1
|
Jeon Y, Kim SG, Choi KO, Park JT. Encapsulation of hydrophobically ion-paired teduglutide in nanoemulsions: Effect of anionic counterions. Food Chem 2025; 471:142774. [PMID: 39788016 DOI: 10.1016/j.foodchem.2025.142774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
This study presents a novel method for encapsulating the bioactive peptide teduglutide to enhance its oral bioavailability using O/W nanoemulsion (NE). Recombinant teduglutide (rTGT), produced in E. coli with 93 % purity, was hydrophobically modified through ion-pairing with phytic acid (PA) and sodium dodecyl sulfate (SDS). This approach increased encapsulation efficiency from 48.5 % to 87.5 % and 88.3 %, respectively. rTGT/SDS was incorporated within the core of lipid particles, whereas rTGT/PA was likely oriented on the surface. rTGT/SDS_NE exhibited smaller particle size, greater stability, and low cytotoxicity across all tested concentrations in HT-29 cells. Additionally, rTGT/SDS_NE achieved the highest upregulation of genes associated with intestinal function (VIL1, SGLT1, and GLUT2), although the differences were not statistically significant. These findings highlight the potential of the hydrophobic ion-pairing of rTGT with SDS and its encapsulation in nanoemulsion for efficient delivery of rTGT, suggesting promise for advancing oral peptide therapeutics.
Collapse
Affiliation(s)
- Youkyung Jeon
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sung-Gun Kim
- Department of Biomedical Science, U1 University, Chungbuk 29131, Republic of Korea
| | - Kyeong-Ok Choi
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
2
|
Zhuang Y, Wang Y, Jiao C, Shang Z, Huang S. Arabidopsis VILLIN5 bundles actin filaments using a novel mechanism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2854-2866. [PMID: 39093617 DOI: 10.1111/tpj.16956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Being a bona fide actin bundler, Arabidopsis villin5 (VLN5) plays a crucial role in regulating actin stability and organization within pollen tubes. Despite its significance, the precise mechanism through which VLN5 bundles actin filaments has remained elusive. Through meticulous deletion analysis, we have unveiled that the link between gelsolin repeat 6 (G6) and the headpiece domain (VHP), rather than VHP itself, is indispensable for VLN5-mediated actin bundling. Further refinement of this region has pinpointed a critical sequence spanning from Val763 to Ser823, essential for VLN5's actin-bundling activity. Notably, the absence of Val763-Ser823 in VLN5 results in decreased filamentous decoration within pollen tubes and a diminished ability to rescue actin bundling defects in vln2vln5 mutant pollen tubes compared to intact VLN5. Moreover, our findings highlight that the Val763-Ser823 sequence harbors a binding site for F-actin, suggesting that this linker-based F-actin binding site, in conjunction with the F-actin binding site localized in G1-G6, enables a single VLN5 to concurrently bind to two adjacent actin filaments. Therefore, our study unveils a novel mechanism by which VLN5 bundles actin filaments.
Collapse
Affiliation(s)
- Yuhui Zhuang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yingjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Cuixia Jiao
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050016, China
| | - Zhonglin Shang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050016, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Mobbs CL, Darling NJ, Przyborski S. An in vitro model to study immune activation, epithelial disruption and stromal remodelling in inflammatory bowel disease and fistulising Crohn's disease. Front Immunol 2024; 15:1357690. [PMID: 38410518 PMCID: PMC10894943 DOI: 10.3389/fimmu.2024.1357690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
At present, preclinical models of inflammatory bowel disease (IBD) are insufficient, limiting translation between research and new therapeutics. This is especially true for fistulising Crohn's disease (CD), as the severe lack of relevant models hinders research progression. To address this, we present in vitro human IBD mucosal models that recapitulate multiple pathological hallmarks of IBD simultaneously in one model system - immune cell infiltration, stromal remodelling and epithelial disruption. Stimulation of models induces epithelial aberrations common in IBD tissue including altered morphology, microvilli abnormalities, claudin gene expression changes and increased permeability. Inflammatory biomarkers are also significantly increased including cytokines and chemokines integral to IBD pathogenesis. Evidence of extracellular matrix remodelling, including upregulated matrix-metalloproteinases and altered basement membrane components, suggests the models simulate pathological stromal remodelling events that closely resemble fistulising CD. Importantly, MMP-9 is the most abundant MMP and mimics the unique localisation observed in IBD tissue. The inflamed models were subsequently used to elucidate the involvement of TNF-α and IFN- γ in intestinal stromal remodelling, in which TNF-α but not IFN- γ induced MMP upregulation, specifically of MMP-3 and MMP-9. Collectively, our results demonstrate the potential of the IBD models for use in preclinical research in IBD, particularly for fistulising CD.
Collapse
Affiliation(s)
- Claire L. Mobbs
- Department of Biosciences, Durham University, Durham, United Kingdom
- Reprocell Europe Ltd, West of Scotland Science Park, Glasgow, United Kingdom
| | - Nicole J. Darling
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, United Kingdom
- Reprocell Europe Ltd, West of Scotland Science Park, Glasgow, United Kingdom
| |
Collapse
|
4
|
Chvalova V, Venkadasubramanian V, Klimova Z, Vojtova J, Benada O, Vanatko O, Vomastek T, Grousl T. Characterization of RACK1-depleted mammalian cells by a palette of microscopy approaches reveals defects in cell cycle progression and polarity establishment. Exp Cell Res 2023:113695. [PMID: 37393981 DOI: 10.1016/j.yexcr.2023.113695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023]
Abstract
The Receptor for Activated C Kinase 1 (RACK1) is an evolutionarily conserved scaffold protein involved in the regulation of numerous cellular processes. Here, we used CRISPR/Cas9 and siRNA to reduce the expression of RACK1 in Madin-Darby Canine Kidney (MDCK) epithelial cells and Rat2 fibroblasts, respectively. RACK1-depleted cells were examined using coherence-controlled holographic microscopy, immunofluorescence, and electron microscopy. RACK1 depletion resulted in decreased cell proliferation, increased cell area and perimeter, and in the appearance of large binucleated cells suggesting a defect in the cell cycle progression. Our results show that the depletion of RACK1 has a pleiotropic effect on both epithelial and mesenchymal cell lines and support its essential role in mammalian cells.
Collapse
Affiliation(s)
- Vera Chvalova
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Faculty of Science, Charles University, 128 00, Prague, Czech Republic
| | - Vignesh Venkadasubramanian
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Faculty of Science, Charles University, 128 00, Prague, Czech Republic
| | - Zuzana Klimova
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Jana Vojtova
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, 142 00, Prague, Czech Republic
| | - Oldrich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, 142 00, Prague, Czech Republic
| | - Ondrej Vanatko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 00, Prague, Czech Republic; Second Faculty of Medicine, Charles University, 150 06, Prague, Czech Republic
| | - Tomas Vomastek
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Tomas Grousl
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic.
| |
Collapse
|
5
|
Dum D, Lennartz M, Menz A, Kluth M, Hube-Magg C, Weidemann S, Fraune C, Luebke AM, Hornsteiner L, Bernreuther C, Simon R, Clauditz TS, Sauter G, Uhlig R, Hinsch A, Kind S, Jacobsen F, Möller K, Wilczak W, Steurer S, Minner S, Burandt E, Marx AH, Krech T, Lebok P. Villin expression in human tumours: a tissue microarray study on 14,398 tumours. Expert Rev Mol Diagn 2022; 22:665-675. [PMID: 35866621 DOI: 10.1080/14737159.2022.2104122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Villin is a protein of the brush border of epithelial cells which is used as an immunohistochemical marker for colorectal and gastrointestinal neoplasms. However, other tumor entities can also express villin. METHODS To comprehensively determine villin expression, tissue microarrays containing 14,398 samples from 118 different tumor types as well as 608 samples of 76 different normal tissues were analyzed by immunohistochemistry. RESULTS Villin was found in 54 of 118 tumor categories, including 36 tumor categories with strong staining. Villin expression was frequent in colorectal, upper gastrointestinal tract, pancreatobiliary, and renal tumors as well as in mucinous ovarian cancers, yolk sac tumors and in neuroendocrine neoplasms. Reduced villin expression was linked to advanced pT stage, lymph vessel invasion and microsatellite instability (p≤0.0006) in colorectal adenocarcinoma. In summary, our data demonstrate that villin expression is most common in gastrointestinal, pancreatobiliary, and neuroendocrine neoplasms, yolk sac tumors and mucinous ovarian cancers. CONCLUSION Our data support a high utility of villin immunohistochemistry for the identification of tumors with gastrointestinal, pancreatobiliary, and yolk sac tumor origin. However, considering that at least a weak villin positivity in some tumor cells occurred in 54 different tumor categories, villin immunohistochemistry should be applied as a part of a marker panel rather than as a stand-alone marker.
Collapse
Affiliation(s)
- David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Hornsteiner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Pathology, Academic Hospital Fuerth, Fuerth Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Pathology, Academic Hospital Fuerth, Fuerth Germany
| |
Collapse
|
6
|
Ma Z, Miao Y. Review: F-Actin remodelling during plant signal transduction via biomolecular assembly. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110663. [PMID: 33218630 DOI: 10.1016/j.plantsci.2020.110663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
During signal transduction, multivalent interactions establish dynamic molecular connectivities that propagate molecular cascades throughout the entire signaling pathway. Such multivalent interactions include the initial activation, cascade signal transduction, and the amplification and assembly of structural machinery. For example, plants rapidly remodel the actin cytoskeleton during signal transduction by perceiving a wide range of mechanical and chemical cues from developmental and defense pathways. Actin treadmilling is stepwise-regulated by interactions between actin and actin-binding proteins (ABPs). Emerging evidence shows that intrinsically disordered regions (IDRs) enable flexible and promiscuous interactions that serve as the functional hub for generating cellular interactomes underlying various signaling events. Though IDRs are present in a majority of ABPs, few of the functional roles of IDR in the interaction and functions of ABPs have been defined. The distinct features of IDRs create diverse and dynamic molecular interactions that introduce a new paradigm to our understanding of the structure-function relationships for actin assembly. In this review, we will create a snapshot of recent advances in IDR-mediated plant actin remodeling and discuss future research directions in studying the complexity of actin assembly via multifaceted biomolecular assembly during signal transduction.
Collapse
Affiliation(s)
- Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
7
|
George SP, Esmaeilniakooshkghazi A, Roy S, Khurana S. F-actin-bundling sites are conserved in proteins with villin-type headpiece domains. Mol Biol Cell 2020; 31:1857-1866. [PMID: 32520642 PMCID: PMC7525818 DOI: 10.1091/mbc.e20-02-0158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/15/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022] Open
Abstract
Villin is a major actin-bundling protein that assembles the brush border of intestinal and renal epithelial cells. The villin "headpiece" domain and the actin-binding residues within it regulate its actin-bundling function. Substantial experimental and theoretical information about the three-dimensional structure of the isolated villin headpiece, including a description of the actin-binding residues within the headpiece, is available. Despite that, the actin-bundling site in the full-length (FL) villin protein remains unidentified. We used this existing villin headpiece nuclear magnetic resonance data and performed mutational analysis and functional assays to identify the actin-bundling site in FL human villin protein. By careful evaluation of these conserved actin-binding residues in human advillin protein, we demonstrate their functional significance in the over 30 proteins that contain a villin-type headpiece domain. Our study is the first that combines the available structural data on villin headpiece with functional assays to identify the actin-binding residues in FL villin that regulate its filament-bundling activity. Our findings could have wider implications for other actin-bundling proteins that contain a villin-type headpiece domain.
Collapse
Affiliation(s)
- Sudeep P. George
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77044
| | | | - Swati Roy
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77044
| | - Seema Khurana
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77044
- Department of Allied Health, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
8
|
Mouse intestinal tuft cells express advillin but not villin. Sci Rep 2020; 10:8877. [PMID: 32483224 PMCID: PMC7264147 DOI: 10.1038/s41598-020-65469-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 03/06/2020] [Indexed: 12/26/2022] Open
Abstract
Tuft (or brush) cells are solitary chemosensory cells scattered throughout the epithelia of the respiratory and alimentary tract. The actin-binding protein villin (Vil1) is used as a marker of tuft cells and the villin promoter is frequently used to drive expression of the Cre recombinase in tuft cells. While there is widespread agreement about the expression of villin in tuft cells there are several disagreements related to tuft cell lineage commitment and function. We now show that many of these inconsistencies could be resolved by our surprising finding that intestinal tuft cells, in fact, do not express villin protein. Furthermore, we show that a related actin-binding protein, advillin which shares 75% homology with villin, has a tuft cell restricted expression in the gastrointestinal epithelium. Our study identifies advillin as a marker of tuft cells and provides a mechanism for driving gene expression in tuft cells but not in other epithelial cells of the gastrointestinal tract. Our findings fundamentally change the way we identify and study intestinal tuft cells.
Collapse
|
9
|
Zhan K, Yang TY, Chen Y, Jiang MC, Zhao GQ. Propionate enhances the expression of key genes involved in the gluconeogenic pathway in bovine intestinal epithelial cells. J Dairy Sci 2020; 103:5514-5524. [PMID: 32278554 DOI: 10.3168/jds.2019-17309] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/08/2020] [Indexed: 12/12/2022]
Abstract
Approximately 15 to 50% of short-chain fatty acids (SCFA) reach the ruminant small intestine. Previous research suggests that activation of small intestinal gluconeogenesis induced by propionate has beneficial effects on energy homeostasis. However, the regulatory effect of propionate on key gluconeogenic genes in enterocytes of the bovine small intestine remains less known. Therefore, the purpose of this study was to establish the long-term cultures of bovine intestinal epithelial cells (BIEC) from bovine jejunum tissue using SV40T (1:200; Santa Cruz, Shanghai, China) and investigate the regulatory effect of propionate on the key gluconeogenic genes in BIEC. Our study showed that long-term BIEC cultures were established by SV40T-induced immortalization. Immortal BIEC were distinguished by the expression of cytokeratin 18, villin, fatty acid binding protein 2, and small intestine peptidase. The mRNA expression of genes involved in the SCFA transporters, monocarboxylate transporter 4, and Na+/H+ exchanger isoforms 1 were significantly elevated with 20 mM SCFA compared with untreated controls. In addition, BIEC exhibited significant uptake of propionate and butyrate from the culture medium. Remarkably, 3 mM propionate induced profound changes in mRNA level of key genes involved in gluconeogenesis, including phosphoenolpyruvate carboxykinase 2, pyruvate carboxylase, fructose-1,6-bisphosphatase 1, and peroxisome proliferator-activated receptor-γ coactivator 1α. Additionally, 3 mM propionate enhanced the expression of PGC1A mRNA at 3, 6, 12, and 24 h of incubation. These findings suggest that propionate controls the mRNA expression of genes involved in key enzymes for gluconeogenesis in the enterocytes of bovines.
Collapse
Affiliation(s)
- Kang Zhan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tian Yu Yang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yinyin Chen
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Mao Cheng Jiang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guo Qi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
10
|
Mithal A, Capilla A, Heinze D, Berical A, Villacorta-Martin C, Vedaie M, Jacob A, Abo K, Szymaniak A, Peasley M, Stuffer A, Mahoney J, Kotton DN, Hawkins F, Mostoslavsky G. Generation of mesenchyme free intestinal organoids from human induced pluripotent stem cells. Nat Commun 2020; 11:215. [PMID: 31924806 PMCID: PMC6954238 DOI: 10.1038/s41467-019-13916-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Efficient generation of human induced pluripotent stem cell (hiPSC)-derived human intestinal organoids (HIOs) would facilitate the development of in vitro models for a variety of diseases that affect the gastrointestinal tract, such as inflammatory bowel disease or Cystic Fibrosis. Here, we report a directed differentiation protocol for the generation of mesenchyme-free HIOs that can be primed towards more colonic or proximal intestinal lineages in serum-free defined conditions. Using a CDX2eGFP iPSC knock-in reporter line to track the emergence of hindgut progenitors, we follow the kinetics of CDX2 expression throughout directed differentiation, enabling the purification of intestinal progenitors and robust generation of mesenchyme-free organoids expressing characteristic markers of small intestinal or colonic epithelium. We employ HIOs generated in this way to measure CFTR function using cystic fibrosis patient-derived iPSC lines before and after correction of the CFTR mutation, demonstrating their future potential for disease modeling and therapeutic screening applications.
Collapse
Affiliation(s)
- Aditya Mithal
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
- The Department of Microbiology at Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, USA
| | - Amalia Capilla
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
| | - Dar Heinze
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
- The Department of Surgery at Boston University School of Medicine, 72 E Concord Street, Boston, MA, 02118, USA
| | - Andrew Berical
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
- The Pulmonary Center at Boston University School of Medicine, 72 E Concord Street, Boston, MA, 02118, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
| | - Marall Vedaie
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
| | - Anjali Jacob
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
| | - Kristine Abo
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
| | - Aleksander Szymaniak
- Cystic Fibrosis Foundation Therapeutics Lab, 44 Hartwell Avenue, Lexington, MA, 02421, USA
| | - Megan Peasley
- Cystic Fibrosis Foundation Therapeutics Lab, 44 Hartwell Avenue, Lexington, MA, 02421, USA
| | - Alexander Stuffer
- Cystic Fibrosis Foundation Therapeutics Lab, 44 Hartwell Avenue, Lexington, MA, 02421, USA
| | - John Mahoney
- Cystic Fibrosis Foundation Therapeutics Lab, 44 Hartwell Avenue, Lexington, MA, 02421, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
- The Pulmonary Center at Boston University School of Medicine, 72 E Concord Street, Boston, MA, 02118, USA
| | - Finn Hawkins
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
- The Pulmonary Center at Boston University School of Medicine, 72 E Concord Street, Boston, MA, 02118, USA
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA.
- The Department of Microbiology at Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, USA.
- The Section of Gastroenterology in the Department of Medicine at Boston University School of Medicine, 650 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
11
|
A systematic investigation of the effect of the fluid shear stress on Caco-2 cells towards the optimization of epithelial organ-on-chip models. Biomaterials 2019; 225:119521. [DOI: 10.1016/j.biomaterials.2019.119521] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 01/01/2023]
|
12
|
Reisinger N, Schürer-Waldheim S, Mayer E, Debevere S, Antonissen G, Sulyok M, Nagl V. Mycotoxin Occurrence in Maize Silage-A Neglected Risk for Bovine Gut Health? Toxins (Basel) 2019; 11:E577. [PMID: 31590302 PMCID: PMC6832361 DOI: 10.3390/toxins11100577] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
Forages are important components of dairy cattle rations but might harbor a plethora of mycotoxins. Ruminants are considered to be less susceptible to the adverse health effects of mycotoxins, mainly because the ruminal microflora degrades certain mycotoxins. Yet, impairment of the ruminal degradation capacity or high ruminal stability of toxins can entail that the intestinal epithelium is exposed to significant mycotoxin amounts. The aims of our study were to assess i) the mycotoxin occurrence in maize silage and ii) the cytotoxicity of relevant mycotoxins on bovine intestinal cells. In total, 158 maize silage samples were collected from European dairy cattle farms. LC-MS/MS-based analysis of 61 mycotoxins revealed the presence of emerging mycotoxins (e.g. emodin, culmorin, enniatin B1, enniatin B, and beauvericin) in more than 70% of samples. Among the regulated mycotoxins, deoxynivalenol and zearalenone were most frequently detected (67.7%). Overall, 87% of maize silages contained more than five mycotoxins. Using an in vitro model with calf small intestinal epithelial cells B, the cytotoxicity of deoxynivalenol, nivalenol, fumonisin B1 and enniatin B was evaluated (0-200 µM). Absolute IC50 values varied in dependence of employed assay and were 1.2-3.6 µM, 0.8-1.0 µM, 8.6-18.3 µM, and 4.0-6.7 µM for deoxynivalenol, nivalenol, fumonisin B1, and enniatin B, respectively. Results highlight the potential relevance of mycotoxins for bovine gut health, a previously neglected target in ruminants.
Collapse
Affiliation(s)
| | | | | | - Sandra Debevere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | - Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Michael Sulyok
- Institute for Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Straße 20, 3430 Tulln, Austria.
| | - Veronika Nagl
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria.
| |
Collapse
|
13
|
Miears HL, Gruber DR, Horvath NM, Antos JM, Young J, Sigurjonsson JP, Klem ML, Rosenkranz EA, Okon M, McKnight CJ, Vugmeyster L, Smirnov SL. Plant Villin Headpiece Domain Demonstrates a Novel Surface Charge Pattern and High Affinity for F-Actin. Biochemistry 2018; 57:1690-1701. [PMID: 29444403 DOI: 10.1021/acs.biochem.7b00856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plants utilize multiple isoforms of villin, an F-actin regulating protein with an N-terminal gelsolin-like core and a distinct C-terminal headpiece domain. Unlike their vertebrate homologues, plant villins have a much longer linker polypeptide connecting the core and headpiece. Moreover, the linker-headpiece connection region in plant villins lacks sequence homology to the vertebrate villin sequences. It is unknown to what extent the plant villin headpiece structure and function resemble those of the well-studied vertebrate counterparts. Here we present the first solution NMR structure and backbone dynamics characterization of a headpiece from plants, villin isoform 4 from Arabidopsis thaliana. The villin 4 headpiece is a 63-residue domain (V4HP63) that adopts a typical headpiece fold with an aromatics core and a tryptophan-centered hydrophobic cap within its C-terminal subdomain. However, V4HP63 has a distinct N-terminal subdomain fold as well as a novel, high mobility loop due to the insertion of serine residue in the canonical sequence that follows the variable length loop in headpiece sequences. The domain binds actin filaments with micromolar affinity, like the vertebrate analogues. However, the V4HP63 surface charge pattern is novel and lacks certain features previously thought necessary for high-affinity F-actin binding. Utilizing the updated criteria for strong F-actin binding, we predict that the headpiece domains of all other villin isoforms in A. thaliana have high affinity for F-actin.
Collapse
Affiliation(s)
- Heather L Miears
- Department of Chemistry , Western Washington University , 516 High Street , Bellingham , Washington 98225-9150 , United States
| | - David R Gruber
- Department of Chemistry , Western Washington University , 516 High Street , Bellingham , Washington 98225-9150 , United States
| | - Nicholas M Horvath
- Department of Chemistry , Western Washington University , 516 High Street , Bellingham , Washington 98225-9150 , United States
| | - John M Antos
- Department of Chemistry , Western Washington University , 516 High Street , Bellingham , Washington 98225-9150 , United States
| | - Jeff Young
- Department of Biology , Western Washington University , 516 High Street , Bellingham , Washington 98225-9160 , United States
| | - Johann P Sigurjonsson
- Department of Chemistry , Western Washington University , 516 High Street , Bellingham , Washington 98225-9150 , United States
| | - Maya L Klem
- Department of Chemistry , Western Washington University , 516 High Street , Bellingham , Washington 98225-9150 , United States
| | - Erin A Rosenkranz
- Department of Chemistry , Western Washington University , 516 High Street , Bellingham , Washington 98225-9150 , United States
| | - Mark Okon
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada
| | - C James McKnight
- Department of Physiology and Biophysics , Boston University School of Medicine , 700 Albany Street , Boston , Massachusetts 02118-2526 , United States
| | - Liliya Vugmeyster
- Department of Chemistry , University of Colorado at Denver , Denver , Colorado 80204 , United States
| | - Serge L Smirnov
- Department of Chemistry , Western Washington University , 516 High Street , Bellingham , Washington 98225-9150 , United States
| |
Collapse
|
14
|
Zhan K, Jiang M, Gong X, Zhao G. Effect of short-chain fatty acids on the expression of genes involved in short-chain fatty acid transporters and inflammatory response in goat jejunum epithelial cells. In Vitro Cell Dev Biol Anim 2018. [PMID: 29532321 DOI: 10.1007/s11626-017-0226-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Short-chain fatty acids (SCFAs) produced by microbial fermentation of dietary fibers are utilized by intestinal epithelial cells to provide an energy source for the ruminant. Although the regulation of mRNA expression and inflammatory response involved in SCFAs is established in other animals and tissues, the underlying mechanisms of the inflammatory response by SCFAs in goat jejunum epithelial cells (GJECs) have not been understood. Therefore, the objective of the study is to investigate the underlying mechanisms of the effects of SCFAs on SCFA transporters and inflammatory response in GJECs. These results showed that the acetate, butyrate, and SCFA concentration were markedly reduced in GJECs (p < 0.01). In addition, the propionate concentration was significantly decreased in GJECs (p < 0.05). The mRNA abundance of monocarboxylate transporter 1 (MCT1), MCT4, NHE1, and putative anion transporter 1 (PAT1) was elevated (p < 0.05) by 20 mM SCFAs at pH 7.4 compared with exposure to the pH group. The anion exchanger 2 (AE2) was increased (p < 0.05) by 20 mM SCFAs at pH 6.2. The mRNA abundance of vH+ ATPase B subunit (vH+ ATPase) was attenuated by SCFAs. For inflammatory responses, IL-1β and TNF-α were increased with SCFAs (p < 0.05). In addition, IκBα involved in NF-κB signaling pathways was disrupted by SCFAs. Consistently, p-p65 signaling molecule was enhanced by adding SCFAs. However, IL-6 was attenuated by adding SCFAs (p < 0.05). Furthermore, p-ErK1/2 mitogen-activated protein kinase (MAPK) signaling pathway was downregulated by adding SCFAs. In conclusion, these novel findings demonstrated that mRNA abundance involved in SCFA absorption is probably associated to SCFAs and pH value, and mechanism of the inflammatory response by SCFAs may be involved in NF-κB and p-ErK1/2 MAPK signaling pathways in GJECs. These pathways may mediate protective inflammation response in GJECs.
Collapse
Affiliation(s)
- Kang Zhan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - MaoCheng Jiang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoxiao Gong
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - GuoQi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
15
|
Rao J, Ashraf S, Tan W, van der Ven AT, Gee HY, Braun DA, Fehér K, George SP, Esmaeilniakooshkghazi A, Choi WI, Jobst-Schwan T, Schneider R, Schmidt JM, Widmeier E, Warejko JK, Hermle T, Schapiro D, Lovric S, Shril S, Daga A, Nayir A, Shenoy M, Tse Y, Bald M, Helmchen U, Mir S, Berdeli A, Kari JA, El Desoky S, Soliman NA, Bagga A, Mane S, Jairajpuri MA, Lifton RP, Khurana S, Martins JC, Hildebrandt F. Advillin acts upstream of phospholipase C ϵ1 in steroid-resistant nephrotic syndrome. J Clin Invest 2017; 127:4257-4269. [PMID: 29058690 DOI: 10.1172/jci94138] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/19/2017] [Indexed: 11/17/2022] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) is a frequent cause of chronic kidney disease. Here, we identified recessive mutations in the gene encoding the actin-binding protein advillin (AVIL) in 3 unrelated families with SRNS. While all AVIL mutations resulted in a marked loss of its actin-bundling ability, truncation of AVIL also disrupted colocalization with F-actin, thereby leading to impaired actin binding and severing. Additionally, AVIL colocalized and interacted with the phospholipase enzyme PLCE1 and with the ARP2/3 actin-modulating complex. Knockdown of AVIL in human podocytes reduced actin stress fibers at the cell periphery, prevented recruitment of PLCE1 to the ARP3-rich lamellipodia, blocked EGF-induced generation of diacylglycerol (DAG) by PLCE1, and attenuated the podocyte migration rate (PMR). These effects were reversed by overexpression of WT AVIL but not by overexpression of any of the 3 patient-derived AVIL mutants. The PMR was increased by overexpression of WT Avil or PLCE1, or by EGF stimulation; however, this increased PMR was ameliorated by inhibition of the ARP2/3 complex, indicating that ARP-dependent lamellipodia formation occurs downstream of AVIL and PLCE1 function. Together, these results delineate a comprehensive pathogenic axis of SRNS that integrates loss of AVIL function with alterations in the action of PLCE1, an established SRNS protein.
Collapse
Affiliation(s)
- Jia Rao
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Shazia Ashraf
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Weizhen Tan
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amelie T van der Ven
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Heon Yung Gee
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Daniela A Braun
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Krisztina Fehér
- NMR and Structure Analysis Group, Department of Organic and Macromolecular Chemistry, University of Gent, Gent, Belgium
| | - Sudeep P George
- Department of Biology and Biochemistry, University of Houston, Houston,Texas, USA
| | | | - Won-Il Choi
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tilman Jobst-Schwan
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ronen Schneider
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Johanna Magdalena Schmidt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eugen Widmeier
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jillian K Warejko
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias Hermle
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David Schapiro
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Svjetlana Lovric
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ankana Daga
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ahmet Nayir
- Department of Pediatric Nephrology, Faculty of Medicine, University of Istanbul, Istanbul, Turkey
| | - Mohan Shenoy
- Department of Pediatric Nephrology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Yincent Tse
- Department of Pediatric Nephrology, Great North Children's Hospital, Newcastle Upon Tyne, United Kingdom
| | - Martin Bald
- Olga Children's Hospital, Clinic Stuttgart, Stuttgart, Germany
| | - Udo Helmchen
- Institute of Pathology, Kidney Registry, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sevgi Mir
- Department of Pediatrics, Molecular Medicine Laboratory, Ege University, Izmir, Turkey
| | - Afig Berdeli
- Department of Pediatrics, Molecular Medicine Laboratory, Ege University, Izmir, Turkey
| | - Jameela A Kari
- Pediatric Nephrology Center of Excellence and Pediatric Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherif El Desoky
- Pediatric Nephrology Center of Excellence and Pediatric Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Neveen A Soliman
- Department of Pediatrics, Center of Pediatric Nephrology and Transplantation, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Arvind Bagga
- Division of Pediatric Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Seema Khurana
- Department of Biology and Biochemistry, University of Houston, Houston,Texas, USA.,Baylor College of Medicine, Houston, Texas, USA
| | - Jose C Martins
- NMR and Structure Analysis Group, Department of Organic and Macromolecular Chemistry, University of Gent, Gent, Belgium
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Wang Y, George SP, Roy S, Pham E, Esmaeilniakooshkghazi A, Khurana S. Both the anti- and pro-apoptotic functions of villin regulate cell turnover and intestinal homeostasis. Sci Rep 2016; 6:35491. [PMID: 27765954 PMCID: PMC5073230 DOI: 10.1038/srep35491] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/15/2016] [Indexed: 12/11/2022] Open
Abstract
In the small intestine, epithelial cells are derived from stem cells in the crypts, migrate up the villus as they differentiate and are ultimately shed from the villus tips. This process of proliferation and shedding is tightly regulated to maintain the intestinal architecture and tissue homeostasis. Apoptosis regulates both the number of stem cells in the crypts as well as the sloughing of cells from the villus tips. Previously, we have shown that villin, an epithelial cell-specific actin-binding protein functions as an anti-apoptotic protein in the gastrointestinal epithelium. The expression of villin is highest in the apoptosis-resistant villus cells and lowest in the apoptosis-sensitive crypts. In this study we report that villin is cleaved in the intestinal mucosa to generate a pro-apoptotic fragment that is spatially restricted to the villus tips. This cleaved villin fragment severs actin in an unregulated fashion to initiate the extrusion and subsequent apoptosis of effete cells from the villus tips. Using villin knockout mice, we validate the physiological role of villin in apoptosis and cell extrusion from the gastrointestinal epithelium. Our study also highlights the potential role of villin’s pro-apoptotic function in the pathogenesis of inflammatory bowel disease, ischemia-reperfusion injury, enteroinvasive bacterial and parasitic infections.
Collapse
Affiliation(s)
- Yaohong Wang
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sudeep P George
- Department of Biology and Biochemistry, University of Houston, Houston TX 77204, USA
| | - Swati Roy
- Department of Biology and Biochemistry, University of Houston, Houston TX 77204, USA
| | - Eric Pham
- Department of Biology and Biochemistry, University of Houston, Houston TX 77204, USA
| | | | - Seema Khurana
- Department of Biology and Biochemistry, University of Houston, Houston TX 77204, USA.,Baylor College of Medicine, Houston TX 77030, USA
| |
Collapse
|
17
|
Abstract
The brush border on the apical surface of enterocytes is a highly specialized structure well-adapted for efficient digestion and nutrient transport, whilst at the same time providing a protective barrier for the intestinal mucosa. The brush border is constituted of a densely ordered array of microvilli, protrusions of the plasma membrane, which are supported by actin-based microfilaments and interacting proteins and anchored in an apical network of actomyosin and intermediate filaments, the so-called terminal web. The highly dynamic, specialized apical domain is both an essential partner for the gut microbiota and an efficient signalling platform that enables adaptation to physiological stimuli from the external and internal milieu. Nevertheless, genetic alterations or various pathological stresses, such as infection, inflammation, and mechanical or nutritional alterations, can jeopardize this equilibrium and compromise intestinal functions. Long-time neglected, the intestinal brush-border shall be enlightening again as the central actor of the complex but essential intestinal homeostasis. Here, we review the processes and components involved in brush border organization and discuss pathological mechanisms that can induce brush border defects and their physiological consequences.
Collapse
|
18
|
Han L, Li Y, Sun Y, Wang H, Kong Z, Xia G. The two domains of cotton WLIM1a protein are functionally divergent. SCIENCE CHINA-LIFE SCIENCES 2016; 59:206-12. [PMID: 26803305 DOI: 10.1007/s11427-016-5002-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 01/27/2023]
Affiliation(s)
- Libo Han
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yuanbao Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongduo Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyun Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guixian Xia
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
19
|
Patnaik S, George SP, Pham E, Roy S, Singh K, Mariadason JM, Khurana S. By moonlighting in the nucleus, villin regulates epithelial plasticity. Mol Biol Cell 2015; 27:535-48. [PMID: 26658611 PMCID: PMC4751603 DOI: 10.1091/mbc.e15-06-0453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/30/2015] [Indexed: 12/02/2022] Open
Abstract
Nuclear villin regulates the expression and activity of Slug, a key transcriptional regulator of epithelial–mesenchymal transition, by directly interacting with its transcriptional corepressor, ZBRK1. Villin accumulates in the nucleus during wound repair, and altering the cellular microenvironment by hypoxia increases the nuclear villin. Villin is a tissue-specific, actin-binding protein involved in the assembly and maintenance of microvilli in polarized epithelial cells. Conversely, villin is also linked with the loss of epithelial polarity and gain of the mesenchymal phenotype in migrating, invasive cells. In this study, we describe for the first time how villin can switch between these disparate functions to change tissue architecture by moonlighting in the nucleus. Our study reveals that the moonlighting function of villin in the nucleus may play an important role in tissue homeostasis and disease. Villin accumulates in the nucleus during wound repair, and altering the cellular microenvironment by inducing hypoxia increases the nuclear accumulation of villin. Nuclear villin is also associated with mouse models of tumorigenesis, and a systematic analysis of a large cohort of colorectal cancer specimens confirmed the nuclear distribution of villin in a subset of tumors. Our study demonstrates that nuclear villin regulates epithelial–mesenchymal transition (EMT). Altering the nuclear localization of villin affects the expression and activity of Slug, a key transcriptional regulator of EMT. In addition, we find that villin directly interacts with a transcriptional corepressor and ligand of the Slug promoter, ZBRK1. The outcome of this study underscores the role of nuclear villin and its binding partner ZBRK1 in the regulation of EMT and as potential new therapeutic targets to inhibit tumorigenesis.
Collapse
Affiliation(s)
- Srinivas Patnaik
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204
| | - Sudeep P George
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204
| | - Eric Pham
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204
| | - Swati Roy
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204
| | - Kanchan Singh
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Melbourne, VIC 3084, Australia
| | - Seema Khurana
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204 Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
20
|
Villin immunohistochemistry is a reliable method for diagnosing microvillus inclusion disease. Am J Surg Pathol 2015; 39:245-50. [PMID: 25517957 DOI: 10.1097/pas.0000000000000355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Microvillus inclusion disease (MVID) is a rare congenital disorder that manifests early in infancy as intractable watery diarrhea. The entity is characterized morphologically by a deficient brush border and apical cytoplasmic inclusions within absorptive cells (enterocytes) due to misplaced assembly of brush border proteins. The diagnosis is based upon histopathology, special stains, immunohistochemistry (IHC), and ultimately upon electron microscopy. Currently, the periodic acid-Schiff stain (PAS) and CD10 IHC are commonly used as adjuncts, but in addition to brush border structures, they stain a variety of apical cytoplasmic inclusions and organelles, thereby interfering with recognition of microvillus inclusions. Villin is a protein that specifically binds to the actin core bundle of microvilli. We utilized villin IHC in formalin-fixed paraffin-embedded gastrointestinal biopsies from 6 patients with MVID, 5 with celiac disease, and 17 children with normal intestinal biopsies and compared the results with those obtained with CD10 IHC and PAS staining. All MVID cases had confirmatory electron microscopy at the time of diagnosis. Villin immunoreactivity was restricted to the brush border in the control groups. In MVID, villin IHC showed attenuation or loss of the surface brush border and also highlighted the cytoplasmic microvillus inclusions with clarity. In MVID, CD10 IHC and the PAS stain also showed attenuation or loss of the surface brush border, but staining of a variety of cytoplasmic structures largely obscured the microvillus inclusions. In sum, villin IHC is a reliable and superior adjunct in the diagnosis of MVID. Study of additional cases will determine whether villin IHC would obviate the need for electron microscopic confirmation.
Collapse
|
21
|
Huang S, Qu X, Zhang R. Plant villins: versatile actin regulatory proteins. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:40-9. [PMID: 25294278 DOI: 10.1111/jipb.12293] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 10/01/2014] [Indexed: 05/03/2023]
Abstract
Regulation of actin dynamics is a central theme in cell biology that is important for different aspects of cell physiology. Villin, a member of the villin/gelsolin/fragmin superfamily of proteins, is an important regulator of actin. Villins contain six gelsolin homology domains (G1-G6) and an extra headpiece domain. In contrast to their mammalian counterparts, plant villins are expressed widely, implying that plant villins play a more general role in regulating actin dynamics. Some plant villins have a defined role in modifying actin dynamics in the pollen tube; most of their in vivo activities remain to be ascertained. Recently, our understanding of the functions and mechanisms of action for plant villins has progressed rapidly, primarily due to the advent of Arabidopsis thaliana genetic approaches and imaging capabilities that can visualize actin dynamics at the single filament level in vitro and in living plant cells. In this review, we focus on discussing the biochemical activities and modes of regulation of plant villins. Here, we present current understanding of the functions of plant villins. Finally, we highlight some of the key unanswered questions regarding the functions and regulation of plant villins for future research.
Collapse
Affiliation(s)
- Shanjin Huang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | | | | |
Collapse
|
22
|
Vattepu R, Yadav R, Beck MR. Actin-induced dimerization of palladin promotes actin-bundling. Protein Sci 2014; 24:70-80. [PMID: 25307943 DOI: 10.1002/pro.2588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/09/2014] [Indexed: 12/12/2022]
Abstract
A subset of actin binding proteins is able to form crosslinks between two or more actin filaments, thus producing structures of parallel or networked bundles. These actin crosslinking proteins interact with actin through either bivalent binding or dimerization. We recently identified two binding sites within the actin binding domain of palladin, an actin crosslinking protein that plays an important role in normal cell adhesion and motility during wound healing and embryonic development. In this study, we show that actin induces dimerization of palladin. Furthermore, the extent of dimerization reflects earlier comparisons of actin binding and bundling between different domains of palladin. On the basis of these results we hypothesized that actin binding may promote a conformational change that results in dimerization of palladin, which in turn may drive the crosslinking of actin filaments. The proximal distance between two actin binding sites on crosslinking proteins determines the ultrastructural properties of the filament network, therefore we also explored interdomain interactions using a combination of chemical crosslinking experiments and actin cosedimentation assays. Limited proteolysis data reveals that palladin is less susceptible to enzyme digestion after actin binding. Our results suggest that domain movements in palladin are necessary for interactions with actin and are induced by interactions with actin filaments. Accordingly, we put forth a model linking the structural changes to functional dynamics.
Collapse
Affiliation(s)
- Ravi Vattepu
- Chemistry Department, Wichita State University, Wichita, Kansas, 67260
| | | | | |
Collapse
|
23
|
Derlig K, Ehrhardt T, Gießl A, Brandstätter JH, Enz R, Dahlhaus R. Simiate is an Actin binding protein involved in filopodia dynamics and arborization of neurons. Front Cell Neurosci 2014; 8:99. [PMID: 24782708 PMCID: PMC3986562 DOI: 10.3389/fncel.2014.00099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/16/2014] [Indexed: 01/13/2023] Open
Abstract
The Actin cytoskeleton constitutes the functional base for a multitude of cellular processes extending from motility and migration to cell mechanics and morphogenesis. The latter is particularly important to neuronal cells since the accurate functioning of the brain crucially depends on the correct arborization of neurons, a process that requires the formation of several dozens to hundreds of dendritic branches. Recently, a model was proposed where different transcription factors are detailed to distinct facets and phases of dendritogenesis and exert their function by acting on the Actin cytoskeleton, however, the proteins involved as well as the underlying molecular mechanisms are largely unknown. Here, we demonstrate that Simiate, a protein previously indicated to activate transcription, directly associates with both, G- and F-Actin and in doing so, affects Actin polymerization and Actin turnover in living cells. Imaging studies illustrate that Simiate particularly influences filopodia dynamics and specifically increases the branching of proximal, but not distal dendrites of developing neurons. The data suggests that Simiate functions as a direct molecular link between transcription regulation on one side, and dendritogenesis on the other, wherein Simiate serves to coordinate the development of proximal and distal dendrites by acting on the Actin cytoskeleton of filopodia and on transcription regulation, hence supporting the novel model.
Collapse
Affiliation(s)
- Kristin Derlig
- Department of Medicine, Emil-Fischer Centre, Institute for Biochemistry, University of Erlangen-Nuremberg Erlangen, Germany
| | - Toni Ehrhardt
- Department of Medicine, Emil-Fischer Centre, Institute for Biochemistry, University of Erlangen-Nuremberg Erlangen, Germany
| | - Andreas Gießl
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg Erlangen, Germany
| | - Johann H Brandstätter
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg Erlangen, Germany
| | - Ralf Enz
- Department of Medicine, Emil-Fischer Centre, Institute for Biochemistry, University of Erlangen-Nuremberg Erlangen, Germany
| | - Regina Dahlhaus
- Department of Medicine, Emil-Fischer Centre, Institute for Biochemistry, University of Erlangen-Nuremberg Erlangen, Germany
| |
Collapse
|
24
|
Hoffmann C, Moes D, Dieterle M, Neumann K, Moreau F, Tavares Furtado A, Dumas D, Steinmetz A, Thomas C. Live cell imaging reveals actin-cytoskeleton-induced self-association of the actin-bundling protein WLIM1. J Cell Sci 2014; 127:583-98. [PMID: 24284066 DOI: 10.1242/jcs.134536] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Crosslinking of actin filaments into bundles is essential for the assembly and stabilization of specific cytoskeletal structures. However, relatively little is known about the molecular mechanisms underlying actin bundle formation. The two LIM-domain-containing proteins define a novel and evolutionarily conserved family of actin-bundling proteins whose actin-binding and -crosslinking activities primarily rely on their LIM domains. Using TIRF microscopy, we describe real-time formation of actin bundles induced by tobacco NtWLIM1 in vitro. We show that NtWLIM1 binds to single filaments and subsequently promotes their interaction and zippering into tight bundles of mixed polarity. NtWLIM1-induced bundles grew by both elongation of internal filaments and addition of preformed fragments at their extremities. Importantly, these data are highly consistent with the modes of bundle formation and growth observed in transgenic Arabidopsis plants expressing a GFP-fused Arabidopsis AtWLIM1 protein. Using two complementary live cell imaging approaches, a close relationship between NtWLIM1 subcellular localization and self-association was established. Indeed, both BiFC and FLIM-FRET data revealed that, although unstable NtWLIM1 complexes can sporadically form in the cytosol, stable complexes concentrate along the actin cytoskeleton. Remarkably, disruption of the actin cytoskeleton significantly impaired self-association of NtWLIM1. In addition, biochemical analyses support the idea that F-actin facilitates the switch of purified recombinant NtWLIM1 from a monomeric to a di- or oligomeric state. On the basis of our data, we propose a model in which actin binding promotes the formation and stabilization of NtWLIM1 complexes, which in turn might drive the crosslinking of actin filaments.
Collapse
Affiliation(s)
- Céline Hoffmann
- Centre de Recherche Public-Santé, 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fedechkin SO, Brockerman J, Pfaff DA, Burns L, Webb T, Nelson A, Zhang F, Sabantsev AV, Melnikov AS, McKnight CJ, Smirnov SL. Gelsolin-like activation of villin: calcium sensitivity of the long helix in domain 6. Biochemistry 2013; 52:7890-900. [PMID: 24070253 DOI: 10.1021/bi400699s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Villin is a gelsolin-like cytoskeleton regulator localized in the brush border at the apical end of epithelial cells. Villin regulates microvilli by bundling F-actin at low calcium levels and severing it at high calcium levels. The villin polypeptide consists of six gelsolin-like repeats (V1-V6) and the unique, actin binding C-terminal headpiece domain (HP). Villin modular fragment V6-HP requires calcium to stay monomeric and bundle F-actin. Our data show that isolated V6 is monomeric and does not bind F-actin at any level of calcium. We propose that the 40-residue unfolded V6-to-HP linker can be a key regulatory element in villin's functions such as its interactions with F-actin. Here we report a calcium-bound solution nuclear magnetic resonance (NMR) structure of V6, which has a gelsolin-like fold with the long α-helix in the extended conformation. Intrinsic tryptophan fluorescence quenching reveals two-Kd calcium binding in V6 (Kd1 of 22 μM and Kd2 of 2.8 mM). According to our NMR data, the conformation of V6 responds the most to micromolar calcium. We show that the long α-helix and the adjacent residues form the calcium-sensitive elements in V6. These observations are consistent with the calcium activation of F-actin severing by villin analogous to the gelsolin helix-straightening mechanism.
Collapse
Affiliation(s)
- Stanislav O Fedechkin
- Department of Chemistry, Western Washington University , 516 High Street, Bellingham, Washington 98225-9150, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ghoshdastider U, Popp D, Burtnick LD, Robinson RC. The expanding superfamily of gelsolin homology domain proteins. Cytoskeleton (Hoboken) 2013; 70:775-95. [DOI: 10.1002/cm.21149] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/11/2013] [Accepted: 10/02/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Umesh Ghoshdastider
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science; Technology and Research); Biopolis 138673 Singapore
| | - David Popp
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science; Technology and Research); Biopolis 138673 Singapore
| | - Leslie D. Burtnick
- Department of Chemistry and Centre for Blood Research; Life Sciences Institute; University of British Columbia; Vancouver British Columbia V6T 1Z1 Canada
| | - Robert C. Robinson
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science; Technology and Research); Biopolis 138673 Singapore
- Department of Biochemistry; National University of Singapore; Singapore 117597 Singapore
- School of Biological Sciences; Nanyang Technological University; Singapore 637551 Singapore
| |
Collapse
|
27
|
Kwon MS, Park KR, Kim YD, Na BR, Kim HR, Choi HJ, Piragyte I, Jeon H, Chung KH, Song WK, Eom SH, Jun CD. Swiprosin-1 is a novel actin bundling protein that regulates cell spreading and migration. PLoS One 2013; 8:e71626. [PMID: 23977092 PMCID: PMC3744483 DOI: 10.1371/journal.pone.0071626] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/28/2013] [Indexed: 11/18/2022] Open
Abstract
Protein functions are often revealed by their localization to specialized cellular sites. Recent reports demonstrated that swiprosin-1 is found together with actin and actin-binding proteins in the cytoskeleton fraction of human mast cells and NK-like cells. However, direct evidence of whether swiprosin-1 regulates actin dynamics is currently lacking. We found that swiprosin-1 localizes to microvilli-like membrane protrusions and lamellipodia and exhibits actin-binding activity. Overexpression of swiprosin-1 enhanced lamellipodia formation and cell spreading. In contrast, swiprosin-1 knockdown showed reduced cell spreading and migration. Swiprosin-1 induced actin bundling in the presence of Ca(2+), and deletion of the EF-hand motifs partially reduced bundling activity. Swiprosin-1 dimerized in the presence of Ca(2+) via its coiled-coil domain, and a lysine (Lys)-rich region in the coiled-coil domain was essential for regulation of actin bundling. Consistent with these observations, mutations of the EF-hand motifs and coiled-coil region significantly reduced cell spreading and lamellipodia formation. We provide new evidence of how swiprosin-1 influences cytoskeleton reorganization and cell spreading.
Collapse
Affiliation(s)
- Min-Sung Kwon
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Kyoung Ryoung Park
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Young-Dae Kim
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Bo-Ra Na
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Hye-Ran Kim
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Hak-Jong Choi
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Indre Piragyte
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Hyesung Jeon
- Biomedical Research Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Korea
| | - Kyung Hwun Chung
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Woo Keun Song
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Soo Hyun Eom
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Duk Jun
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
28
|
Nag S, Larsson M, Robinson RC, Burtnick LD. Gelsolin: The tail of a molecular gymnast. Cytoskeleton (Hoboken) 2013; 70:360-84. [DOI: 10.1002/cm.21117] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/24/2013] [Indexed: 12/14/2022]
Affiliation(s)
| | - Mårten Larsson
- Institute of Molecular and Cell Biology, A*STAR; Singapore
| | | | - Leslie D. Burtnick
- Department of Chemistry and Centre for Blood Research; Life Sciences Institute, University of British Columbia; Vancouver; British Columbia; Canada
| |
Collapse
|
29
|
Hur D, Hong S. Cloning and characterization of a fish specific gelsolin family gene, ScinL, in olive flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 2012; 164:89-98. [PMID: 23159325 DOI: 10.1016/j.cbpb.2012.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/07/2012] [Accepted: 11/07/2012] [Indexed: 12/23/2022]
Abstract
Scinderin like (ScinL) gene is a unique gelsolin family gene found only in fish. In this study ScinL gene was cloned in olive flounder for the first time and characterized its expression and function. Flounder ScinL cDNA consists of 2911 nucleotides encoding a putative protein of 720 amino acids (79.4 kDa). In phylogenetic analysis, flounder ScinL is closely related to ScinL of zebra fish, anableps, and fugu with the similarity of 51-72%. Fish ScinLs are positioned between gelsolin and scinderin of other species. Flounder ScinL protein has the highly conserved actin and PIP2 binding sites, Ca(2+) coordination site, and a C-terminal latch helix preventing the activation of ScinL protein in the absence of Ca(2+). Putative binding sites for NFAT and AP-1 were found in 5' flanking region. Constitutive ScinL expression was found in most organs and the expression level was higher in gill, head kidney, trunk kidney, spleen and skin than muscle, stomach, intestine and brain. In Q-PCR analysis ScinL and CYP1A1 gene expression were significantly upregulated by BaP in head kidney in vivo and in vitro, and in macrophage cells. Upregulated ScinL expression by BaP was blocked by EGTA, indicating a calcium dependent regulation of ScinL expression.
Collapse
Affiliation(s)
- Deokhwe Hur
- Department of Marine Biotechnology, Gangneung Wonju National University, Gangneung 210-702, South Korea
| | | |
Collapse
|
30
|
George SP, Chen H, Conrad JC, Khurana S. Regulation of directional cell migration by membrane-induced actin bundling. J Cell Sci 2012; 126:312-26. [PMID: 23132923 DOI: 10.1242/jcs.116244] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
During embryonic development and in metastatic cancers, cells detach from the epithelium and migrate with persistent directionality. Directional cell migration is also crucial for the regeneration and maintenance of the epithelium and impaired directional migration is linked to chronic inflammatory diseases. Despite its significance, the mechanisms controlling epithelial cell migration remain poorly understood. Villin is an epithelial-cell-specific actin modifying protein that regulates epithelial cell plasticity and motility. In motile cells villin is associated with the highly branched and the unbranched actin filaments of lamellipodia and filopodia, respectively. In this study we demonstrate for the first time that villin regulates directionally persistent epithelial cell migration. Functional characterization of wild-type and mutant villin proteins revealed that the ability of villin to self-associate and bundle actin as well as its direct interaction with phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] regulates villin-induced filopodial assembly and directional cell migration. Our findings suggest that convergence of different signaling cascades could spatially restrict villin activity to areas of high PtdIns(4,5)P(2) and F-actin concentration to assemble filopodia. Furthermore, our data reveal the ability of villin to undergo actin- and PtdIns(4,5)P(2)-induced self-association, which may be particularly suited to coalesce and reorganize actin bundles within the filopodia.
Collapse
Affiliation(s)
- Sudeep P George
- Department of Biology and Biochemistry, The University of Houston, Houston, TX 77204, USA
| | | | | | | |
Collapse
|
31
|
Harwood MD, Neuhoff S, Carlson GL, Warhurst G, Rostami-Hodjegan A. Absolute abundance and function of intestinal drug transporters: a prerequisite for fully mechanisticin vitro-in vivoextrapolation of oral drug absorption. Biopharm Drug Dispos 2012; 34:2-28. [DOI: 10.1002/bdd.1810] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/01/2012] [Accepted: 08/13/2012] [Indexed: 12/14/2022]
Affiliation(s)
| | - S. Neuhoff
- Simcyp Ltd (a Certara Company); Blades Enterprise Centre; Sheffield; S2 4SU; UK
| | - G. L. Carlson
- Gut Barrier Group, School of Translational Medicine; University of Manchester, Salford Royal Hospital NHS Trust; M6 8HD; UK
| | - G. Warhurst
- Gut Barrier Group, School of Translational Medicine; University of Manchester, Salford Royal Hospital NHS Trust; M6 8HD; UK
| | | |
Collapse
|
32
|
van der Honing HS, Kieft H, Emons AMC, Ketelaar T. Arabidopsis VILLIN2 and VILLIN3 are required for the generation of thick actin filament bundles and for directional organ growth. PLANT PHYSIOLOGY 2012; 158:1426-38. [PMID: 22209875 PMCID: PMC3291277 DOI: 10.1104/pp.111.192385] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 12/21/2011] [Indexed: 05/18/2023]
Abstract
In plant cells, actin filament bundles serve as tracks for myosin-dependent organelle movement and play a role in the organization of the cytoplasm. Although virtually all plant cells contain actin filament bundles, the role of the different actin-bundling proteins remains largely unknown. In this study, we investigated the role of the actin-bundling protein villin in Arabidopsis (Arabidopsis thaliana). We used Arabidopsis T-DNA insertion lines to generate a double mutant in which VILLIN2 (VLN2) and VLN3 transcripts are truncated. Leaves, stems, siliques, and roots of vln2 vln3 double mutant plants are twisted, which is caused by local differences in cell length. Microscopy analysis of the actin cytoskeleton showed that in these double mutant plants, thin actin filament bundles are more abundant while thick actin filament bundles are virtually absent. In contrast to full-length VLN3, truncated VLN3 lacking the headpiece region does not rescue the phenotype of the vln2 vln3 double mutant. Our results show that villin is involved in the generation of thick actin filament bundles in several cell types and suggest that these bundles are involved in the regulation of coordinated cell expansion.
Collapse
Affiliation(s)
- Hannie S. van der Honing
- Laboratory of Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands (H.S.v.d.H., H.K., A.M.C.E., T.K.); and Department of Biomolecular Systems, Stichting voor Fundamenteel Onderzoek der Materie Institute for Atomic and Molecular Physics, 1098 SG Amsterdam, The Netherlands (A.M.C.E.)
| | - Henk Kieft
- Laboratory of Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands (H.S.v.d.H., H.K., A.M.C.E., T.K.); and Department of Biomolecular Systems, Stichting voor Fundamenteel Onderzoek der Materie Institute for Atomic and Molecular Physics, 1098 SG Amsterdam, The Netherlands (A.M.C.E.)
| | - Anne Mie C. Emons
- Laboratory of Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands (H.S.v.d.H., H.K., A.M.C.E., T.K.); and Department of Biomolecular Systems, Stichting voor Fundamenteel Onderzoek der Materie Institute for Atomic and Molecular Physics, 1098 SG Amsterdam, The Netherlands (A.M.C.E.)
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands (H.S.v.d.H., H.K., A.M.C.E., T.K.); and Department of Biomolecular Systems, Stichting voor Fundamenteel Onderzoek der Materie Institute for Atomic and Molecular Physics, 1098 SG Amsterdam, The Netherlands (A.M.C.E.)
| |
Collapse
|
33
|
Zhang W, Zhao Y, Guo Y, Ye K. Plant actin-binding protein SCAB1 is dimeric actin cross-linker with atypical pleckstrin homology domain. J Biol Chem 2012; 287:11981-90. [PMID: 22356912 DOI: 10.1074/jbc.m111.338525] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SCAB1 is a novel plant-specific actin-binding protein that binds, bundles, and stabilizes actin filaments and regulates stomatal movement. Here, we dissected the structure and function of SCAB1 by structural and biochemical approaches. We show that SCAB1 is composed of an actin-binding domain, two coiled-coil (CC) domains, and a fused immunoglobulin and pleckstrin homology (Ig-PH) domain. We determined crystal structures for the CC1 and Ig-PH domains at 1.9 and 1.7 Å resolution, respectively. The CC1 domain adopts an antiparallel helical hairpin that further dimerizes into a four-helix bundle. The CC2 domain also mediates dimerization. At least one of the coiled coils is required for actin binding, indicating that SCAB1 is a bivalent actin cross-linker. The key residues required for actin binding were identified. The PH domain lacks a canonical basic phosphoinositide-binding pocket but can bind weakly to inositol phosphates via a basic surface patch, implying the involvement of inositol signaling in SCAB1 regulation. Our results provide novel insights into the functional organization of SCAB1.
Collapse
Affiliation(s)
- Wei Zhang
- College of Biological Sciences, China Agricultural University, Beijing 10019, China
| | | | | | | |
Collapse
|
34
|
Cheung R, Kelly J, Macleod RJ. Regulation of villin by wnt5a/ror2 signaling in human intestinal cells. Front Physiol 2011; 2:58. [PMID: 21949508 PMCID: PMC3171703 DOI: 10.3389/fphys.2011.00058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 08/19/2011] [Indexed: 11/13/2022] Open
Abstract
Regulation of expression of the intestinal epithelial actin-binding protein, villin, is poorly understood. The aim of this study was to determine whether Wnt5a stimulates Ror2 in intestinal epithelia caused transient increases in phospho-ERK1/2 (pERK1/2) and subsequently increased expression of villin transcript and protein. To demonstrate Wnt5a-Ror2 regulation of villin expression, we overexpressed wild-type, truncated, or mutant Ror2 constructs in HT29 adenocarcinoma cells and non-transformed fetally derived human intestinal epithelial cells, added conditioned media containing Wnt5a and measured changes in ERK1/2 phosphorylation, villin amplicons, and protein expression by RT-PCR and Western blot techniques. Wnt5a addition caused a transient increase in pERK1/2, which was maximal at 10 min but extinguished by 30 min. Transient transfection with a siRNA duplex against Ror2 diminished Ror2 amplicons and protein and reduced the extent of pERK1/2 activation. Structure-function analysis revealed that the deletion of the cysteine-rich, kringle, or tyrosine kinase domain or substitution mutations of tyrosine residues in the intracellular Ser/Thr-1 region of Ror2 prevented the Wnt5a stimulation of pERK1/2. Deletion of the intracellular proline and serine/threonine-rich regions of Ror2 had no effect on Wnt5a stimulation of pERK1/2. The increase in villin expression was blocked by pharmacological inhibition of MEK-1 and casein kinase 1, but not by PKC and p38 inhibitors. Neither Wnt3a nor epidermal growth factor addition caused increases in villin protein. Our findings suggest that Wnt5a/Ror2 signaling can regulate villin expression in the intestine.
Collapse
Affiliation(s)
- Rebecca Cheung
- Department of Physiology, Queen's University Kingston, ON, Canada
| | | | | |
Collapse
|
35
|
Khurana S, George SP. The role of actin bundling proteins in the assembly of filopodia in epithelial cells. Cell Adh Migr 2011; 5:409-20. [PMID: 21975550 PMCID: PMC3218608 DOI: 10.4161/cam.5.5.17644] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/05/2011] [Indexed: 01/22/2023] Open
Abstract
The goal of this review is to highlight how emerging new models of filopodia assembly, which include tissue specific actin-bundling proteins, could provide more comprehensive representations of filopodia assembly that would describe more adequately and effectively the complexity and plasticity of epithelial cells. This review also describes how the true diversity of actin bundling proteins must be considered to predict the far-reaching significance and versatile functions of filopodia in epithelial cells.
Collapse
Affiliation(s)
- Seema Khurana
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | | |
Collapse
|
36
|
Buhrke T, Lengler I, Lampen A. Analysis of proteomic changes induced upon cellular differentiation of the human intestinal cell line Caco-2. Dev Growth Differ 2011; 53:411-26. [PMID: 21492153 DOI: 10.1111/j.1440-169x.2011.01258.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The human intestinal cell line Caco-2 is a well-established model system to study cellular differentiation of human enterocytes of intestinal origin, because these cells have the capability to differentiate spontaneously into polarized cells with morphological and biochemical features of small intestinal enterocytes. Therefore, the cells are widely used as an in vitro model for the human intestinal barrier. In this study, a proteomic approach was used to identify the molecular marker of intestinal cellular differentiation. The proteome of proliferating Caco-2 cells was compared with that of fully differentiated cells. Two-dimensional gel analysis yielded 53 proteins that were differently regulated during the differentiation process. Pathway analysis conducted with those 34 proteins that were identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis revealed subsets of proteins with common molecular and cellular function. It was shown that proteins involved in xenobiotic and drug metabolism as well as in lipid metabolism were upregulated upon cellular differentiation. In parallel, proteins associated with proliferation, cell growth and cancer were downregulated, reflecting the loss of the tumorigenic phenotype of the cells. Thus, the proteomic approach in combination with a literature-based pathway analysis yielded valuable information about the differentiation process of Caco-2 cells on the molecular level that contributes to the understanding of the development of colon cancer or inflammatory diseases such as ulcerative colitis--diseases associated with an imbalanced differentiation process of intestinal cells.
Collapse
Affiliation(s)
- Thorsten Buhrke
- Food Safety Department, Federal Institute for Risk Assessment, Thielallee 88-92, 14195 Berlin, Germany.
| | | | | |
Collapse
|
37
|
Natoli M, Leoni BD, D'Agnano I, D'Onofrio M, Brandi R, Arisi I, Zucco F, Felsani A. Cell growing density affects the structural and functional properties of Caco-2 differentiated monolayer. J Cell Physiol 2011; 226:1531-43. [PMID: 20945374 DOI: 10.1002/jcp.22487] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The human intestinal Caco-2 cell line has been extensively used as a model of the intestinal barrier. However, it is widely reported in literature that culture-related conditions, as well as the different Caco-2 cell lines utilized in different laboratories, often lead to problems of reproducibility making difficult to compare results. We developed a new cell-maintenance protocol in which Caco-2 cells were subcultured at 50% of confluence instead of 80% of confluence, as usually suggested. Using this new protocol, Caco-2 cells retained a higher proliferation potential resulting in a cell population, which, on reaching confluence, was able to differentiate almost synchronously, forming a more homogeneous and polarized cell monolayer, as compared to that obtained using a high cell growing density. This comparison has been done by analyzing the gene expression and the structural characteristics of the 21-days differentiated monolayers by microarrays hybridization and by confocal microscopy. We then investigated if these differences could also modify the effects of toxicants on 21-days-differentiated cells. We analyzed the 2 h-acute toxicity of CuCl(2) in terms of actin depolymerization and metallothionein 2A (MT2A) and heat shock protein 70 (HSPA1A) genes induction. Copper treatment resulted in different levels of actin depolymerization and gene expression induction in relationship with culture protocol, the low-density growing cells showing a more homogeneous and stronger response. Our results suggest that cell growing density could influence a number of morphological and physiological properties of differentiated Caco-2 cells and these effects must be taken in account when these cells are used as intestinal model.
Collapse
Affiliation(s)
- Manuela Natoli
- CNR, Institute of Neurobiology and Molecular Medicine, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
He L, Zhang Z, Yu Y, Ahmed S, Cheung NS, Qi RZ. The neuronal p35 activator of Cdk5 is a novel F-actin binding and bundling protein. Cell Mol Life Sci 2011; 68:1633-43. [PMID: 20976519 PMCID: PMC11114985 DOI: 10.1007/s00018-010-0562-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/24/2010] [Accepted: 10/05/2010] [Indexed: 12/11/2022]
Abstract
The neuronal Cdk5 activator p35 is involved in a multitude of neuronal activities, including cytoskeletal organization. We show here that p35 directly interacts with filamentous actin (F-actin) but not with monomeric actin (G-actin). Through binding, p35 induces the formation of actin bundles and stabilizes F-actin against dilution-induced depolymerization. p35 forms intermolecular self-associations, suggesting that p35 cross-links actin filaments into bundles via its intermolecular self-association. p35 dimerization and association with F-actin occur at the N-terminal region that is absent in the calpain-cleaved product p25, indicating that such p35 properties are lost by its truncation induced under neurotoxic conditions. Using p35 phosphorylated by Cdk5 and a mutational approach, we demonstrate that the phosphorylation of p35 promotes its homodimerization and p35-induced formation of F-actin bundles. In addition, the phosphorylation regulates p35 distribution to microtubule and actin cytoskeletons. Together, these observations define a novel function for p35 in cytoskeletal regulation.
Collapse
Affiliation(s)
- Lisheng He
- Department of Biochemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Zhaojun Zhang
- Department of Biochemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Yan Yu
- Department of Biochemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Sohail Ahmed
- Institute of Medical Biology, 8A Biomedical Grove, #06-06, Immunos, Singapore, 138648 Republic of Singapore
| | - Nam Sang Cheung
- Menzies Research Institute, University of Tasmania, Hobart, TAS Australia
| | - Robert Z. Qi
- Department of Biochemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| |
Collapse
|
39
|
Schneider G, Nieznanski K, Jozwiak J, Slomnicki LP, Redowicz MJ, Filipek A. Tubulin binding protein, CacyBP/SIP, induces actin polymerization and may link actin and tubulin cytoskeletons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1308-17. [DOI: 10.1016/j.bbamcr.2010.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/08/2010] [Accepted: 07/08/2010] [Indexed: 12/15/2022]
|
40
|
Zhang H, Qu X, Bao C, Khurana P, Wang Q, Xie Y, Zheng Y, Chen N, Blanchoin L, Staiger CJ, Huang S. Arabidopsis VILLIN5, an actin filament bundling and severing protein, is necessary for normal pollen tube growth. THE PLANT CELL 2010; 22:2749-67. [PMID: 20807879 PMCID: PMC2947167 DOI: 10.1105/tpc.110.076257] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A dynamic actin cytoskeleton is essential for pollen germination and tube growth. However, the molecular mechanisms underlying the organization and turnover of the actin cytoskeleton in pollen remain poorly understood. Villin plays a key role in the formation of higher-order structures from actin filaments and in the regulation of actin dynamics in eukaryotic cells. It belongs to the villin/gelsolin/fragmin superfamily of actin binding proteins and is composed of six gelsolin-homology domains at its core and a villin headpiece domain at its C terminus. Recently, several villin family members from plants have been shown to sever, cap, and bundle actin filaments in vitro. Here, we characterized a villin isovariant, Arabidopsis thaliana VILLIN5 (VLN5), that is highly and preferentially expressed in pollen. VLN5 loss-of-function retarded pollen tube growth and sensitized actin filaments in pollen grains and tubes to latrunculin B. In vitro biochemical analyses revealed that VLN5 is a typical member of the villin family and retains a full suite of activities, including barbed-end capping, filament bundling, and calcium-dependent severing. The severing activity was confirmed with time-lapse evanescent wave microscopy of individual actin filaments in vitro. We propose that VLN5 is a major regulator of actin filament stability and turnover that functions in concert with oscillatory calcium gradients in pollen and therefore plays an integral role in pollen germination and tube growth.
Collapse
Affiliation(s)
- Hua Zhang
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaolu Qu
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chanchan Bao
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100049, China
| | - Parul Khurana
- Department of Biological Sciences and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907-2064
| | - Qiannan Wang
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yurong Xie
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yiyan Zheng
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100049, China
| | - Naizhi Chen
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Laurent Blanchoin
- Institut de Recherches en Technologie et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire Végétale, Commissariat à l’Energie Atomique/Centre National de la Recherche Scientifique/Université Joseph Fourier, F38054 Grenoble, France
| | - Christopher J. Staiger
- Department of Biological Sciences and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907-2064
| | - Shanjin Huang
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Address correspondence to
| |
Collapse
|
41
|
Khurana P, Henty JL, Huang S, Staiger AM, Blanchoin L, Staiger CJ. Arabidopsis VILLIN1 and VILLIN3 have overlapping and distinct activities in actin bundle formation and turnover. THE PLANT CELL 2010; 22:2727-48. [PMID: 20807878 PMCID: PMC2947172 DOI: 10.1105/tpc.110.076240] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/29/2010] [Accepted: 08/17/2010] [Indexed: 05/20/2023]
Abstract
Actin filament bundles are higher-order cytoskeletal structures that are crucial for the maintenance of cellular architecture and cell expansion. They are generated from individual actin filaments by the actions of bundling proteins like fimbrins, LIMs, and villins. However, the molecular mechanisms of dynamic bundle formation and turnover are largely unknown. Villins belong to the villin/gelsolin/fragmin superfamily and comprise at least five isovariants in Arabidopsis thaliana. Different combinations of villin isovariants are coexpressed in various tissues and cells. It is not clear whether these isovariants function together and act redundantly or whether they have unique activities. VILLIN1 (VLN1) is a simple filament-bundling protein and is Ca(2+) insensitive. Based on phylogenetic analyses and conservation of Ca(2+) binding sites, we predict that VLN3 is a Ca(2+)-regulated villin capable of severing actin filaments and contributing to bundle turnover. The bundling activity of both isovariants was observed directly with time-lapse imaging and total internal reflection fluorescence (TIRF) microscopy in vitro, and the mechanism mimics the "catch and zipper" action observed in vivo. Using time-lapse TIRF microscopy, we observed and quantified the severing of individual actin filaments by VLN3 at physiological calcium concentrations. Moreover, VLN3 can sever actin filament bundles in the presence of VLN1 when calcium is elevated to micromolar levels. Collectively, these results demonstrate that two villin isovariants have overlapping and distinct activities.
Collapse
Affiliation(s)
- Parul Khurana
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Jessica L. Henty
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Shanjin Huang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Andrew M. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Laurent Blanchoin
- Institut de Recherches en Technologie et Sciences pour le Vivant, Commissariat à l'Energie Atomique/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Joseph Fourier, Commissariat à l’Energie Atomique Grenoble, F38054 Grenoble, France
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
- The Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
- Address correspondence to
| |
Collapse
|
42
|
Myeni SK, Zhou D. The C terminus of SipC binds and bundles F-actin to promote Salmonella invasion. J Biol Chem 2010; 285:13357-63. [PMID: 20212042 DOI: 10.1074/jbc.m109.094045] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Salmonella enterica serovar Typhimurium invade non-phagocytic cells by injecting bacterial effector proteins to exploit the host actin cytoskeleton network. SipC is such a Salmonella effector known to nucleate actin, bundle F-actin, and translocate type III effectors. The molecular mechanism of how SipC bundles F-actin and SipC domains responsible for these activities are not well characterized. We successfully separated these activities through a series of genetic deletion/insertions in SipC. We found that the C terminus (amino acids 200-409) of SipC bundled actin filaments using in vitro biochemical assays. We further demonstrated that amino acid residues 221-260 and 381-409 of full-length SipC were indispensable for its actin binding and bundling activities. Furthermore, Salmonella mutant strains lacking the actin bundling activity were less invasive into HeLa cells. These studies indicate that the C terminus of SipC bundles F-actin to promote Salmonella invasion.
Collapse
Affiliation(s)
- Sebenzile K Myeni
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
43
|
Tomar A, George SP, Mathew S, Khurana S. Differential effects of lysophosphatidic acid and phosphatidylinositol 4,5-bisphosphate on actin dynamics by direct association with the actin-binding protein villin. J Biol Chem 2010; 284:35278-82. [PMID: 19808673 DOI: 10.1074/jbc.c109.060830] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have previously reported that the epithelial cell-specific actin-binding protein villin directly associates with phosphatidylinositol 4,5-bisphosphate (PIP(2)) through three binding sites that overlap with actin-binding sites in villin. As a result, association of villin with PIP(2) inhibits actin depolymerization and enhances actin cross-linking by villin. In this study, we demonstrate that these three PIP(2)-binding sites also bind the more hydrophilic phospholipid, lysophosphatidic acid (LPA) but with a higher affinity than PIP(2) (dissociation constant (K(d)) of 22 mum versus 39.5 mum for PIP(2)). More interestingly, unlike PIP(2), the association of villin with LPA inhibits all actin regulatory functions of villin. In addition, unlike PIP(2), LPA dramatically stimulates the tyrosine phosphorylation of villin by c-Src kinase. These studies suggest that in cells, selective interaction of villin with either PIP(2) or LPA could have dramatically different outcomes on actin reorganization as well as phospholipid-regulated cell signaling. These studies provide a novel regulatory mechanism for phospholipid-induced changes in the microfilament structure and cell function and suggest that LPA could be an intracellular regulator of the actin cytoskeleton.
Collapse
Affiliation(s)
- Alok Tomar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
44
|
Thomas C, Tholl S, Moes D, Dieterle M, Papuga J, Moreau F, Steinmetz A. Actin bundling in plants. ACTA ACUST UNITED AC 2009; 66:940-57. [DOI: 10.1002/cm.20389] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Characterization of newly established bovine intestinal epithelial cell line. Histochem Cell Biol 2009; 133:125-34. [PMID: 19830445 DOI: 10.1007/s00418-009-0648-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2009] [Indexed: 10/20/2022]
Abstract
Membranous epithelial cells (M cells) of the follicle-associated epithelium in Peyer's patches have a high capacity for transcytosis of several viruses and microorganisms. Here, we report that we have successfully established a bovine intestinal epithelial cell line (BIE cells) and developed an in vitro M cell model. BIE cells have a cobblestone morphology and microvilli-like structures, and strongly express cell-to-cell junctional proteins and cytokeratin, which is a specific intermediate filament protein of epithelial cells. After co-culture with murine intestinal lymphocytes or treatment with supernatant from bovine PBMC cultured with IL-2, BIE cells acquired the ability of transcytosis. Therefore, BIE cells have typical characteristics of bovine intestinal epithelial cells and also have the ability to differentiate into an M cell like linage. In addition, our results indicate that contact between immune cells and epithelial cells may not be absolutely required for the differentiation of M cells. We think that BIE cells will be useful for studying the transport mechanisms of various pathogens and also the evaluation of drug delivery via M cells.
Collapse
|
46
|
Wang H, Chumnarnsilpa S, Loonchanta A, Li Q, Kuan YM, Robine S, Larsson M, Mihalek I, Burtnick LD, Robinson RC. Helix straightening as an activation mechanism in the gelsolin superfamily of actin regulatory proteins. J Biol Chem 2009; 284:21265-9. [PMID: 19491107 PMCID: PMC2755850 DOI: 10.1074/jbc.m109.019760] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 05/11/2009] [Indexed: 11/06/2022] Open
Abstract
Villin and gelsolin consist of six homologous domains of the gelsolin/cofilin fold (V1-V6 and G1-G6, respectively). Villin differs from gelsolin in possessing at its C terminus an unrelated seventh domain, the villin headpiece. Here, we present the crystal structure of villin domain V6 in an environment in which intact villin would be inactive, in the absence of bound Ca(2+) or phosphorylation. The structure of V6 more closely resembles that of the activated form of G6, which contains one bound Ca(2+), rather than that of the calcium ion-free form of G6 within intact inactive gelsolin. Strikingly apparent is that the long helix in V6 is straight, as found in the activated form of G6, as opposed to the kinked version in inactive gelsolin. Molecular dynamics calculations suggest that the preferable conformation for this helix in the isolated G6 domain is also straight in the absence of Ca(2+) and other gelsolin domains. However, the G6 helix bends in intact calcium ion-free gelsolin to allow interaction with G2 and G4. We suggest that a similar situation exists in villin. Within the intact protein, a bent V6 helix, when triggered by Ca(2+), straightens and helps push apart adjacent domains to expose actin-binding sites within the protein. The sixth domain in this superfamily of proteins serves as a keystone that locks together a compact ensemble of domains in an inactive state. Perturbing the keystone initiates reorganization of the structure to reveal previously buried actin-binding sites.
Collapse
Affiliation(s)
- Hui Wang
- From the Department of Chemistry and Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Sakesit Chumnarnsilpa
- the Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Singapore 138673
- the Institutionen för Medicinsk Biokemi och Mikrobiologi, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Anantasak Loonchanta
- From the Department of Chemistry and Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Qiang Li
- the Bioinformatics Institute, A*STAR, 30 Biopolis Drive, Matrix, Singapore 138671, and
| | - Yang-Mei Kuan
- the Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Singapore 138673
| | - Sylvie Robine
- UMR 144, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Mårten Larsson
- the Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Singapore 138673
| | - Ivana Mihalek
- the Bioinformatics Institute, A*STAR, 30 Biopolis Drive, Matrix, Singapore 138671, and
| | - Leslie D. Burtnick
- From the Department of Chemistry and Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Robert C. Robinson
- the Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Singapore 138673
| |
Collapse
|
47
|
Khurana S, George SP. Regulation of cell structure and function by actin-binding proteins: villin's perspective. FEBS Lett 2008; 582:2128-39. [PMID: 18307996 PMCID: PMC2680319 DOI: 10.1016/j.febslet.2008.02.040] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 02/19/2008] [Indexed: 12/23/2022]
Abstract
Villin is a tissue-specific actin modifying protein that is associated with actin filaments in the microvilli and terminal web of epithelial cells. It belongs to a large family of actin-binding proteins which includes actin-capping, -nucleating and/or -severing proteins such as gelsolin, severin, fragmin, adseverin/scinderin and actin crosslinking proteins such as dematin and supervillin. Studies done in epithelial cell lines and villin knock-out mice have demonstrated the function of villin in regulating actin dynamics, cell morphology, epithelial-to-mesenchymal transition, cell migration and cell survival. In addition, the ligand-binding properties of villin (F-actin, G-actin, calcium, phospholipids and phospholipase C-gamma1) are mechanistically important for the crosstalk between signaling pathways and actin reorganization in epithelial cells.
Collapse
Affiliation(s)
- Seema Khurana
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Nash 402, Memphis, TN 38163, United States.
| | | |
Collapse
|
48
|
Mathew S, George SP, Wang Y, Siddiqui MR, Srinivasan K, Tan L, Khurana S. Potential molecular mechanism for c-Src kinase-mediated regulation of intestinal cell migration. J Biol Chem 2008; 283:22709-22. [PMID: 18482983 DOI: 10.1074/jbc.m801319200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The ubiquitously expressed Src tyrosine kinases (c-Src, c-Yes, and c-Fyn) regulate intestinal cell growth and differentiation. Src activity is also elevated in the majority of malignant and premalignant tumors of the colon. The development of fibroblasts with the three ubiquitously expressed kinases deleted (SYF cells) has identified the role of Src proteins in the regulation of actin dynamics associated with increased cell migration and invasion. Despite this, unexpectedly nothing is known about the role of the individual Src kinases on intestinal cell cytoskeleton and/or cell migration. We have previously reported that villin, an epithelial cell-specific actin-modifying protein that regulates actin reorganization, cell morphology, cell migration, cell invasion, and apoptosis, is tyrosine-phosphorylated. In this report using the SYF cells reconstituted individually with c-Src, c-Yes, c-Fyn, and wild type or phosphorylation site mutants of villin, we demonstrate for the first time the absolute requirement for c-Src in villin-induced regulation of cell migration. The other major finding of our study is that contrary to previous reports, the nonreceptor tyrosine kinase, Jak3 (Janus kinase 3), does not regulate phosphorylation of villin or villin-induced cell migration and is, in fact, not expressed in intestinal epithelial cells. Further, we identify SHP-2 and PTP-PEST (protein-tyrosine phosphatase proline-, glutamate-, serine-, and threonine-rich sequence) as negative regulators of c-Src kinase and demonstrate a new function for these phosphatases in intestinal cell migration. Together, these data suggest that in colorectal carcinogenesis, elevation of c-Src or down-regulation of SHP-2 and/or PTP-PEST may promote cancer metastases and invasion by regulating villin-induced cell migration and cell invasion.
Collapse
Affiliation(s)
- Sijo Mathew
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Wang Y, Srinivasan K, Siddiqui MR, George SP, Tomar A, Khurana S. A novel role for villin in intestinal epithelial cell survival and homeostasis. J Biol Chem 2008; 283:9454-64. [PMID: 18198174 DOI: 10.1074/jbc.m707962200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Apoptosis is a key regulator for the normal turnover of the intestinal mucosa, and abnormalities associated with this function have been linked to inflammatory bowel disease and colorectal cancer. Despite this, little is known about the mechanism(s) mediating intestinal epithelial cell apoptosis. Villin is an actin regulatory protein that is expressed in every cell of the intestinal epithelium as well as in exocrine glands associated with the gastrointestinal tract. In this study we demonstrate for the first time that villin is an epithelial cell-specific anti-apoptotic protein. Absence of villin predisposes mice to dextran sodium sulfate-induced colitis by promoting apoptosis. To better understand the cellular and molecular mechanisms of the anti-apoptotic function of villin, we overexpressed villin in the Madin-Darby canine kidney Tet-Off epithelial cell line to demonstrate that expression of villin protects cells from apoptosis by maintaining mitochondrial integrity thus inhibiting the activation of caspase-9 and caspase-3. Furthermore, we report that the anti-apoptotic response of villin depends on activation of the pro-survival proteins, phosphatidylinositol 3-kinase and phosphorylated Akt. The results of our studies shed new light on the previously unrecognized function of villin in the regulation of apoptosis in the gastrointestinal epithelium.
Collapse
Affiliation(s)
- Yaohong Wang
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
50
|
Autotaxin and lysophosphatidic acid stimulate intestinal cell motility by redistribution of the actin modifying protein villin to the developing lamellipodia. Exp Cell Res 2007; 314:530-42. [PMID: 18054784 DOI: 10.1016/j.yexcr.2007.10.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 10/11/2007] [Accepted: 10/29/2007] [Indexed: 01/06/2023]
Abstract
Autotaxin (ATX) is a potent tumor cell motogen that can produce lysophosphatidic acid (LPA) from lysophosphatidylcholine. LPA is a lipid mediator that has also been shown to modulate tumor cell invasion. Autotaxin mRNA is expressed at significant levels in the intestine. Likewise, LPA2 receptor levels have been shown to be elevated in colon cancers. The molecular mechanism of ATX/LPA-induced increase in intestinal cell migration however, remains poorly understood. Villin is an intestinal and renal epithelial cell specific actin regulatory protein that modifies epithelial cell migration. In this study we demonstrate that both Caco-2 (endogenous villin) and MDCK (exogenous villin) cells, which express primarily LPA2 receptors, show enhanced cell migration in response to ATX/LPA. ATX and LPA treatment results in the rapid formation of lamellipodia and redistribution of villin to these cell surface structures, suggesting a role for villin in regulating this initial event of cell locomotion. The LPA-induced increase in cell migration required activation of c-src kinase and downstream tyrosine phosphorylation of villin by c-src kinase. LPA stimulated cell motility was determined to be insensitive to pertussis toxin, but was regulated by activation of PLC-gamma 1. Together, our results show that in epithelial cells ATX and LPA act as strong stimulators of cell migration by recruiting PLC-gamma 1 and villin, both of which participate in the initiation of protrusion.
Collapse
|