | | | - Gyada Beeson
- Drug Discovery and Biomedical sciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Craig C Beeson
- Drug Discovery and Biomedical sciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Mark A Perrella
- the Division of Pulmonary and Critical Care Medicine, Department of Medicine, and the Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, and
| | - Victor J Thannickal
- the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Suniti Misra
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425,
| |
Collapse
|
44
|
Karbiener M, Darnhofer B, Frisch MT, Rinner B, Birner-Gruenberger R, Gugatschka M. Comparative proteomics of paired vocal fold and oral mucosa fibroblasts. J Proteomics 2017; 155:11-21. [PMID: 28099887 PMCID: PMC5389448 DOI: 10.1016/j.jprot.2017.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/22/2016] [Accepted: 01/12/2017] [Indexed: 12/12/2022]
Abstract
Injuries of the vocal folds frequently heal with scar formation, which can have lifelong detrimental impact on voice quality. Current treatments to prevent or resolve scars of the vocal fold mucosa are highly unsatisfactory. In contrast, the adjacent oral mucosa is mostly resistant to scarring. These differences in healing tendency might relate to distinct properties of the fibroblasts populating oral and vocal fold mucosae. We thus established the in vitro cultivation of paired, near-primary vocal fold fibroblasts (VFF) and oral mucosa fibroblasts (OMF) to perform a basic cellular characterization and comparative cellular proteomics. VFF were significantly larger than OMF, proliferated more slowly, and exhibited a sustained TGF-β1-induced elevation of pro-fibrotic interleukin 6. Cluster analysis of the proteomic data revealed distinct protein repertoires specific for VFF and OMF. Further, VFF displayed a broader protein spectrum, particularly a more sophisticated array of factors constituting and modifying the extracellular matrix. Conversely, subsets of OMF-enriched proteins were linked to cellular proliferation, nuclear events, and protection against oxidative stress. Altogether, this study supports the notion that fibroblasts sensitively adapt to the functional peculiarities of their respective anatomical location and presents several molecular targets for further investigation in the context of vocal fold wound healing. BIOLOGICAL SIGNIFICANCE Mammalian vocal folds are a unique but delicate tissue. A considerable fraction of people is affected by voice problems, yet many of the underlying vocal fold pathologies are sparsely understood at the molecular level. One such pathology is vocal fold scarring - the tendency of vocal fold injuries to heal with scar formation -, which represents a clinical problem with highly suboptimal treatment modalities. This study employed proteomics to obtain comprehensive insight into the protein repertoire of vocal fold fibroblasts, which are the cells that predominantly synthesize the extracellular matrix in both physiological and pathophysiological conditions. Protein profiles were compared to paired fibroblasts from the oral mucosa, a neighboring tissue that is remarkably resistant to scarring. Bioinformatic analyses of the data revealed a number of pathways as well as single proteins (e.g. ECM-remodeling factors, transcription factors, enzymes) that were significantly different between the two fibroblast types. Thereby, this study has revealed novel interesting molecular targets which can be analyzed in the future for their impact on vocal fold wound healing.
Collapse
Affiliation(s)
- Michael Karbiener
- Department of Phoniatrics, ENT University Hospital, Medical University of Graz, Austria.
| | - Barbara Darnhofer
- Research Unit, Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Austria; Omics Center Graz, BioTechMed-Graz, Austria; Austrian Centre of Industrial Biotechnology (ACIB), Austria
| | - Marie-Therese Frisch
- Core Facility Alternative Biomodels und Preclinical Imaging, Division of Biomedical Research, Medical University of Graz, Austria
| | - Beate Rinner
- Core Facility Alternative Biomodels und Preclinical Imaging, Division of Biomedical Research, Medical University of Graz, Austria
| | - Ruth Birner-Gruenberger
- Research Unit, Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Austria; Omics Center Graz, BioTechMed-Graz, Austria; Austrian Centre of Industrial Biotechnology (ACIB), Austria
| | - Markus Gugatschka
- Department of Phoniatrics, ENT University Hospital, Medical University of Graz, Austria
| |
Collapse
|
45
|
Koistinen V, Härkönen K, Kärnä R, Arasu UT, Oikari S, Rilla K. EMT induced by EGF and wounding activates hyaluronan synthesis machinery and EV shedding in rat primary mesothelial cells. Matrix Biol 2016; 63:38-54. [PMID: 28043889 DOI: 10.1016/j.matbio.2016.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 12/10/2016] [Indexed: 12/20/2022]
Abstract
The mesothelium is a membrane that forms the lining of several body cavities. It is composed of simple squamous mesothelial cells that secrete a glycosaminoglycan-rich lubricating fluid between inner organs. One of the most abundant glycosaminoglycans of those fluids is hyaluronan, which is synthesized on a plasma membrane and especially on apical filopodia of cultured cells. Our recent study showed that similar hyaluronan-rich protrusions are found in mesothelial lining in vivo, which suggests that hyaluronan synthesis in plasma membrane protrusions is a general process. However, the mesothelial lining was negative for the hyaluronan receptor CD44 while in many previous studies cultured mesothelial cells have been shown to express CD44. To further explore these findings we induced epithelial to mesenchymal transition in primary rat mesothelial cells by EGF-treatment and scratch wounding. Surprisingly, the results showed that at a normal epithelial, confluent stage the mesothelial cells are negative for CD44, but EMT induced by EGF or wounding activates CD44 expression and the whole hyaluronan synthesis machinery. In addition to typical EMT-like morphological changes, the growth of apical filopodia and budding of extracellular vesicles (EVs) were induced. In summary, the results of this study show that the activation of hyaluronan synthesis machinery, especially the expression of CD44 is strongly associated with EMT induced by EGF and wounding in mesothelial cells. Moreover, EMT enhances the secretion of EVs that carry CD44 and hyaluronan, which may be important regulators in EV interactions with their targets and ECM remodeling. The results of the present study also suggest that CD44 is a potential marker for EVs, especially those secreted from cells during tissue repair and pathological processes.
Collapse
Affiliation(s)
- Ville Koistinen
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland.
| | - Kai Härkönen
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Riikka Kärnä
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Uma Thanigai Arasu
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Sanna Oikari
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Kirsi Rilla
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| |
Collapse
|
46
|
Wight TN. Provisional matrix: A role for versican and hyaluronan. Matrix Biol 2016; 60-61:38-56. [PMID: 27932299 DOI: 10.1016/j.matbio.2016.12.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/22/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022]
Abstract
Hyaluronan and versican are extracellular matrix (ECM) components that are enriched in the provisional matrices that form during the early stages of development and disease. These two molecules interact to create pericellular "coats" and "open space" that facilitate cell sorting, proliferation, migration, and survival. Such complexes also impact the recruitment of leukocytes during development and in the early stages of disease. Once thought to be inert components of the ECM that help hold cells together, it is now quite clear that they play important roles in controlling cell phenotype, shaping tissue response to injury and maintaining tissue homeostasis. Conversion of hyaluronan-/versican-enriched provisional matrix to collagen-rich matrix is a "hallmark" of tissue fibrosis. Targeting the hyaluronan and versican content of provisional matrices in a variety of diseases including, cardiovascular disease and cancer, is becoming an attractive strategy for intervention.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute, 1201 9th Avenue, Seattle, WA 98101, United States.
| |
Collapse
|
47
|
Ma J, Zhao N, Betts L, Zhu D. Bio-Adaption between Magnesium Alloy Stent and the Blood Vessel: A Review. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 2016; 32:815-826. [PMID: 27698548 PMCID: PMC5044878 DOI: 10.1016/j.jmst.2015.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Biodegradable magnesium (Mg) alloy stents are the most promising next generation of bio-absorbable stents. In this article, we summarized the progresses on the in vitro studies, animal testing and clinical trials of biodegradable Mg alloy stents in the past decades. These exciting findings led us to propose the importance of the concept "bio-adaption" between the Mg alloy stent and the local tissue microenvironment after implantation. The healing responses of stented blood vessel can be generally described in three overlapping phases: inflammation, granulation and remodeling. The ideal bio-adaption of the Mg alloy stent, once implanted into the blood vessel, needs to be a reasonable function of the time and the space/dimension. First, a very slow degeneration of mechanical support is expected in the initial four months in order to provide sufficient mechanical support to the injured vessels. Although it is still arguable whether full mechanical support in stented lesions is mandatory during the first four months after implantation, it would certainly be a safety design parameter and a benchmark for regulatory evaluations based on the fact that there is insufficient human in vivo data available, especially the vessel wall mechanical properties during the healing/remodeling phase. Second, once the Mg alloy stent being degraded, the void space will be filled by the regenerated blood vessel tissues. The degradation of the Mg alloy stent should be 100% completed with no residues, and the degradation products (e.g., ions and hydrogen) will be helpful for the tissue reconstruction of the blood vessel. Toward this target, some future research perspectives are also discussed.
Collapse
Affiliation(s)
- Jun Ma
- Department of Chemical, Biological and Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
- NSF Engineering Research Center-Revolutionizing Metallic Biomaterials, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Nan Zhao
- Department of Chemical, Biological and Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
- NSF Engineering Research Center-Revolutionizing Metallic Biomaterials, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Lexxus Betts
- Department of Chemical, Biological and Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
- NSF Engineering Research Center-Revolutionizing Metallic Biomaterials, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Donghui Zhu
- Department of Chemical, Biological and Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
- NSF Engineering Research Center-Revolutionizing Metallic Biomaterials, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| |
Collapse
|
48
|
|
49
|
Puperi DS, O’Connell RW, Punske ZE, Wu Y, West JL, Grande-Allen KJ. Hyaluronan Hydrogels for a Biomimetic Spongiosa Layer of Tissue Engineered Heart Valve Scaffolds. Biomacromolecules 2016; 17:1766-75. [PMID: 27120017 PMCID: PMC4986518 DOI: 10.1021/acs.biomac.6b00180] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advanced tissue engineered heart valves must be constructed from multiple materials to better mimic the heterogeneity found in the native valve. The trilayered structure of aortic valves provides the ability to open and close consistently over a full human lifetime, with each layer performing specific mechanical functions. The middle spongiosa layer consists primarily of proteoglycans and glycosaminoglycans, providing lubrication and dampening functions as the valve leaflet flexes open and closed. In this study, hyaluronan hydrogels were tuned to perform the mechanical functions of the spongiosa layer, provide a biomimetic scaffold in which valve cells were encapsulated in 3D for tissue engineering applications, and gain insight into how valve cells maintain hyaluronan homeostasis within heart valves. Expression of the HAS1 isoform of hyaluronan synthase was significantly higher in hyaluronan hydrogels compared to blank-slate poly(ethylene glycol) diacrylate (PEGDA) hydrogels. Hyaluronidase and matrix metalloproteinase enzyme activity was similar between hyaluronan and PEGDA hydrogels, even though these scaffold materials were each specifically susceptible to degradation by different enzyme types. KIAA1199 was expressed by valve cells and may play a role in the regulation of hyaluronan in heart valves. Cross-linked hyaluronan hydrogels maintained healthy phenotype of valve cells in 3D culture and were tuned to approximate the mechanical properties of the valve spongiosa layer. Therefore, hyaluronan can be used as an appropriate material for the spongiosa layer of a proposed laminate tissue engineered heart valve scaffold.
Collapse
Affiliation(s)
- Daniel S. Puperi
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Ronan W. O’Connell
- Department of Biomedical Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Zoe E. Punske
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Yan Wu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Jennifer L. West
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - K. Jane Grande-Allen
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
50
|
Martin J, Midgley A, Meran S, Woods E, Bowen T, Phillips AO, Steadman R. Tumor Necrosis Factor-stimulated Gene 6 (TSG-6)-mediated Interactions with the Inter-α-inhibitor Heavy Chain 5 Facilitate Tumor Growth Factor β1 (TGFβ1)-dependent Fibroblast to Myofibroblast Differentiation. J Biol Chem 2016; 291:13789-801. [PMID: 27143355 DOI: 10.1074/jbc.m115.670521] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Indexed: 11/06/2022] Open
Abstract
Fibroblasts are central to wound healing and fibrosis through TGFβ1-triggered differentiation into contractile, α-smooth muscle actin (α-SMA)-positive myofibroblasts. This is mediated by accumulation of a pericellular matrix of hyaluronan (HA) and the HA-dependent co-localization of CD44 with the epidermal growth factor receptor (EGFR). Interactions of HA with hyaladherins, such as inter-α-inhibitor (IαI) and tumor necrosis factor-stimulated gene-6 (TSG-6), are also essential for differentiation. This study investigated the mechanisms involved. TSG-6 and α-SMA had different kinetics of induction by TGFβ1, with TSG-6 peaking before α-SMA Si CD44 or EGFR inhibition prevented differentiation but had no effect on TSG-6 expression. TSG-6 was essential for differentiation, and mAb A38 (preventing IαI heavy chain (HC) transfer), HA-oligosaccharides, cobalt, or Si bikunin prevented TSG-6 activity, preventing differentiation. A38 also prevented the EGFR/CD44 association. This suggested that TSG-6/IαI HC interaction was necessary for the effect of TSG-6 and that HC stabilization of HA initiated the CD44/EGFR association. The newly described HC5 was shown to be the principal HC expressed, and its cell surface expression was prevented by siRNA inhibition of TSG-6 or bikunin. HC5 was released by hyaluronidase treatment, confirming its association with cell surface HA. Finally, HC5 knockdown by siRNA confirmed its role in myofibroblast differentiation. The current study describes a novel mechanism linking the TSG-6 transfer of the newly described HC5 to the HA-dependent control of cell phenotype. The interaction of HC5 with cell surface HA was essential for TGFβ1-dependent differentiation of fibroblasts to myofibroblasts, highlighting its importance as a novel potential therapeutic target.
Collapse
Affiliation(s)
- John Martin
- From the Department of Nephrology, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine and Cardiff Institute of Tissue Engineering and Repair, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Adam Midgley
- From the Department of Nephrology, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine and Cardiff Institute of Tissue Engineering and Repair, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Soma Meran
- From the Department of Nephrology, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine and Cardiff Institute of Tissue Engineering and Repair, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Emma Woods
- From the Department of Nephrology, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine and Cardiff Institute of Tissue Engineering and Repair, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Timothy Bowen
- From the Department of Nephrology, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine and Cardiff Institute of Tissue Engineering and Repair, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Aled O Phillips
- From the Department of Nephrology, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine and Cardiff Institute of Tissue Engineering and Repair, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Robert Steadman
- From the Department of Nephrology, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine and Cardiff Institute of Tissue Engineering and Repair, Heath Park, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|