1
|
Saloman JL, Epouhe AY, Ruff CF, Albers KM. PDX1, a transcription factor essential for organ differentiation, regulates SERCA-dependent Ca 2+ homeostasis in sensory neurons. Cell Calcium 2024; 120:102884. [PMID: 38574509 PMCID: PMC11188734 DOI: 10.1016/j.ceca.2024.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/13/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
Pancreatic and duodenal homeobox 1 (PDX1) is a transcription factor required for the development and differentiation of the pancreas. Previous studies indicated that PDX1 expression was restricted to the gastrointestinal tract. Using a cre-dependent reporter, we observed PDX1-dependent expression of tdtomato (PDX1-tom) in a subpopulation of sensory nerves. Many of these PDX1-tom afferents expressed the neurofilament 200 protein and projected to the skin. Tdtomato-labeled terminals were associated with hair follicles in the form of longitudinal and circumferential lanceolate endings suggesting a role in tactile and proprioceptive perception. To begin to examine the functional significance of PDX1 in afferents, we used Fura-2 imaging to examine calcium (Ca2+) handling under naïve and nerve injury conditions. Neuropathic injury is associated with increased intracellular Ca2+ signaling that in part results from dysregulation of the sarco/endoplasmic reticulum calcium transport ATPase (SERCA). Here we demonstrate that under naïve conditions, PDX1 regulates expression of the SERCA2B isoform in sensory neurons. In response to infraorbital nerve injury, a significant reduction of PDX1 and SERCA2B expression and dysregulation of Ca2+ handling occurs in PDX1-tom trigeminal ganglia neurons. The identification of PDX1 expression in the somatosensory system and its regulation of SERCA2B and Ca2+ handling provide a new mechanism to explain pathological changes in primary afferents that may contribute to pain associated with nerve injury.
Collapse
Affiliation(s)
- Jami L Saloman
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Neurobiology, Center for Neuroscience and Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Ariel Y Epouhe
- Department of Neurobiology, Center for Neuroscience and Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Catherine F Ruff
- Department of Neurobiology, Center for Neuroscience and Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kathryn M Albers
- Department of Neurobiology, Center for Neuroscience and Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Chen X, Sokirniy I, Wang X, Jiang M, Mseis-Jackson N, Williams C, Mayes K, Jiang N, Puls B, Du Q, Shi Y, Li H. MicroRNA-375 Is Induced during Astrocyte-to-Neuron Reprogramming and Promotes Survival of Reprogrammed Neurons when Overexpressed. Cells 2023; 12:2202. [PMID: 37681934 PMCID: PMC10486704 DOI: 10.3390/cells12172202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023] Open
Abstract
While astrocyte-to-neuron (AtN) reprogramming holds great promise in regenerative medicine, the molecular mechanisms that govern this unique biological process remain elusive. To understand the function of miRNAs during the AtN reprogramming process, we performed RNA-seq of both mRNAs and miRNAs on human astrocyte (HA) cultures upon NeuroD1 overexpression. Bioinformatics analyses showed that NeuroD1 not only activated essential neuronal genes to initiate the reprogramming process but also induced miRNA changes in HA. Among the upregulated miRNAs, we identified miR-375 and its targets, neuronal ELAVL genes (nELAVLs), which encode a family of RNA-binding proteins and were also upregulated by NeuroD1. We further showed that manipulating the miR-375 level regulated nELAVLs' expression during NeuroD1-mediated reprogramming. Interestingly, miR-375/nELAVLs were also induced by the reprogramming factors Neurog2 and ASCL1 in HA, suggesting a conserved function to neuronal reprogramming, and by NeuroD1 in the mouse astrocyte culture and spinal cord. Functionally, we showed that miR-375 overexpression improved NeuroD1-mediated reprogramming efficiency by promoting cell survival at early stages in HA and did not appear to compromise the maturation of the reprogrammed neurons. Lastly, overexpression of miR-375-refractory ELAVL4 induced apoptosis and reversed the cell survival-promoting effect of miR-375 during AtN reprogramming. Together, we demonstrated a neuroprotective role of miR-375 during NeuroD1-mediated AtN reprogramming.
Collapse
Affiliation(s)
- Xuanyu Chen
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Ivan Sokirniy
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xin Wang
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mei Jiang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Natalie Mseis-Jackson
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Christine Williams
- Department of Chemistry & Biochemistry, College of Science & Mathematics, Augusta University, Augusta, GA 30912, USA
| | - Kristopher Mayes
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Na Jiang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Brendan Puls
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Quansheng Du
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Yang Shi
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Division of Biostatistics and Data Science, Department of Population Health Sciences, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Hedong Li
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
3
|
Chen X, Sokirniy I, Wang X, Jiang M, Mseis-Jackson N, Williams C, Mayes K, Jiang N, Puls B, Du Q, Shi Y, Li H. MicroRNA-375 is induced during astrocyte-to-neuron reprogramming and promotes survival of reprogrammed neurons when overexpressed. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548401. [PMID: 37503054 PMCID: PMC10369893 DOI: 10.1101/2023.07.10.548401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
While astrocyte-to-neuron (AtN) reprogramming holds great promise in regenerative medicine, the molecular mechanisms that govern this unique biological process remain elusive. MicroRNAs (miRNAs), as post-transcriptional regulators of gene expression, play crucial roles during development and under various pathological conditions. To understand the function of miRNAs during AtN reprogramming process, we performed RNA-seq of both mRNAs and miRNAs on human astrocyte (HA) cultures upon NeuroD1 overexpression. Bioinformatics analyses showed that NeuroD1 not only activates essential neuronal genes to initiate reprogramming process but also induces miRNA changes in HA. Among the upregulated miRNAs, we identified miR-375 and its targets, neuronal ELAVL genes ( nELAVLs ), which encode a family of RNA-binding proteins and are also upregulated by NeuroD1. We further showed that manipulating miR-375 level regulates nELAVLs expression during NeuroD1-mediated reprogramming. Interestingly, miR-375/ nELAVLs are also induced by reprogramming factors Neurog2 and ASCL1 in HA suggesting a conserved function to neuronal reprogramming, and by NeuroD1 in the mouse astrocyte culture and spinal cord. Functionally, we showed that miR-375 overexpression improves NeuroD1-mediated reprogramming efficiency by promoting cell survival at early stages in HA even in cultures treated with the chemotherapy drug Cisplatin. Moreover, miR-375 overexpression doesn't appear to compromise maturation of the reprogrammed neurons in long term HA cultures. Lastly, overexpression of miR-375-refractory ELAVL4 induces apoptosis and reverses the cell survival-promoting effect of miR-375 during AtN reprogramming. Together, we demonstrate a neuro-protective role of miR-375 during NeuroD1-mediated AtN reprogramming and suggest a strategy of combinatory overexpression of NeuroD1 and miR-375 for improving neuronal reprogramming efficiency.
Collapse
|
4
|
Keller DM, Perez IG. Dual regulation of miR-375 and CREM genes in pancreatic beta cells. Islets 2022; 14:139-148. [PMID: 35377267 PMCID: PMC8986308 DOI: 10.1080/19382014.2022.2060688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
MicroRNA-375 (miR-375) is upregulated in the islets of some diabetics and is correlated with poor outcome. Previous work in our laboratory showed that cyclic adenosine monophosphate (cAMP) reduces miR-375 expression and could provide a way to restore normal miR-375 levels, however the transcription repression mechanism is unknown. Using a chromatin immunoprecipitation assay we show that cAMP response element modulator (CREM) binds to the miR-375 promoter 3-fold above background and we find that CREM represses transcription from the miR-375 promoter 1.8-fold. While investigating miR-375 target genes we discovered that several microRNA:mRNA target prediction algorithms listed human CREM as a target gene of miR-375. The predicted binding site is conserved in primates but not in other species. We found that indeed miR-375 binds to the predicted site on human CREM and represses translation of a green fluorescent protein reporter gene by 30%. These findings suggest a primate-specific double-negative feedback loop, a mechanism that would keep these important β-cell regulators in check.
Collapse
Affiliation(s)
- David M. Keller
- Department of Biological Sciences, California State University Chico, Chico, CA, USA
- CONTACT David M. Keller Department of Biological Sciences, California State University, Chico, 900 W. 1st St, Chico, CA95929 linkedin.com/in/keller-david-6529485b
| | - Isis G. Perez
- Department of Biological Sciences, California State University Chico, Chico, CA, USA
| |
Collapse
|
5
|
Yang X, Raum JC, Kim J, Yu R, Yang J, Rice G, Li C, Won KJ, Stanescu DE, Stoffers DA. A PDX1 cistrome and single-cell transcriptome resource of the developing pancreas. Development 2022; 149:dev200432. [PMID: 35708349 PMCID: PMC9340549 DOI: 10.1242/dev.200432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/31/2022] [Indexed: 09/09/2023]
Abstract
Pancreatic and duodenal homeobox 1 (PDX1) is crucial for pancreas organogenesis, yet the dynamic changes in PDX1 binding in human or mouse developing pancreas have not been examined. To address this knowledge gap, we performed PDX1 ChIP-seq and single-cell RNA-seq using fetal human pancreata. We integrated our datasets with published datasets and revealed the dynamics of PDX1 binding and potential cell lineage-specific PDX1-bound genes in the pancreas from fetal to adult stages. We identified a core set of developmentally conserved PDX1-bound genes that reveal the broad multifaceted role of PDX1 in pancreas development. Despite the well-known dramatic changes in PDX1 function and expression, we found that PDX1-bound genes are largely conserved from embryonic to adult stages. This points towards a dual role of PDX1 in regulating the expression of its targets at different ages, dependent on other functionally congruent or directly interacting partners. We also showed that PDX1 binding is largely conserved in mouse pancreas. Together, our study reveals PDX1 targets in the developing pancreas in vivo and provides an essential resource for future studies on pancreas development.
Collapse
Affiliation(s)
- Xiaodun Yang
- Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffrey C. Raum
- Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Junil Kim
- School of Systems Biomedical Science, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul 06978, Republic of Korea
| | - Reynold Yu
- Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juxiang Yang
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Gabriella Rice
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Changhong Li
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kyoung-Jae Won
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen 2200, Denmark
| | - Diana E. Stanescu
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Doris A. Stoffers
- Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Dong Y, Ruano SH, Mishra A, Pennington KA, Yallampalli C. Adrenomedullin and its receptors are expressed in mouse pancreatic β-cells and suppresses insulin synthesis and secretion. PLoS One 2022; 17:e0265890. [PMID: 35324977 PMCID: PMC8947024 DOI: 10.1371/journal.pone.0265890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is associated with defective pancreatic β-cell adaptation in pregnancy, but the underlying mechanism remains obscure. Our previous studies demonstrated that GDM women display increased plasma adrenomedullin (ADM) levels, and non-obese GDM mice show decreased serum concentrations of insulin and the number of β-cells in pancreas islets. The aims of this study is to examine if ADM and its receptors are expressed in female mouse pancreas, and if so, whether insulin secretion is regulated by ADM in mouse β-cell line, NIT-1 cells and isolated mouse pancreatic islets. Present study shows that ADM and its receptor components CRLR, RAMPs are present in mouse pancreatic islets and co-localized with insulin. The expressions of ADM, CRLR and RAMP2 in islets from pregnant mice are reduced compared to that of non-pregnant mice. NIT-1-β cells express ADM and its receptor mRNA, and glucose dose-dependently stimulates expressions. Furthermore, ADM inhibits NIT-1-β cell growth, and this inhibition is reversed by ADM antagonist, ADM22-52. The glucose-induced insulin secretion was suppressed by ADM in NIT-1-β cells and isolated pancreatic islets from pregnant mice. These inhibitory effects are accompanied by upregulation of endoplasmic reticulum (ER) stress biomarker genes in NIT-1-β cells. This study unveils that reduced ADM and its receptors may play a role in β-cell adaptation during pregnancy, while increased plasma ADM in GDM may contribute to the β-cells dysfunction, and blockade of ADM may reverse β-cell insulin production.
Collapse
Affiliation(s)
- Yuanlin Dong
- Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children’s Hospital, Houston, Texas, United States of America
| | - Simone Hernandez Ruano
- Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children’s Hospital, Houston, Texas, United States of America
| | - Akansha Mishra
- Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children’s Hospital, Houston, Texas, United States of America
| | - Kathleen A. Pennington
- Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children’s Hospital, Houston, Texas, United States of America
| | - Chandrasekhar Yallampalli
- Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children’s Hospital, Houston, Texas, United States of America
| |
Collapse
|
7
|
Yu SL, Jeong DU, Kang Y, Kim TH, Lee SK, Han AR, Kang J, Park SR. Impairment of Decidualization of Endometrial Stromal Cells by hsa-miR-375 Through NOX4 Targeting. Reprod Sci 2022; 29:3212-3221. [PMID: 35075615 PMCID: PMC9646565 DOI: 10.1007/s43032-022-00854-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/09/2022] [Indexed: 11/30/2022]
Abstract
Decidualization of the endometrial stromal cells (ESCs) is essential for successful embryo implantation. It involves the transformation of fibroblastic cells into epithelial-like cells that secrete cytokines, growth factors, and proteins necessary for implantation. Previous studies have revealed altered expression of miR-375 in the endometrium of patients with recurrent implantation failure and the ectopic stromal cells of patients with endometriosis. However, the exact molecular mechanisms, particularly the role of microRNAs (miRNAs) in the regulation of decidualization, remain elusive. In this study, we investigated whether decidualization is affected by miR-375 and its potential target(s). The findings demonstrated the downregulation of the expression of miR-375 in the secretory phase compared to its expression in the proliferative phase of the endometrium in normal donors. In contrast, it was upregulated in the secretory phase of the endometrium in infertility patients. Furthermore, during decidualization of ESCs in vitro, overexpression of miR-375 significantly reduced the transcript-level expression of forkhead box protein O1 (FOXO1), prolactin (PRL), and insulin-like growth factor binding protein-1 (IGFBP1), the well-known decidual cell markers. Overexpression of miR-375 also resulted in reduced decidualization-derived intracellular and mitochondrial reactive oxygen species (ROS) levels. Using the luciferase assay, we confirmed that NADPH oxidase 4 (NOX4) is a direct target of miR-375. Collectively, the study showed that the miR-375-mediated NOX4 downregulation reduced ROS production and attenuated the decidualization of ESCs. It provides evidence that miR-375 is a negative regulator of decidualization and could serve as a potential target for combating infertility.
Collapse
Affiliation(s)
- Seong-Lan Yu
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Da-Un Jeong
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Yujin Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Tae-Hyun Kim
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea.,Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon, Republic of Korea
| | - Sung Ki Lee
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea.,Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon, Republic of Korea
| | - Ae-Ra Han
- I-Dream Clinic, Department of Obstetrics and Gynecology, Mizmedi Hospital, Seoul, Republic of Korea.,Myonggok Medical Research Center, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Jaeku Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea. .,Department of Pharmacology, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea.
| | - Seok-Rae Park
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea. .,Department of Microbiology, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea.
| |
Collapse
|
8
|
Bishayee K, Habib K, Nazim UM, Kang J, Szabo A, Huh SO, Sadra A. RNA binding protein HuD promotes autophagy and tumor stress survival by suppressing mTORC1 activity and augmenting ARL6IP1 levels. J Exp Clin Cancer Res 2022; 41:18. [PMID: 35012594 PMCID: PMC8744261 DOI: 10.1186/s13046-021-02203-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
Background Neuronal-origin HuD (ELAVL4) is an RNA binding protein overexpressed in neuroblastoma (NB) and certain other cancers. The RNA targets of this RNA binding protein in neuroblastoma cells and their role in promoting cancer survival have been unexplored. In the study of modulators of mTORC1 activity under the conditions of optimal cell growth and starvation, the role of HuD and its two substrates were studied. Methods RNA immunoprecipitation/sequencing (RIP-SEQ) coupled with quantitative real-time PCR were used to identify substrates of HuD in NB cells. Validation of the two RNA targets of HuD was via reverse capture of HuD by synthetic RNA oligoes from cell lysates and binding of RNA to recombinant forms of HuD in the cell and outside of the cell. Further analysis was via RNA transcriptome analysis of HuD silencing in the test cells. Results In response to stress, HuD was found to dampen mTORC1 activity and allow the cell to upregulate its autophagy levels by suppressing mTORC1 activity. Among mRNA substrates regulated cell-wide by HuD, GRB-10 and ARL6IP1 were found to carry out critical functions for survival of the cells under stress. GRB-10 was involved in blocking mTORC1 activity by disrupting Raptor-mTOR kinase interaction. Reduced mTORC1 activity allowed lifting of autophagy levels in the cells required for increased survival. In addition, ARL6IP1, an apoptotic regulator in the ER membrane, was found to promote cell survival by negative regulation of apoptosis. As a therapeutic target, knockdown of HuD in two xenograft models of NB led to a block in tumor growth, confirming its importance for viability of the tumor cells. Cell-wide RNA messages of these two HuD substrates and HuD and mTORC1 marker of activity significantly correlated in NB patient populations and in mouse xenografts. Conclusions HuD is seen as a novel means of promoting stress survival in this cancer type by downregulating mTORC1 activity and negatively regulating apoptosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02203-2.
Collapse
Affiliation(s)
- Kausik Bishayee
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, South Korea
| | - Khadija Habib
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, South Korea
| | - Uddin Md Nazim
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, South Korea
| | - Jieun Kang
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, South Korea
| | - Aniko Szabo
- Department of Anatomy, Alfaisal University, College of Medicine, Riyadh, Kingdom of Saudi Arabia
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, South Korea.
| | - Ali Sadra
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, South Korea.
| |
Collapse
|
9
|
Tonyan ZN, Nasykhova YA, Mikhailova AA, Glotov AS. MicroRNAs as Potential Biomarkers of Type 2 Diabetes Mellitus. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421060107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Evidence from oyster suggests an ancient role for Pdx in regulating insulin gene expression in animals. Nat Commun 2021; 12:3117. [PMID: 34035261 PMCID: PMC8149454 DOI: 10.1038/s41467-021-23216-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Hox and ParaHox genes encode transcription factors with similar expression patterns in divergent animals. The Pdx (Xlox) homeobox gene, for example, is expressed in a sharp spatial domain in the endodermal cell layer of the gut in chordates, echinoderms, annelids and molluscs. The significance of comparable gene expression patterns is unclear because it is not known if downstream transcriptional targets are also conserved. Here, we report evidence indicating that a classic transcriptional target of Pdx1 in vertebrates, the insulin gene, is a likely direct target of Pdx in Pacific oyster adults. We show that one insulin-related gene, cgILP, is co-expressed with cgPdx in oyster digestive tissue. Transcriptomic comparison suggests that this tissue plays a similar role to the vertebrate pancreas. Using ATAC-seq and ChIP, we identify an upstream regulatory element of the cgILP gene which shows binding interaction with cgPdx protein in oyster hepatopancreas and demonstrate, using a cell culture assay, that the oyster Pdx can act as a transcriptional activator through this site, possibly in synergy with NeuroD. These data argue that a classic homeodomain-target gene interaction dates back to the origin of Bilateria. In vertebrates insulin is a direct transcriptional target of Pdx: the same is true in Pacific oysters and the authors show insulin-related gene, cgILP, is co-expressed with cgPdx in oyster digestive tissue, showing this gene interaction dates back to the origin of Bilateria.
Collapse
|
11
|
Soltani A, Jafarian A, Allameh A. The Predominant microRNAs in β-cell Clusters for Insulin Regulation and Diabetic Control. Curr Drug Targets 2021; 21:722-734. [PMID: 31886749 DOI: 10.2174/1389450121666191230145848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022]
Abstract
micro (mi)-RNAs are vital regulators of multiple processes including insulin signaling pathways and glucose metabolism. Pancreatic β-cells function is dependent on some miRNAs and their target mRNA, which together form a complex regulative network. Several miRNAs are known to be directly involved in β-cells functions such as insulin expression and secretion. These small RNAs may also play significant roles in the fate of β-cells such as proliferation, differentiation, survival and apoptosis. Among the miRNAs, miR-7, miR-9, miR-375, miR-130 and miR-124 are of particular interest due to being highly expressed in these cells. Under diabetic conditions, although no specific miRNA profile has been noticed, the expression of some miRNAs and their target mRNAs are altered by posttranscriptional mechanisms, exerting diverse signs in the pathobiology of various diabetic complications. The aim of this review article is to discuss miRNAs involved in the process of stem cells differentiation into β-cells, resulting in enhanced β-cell functions with respect to diabetic disorders. This paper will also look into the impact of miRNA expression patterns on in vitro proliferation and differentiation of β-cells. The efficacy of the computational genomics and biochemical analysis to link the changes in miRNA expression profiles of stem cell-derived β-cells to therapeutically relevant outputs will be discussed as well.
Collapse
Affiliation(s)
- Adele Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arefeh Jafarian
- Immunology, Asthma, and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
β-Cell specific transcription factors in the context of diabetes mellitus and β-cell regeneration. Mech Dev 2020; 163:103634. [PMID: 32711047 DOI: 10.1016/j.mod.2020.103634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
All pancreatic cell populations arise from the standard gut endoderm layer in developing embryos, requiring a regulatory gene network to originate and maintain endocrine lineages and endocrine function. The pancreatic organogenesis is regulated by the temporal expression of transcription factors and plays a diverse role in the specification, development, differentiation, maturation, and functional maintenance. Altered expression and activity of these transcription factors are often associated with diabetes mellitus. Recent advancements in the stem cells and invitro derived islets to treat diabetes mellitus has attracted a great deal of interest in the understanding of factors regulating the development, differentiation, and functions of islets including transcription factors. This review discusses the myriad of transcription factors regulating the development of the pancreas, differentiation of β-islets, and how these factors regulated in normal and disease states. Exploring these factors in such critical context and exogenous or endogenous expression of development and differentiation-specific transcription factors with improved epigenetic plasticity/signaling axis in diabetic milieu would useful for the development of β-cells from other cell sources.
Collapse
|
13
|
Eliasson L, Esguerra JLS. MicroRNA Networks in Pancreatic Islet Cells: Normal Function and Type 2 Diabetes. Diabetes 2020; 69:804-812. [PMID: 32312896 PMCID: PMC7171954 DOI: 10.2337/dbi19-0016] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
Impaired insulin secretion from the pancreatic β-cells is central in the pathogenesis of type 2 diabetes (T2D), and microRNAs (miRNAs) are fundamental regulatory factors in this process. Differential expression of miRNAs contributes to β-cell adaptation to compensate for increased insulin resistance, but deregulation of miRNA expression can also directly cause β-cell impairment during the development of T2D. miRNAs are small noncoding RNAs that posttranscriptionally reduce gene expression through translational inhibition or mRNA destabilization. The nature of miRNA targeting implies the presence of complex and large miRNA-mRNA regulatory networks in every cell, including the insulin-secreting β-cell. Here we exemplify one such network using our own data on differential miRNA expression in the islets of T2D Goto-Kakizaki rat model. Several biological processes are influenced by multiple miRNAs in the β-cell, but so far most studies have focused on dissecting the mechanism of action of individual miRNAs. In this Perspective we present key islet miRNA families involved in T2D pathogenesis including miR-200, miR-7, miR-184, miR-212/miR-132, and miR-130a/b/miR-152. Finally, we highlight four challenges and opportunities within islet miRNA research, ending with a discussion on how miRNAs can be utilized as therapeutic targets contributing to personalized T2D treatment strategies.
Collapse
Affiliation(s)
- Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre; Department of Clinical Sciences Malmö, Lund University; and Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Jonathan L S Esguerra
- Islet Cell Exocytosis, Lund University Diabetes Centre; Department of Clinical Sciences Malmö, Lund University; and Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
14
|
Aghaei M, Khodadadian A, Elham KN, Nazari M, Babakhanzadeh E. Major miRNA Involved in Insulin Secretion and Production in Beta-Cells. Int J Gen Med 2020; 13:89-97. [PMID: 32210605 PMCID: PMC7071856 DOI: 10.2147/ijgm.s249011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022] Open
Abstract
Insulin is implicated as a leading factor in glucose homeostasis and an important theme in diabetes mellitus (DM). Numerous proteins are involved in insulin signaling pathway and their dysregulation contributes to DM. microRNAs (miRNAs) as single-strand molecules have a critical effect on gene expression at post-transcriptional levels. Intensive investigation done by DM researchers disclosed that miRNAs have a significant role in insulin secretion by direct targeting numerous proteins engaged in insulin signaling pathway; so, their dysregulation contributes to DM. In this review, we presented some major miRNAs engaged in the insulin production and secretion.
Collapse
Affiliation(s)
- Mohsen Aghaei
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Khodadadian
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Karimi-Nazari Elham
- Nutrition and Food Security Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
15
|
Micro(RNA) Management and Mismanagement of the Islet. J Mol Biol 2020; 432:1419-1428. [DOI: 10.1016/j.jmb.2019.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023]
|
16
|
Wan S, Zhang J, Chen X, Lang J, Li L, Chen F, Tian L, Meng Y, Yu X. MicroRNA-17-92 Regulates Beta-Cell Restoration After Streptozotocin Treatment. Front Endocrinol (Lausanne) 2020; 11:9. [PMID: 32038500 PMCID: PMC6989481 DOI: 10.3389/fendo.2020.00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/07/2020] [Indexed: 02/05/2023] Open
Abstract
Objective: To clarify the role and mechanism of miR-17-92 cluster in islet beta-cell repair after streptozotocin intervention. Methods: Genetically engineered mice (miR-17-92βKO) and control RIP-Cre mice were intraperitoneally injected with multiple low dose streptozotocin. Body weight, random blood glucose (RBG), fasting blood glucose, and intraperitoneal glucose tolerance test (IPGTT) were monitored regularly. Mice were sacrificed for histological analysis 8 weeks later. Morphological changes of pancreas islets, quantity, quality, apoptosis, and proliferation of beta-cells were measured. Islets from four groups were isolated. MiRNA and mRNA were extracted and quantified. Results:MiR-17-92βKO mice showed dramatically elevated fasting blood glucose and impaired glucose tolerance after streptozotocin treatment in contrast to control mice, the reason of which is reduced beta-cell number and total mass resulting from reduced proliferation, enhanced apoptosis of beta-cells. Genes related to cell proliferation and insulin transcription repression were significantly elevated in miR-17-92βKO mice treated with streptozotocin. Furthermore, genes involved in DNA biosynthesis and damage repair were dramatically increased in miR-17-92βKO mice with streptozotocin treatment. Conclusion: Collectively, our results demonstrate that homozygous deletion of miR-17-92 cluster in mouse pancreatic beta-cells promotes the development of experimental diabetes, indicating that miR-17-92 cluster may be positively related to beta-cells restoration and adaptation after streptozotocin-induced damage.
Collapse
Affiliation(s)
- Shan Wan
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhang
- Histology and Imaging Platform, Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiangli Lang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Histology and Imaging Platform, Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Fei Chen
- Histology and Imaging Platform, Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Li Tian
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Meng
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xijie Yu ;
| |
Collapse
|
17
|
Brandhorst H, Brandhorst D, Abraham A, Acreman S, Schive SW, Scholz H, Johnson PR. Proteomic Profiling Reveals the Ambivalent Character of the Mesenchymal Stem Cell Secretome: Assessing the Effect of Preconditioned Media on Isolated Human Islets. Cell Transplant 2020; 29:963689720952332. [PMID: 33150790 PMCID: PMC7784517 DOI: 10.1177/0963689720952332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022] Open
Abstract
Previous studies in rodents have indicated that function and survival of transplanted islets can be substantially improved by mesenchymal stem cells (MSC). The few human islet studies to date have confirmed these findings but have not determined whether physical contact between MSC and islets is required or whether the benefit to islets results from MSC-secreted proteins. This study aimed to investigate the protective capacity of MSC-preconditioned media for human islets. MSC were cultured for 2 or 5 days in normoxia or hypoxia before harvesting the cell-depleted media for human islet culture in normoxia or hypoxia for 6-8 or 3-4 days, respectively. To characterize MSC-preconditioned media, proteomic secretome profiling was performed to identify angiogenesis- and inflammation-related proteins. A protective effect of MSC-preconditioned media on survival and in vitro function of hypoxic human islets was observed irrespective of the atmosphere used for MSC preconditioning. Islet morphology changed markedly when media from hypoxic MSC were used for culture. However, PDX-1 and insulin gene expression did not confirm a change in the genetic phenotype of these islets. Proteomic profiling of preconditioned media revealed the heterogenicity of the secretome comprising angiogenic and antiapoptotic as well as angiostatic or proinflammatory mediators released at an identical pattern regardless whether MSC had been cultured in normoxic or hypoxic atmosphere. These findings do not allow a clear discrimination between normoxia and hypoxia as stimulus for protective MSC capabilities but indicate an ambivalent character of the MSC angiogenesis- and inflammation-related secretome. Nevertheless, culture of human islets in acellular MSC-preconditioned media resulted in improved morphological and functional islet integrity suggesting a disbalance in favor of protective factors. Further approaches should aim to eliminate potentially detrimental factors to enable the production of advanced clinical grade islet culture media with higher protective qualities.
Collapse
Affiliation(s)
- Heide Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Daniel Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Anju Abraham
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Samuel Acreman
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Simen W. Schive
- Department of Transplantation Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Hanne Scholz
- Department of Transplantation Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Paul R.V. Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Rosado JA, Diez-Bello R, Salido GM, Jardin I. Fine-tuning of microRNAs in Type 2 Diabetes Mellitus. Curr Med Chem 2019; 26:4102-4118. [PMID: 29210640 DOI: 10.2174/0929867325666171205163944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus is a metabolic disease widely spread across industrialized countries. Sedentary lifestyle and unhealthy alimentary habits lead to obesity, boosting both glucose and fatty acid in the bloodstream and eventually, insulin resistance, pancreas inflammation and faulty insulin production or secretion, all of them very well-defined hallmarks of type 2 diabetes mellitus. miRNAs are small sequences of non-coding RNA that may regulate several processes within the cells, fine-tuning protein expression, with an unexpected and subtle precision and in time-frames ranging from minutes to days. Since the discovery of miRNA and their possible implication in pathologies, several groups aimed to find a relationship between type 2 diabetes mellitus and miRNAs. Here we discuss the pattern of expression of different miRNAs in cultured cells, animal models and diabetic patients. We summarize the role of the most important miRNAs involved in pancreas growth and development, insulin secretion and liver, skeletal muscle or adipocyte insulin resistance in the context of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Juan A Rosado
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Raquel Diez-Bello
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Ginés M Salido
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Isaac Jardin
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| |
Collapse
|
19
|
Scharfmann R, Staels W, Albagli O. The supply chain of human pancreatic β cell lines. J Clin Invest 2019; 129:3511-3520. [PMID: 31478912 PMCID: PMC6715382 DOI: 10.1172/jci129484] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Patients with type 1 or type 2 diabetes have an insufficiency in their functional β cell mass. To advance diabetes treatment and to work toward a cure, a better understanding of how to protect the pancreatic β cells against autoimmune or metabolic assaults (e.g., obesity, gestation) will be required. Over the past decades, β cell protection has been extensively investigated in rodents both in vivo and in vitro using isolated islets or rodent β cell lines. Transferring these rodent data to humans has long been challenging, at least partly for technical reasons: primary human islet preparations were scarce and functional human β cell lines were lacking. In 2011, we described a robust protocol of targeted oncogenesis in human fetal pancreas and produced the first functional human β cell line, and in subsequent years additional lines with specific traits. These cell lines are currently used by more than 150 academic and industrial laboratories worldwide. In this Review, we first explain how we developed the human β cell lines and why we think we succeeded where others, despite major efforts, did not. Next, we discuss the use of such functional human β cell lines and share some perspectives on their use to advance diabetes research.
Collapse
Affiliation(s)
- Raphael Scharfmann
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| | - Willem Staels
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels, Belgium
| | - Olivier Albagli
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| |
Collapse
|
20
|
Guo J, Yang C, Zhang S, Liang M, Qi J, Wang Z, Peng Y, Sun B. MiR-375 induces ROS and apoptosis in ST cells by targeting the HIGD1A gene. Gene 2019; 685:136-142. [DOI: 10.1016/j.gene.2018.10.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/09/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
|
21
|
Abstract
PURPOSE OF REVIEW Islet transplantation, an important approach to achieve insulin independence for individuals with type 1 diabetes, is limited by the lack of accurate biomarkers to track beta-cell death post islet infusion. In this review, we will discuss existing and recently described biomarkers. RECENT FINDINGS As beta cells are killed by the immune system, fragments of beta cell-specific cell-free DNA and proteins are released into the periphery. Several different strategies to identify these fragments have been described. Some circulating, non-coding microRNAs, particularly miRNA-375 are also showing potential to reflect the rate of beta cell loss post-clinical islet transplantation. Recent advances in identifying accurate beta cell-specific biomarkers such as differentially methylated insulin cell-free DNA and circulating miRNA-375 may help predict clinical outcomes. More studies are required to examine the robustness of these biomarkers to detect chronic beta-cell loss in islet transplantation recipients.
Collapse
Affiliation(s)
- Fatimah T. AlRashidi
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Level 2, Learning and Research, Southmead Hospital, Bristol, BS10 5NB UK
| | - Kathleen M. Gillespie
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Level 2, Learning and Research, Southmead Hospital, Bristol, BS10 5NB UK
| |
Collapse
|
22
|
Arvidsson Y, Rehammar A, Bergström A, Andersson E, Altiparmak G, Swärd C, Wängberg B, Kristiansson E, Nilsson O. miRNA profiling of small intestinal neuroendocrine tumors defines novel molecular subtypes and identifies miR-375 as a biomarker of patient survival. Mod Pathol 2018; 31:1302-1317. [PMID: 29487354 DOI: 10.1038/s41379-018-0010-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022]
Abstract
The aim of this study was to define the miRNA profile of small intestinal neuroendocrine tumors and to search for novel molecular subgroups and prognostic biomarkers. miRNA profiling was conducted on 42 tumors from 37 patients who underwent surgery for small intestinal neuroendocrine tumors. Unsupervised hierarchical clustering analysis of miRNA profiles identified two groups of tumor metastases, denoted cluster M1 and M2. The smaller cluster M1 was associated with shorter overall survival and contained tumors with higher grade (WHO grade G2/3) and multiple chromosomal gains including gain of chromosome 14. Tumors of cluster M1 had elevated expression of miR-1246 and miR-663a, and reduced levels of miR-488-3p. Pathway analysis predicted Wnt signaling to be the most significantly altered signaling pathway between clusters M1 and M2. Analysis of miRNA expression in relation to tumor proliferation rate showed significant alterations including downregulation of miR-137 and miR-204-5p in tumors with Ki67 index above 3%. Similarly, tumor progression was associated with significant alterations in miRNA expression, e.g. higher expression of miR-95 and miR-210, and lower expression of miR-378a-3p in metastases. Pathway analysis predicted Wnt signaling to be altered during tumor progression, which was supported by decreased nuclear translocation of β-catenin in metastases. Survival analysis revealed that downregulation of miR-375 was associated with shorter overall survival. We performed in situ hybridization on biopsies from an independent cohort of small intestinal neuroendocrine tumors using tissue microarrays. Expression of miR-375 was found in 578/635 (91%) biopsies and survival analysis confirmed that there was a correlation between downregulation of miR-375 in tumor metastases and shorter patient survival. We conclude that miRNA profiling defines novel molecular subgroups of metastatic small intestinal neuroendocrine tumors and identifies miRNAs associated with tumor proliferation rate and progression. miR-375 is highly expressed in small intestinal neuroendocrine tumors and may be used as a prognostic biomarker.
Collapse
Affiliation(s)
- Yvonne Arvidsson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Anna Rehammar
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Anders Bergström
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ellinor Andersson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Gülay Altiparmak
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christina Swärd
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Bo Wängberg
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Ola Nilsson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Li H, Wang Z, Li Y, Fang R, Wang H, Shi H, Zhang X, Zhang W, Ye L. Hepatitis B X-interacting protein promotes the formation of the insulin gene-transcribing protein complex Pdx-1/Neurod1 in animal pancreatic β-cells. J Biol Chem 2017; 293:2053-2065. [PMID: 29259128 DOI: 10.1074/jbc.m117.809582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/04/2017] [Indexed: 12/26/2022] Open
Abstract
The activation of insulin gene transcription depends on multiple nuclear proteins, including the transcription factors PDX-1 and NEUROD1, which form a transcriptional complex. We recently reported that hepatitis B X-interacting protein (HBXIP, also termed LAMTOR5) can modulate glucose metabolism reprogramming in cancer cells. However, the physiological role of HBXIP in the modulation of glucose metabolism in normal tissues is poorly understood. Here, we report that Hbxip is an essential regulator of the effect of the Pdx-1/Neurod1 complex on insulin gene transcription in murine pancreatic β-cells in vitro and in vivo We found that pancreatic β-cell-specific Hbxip-knockout mice displayed higher fasting blood glucose levels and impaired glucose tolerance. Furthermore, Hbxip was involved in the regulation of insulin in the pancreas islets and increased insulin gene expression in rat pancreatic β-cells. Mechanistically, Hbxip stimulated insulin enhancer activity by interacting with Pdx-1 and recruiting Neurod1 to Pdx-1. Functionally, we provide evidence that Hbxip is required for Pdx-1/Neurod1-mediated insulin expression in rat pancreatic β-cells. Collectively, these results indicate that Hbxip is involved in the transcription of insulin by increasing the levels of the Pdx-1/Neurod1 complex in animal pancreatic β-cells. Our finding provides the insight into the mechanism by which Hbxip stimulates the transcription of the insulin gene.
Collapse
Affiliation(s)
- Hang Li
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Zhen Wang
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Yinghui Li
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Runping Fang
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Huawei Wang
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Hui Shi
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Xiaodong Zhang
- Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiying Zhang
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Lihong Ye
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| |
Collapse
|
24
|
Eliasson L. The small RNA miR-375 - a pancreatic islet abundant miRNA with multiple roles in endocrine beta cell function. Mol Cell Endocrinol 2017; 456:95-101. [PMID: 28254488 DOI: 10.1016/j.mce.2017.02.043] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/20/2017] [Accepted: 02/26/2017] [Indexed: 12/21/2022]
Abstract
The pathophysiology of diabetes is complex and recent research put focus on the pancreatic islets of Langerhans and the insulin-secreting beta cells as central in the development of the disease. MicroRNAs (miRNAs), the small non-coding RNAs regulating post-transcriptional gene expression, are significant regulators of beta cell function. One of the most abundant miRNAs in the islets is miR-375. This review focus on the role of miR-375 in beta cell function, including effects in development and differentiation, proliferation and regulation of insulin secretion. It also discusses the regulation of miR-375 expression, miR-375 as a potential circulating biomarker in type 1 and type 2 diabetes, and the need for the beta cell to keep expression of miR-375 within optimal levels. The summed picture of miR-375 is a miRNA with multiple functions with importance in the formation of beta cell identity, control of beta cell mass and regulation of insulin secretion.
Collapse
Affiliation(s)
- Lena Eliasson
- Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences in Malmö, Lund University, CRC, SUS Malmö, Malmö, Sweden.
| |
Collapse
|
25
|
Martinez-Sanchez A, Rutter GA, Latreille M. MiRNAs in β-Cell Development, Identity, and Disease. Front Genet 2017; 7:226. [PMID: 28123396 PMCID: PMC5225124 DOI: 10.3389/fgene.2016.00226] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/21/2016] [Indexed: 12/22/2022] Open
Abstract
Pancreatic β-cells regulate glucose metabolism by secreting insulin, which in turn stimulates the utilization or storage of the sugar by peripheral tissues. Insulin insufficiency and a prolonged period of insulin resistance are usually the core components of type 2 diabetes (T2D). Although, decreased insulin levels in T2D have long been attributed to a decrease in β-cell function and/or mass, this model has recently been refined with the recognition that a loss of β-cell “identity” and dedifferentiation also contribute to the decline in insulin production. MicroRNAs (miRNAs) are key regulatory molecules that display tissue-specific expression patterns and maintain the differentiated state of somatic cells. During the past few years, great strides have been made in understanding how miRNA circuits impact β-cell identity. Here, we review current knowledge on the role of miRNAs in regulating the acquisition of the β-cell fate during development and in maintaining mature β-cell identity and function during stress situations such as obesity, pregnancy, aging, or diabetes. We also discuss how miRNA function could be harnessed to improve our ability to generate β-cells for replacement therapy for T2D.
Collapse
Affiliation(s)
- Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London London, UK
| | - Mathieu Latreille
- Cellular Identity and Metabolism Group, MRC London Institute of Medical SciencesLondon, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College LondonLondon, UK
| |
Collapse
|
26
|
Sharma S, Mathew AB, Chugh J. miRNAs: Nanomachines That Micromanage the Pathophysiology of Diabetes Mellitus. Adv Clin Chem 2017; 82:199-264. [PMID: 28939211 DOI: 10.1016/bs.acc.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus (DM) refers to a combination of heterogeneous complex metabolic disorders that are associated with episodes of hyperglycemia and glucose intolerance occurring as a result of defects in insulin secretion, action, or both. The prevalence of DM is increasing at an alarming rate, and there exists a need to develop better therapeutics and prognostic markers for earlier detection and diagnosis. In this review, after giving a brief introduction of diabetes mellitus and microRNA (miRNA) biogenesis pathway, we first describe various in vitro and animal model systems that have been developed to study diabetes. Further, we elaborate on the significant roles played by miRNAs as regulators of gene expression in the context of development of diabetes and its secondary complications. The different approaches to quantify miRNAs and their potential to be used as therapeutic targets for alleviation of diabetes have also been discussed.
Collapse
|
27
|
Hashimoto N, Tanaka T. Role of miRNAs in the pathogenesis and susceptibility of diabetes mellitus. J Hum Genet 2016; 62:141-150. [PMID: 27928162 DOI: 10.1038/jhg.2016.150] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/23/2016] [Accepted: 11/04/2016] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs of ~22 nucleotides that regulate gene expression post-transcriptionally by binding to the 3' untranslated region of messenger RNA (mRNAs), resulting in inhibition of translation or mRNA degradation. miRNAs have a key role in fine-tuning cellular functions such as proliferation, differentiation and apoptosis, and they are involved in carcinogenesis, glucose homeostasis, inflammation and other biological processes. In this review, we focus on the role of miRNAs in the pathophysiology of the metabolic disease and diabetes mellitus, the hallmark of which is hyperglycemia caused by defective insulin secretion and/or action. A growing number of studies have revealed the association between miRNAs and the processes of insulin production and secretion in pancreatic β cells. In addition, aberrant expression of miRNAs in skeletal muscle, adipose tissue and liver has also been reported. Intriguingly, the tumor suppressor p53 has been implicated in the pathogenesis of diabetes in association with a number of miRNAs, suggesting that a p53/miRNA pathway might be a therapeutic target. Moreover, data from genome-wide association studies have revealed that several miRNA target sequences overlap type 2 diabetes susceptibility loci. Finally, the recent discovery of circulating miRNAs associated with diabetes onset/progression suggests the potential use of miRNAs as biomarkers.
Collapse
Affiliation(s)
- Naoko Hashimoto
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Diabetes, Endocrinology and Metabolism, Chiba University Hospital, Chiba, Japan.,AMED-CREST, AMED, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Tomoaki Tanaka
- Division of Diabetes, Endocrinology and Metabolism, Chiba University Hospital, Chiba, Japan.,AMED-CREST, AMED, Japan Agency for Medical Research and Development, Tokyo, Japan.,Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
28
|
A Presenilin/Notch1 pathway regulated by miR-375, miR-30a, and miR-34a mediates glucotoxicity induced-pancreatic beta cell apoptosis. Sci Rep 2016; 6:36136. [PMID: 27804997 PMCID: PMC5095347 DOI: 10.1038/srep36136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023] Open
Abstract
The presenilin-mediated Notch1 cleavage pathway plays a critical role in controlling pancreatic beta cell fate and survival. The aim of the present study was to investigate the role of Notch1 activation in glucotoxicity-induced beta cell impairment and the contributions of miR-375, miR-30a, and miR-34a to this pathway. We found that the protein levels of presenilins (PSEN1 and PSEN2), and NOTCH1 were decreased in INS-1 cells after treatment with increased concentrations of glucose, whereas no significant alteration of mRNA level of Notch1 was observed. Targeting of miR-375, miR-30a, and miR-34a to the 3′utr of Psen1, Psen2, and Notch1, respectively, reduced the amounts of relevant proteins, thereby reducing NICD1 amounts and causing beta cell apoptosis. Overexpression of NICD1 blocked the effects of glucotoxicity as well as miRNA overabundance. Downregulating the expression of miR-375, miR-30a, and miR-34a restored PSEN1, PSEN2, and NICD1 production and prevented glucotoxicity-induced impairment of the beta cells. These patterns of miRNA regulation of the Notch1 cleavage pathway were reproduced in GK rats as well as in aged rats. Our findings demonstrated that miRNA-mediated suppression of NICD1 links the presenilin/Notch1 pathway to glucotoxicity in mature pancreatic beta cells.
Collapse
|
29
|
Kaviani M, Azarpira N, Karimi MH, Al-Abdullah I. The role of microRNAs in islet β-cell development. Cell Biol Int 2016; 40:1248-1255. [PMID: 27743454 DOI: 10.1002/cbin.10691] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 10/12/2016] [Indexed: 01/09/2023]
Abstract
Cell-based therapies suggest novel treatments to overcome the complication of the current therapeutic approaches in diabetes mellitus type 1. Replacement of the destroyed pancreatic islet β-cells by appropriate alternative cells needs an efficient approach to differentiate the cells into viable and functional insulin producing cells. Small non-coding RNA molecules, microRNAs (miRNA), have critical roles in post-transcriptional regulation of gene expression. Therefore, they can direct the cells toward β-cell like cells and control islet β-cell development. Previous reports showed the manipulation of the miRNA expression on islet β-cell differentiation and regeneration. Likewise, the regulation of epithelial to mesenchymal transi-tion by the miR-30 family and the miR-200 family may be a useful approach to conduct islet β-cell development. Investigation of stem cells differentiation showed that the dynamic expression patterns of miR-375 and miR-7 are similar to developing human fetal pancreas while dynamic expression of miR-146a and miR-34a occurred during the differentiation. Moreover, miR-342 and its both targets, FOXA2 and MAFB, are found in β-cell differentiation and maturation. Because miRNAs can target specific transcription factors during islet β-cell development and differentiation, they could be offerred as alternative regenerative treatment for diabetes mellitus. Considering that the application of these non-coding RNAs remains limited in the literature, in this review article, we present an overview of the roles of miRNAs in the islet β-cell development, focusing on the application of different miRNAs in the experimental protocols.
Collapse
Affiliation(s)
- Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ismail Al-Abdullah
- Department of Diabetes, Endocrinology, and Metabolism, Research Institute of City of Hope, Duarte, CA
| |
Collapse
|
30
|
Dumortier O, Fabris G, Van Obberghen E. Shaping and preserving β-cell identity with microRNAs. Diabetes Obes Metab 2016; 18 Suppl 1:51-7. [PMID: 27615131 DOI: 10.1111/dom.12722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/26/2016] [Indexed: 12/18/2022]
Abstract
The highly sophisticated identity of pancreatic β-cells is geared to accomplish its unique feat of providing insulin for organismal glucose and lipid homeostasis. This requires a particular and streamlined fuel metabolism which defines mature β-cells as glucose sensors linked to an insulin exocytosis machinery. The establishment of an appropriate β-cell mass and function during development as well as the maintenance of their identity throughout life are necessary for energy homeostasis. The small non-coding RNAs, microRNAs (miRNAs), are now well-recognized regulators of gene transcripts, which in general are negatively affected by them. Convincing evidence exists to view miRNAs as major actors in β-cell development and function, suggesting an important role for them in the distinctive β-cell 'identity card'. Here, we summarize key features that associate miRNAs and the establishment of the appropriate β-cell identity and its necessary maintenance during their 'long life'.
Collapse
Affiliation(s)
- O Dumortier
- University Côte d'Azur, Inserm, CNRS, IRCAN, France
| | - G Fabris
- University Côte d'Azur, Inserm, CNRS, IRCAN, France
| | | |
Collapse
|
31
|
Dai X, Pang W, Zhou Y, Yao W, Xia L, Wang C, Chen X, Zen K, Zhang CY, Yuan Y. Altered profile of serum microRNAs in pancreatic cancer-associated new-onset diabetes mellitus. J Diabetes 2016; 8:422-33. [PMID: 25991015 DOI: 10.1111/1753-0407.12313] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND New-onset diabetes mellitus in pancreatic cancer has been recognized as a paraneoplastic phenomenon caused by the existence of the tumor. Circulating microRNAs (miRNAs) are emerging as non-invasive biomarkers for the detection of various cancers. In the present study, we hypothesized that a specific serum miRNA profile exists in pancreatic cancer-associated new-onset diabetes mellitus (PaC-DM). METHODS Initial screening of differentially expressed miRNAs in pooled serum samples from 25 PaC-DM patients, 25 non-cancer new-onset type 2 diabetes mellitus (T2DM) patients, and 25 healthy controls was performed by TaqMan low-density arrays (TLDA). A stem-loop quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was conducted to confirm the relative concentrations of candidate miRNAs in 80 PaC-DM, 85 non-cancer new-onset T2DM patients, and 80 healthy controls. RESULTS The TLDA identified 16 serum miRNAs that were significantly increased in PaC-DM samples. A combination of six serum miRNAs (miR-483-5p, miR-19a, miR-29a, miR-20a, miR-24, miR-25) was selected by qRT-PCR as a biomarker for PaC-DM. The area under the receiver operating characteristic curve (AUC) for the six-miRNA panel training and validation sets was 0.959 (95% confidence interval [CI] 0.890-1.028) and 0.902 (95% CI 0.844-0.955), respectively. The combination of these six miRNAs enabled the discrimination of PaC-DM from non-cancer new-onset T2DM with an AUC of 0.885 (95% CI 0.784-0.986) and 0.887 (95% CI 0.823-0.952) for the training and validation sets, respectively. CONCLUSION The six-serum miRNA panel may have potential as a biomarker for the accurate diagnosis and discrimination of PaC-DM from healthy controls and non-cancer new-onset T2DM.
Collapse
Affiliation(s)
- Xin Dai
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenjing Pang
- Department of Gastroenterology, Tianyou Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
| | - Yufeng Zhou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiyan Yao
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lu Xia
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cheng Wang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xi Chen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ke Zen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chen-Yu Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yaozong Yuan
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Osmai M, Osmai Y, Bang-Berthelsen CH, Pallesen EMH, Vestergaard AL, Novotny GW, Pociot F, Mandrup-Poulsen T. MicroRNAs as regulators of beta-cell function and dysfunction. Diabetes Metab Res Rev 2016; 32:334-49. [PMID: 26418758 DOI: 10.1002/dmrr.2719] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/21/2015] [Accepted: 08/13/2015] [Indexed: 12/14/2022]
Abstract
In the last decade, there has been an explosion in both the number of and knowledge about miRNAs associated with both type 1 and type 2 diabetes. Even though we are presently in the initial stages of understanding how this novel class of posttranscriptional regulators are involved in diabetes, recent studies have demonstrated that miRNAs are important regulators of the islet transcriptome, controlling apoptosis, differentiation and proliferation, as well as regulating unique islet and beta-cell functions and pathways such as insulin expression, processing and secretion. Furthermore, a large number of miRNAs have been linked to diabetogenic processes induced by elevated levels of glucose, free fatty acids and inflammatory cytokines. Thus, miRNAs are novel therapeutic targets with the potential of protecting the beta-cell, and there is proof of principle that miRNA antagonists, so-called antagomirs, are effective in vivo for other disorders. miRNAs are exported out of cells in exosomes, raising the intriguing possibility of cell-to-cell communication between distant tissues via miRNAs and that miRNAs can be used as biomarkers of beta-cell function, mass and survival. The purpose of this review is to provide a status on how miRNAs control beta-cell function and viability in health and disease.
Collapse
Affiliation(s)
- Mirwais Osmai
- Immuno-endocrinology Lab, Section of Endocrinological Research, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Yama Osmai
- Immuno-endocrinology Lab, Section of Endocrinological Research, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Claus H Bang-Berthelsen
- Department of Pediatrics and Center for Non-Coding RNA in Technology and Health, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Diabetes NBEs and Obesity Biology, Novo Nordisk A/S, Måløv, Denmark
| | - Emil M H Pallesen
- Immuno-endocrinology Lab, Section of Endocrinological Research, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Anna L Vestergaard
- Immuno-endocrinology Lab, Section of Endocrinological Research, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Guy W Novotny
- Immuno-endocrinology Lab, Section of Endocrinological Research, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Pociot
- Department of Pediatrics and Center for Non-Coding RNA in Technology and Health, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Immuno-endocrinology Lab, Section of Endocrinological Research, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Knudsen LA, Petersen N, Schwartz TW, Egerod KL. The MicroRNA Repertoire in Enteroendocrine Cells: Identification of miR-375 as a Potential Regulator of the Enteroendocrine Lineage. Endocrinology 2015; 156:3971-83. [PMID: 26322371 DOI: 10.1210/en.2015-1088] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Micro-RNAs (miRNAs) are crucial for many biological processes, but their role in the enteroendocrine development and differentiation has been neglected due to the elusive nature of the enteroendocrine cells. However, transgenic mice expressing fluorescent reporter proteins under the control of promoters for Cck, Gpr41, and Lgr5, ie, two different enteroendocrine markers and a marker for the stem cells, now enables identification and FACS purification of enteroendocrine cells at different stages of their differentiation along the crypt-villus axis. Surprisingly few of the 746 analyzed miRNAs differed in their expression pattern between enteroendocrine and nonenteroendocrine cells of the gut mucosa and between enteroendocrine cells of the crypt versus the villus. Thus, only let-7g-3p, miR-7b-5p (miR-7b), and miR-375-3p (miR-375) were up-regulated in the enteroendocrine cells of both the crypt and villus compared with nonenteroendocrine cells, and in situ hybridization confirmed colocalization of miR-375 with the enteroendocrine cells. Finally, functional assays using miR-375 inhibitor and mimetic in organoid cultures revealed miR-375 as a potential regulator of the enteroendocrine lineage. Overexpression of miR-375 inhibited enteroendocrine lineage development, whereas inhibition of miR-375 stimulated the development of enteroendocrine cells in vitro. Thus, through an unbiased expression screening of all miRNA, we find very few miRNAs that are differentially expressed in the gastrointestinal mucosa. Of these, miR-375 is found to be both highly expressed and enriched in the enteroendocrine cells. Additionally, miR-375 appears to negatively regulate the development of enteroendocrine cells. Consequently, miR-375 emerges as a potential target to modulate the function of the enteroendocrine system.
Collapse
Affiliation(s)
- Lina A Knudsen
- Novo Nordisk Foundation Center for Basic Metabolic Research (L.A.K., N.P., T.W.S., K.L.E.) and Laboratory for Molecular Pharmacology (L.A.K., N.P., T.W.S., K.L.E.), Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Natalia Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research (L.A.K., N.P., T.W.S., K.L.E.) and Laboratory for Molecular Pharmacology (L.A.K., N.P., T.W.S., K.L.E.), Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research (L.A.K., N.P., T.W.S., K.L.E.) and Laboratory for Molecular Pharmacology (L.A.K., N.P., T.W.S., K.L.E.), Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Kristoffer L Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research (L.A.K., N.P., T.W.S., K.L.E.) and Laboratory for Molecular Pharmacology (L.A.K., N.P., T.W.S., K.L.E.), Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|
34
|
Abstract
Noncoding RNA and especially microRNAs (miRs) have emerged as important regulators of key processes in cell biology, including development, differentiation, and survival. Currently, over 2,500 mature miRs have been reported in humans, and considering that each miR has multiple targets, the number of genes and pathways potentially affected is huge. Not surprisingly, many miRs have also been implicated in diabetes, and more recently, some have been discovered to play important roles in the pancreatic islet, including β-cell function, proliferation, and survival. The goal of this Perspective is to offer an overview of this rapidly evolving field and the miRs involved, reveal novel networks of β-cell miR signaling, and provide an outlook of the opportunities and challenges ahead.
Collapse
Affiliation(s)
- Stephen R Filios
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, The University of Alabama at Birmingham, Birmingham, AL
| | - Anath Shalev
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, The University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
35
|
Guay C, Regazzi R. MicroRNAs and the functional β cell mass: For better or worse. DIABETES & METABOLISM 2015; 41:369-77. [DOI: 10.1016/j.diabet.2015.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/18/2015] [Accepted: 03/22/2015] [Indexed: 12/20/2022]
|
36
|
Garikipati VNS, Krishnamurthy P, Verma SK, Khan M, Abramova T, Mackie AR, Qin G, Benedict C, Nickoloff E, Johnson J, Gao E, Losordo DW, Houser SR, Koch WJ, Kishore R. Negative Regulation of miR-375 by Interleukin-10 Enhances Bone Marrow-Derived Progenitor Cell-Mediated Myocardial Repair and Function After Myocardial Infarction. Stem Cells 2015; 33:3519-29. [PMID: 26235810 DOI: 10.1002/stem.2121] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/13/2015] [Indexed: 02/01/2023]
Abstract
Poor survival and function of transplanted cells in ischemic and inflamed myocardium likely compromises the functional benefit of stem cell-based therapies. We have earlier reported that co-administration of interleukin (IL)-10 and BMPAC enhances cell survival and improves left ventricular (LV) functions after acute myocardial infarction (MI) in mice. We hypothesized that IL-10 regulates microRNA-375 (miR-375) signaling in BMPACs to enhance their survival and function in ischemic myocardium after MI and attenuates left ventricular dysfunction after MI. miR-375 expression is significantly upregulated in BMPACs upon exposure to inflammatory/hypoxic stimulus and also after MI. IL-10 knockout mice display significantly elevated miR-375 levels. We report that ex vivo miR-375 knockdown in BMPAC before transplantation in the ischemic myocardium after MI significantly improve the survival and retention of transplanted BMPACs and also BMPAC-mediated post-infarct repair, neovascularization, and LV functions. Our in vitro studies revealed that knockdown of miR-375-enhanced BMPAC proliferation and tube formation and inhibited apoptosis; over expression of miR-375 in BMPAC had opposite effects. Mechanistically, miR-375 negatively regulated 3-phosphoinositide-dependent protein kinase-1 (PDK-1) expression and PDK-1-mediated activation of PI3kinase/AKT signaling. Interestingly, BMPAC isolated from IL-10-deficient mice showed elevated basal levels of miR-375 and exhibited functional deficiencies, which were partly rescued by miR-375 knockdown, enhancing BMPAC function in vitro and in vivo. Taken together, our studies suggest that miR-375 is negatively associated with BMPAC function and survival and IL-10-mediated repression of miR-375 enhances BMPAC survival and function.
Collapse
Affiliation(s)
| | - Prasanna Krishnamurthy
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Suresh Kumar Verma
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mohsin Khan
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tatiana Abramova
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, Illinois, USA
| | - Alexander R Mackie
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, Illinois, USA
| | - Gangjian Qin
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, Illinois, USA
| | - Cynthia Benedict
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Emily Nickoloff
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jennifer Johnson
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ehre Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Douglas W Losordo
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, Illinois, USA
| | - Steven R Houser
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Walter J Koch
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Raj Kishore
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA.,Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
37
|
PDX1 binds and represses hepatic genes to ensure robust pancreatic commitment in differentiating human embryonic stem cells. Stem Cell Reports 2015; 4:578-90. [PMID: 25843046 PMCID: PMC4400640 DOI: 10.1016/j.stemcr.2015.02.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/30/2022] Open
Abstract
Inactivation of the Pancreatic and Duodenal Homeobox 1 (PDX1) gene causes pancreatic agenesis, which places PDX1 high atop the regulatory network controlling development of this indispensable organ. However, little is known about the identity of PDX1 transcriptional targets. We simulated pancreatic development by differentiating human embryonic stem cells (hESCs) into early pancreatic progenitors and subjected this cell population to PDX1 chromatin immunoprecipitation sequencing (ChIP-seq). We identified more than 350 genes bound by PDX1, whose expression was upregulated on day 17 of differentiation. This group included known PDX1 targets and many genes not previously linked to pancreatic development. ChIP-seq also revealed PDX1 occupancy at hepatic genes. We hypothesized that simultaneous PDX1-driven activation of pancreatic and repression of hepatic programs underlie early divergence between pancreas and liver. In HepG2 cells and differentiating hESCs, we found that PDX1 binds and suppresses expression of endogenous liver genes. These findings rebrand PDX1 as a context-dependent transcriptional repressor and activator within the same cell type. Early pancreatic progenitor (ePP) cells are efficiently derived from hESCs High levels of the homeobox transcription factor PDX1 label ePP cells PDX1 binds a battery of foregut/midgut and early pancreatic genes in ePP cells PDX1 binds and represses hepatic genes
Collapse
|
38
|
Epigenetic Alterations Caused by Nutritional Stress During Fetal Programming of the Endocrine Pancreas. Arch Med Res 2015; 46:93-100. [DOI: 10.1016/j.arcmed.2015.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 01/23/2015] [Indexed: 12/31/2022]
|
39
|
MicroRNAs and cardiovascular diseases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:682857. [PMID: 25710020 PMCID: PMC4331324 DOI: 10.1155/2015/682857] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/25/2014] [Indexed: 12/19/2022]
Abstract
Coronary artery diseases (CAD) and heart failure have high mortality rate in the world, although much progress has been made in this field in last two decades. There is still a clinical need for a novel diagnostic approach and a therapeutic strategy to decrease the incidence of CAD. MicroRNAs (miRNAs) are highly conserved noncoding small RNA molecules that regulate a large fraction of the genome by binding to complementary messenger RNA sequences, resulting in posttranscriptional gene silencing. Recent studies have shown that specific miRNAs are involved in whole stage of atherosclerosis, from endothelium dysfunction to plaque rupture. These findings suggest that miRNAs are potential biomarkers in early diagnosis and therapeutic targets in CAD. In the present review, we highlight the role of miRNAs in every stage of atherosclerosis, and discuss the prospects of miRNAs in the near future.
Collapse
|
40
|
Farr RJ, Joglekar MV, Hardikar AA. Circulating microRNAs in Diabetes Progression: Discovery, Validation, and Research Translation. EXPERIENTIA SUPPLEMENTUM (2012) 2015; 106:215-244. [PMID: 26608206 DOI: 10.1007/978-3-0348-0955-9_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Diabetes, in all of its forms, is a disease state that demonstrates wide ranging pathological effects throughout the body. Until now, the only method of diagnosing and monitoring the progression of diabetes was through the measurement of blood glucose. Unfortunately, beta cell dysfunction initiates well before the clinical onset of diabetes, and so the development of an effective biomarker signature is of paramount importance to predict and monitor the progression of this disease. MicroRNAs (miRNAs/miRs) are small (18-22 nucleotide) noncoding (nc)RNAs that post-transcriptionally regulate endogenous gene expression by targeted inhibition or degradation of messenger (m)RNA. Recently, miRNAs have shown great promise as biomarkers as some exhibit differential expression in multiple disease states, including type 1 and type 2 diabetes (T1D/T2D). Furthermore, miRNAs are quite stable in circulation, resistant to freeze-thaw and pH-mediated degradation, and are relatively easy to detect using quantitative (q)PCR. Here, we discuss microRNAs that may form a diabetes biomarker signature. To identify these transcripts we outline miRNAs that play a central role in pancreas development and diabetes, as well as previously identified miRNAs with differential expression in individuals with T1D and T2D. Validation and refinement of a miRNA biomarker signature for diabetes would allow identification and intervention of individuals at risk of this disease, as well as stratification and monitoring of patients with established diabetes.
Collapse
Affiliation(s)
- Ryan J Farr
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, Sydney Medical School, The University of Sydney, Level 6, Medical Foundation Building, 92-94 Parramatta Road, Camperdown, NSW, 2050, Australia
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, Sydney Medical School, The University of Sydney, Level 6, Medical Foundation Building, 92-94 Parramatta Road, Camperdown, NSW, 2050, Australia
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, Sydney Medical School, The University of Sydney, Level 6, Medical Foundation Building, 92-94 Parramatta Road, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
41
|
Dumortier O, Hinault C, Gautier N, Patouraux S, Casamento V, Van Obberghen E. Maternal protein restriction leads to pancreatic failure in offspring: role of misexpressed microRNA-375. Diabetes 2014; 63:3416-27. [PMID: 24834976 DOI: 10.2337/db13-1431] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The intrauterine environment of the fetus is a preeminent actor in long-term health. Indeed, mounting evidence shows that maternal malnutrition increases the risk of type 2 diabetes (T2D) in progeny. Although the consequences of a disturbed prenatal environment on the development of the pancreas are known, the underlying mechanisms are poorly defined. In rats, restriction of protein during gestation alters the development of the endocrine pancreas and favors the occurrence of T2D later in life. Here we evaluate the potential role of perturbed microRNA (miRNA) expression in the decreased β-cell mass and insulin secretion characterizing progeny of pregnant dams fed a low-protein (LP) diet. miRNA profiling shows increased expression of several miRNAs, including miR-375, in the pancreas of fetuses of mothers fed an LP diet. The expression of miR-375 remains augmented in neoformed islets derived from fetuses and in islets from adult (3-month-old) progeny of mothers fed an LP diet. miR-375 regulates the proliferation and insulin secretion of dissociated islet cells, contributing to the reduced β-cell mass and function of progeny of mothers fed an LP diet. Remarkably, miR-375 normalization in LP-derived islet cells restores β-cell proliferation and insulin secretion. Our findings suggest the existence of a developmental memory in islets that registers intrauterine protein restriction. Hence, pancreatic failure after in utero malnutrition could result from transgenerational transmission of miRNA misexpression in β-cells.
Collapse
Affiliation(s)
- Olivier Dumortier
- INSERM, U1081, Institute for Research on Cancer and Aging of Nice (IRCAN), Aging and Diabetes Team, Nice, France CNRS, UMR7284, IRCAN, Nice, France University of Nice Sophia Antipolis, Nice, France
| | - Charlotte Hinault
- INSERM, U1081, Institute for Research on Cancer and Aging of Nice (IRCAN), Aging and Diabetes Team, Nice, France CNRS, UMR7284, IRCAN, Nice, France University of Nice Sophia Antipolis, Nice, France Clinical Chemistry Laboratory, University Hospital, Nice, France
| | - Nadine Gautier
- INSERM, U1081, Institute for Research on Cancer and Aging of Nice (IRCAN), Aging and Diabetes Team, Nice, France CNRS, UMR7284, IRCAN, Nice, France University of Nice Sophia Antipolis, Nice, France
| | | | - Virginie Casamento
- INSERM, U1081, Institute for Research on Cancer and Aging of Nice (IRCAN), Aging and Diabetes Team, Nice, France CNRS, UMR7284, IRCAN, Nice, France University of Nice Sophia Antipolis, Nice, France
| | - Emmanuel Van Obberghen
- INSERM, U1081, Institute for Research on Cancer and Aging of Nice (IRCAN), Aging and Diabetes Team, Nice, France CNRS, UMR7284, IRCAN, Nice, France University of Nice Sophia Antipolis, Nice, France Clinical Chemistry Laboratory, University Hospital, Nice, France
| |
Collapse
|
42
|
miR-375 induces human decidua basalis-derived stromal cells to become insulin-producing cells. Cell Mol Biol Lett 2014; 19:483-99. [PMID: 25169436 PMCID: PMC6275735 DOI: 10.2478/s11658-014-0207-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 08/19/2014] [Indexed: 02/07/2023] Open
Abstract
This paper focuses on the development of renewable sources of isletreplacement tissue for the treatment of type I diabetes mellitus. Placental tissue-derived mesenchymal stem cells (MSCs) are a promising source for regenerative medicine due to their plasticity and easy availability. They have the potential to differentiate into insulin-producing cells. miR-375 is a micro RNA that is expressed in the pancreas and involved in islet development. Human placental decidua basalis MSCs (PDB-MSCs) were cultured from full-term human placenta. The immunophenotype of the isolated cells was checked for CD90, CD105, CD44, CD133 and CD34 markers. The MSCs (P3) were chemically transfected with hsa-miR-375. Total RNA was extracted 4 and 6 days after transfection. The expressions of insulin, NGN3, GLUT2, PAX4, PAX6, KIR6.2, NKX6.1, PDX1, and glucagon genes were evaluated using real-time qPCR. On day 6, we tested the potency of the clusters in response to the high glucose challenge and assessed the presence of insulin and NGN3 proteins via immunocytochemistry. Flow cytometry analysis confirmed that more than 90% of the cells were positive for CD90, CD105 and CD44 and negative for CD133 and CD34. Morphological changes were followed from day 2. Cell clusters formed during day 6. Insulin-producing clusters showed a deep red color with DTZ. The expression of pancreatic-specific transcription factors increased remarkably during the four days after transfection and significantly increased on day 7. The clusters were positive for insulin and NGN3 proteins, and C-peptide and insulin secretion increased in response to changes in the glucose concentration (2.8 mM and 16.7 mM). In conclusion, the MSCs could be programmed into functional insulin-producing cells by transfection of miR-375.
Collapse
|
43
|
Liu XD, Ruan JX, Xia JH, Yang SL, Fan JH, Li K. The study of regulatory effects of Pdx-1, MafA and NeuroD1 on the activity of porcine insulin promoter and the expression of human islet amyloid polypeptide. Mol Cell Biochem 2014; 394:59-66. [DOI: 10.1007/s11010-014-2081-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/03/2014] [Indexed: 10/25/2022]
|
44
|
Yan JW, Liao JZ, Lin JS, He XX. Roles of miR-375 in digestive tumors. Shijie Huaren Xiaohua Zazhi 2014; 22:654-660. [DOI: 10.11569/wcjd.v22.i5.654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that regulate gene expression post-transcriptionally. A large body of evidence has indicated that dysregulation of miRNAs is an important hallmark of cancer. MiRNAs modulate malignant phenotypes of cancer by repressing many critical oncogenes or tumor suppressors. MiR-375 was firstly identified in pancreatic beta-cells and it can regulate insulin secretion and pancreatic development. Further studies found that miR-375 is significantly downregulated in multiple types of tumors, especially digestive system tumors, such as hepatocellular carcinoma, gastric cancer, esophageal cancer, and pancreatic cancer. Overexpression of miR-375 represses target genes, such as AEG-1, JAK2, ATG7, IGF1R, PDK1, 14-3-3Z and YAP1, and thereby inhibits malignant properties of cancer. It is also found that miR-375 in tissues or circulation could be used as a biomarker for diagnosis or prognosis prediction in digestive system tumors. Since miR-375 play an important role in the initiation and progression of digestive system tumors, it can become a novel therapeutic target. Monitoring the levels of miR-375 may contribute to the early diagnosis and prognosis prediction.
Collapse
|
45
|
|
46
|
Yan JW, Lin JS, He XX. The emerging role of miR-375 in cancer. Int J Cancer 2013; 135:1011-8. [PMID: 24166096 DOI: 10.1002/ijc.28563] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 10/18/2013] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved, small noncoding RNAs that are believed to play fundamental roles in various biological processes through regulation of gene expression at the level of posttranscription. MiR-375 was first identified as a pancreatic islet-specific miRNA regulating insulin secretion. However, further study revealed that miR-375 is a multifunctional miRNA participating in pancreatic islet development, glucose homeostasis, mucosal immunity, lung surfactant secretion and more importantly, tumorigenesis. Recently, miR-375 has been found significantly downregulated in multiple types of cancer, and suppresses core hallmarks of cancer by targeting several important oncogenes like AEG-1, YAP1, IGF1R and PDK1. The alteration of miR-375 in cancer is caused by a variety of mechanisms, including the dysregulation of transcription factors, aberrant promoter methylation and so on. Reduced expression of miR-375 in tissue or circulation may indicate the presence of neoplasia as well as a poor prognosis of many malignant cancers. Moreover, miR-375 stands for a promising direction for developing targeted therapies due to its capacity to inhibit tumor cell growth in vitro and in vivo. Here, we summarize the present understanding of the tumor suppressive role of miR-375 in cancer progression; the mechanisms underlying the dysregulation of miR-375; the potential use of miR-375 in prognosis and diagnosis and the therapeutic prospects of miR-375 in cancer.
Collapse
Affiliation(s)
- Jun-Wei Yan
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | |
Collapse
|
47
|
O'Dowd JF, Stocker CJ. Endocrine pancreatic development: impact of obesity and diet. Front Physiol 2013; 4:170. [PMID: 23882220 PMCID: PMC3714448 DOI: 10.3389/fphys.2013.00170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/18/2013] [Indexed: 12/16/2022] Open
Abstract
During embryonic development, multipotent endodermal cells differentiate to form the pancreas. Islet cell clusters arising from the pancreatic bud form the acini tissue and exocrine ducts whilst pancreatic islets form around the edges of the clusters. The successive steps of islet differentiation are controlled by a complex network of transcription factors and signals that influence cell differentiation, growth and lineage. A Westernized lifestyle has led to an increased consumption of a high saturated fat diet, and an increase in maternal obesity. The developing fetus is highly sensitive to the intrauterine environment, therefore any alteration in maternal nutrition during gestation and lactation which affects the in-utero environment during the key developmental phases of the pancreas may change the factors controlling β-cell development and β-cell mass. Whilst the molecular mechanisms behind the adaptive programming of β-cells are still poorly understood it is established that changes arising from maternal obesity and/or over-nutrition may affect the ability to maintain fetal β-cell mass resulting in an increased risk of type 2 diabetes in adulthood.
Collapse
Affiliation(s)
- Jacqueline F O'Dowd
- Metabolic Diseases Group, Clore Laboratory, University of Buckingham Buckingham, UK
| | | |
Collapse
|
48
|
Mao Y, Mohan R, Zhang S, Tang X. MicroRNAs as pharmacological targets in diabetes. Pharmacol Res 2013; 75:37-47. [PMID: 23810798 DOI: 10.1016/j.phrs.2013.06.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/10/2013] [Accepted: 06/12/2013] [Indexed: 12/14/2022]
Abstract
Diabetes is characterized by high levels of blood glucose due to either the loss of insulin-producing beta-cells in the pancreas, leading to a deficiency of insulin in type 1 diabetes, or due to increased insulin resistance, leading to reduced insulin sensitivity and productivity in type 2 diabetes. There is an increasing need for new options to treat diabetes, especially type 2 diabetes at its early stages due to an ineffective control of its development in patients. Recently, a novel class of small noncoding RNAs, termed microRNAs (miRNAs), is found to play a key role as important transcriptional and posttranscriptional inhibitors of gene expression in fine-tuning the target messenger RNAs (mRNAs). miRNAs are implicated in the pathogenesis of diabetes and have become an intriguing target for therapeutic intervention. This review focuses on the dysregulated miRNAs discovered in various diabetic models and addresses the potential for miRNAs to be therapeutic targets in the treatment of diabetes.
Collapse
Affiliation(s)
- Yiping Mao
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, United States
| | | | | | | |
Collapse
|
49
|
Novotny GW, Lundh M, Backe MB, Christensen DP, Hansen JB, Dahllöf MS, Pallesen EMH, Mandrup-Poulsen T. Transcriptional and translational regulation of cytokine signaling in inflammatory β-cell dysfunction and apoptosis. Arch Biochem Biophys 2012; 528:171-84. [PMID: 23063755 DOI: 10.1016/j.abb.2012.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/20/2012] [Accepted: 09/22/2012] [Indexed: 12/19/2022]
Abstract
Disease is conventionally viewed as the chaotic inappropriate outcome of deranged tissue function resulting from aberrancies in cellular processes. Yet the patho-biology of cellular dysfunction and death encompasses a coordinated network no less sophisticated and regulated than maintenance of homeostatic balance. Cellular demise is far from passive subordination to stress but requires controlled coordination of energy-requiring activities including gene transcription and protein translation that determine the graded transition between defensive mechanisms, cell cycle regulation, dedifferentiation and ultimately to the activation of death programmes. In fact, most stressors stimulate both homeostasis and regeneration on one hand and impairment and destruction on the other, depending on the ambient circumstances. Here we illustrate this bimodal ambiguity in cell response by reviewing recent progress in our understanding of how the pancreatic β cell copes with inflammatory stress by changing gene transcription and protein translation by the differential and interconnected action of reactive oxygen and nitric oxide species, microRNAs and posttranslational protein modifications.
Collapse
Affiliation(s)
- Guy W Novotny
- Section of Endocrinological Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Guay C, Jacovetti C, Nesca V, Motterle A, Tugay K, Regazzi R. Emerging roles of non-coding RNAs in pancreatic β-cell function and dysfunction. Diabetes Obes Metab 2012; 14 Suppl 3:12-21. [PMID: 22928560 DOI: 10.1111/j.1463-1326.2012.01654.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pancreatic β-cells play a central role in glucose homeostasis by tightly regulating insulin release according to the organism's demand. Impairment of β-cell function due to hostile environment, such as hyperglycaemia and hyperlipidaemia, or due to autoimmune destruction of β-cells, results in diabetes onset. Both environmental factors and genetic predisposition are known to be involved in the development of the disease, but the exact mechanisms leading to β-cell dysfunction and death remain to be characterized. Non-coding RNA molecules, such as microRNAs (miRNAs), have been suggested to be necessary for proper β-cell development and function. The present review aims at summarizing the most recent findings about the role of non-coding RNAs in the control of β-cell functions and their involvement in diabetes. We will also provide a perspective view of the future research directions in the field of non-coding RNAs. In particular, we will discuss the implications for diabetes research of the discovery of a new communication mechanism based on cell-to-cell miRNA transfer. Moreover, we will highlight the emerging interconnections between miRNAs and epigenetics and the possible role of long non-coding RNAs in the control of β-cell activities.
Collapse
Affiliation(s)
- C Guay
- Department of Cellular Biology and Morphology, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|