1
|
Pratama AM, Sharma M, Naidu S, Bömmel H, Prabhuswamimath SC, Madhusudhan T, Wihadmadyatami H, Bachhuka A, Karnati S. Peroxisomes and PPARs: Emerging role as master regulators of cancer metabolism. Mol Metab 2024; 90:102044. [PMID: 39368612 PMCID: PMC11550351 DOI: 10.1016/j.molmet.2024.102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
Cancer is a disease characterized by the acquisition of a multitude of unique traits. It has long been understood that cancer cells divert significantly from normal cell metabolism. The most obvious of metabolic changes is that cancer cells strongly rely on glucose conversion by aerobic glycolysis. In addition, they also regularly develop mechanisms to use lipids and fatty acids for their energy needs. Peroxisomes lie central to these adaptive changes of lipid metabolism. Peroxisomes are metabolic organelles that take part in over 50 enzymatic reactions crucial for cellular functioning. Thus, they are essential for an effective and comprehensive use of lipids' energy supplied to cells. Cancer cells display a substantial increase in the biogenesis of peroxisomes and an increased expression of proteins necessary for the enzymatic functions provided by peroxisomes. Moreover, the enzymatic conversion of FAs in peroxisomes is a significant source of reactive oxygen and nitrogen species (ROS/RNS) that strongly impact cancer malignancy. Important regulators in peroxisomal FA oxidation and ROS/RNS generation are the transcription factors of the peroxisome proliferator-activated receptor (PPAR) family. This review describes the metabolic changes in tumorigenesis and cancer progression influenced by peroxisomes. We will highlight the ambivalent role that peroxisomes and PPARs play in the different stages of tumor development and summarize our current understanding of how to capitalize on the comprehension of peroxisomal biology for cancer treatment.
Collapse
Affiliation(s)
- Anggi Muhtar Pratama
- University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany
| | - Mansi Sharma
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| | - Srivatsava Naidu
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| | - Heike Bömmel
- University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany
| | - Samudyata C Prabhuswamimath
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, 570 015, Karnataka, India
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Akash Bachhuka
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain.
| | - Srikanth Karnati
- University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany.
| |
Collapse
|
2
|
Liu B, Meng Q, Gao X, Sun H, Xu Z, Wang Y, Zhou H. Lipid and glucose metabolism in senescence. Front Nutr 2023; 10:1157352. [PMID: 37680899 PMCID: PMC10481967 DOI: 10.3389/fnut.2023.1157352] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Senescence is an inevitable biological process. Disturbances in glucose and lipid metabolism are essential features of cellular senescence. Given the important roles of these types of metabolism, we review the evidence for how key metabolic enzymes influence senescence and how senescence-related secretory phenotypes, autophagy, apoptosis, insulin signaling pathways, and environmental factors modulate glucose and lipid homeostasis. We also discuss the metabolic alterations in abnormal senescence diseases and anti-cancer therapies that target senescence through metabolic interventions. Our work offers insights for developing pharmacological strategies to combat senescence and cancer.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Xin Gao
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huihui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Zhixiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Song Y, Kurose A, Li R, Takeda T, Onomura Y, Koga T, Mutoh J, Ishida T, Tanaka Y, Ishii Y. Ablation of Selenbp1 Alters Lipid Metabolism via the Pparα Pathway in Mouse Kidney. Int J Mol Sci 2021; 22:ijms22105334. [PMID: 34069420 PMCID: PMC8159118 DOI: 10.3390/ijms22105334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Selenium-binding protein 1 (Selenbp1) is a 2,3,7,8-tetrechlorodibenzo-p-dioxin inducible protein whose function is yet to be comprehensively elucidated. As the highly homologous isoform, Selenbp2, is expressed at low levels in the kidney, it is worthwhile comparing wild-type C57BL mice and Selenbp1-deficient mice under dioxin-free conditions. Accordingly, we conducted a mouse metabolomics analysis under non-dioxin-treated conditions. DNA microarray analysis was performed based on observed changes in lipid metabolism-related factors. The results showed fluctuations in the expression of numerous genes. Real-time RT-PCR confirmed the decreased expression levels of the cytochrome P450 4a (Cyp4a) subfamily, known to be involved in fatty acid ω- and ω-1 hydroxylation. Furthermore, peroxisome proliferator-activated receptor-α (Pparα) and retinoid-X-receptor-α (Rxrα), which form a heterodimer with Pparα to promote gene expression, were simultaneously reduced. This indicated that reduced Cyp4a expression was mediated via decreased Pparα and Rxrα. In line with this finding, increased levels of leukotrienes and prostaglandins were detected. Conversely, decreased hydrogen peroxide levels and reduced superoxide dismutase (SOD) activity supported the suppression of the renal expression of Sod1 and Sod2 in Selenbp1-deficient mice. Therefore, we infer that ablation of Selenbp1 elicits oxidative stress caused by increased levels of superoxide anions, which alters lipid metabolism via the Pparα pathway.
Collapse
Affiliation(s)
- Yingxia Song
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Atsushi Kurose
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Renshi Li
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
| | - Tomoki Takeda
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
| | - Yuko Onomura
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Takayuki Koga
- Laboratory of Hygienic Chemistry, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan;
| | - Junpei Mutoh
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Daigakudori 1-1-1, Sanyo-Onoda 756-0884, Japan;
| | - Takumi Ishida
- School of Pharmacy, International University of Health and Welfare Fukuoka, Ohkawa, Fukuoka 831-8501, Japan;
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
- Correspondence: ; Tel.: +81-92-642-6586
| |
Collapse
|
4
|
Metabolomics strategy assisted by transcriptomics analysis to identify biomarkers associated with schizophrenia. Anal Chim Acta 2020; 1140:18-29. [DOI: 10.1016/j.aca.2020.09.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
|
5
|
Van Veldhoven PP, de Schryver E, Young SG, Zwijsen A, Fransen M, Espeel M, Baes M, Van Ael E. Slc25a17 Gene Trapped Mice: PMP34 Plays a Role in the Peroxisomal Degradation of Phytanic and Pristanic Acid. Front Cell Dev Biol 2020; 8:144. [PMID: 32266253 PMCID: PMC7106852 DOI: 10.3389/fcell.2020.00144] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/20/2020] [Indexed: 12/04/2022] Open
Abstract
Mice lacking PMP34, a peroxisomal membrane transporter encoded by Slc25a17, did not manifest any obvious phenotype on a Swiss Webster genetic background, even with various treatments designed to unmask impaired peroxisomal functioning. Peroxisomal α- and β-oxidation rates in PMP34 deficient fibroblasts or liver slices were not or only modestly affected and in bile, no abnormal bile acid intermediates were detected. Peroxisomal content of cofactors like CoA, ATP, NAD+, thiamine-pyrophosphate and pyridoxal-phosphate, based on direct or indirect data, appeared normal as were tissue plasmalogen and very long chain fatty acid levels. However, upon dietary phytol administration, the knockout mice displayed hepatomegaly, liver inflammation, and an induction of peroxisomal enzymes. This phenotype was partially mediated by PPARα. Hepatic triacylglycerols and cholesterylesters were elevated and both phytanic acid and pristanic acid accumulated in the liver lipids, in females to higher extent than in males. In addition, pristanic acid degradation products were detected, as wells as the CoA-esters of all these branched fatty acids. Hence, PMP34 is important for the degradation of phytanic/pristanic acid and/or export of their metabolites. Whether this is caused by a shortage of peroxisomal CoA affecting the intraperoxisomal formation of pristanoyl-CoA (and perhaps of phytanoyl-CoA), or the SCPx-catalyzed thiolytic cleavage during pristanic acid β-oxidation, could not be proven in this model, but the phytol-derived acyl-CoA profile is compatible with the latter possibility. On the other hand, the normal functioning of other peroxisomal pathways, and especially bile acid formation, seems to exclude severe transport problems or a shortage of CoA, and other cofactors like FAD, NAD(P)+, TPP. Based on our findings, PMP34 deficiency in humans is unlikely to be a life threatening condition but could cause elevated phytanic/pristanic acid levels in older adults.
Collapse
Affiliation(s)
| | - Evelyn de Schryver
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stephen G. Young
- Departments of Medicine and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - An Zwijsen
- Laboratory of Developmental Signaling, Department Human Genetics, VIB-KU Leuven, Leuven, Belgium
| | - Marc Fransen
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Marc Espeel
- Department of Anatomy, Embryology, Histology and Medical Physics, Ghent University, Ghent, Belgium
| | - Myriam Baes
- Laboratory of Cell Metabolism, Faculty of Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| | - Elke Van Ael
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Tillander V, Alexson SEH, Cohen DE. Deactivating Fatty Acids: Acyl-CoA Thioesterase-Mediated Control of Lipid Metabolism. Trends Endocrinol Metab 2017; 28:473-484. [PMID: 28385385 PMCID: PMC5474144 DOI: 10.1016/j.tem.2017.03.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 12/28/2022]
Abstract
The cellular uptake of free fatty acids (FFA) is followed by esterification to coenzyme A (CoA), generating fatty acyl-CoAs that are substrates for oxidation or incorporation into complex lipids. Acyl-CoA thioesterases (ACOTs) constitute a family of enzymes that hydrolyze fatty acyl-CoAs to form FFA and CoA. Although biochemically and biophysically well characterized, the metabolic functions of these enzymes remain incompletely understood. Existing evidence suggests regulatory roles in controlling rates of peroxisomal and mitochondrial fatty acyl-CoA oxidation, as well as in the subcellular trafficking of fatty acids. Emerging data implicate ACOTs in the pathogenesis of metabolic diseases, suggesting that better understanding their pathobiology could reveal unique targets in the management of obesity, diabetes, and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Veronika Tillander
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, 14186, Sweden
| | - Stefan E H Alexson
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, 14186, Sweden
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
7
|
Yu Y, Fuscoe JC, Zhao C, Guo C, Jia M, Qing T, Bannon DI, Lancashire L, Bao W, Du T, Luo H, Su Z, Jones WD, Moland CL, Branham WS, Qian F, Ning B, Li Y, Hong H, Guo L, Mei N, Shi T, Wang KY, Wolfinger RD, Nikolsky Y, Walker SJ, Duerksen-Hughes P, Mason CE, Tong W, Thierry-Mieg J, Thierry-Mieg D, Shi L, Wang C. A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 developmental stages. Nat Commun 2015; 5:3230. [PMID: 24510058 PMCID: PMC3926002 DOI: 10.1038/ncomms4230] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 01/10/2014] [Indexed: 02/07/2023] Open
Abstract
The rat has been used extensively as a model for evaluating chemical toxicities and for understanding drug mechanisms. However, its transcriptome across multiple organs, or developmental stages, has not yet been reported. Here we show, as part of the SEQC consortium efforts, a comprehensive rat transcriptomic BodyMap created by performing RNA-Seq on 320 samples from 11 organs of both sexes of juvenile, adolescent, adult and aged Fischer 344 rats. We catalogue the expression profiles of 40,064 genes, 65,167 transcripts, 31,909 alternatively spliced transcript variants and 2,367 non-coding genes/non-coding RNAs (ncRNAs) annotated in AceView. We find that organ-enriched, differentially expressed genes reflect the known organ-specific biological activities. A large number of transcripts show organ-specific, age-dependent or sex-specific differential expression patterns. We create a web-based, open-access rat BodyMap database of expression profiles with crosslinks to other widely used databases, anticipating that it will serve as a primary resource for biomedical research using the rat model. Gene expression is highly variable between tissues, and changes during development and with age. Here, the authors provide a comprehensive RNA-Seq analysis of the rat transcriptome, spanning eleven organs, four developmental stages and both sexes.
Collapse
Affiliation(s)
- Ying Yu
- 1] Center for Pharmacogenomics, State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Schools of Life Sciences and Pharmacy, Fudan University, Shanghai 201203, China [2]
| | - James C Fuscoe
- 1] National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 92079, USA [2]
| | - Chen Zhao
- Center for Pharmacogenomics, State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Schools of Life Sciences and Pharmacy, Fudan University, Shanghai 201203, China
| | - Chao Guo
- Functional Genomics Core, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Meiwen Jia
- Center for Pharmacogenomics, State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Schools of Life Sciences and Pharmacy, Fudan University, Shanghai 201203, China
| | - Tao Qing
- Center for Pharmacogenomics, State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Schools of Life Sciences and Pharmacy, Fudan University, Shanghai 201203, China
| | - Desmond I Bannon
- Army Institute of Public Health, U.S. Army Public Health Command, Aberdeen Proving Ground, Maryland 21010, USA
| | - Lee Lancashire
- Computation Biology and Bioinformatics, IP & Science, Thomson Reuters, London EC1N 8JS, UK
| | - Wenjun Bao
- SAS Institute Inc., Cary, North Carolina 27513, USA
| | - Tingting Du
- Center for Pharmacogenomics, State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Schools of Life Sciences and Pharmacy, Fudan University, Shanghai 201203, China
| | - Heng Luo
- Center for Pharmacogenomics, State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Schools of Life Sciences and Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhenqiang Su
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 92079, USA
| | | | - Carrie L Moland
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 92079, USA
| | - William S Branham
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 92079, USA
| | - Feng Qian
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 92079, USA
| | - Baitang Ning
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 92079, USA
| | - Yan Li
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 92079, USA
| | - Huixiao Hong
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 92079, USA
| | - Lei Guo
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 92079, USA
| | - Nan Mei
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 92079, USA
| | - Tieliu Shi
- The Center for Bioinformatics and The Institute of Biomedical Sciences, College of Life Science, Shanghai 200241, China
| | - Kevin Y Wang
- Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | - Yuri Nikolsky
- Computation Biology and Bioinformatics, IP & Science, Thomson Reuters, London EC1N 8JS, UK
| | - Stephen J Walker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | - Penelope Duerksen-Hughes
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California 92350, USA
| | - Christopher E Mason
- Department of Physiology & Biophysics and the Institute for Computational Biomedicine, Cornell University, New York, New York 10021, USA
| | - Weida Tong
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 92079, USA
| | - Jean Thierry-Mieg
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Danielle Thierry-Mieg
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Leming Shi
- 1] Center for Pharmacogenomics, State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Schools of Life Sciences and Pharmacy, Fudan University, Shanghai 201203, China [2] National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 92079, USA [3] Fudan-Zhangjiang Center for Clinical Genomics and Zhangjiang Center for Translational Medicine, Shanghai 201203, China
| | - Charles Wang
- Center for Genomics and Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350, USA
| |
Collapse
|
8
|
Li Q, Freeman LM, Rush JE, Huggins GS, Kennedy AD, Labuda JA, Laflamme DP, Hannah SS. Veterinary Medicine and Multi-Omics Research for Future Nutrition Targets: Metabolomics and Transcriptomics of the Common Degenerative Mitral Valve Disease in Dogs. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:461-70. [DOI: 10.1089/omi.2015.0057] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Qinghong Li
- Nestlé Purina Research, Saint Louis, Missouri
| | - Lisa M. Freeman
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - John E. Rush
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Gordon S. Huggins
- MCRI Center for Translational Genomics, Molecular Cardiology Research Institute, Tufts Medical Center, and Tufts University School of Medicine, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
9
|
Hunt MC, Tillander V, Alexson SEH. Regulation of peroxisomal lipid metabolism: the role of acyl-CoA and coenzyme A metabolizing enzymes. Biochimie 2014; 98:45-55. [PMID: 24389458 DOI: 10.1016/j.biochi.2013.12.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/19/2013] [Indexed: 12/11/2022]
Abstract
Peroxisomes are nearly ubiquitous organelles involved in a number of metabolic pathways that vary between organisms and tissues. A common metabolic function in mammals is the partial degradation of various (di)carboxylic acids via α- and β-oxidation. While only a small number of enzymes catalyze the reactions of β-oxidation, numerous auxiliary enzymes have been identified to be involved in uptake of fatty acids and cofactors required for β-oxidation, regulation of β-oxidation and transport of metabolites across the membrane. These proteins include membrane transporters/channels, acyl-CoA thioesterases, acyl-CoA:amino acid N-acyltransferases, carnitine acyltransferases and nudix hydrolases. Here we review the current view of the role of these auxiliary enzymes in peroxisomal lipid metabolism and propose that they function in concert to provide a means to regulate fatty acid metabolism and transport of products across the peroxisomal membrane.
Collapse
Affiliation(s)
- Mary C Hunt
- Dublin Institute of Technology, College of Sciences & Health, School of Biological Sciences, Kevin Street, Dublin 8, Ireland.
| | - Veronika Tillander
- Karolinska Institutet, Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital, SE 141 86, Stockholm, Sweden
| | - Stefan E H Alexson
- Karolinska Institutet, Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital, SE 141 86, Stockholm, Sweden
| |
Collapse
|
10
|
Murdoch RW, Hay AG. Genetic and chemical characterization of ibuprofen degradation by Sphingomonas Ibu-2. MICROBIOLOGY (READING, ENGLAND) 2013; 159:621-632. [PMID: 23329679 PMCID: PMC4083657 DOI: 10.1099/mic.0.062273-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 11/05/2012] [Accepted: 01/14/2013] [Indexed: 01/03/2023]
Abstract
Sphingomonas Ibu-2 has the unusual ability to cleave the acid side chain from the pharmaceutical ibuprofen and related arylacetic acid derivatives to yield corresponding catechols under aerobic conditions via a previously uncharacterized mechanism. Screening a chromosomal library of Ibu-2 DNA in Escherichia coli EPI300 allowed us to identify one fosmid clone (pFOS3G7) that conferred the ability to metabolize ibuprofen to isobutylcatechol. Characterization of pFOS3G7 loss-of-function transposon mutants permitted identification of five ORFs, ipfABDEF, whose predicted amino acid sequences bore similarity to the large and small units of an aromatic dioxygenase (ipfAB), a sterol carrier protein X (SCPx) thiolase (ipfD), a domain of unknown function 35 (DUF35) protein (ipfE) and an aromatic CoA ligase (ipfF). Two additional ORFs, ipfH and ipfI, which encode putative ferredoxin reductase and ferredoxin components of an aromatic dioxygenase system, respectively, were also identified on pFOS3G7. Complementation of a markerless loss-of-function ipfD deletion mutant restored catechol production as did complementation of the ipfF Tn mutant. Expression of subcloned ipfABDEF alone in E. coli did not impart full metabolic activity unless coexpressed with ipfHI. CoA ligation followed by ring oxidation is common to phenylacetic acid pathways. However, the need for a putative SCPx thiolase (IpfD) and DUF35 protein (IpfE) in aerobic arylacetic acid degradation is unprecedented. This work provides preliminary insights into the mechanism behind this novel arylacetic acid-deacylating, catechol-generating activity.
Collapse
Affiliation(s)
- Robert W. Murdoch
- Graduate Program in Environmental Toxicology, Institute for Comparative and Environmental Toxicology, Cornell University, Ithaca, NY 14850, USA
| | - Anthony G. Hay
- Graduate Program in Environmental Toxicology, Institute for Comparative and Environmental Toxicology, Cornell University, Ithaca, NY 14850, USA
- Department of Microbiology, B53A Wing Hall, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
11
|
Martens K, Bottelbergs A, Peeters A, Jacobs F, Espeel M, Carmeliet P, Van Veldhoven PP, Baes M. Peroxisome deficient aP2-Pex5 knockout mice display impaired white adipocyte and muscle function concomitant with reduced adrenergic tone. Mol Genet Metab 2012; 107:735-47. [PMID: 23141464 DOI: 10.1016/j.ymgme.2012.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/16/2012] [Accepted: 10/16/2012] [Indexed: 12/21/2022]
Abstract
Peroxisomes are essential for intermediary lipid metabolism, but the role of these organelles has been primarily studied in the liver. We recently generated aP2-Pex5 conditional knockout mice that due to the nonselectivity of the aP2 promoter, not only had dysfunctional peroxisomes in the adipose tissue but also in the central and peripheral nervous system, besides some other tissues. Peroxisomes were however intact in the liver, heart, pancreas and muscle. Surprisingly, these mice not only showed dysfunctional white adipose tissue with increased fat mass and reduced lipolysis but also the skeletal muscle was affected including impaired shivering thermogenesis, reduced motor performance and increased insulin resistance. Non-shivering thermogenesis by brown adipose tissue was not altered. Strongly reduced levels of plasma adrenaline and to a lesser extent noradrenaline, impaired expression of catecholamine synthesizing enzymes in the adrenal medulla and reversal of all pathologies after administration of the β-agonist isoproterenol indicated that β-adrenergic signaling was reduced. Based on normal white adipose and muscle function in Nestin-Pex5 and Wnt-Pex5 knockout mice respectively, it is unlikely that peroxisome absence from the central and peripheral nervous system caused the phenotype. We conclude that peroxisomal metabolism is necessary to maintain the adrenergic tone in mice, which in turn determines metabolic homeostasis.
Collapse
Affiliation(s)
- Katrin Martens
- Laboratory of Cell Metabolism, Department of Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Sugiyama M, Takenaga F, Kitani Y, Yamamoto G, Okamoto H, Masaoka T, Araki K, Nagoya H, Mori T. Homozygous and heterozygous GH transgenesis alters fatty acid composition and content in the liver of Amago salmon (Oncorhynchus masou ishikawae). Biol Open 2012; 1:1035-42. [PMID: 23213381 PMCID: PMC3507178 DOI: 10.1242/bio.20121263] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/02/2012] [Indexed: 12/20/2022] Open
Abstract
Growth hormone (GH) transgenic Amago (Oncorhynchus masou ishikawae), containing the sockeye GH1 gene fused with metallothionein-B promoter from the same species, were generated and the physiological condition through lipid metabolism compared among homozygous (Tg/Tg) and heterozygous GH transgenic (Tg/+) Amago and the wild type control (+/+). Previously, we have reported that the adipose tissue was generally smaller in GH transgenic fish compared to the control, and that the Δ-6 fatty acyl desaturase gene was down-regulated in the Tg/+ fish. However, fatty acid (FA) compositions have not been measured previously in these fish. In this study we compared the FAs composition and content in the liver using gas chromatography. Eleven kinds of FA were detected. The composition of saturated and monounsaturated fatty acids (SFA and MUFA) such as myristic acid (14:0), palmitoleic acid (16:1n-7), and cis-vaccenic acid (cis-18:1n-7) was significantly (P<0.05) decreased in GH transgenic Amago. On the other hand, the composition of polyunsaturated fatty acids (PUFAs) such as linoleic acid (18:2n-6), arachidonic acid (20:4n-6), and docosapentaenoic acid (22:5n-3) was significantly (P<0.05) increased. Levels of serum glucose and triacylglycerol were significantly (P<0.05) decreased in the GH transgenics compared with +/+ fish. Furthermore, 3′-tag digital gene expression profiling was performed using liver tissues from Tg/Tg and +/+ fish, and showed that Mid1 interacting protein 1 (Mid1ip1), which is an important factor to activate Acetyl-CoA carboxylase (ACC), was down-regulated in Tg/Tg fish, while genes involved in FA catabolism were up-regulated, including long-chain-fatty-acid–CoA ligase 1 (ACSL1) and acyl-coenzyme A oxidase 3 (ACOX3). These data suggest that liver tissue from GH transgenic Amago showed starvation by alteration in glucose and lipid metabolism due to GH overexpression. The decrease of serum glucose suppressed Mid1ip1, and caused a decrease of de novo FA synthesis, resulting in a decrease of SFA and MUFA. This induced expression of ACSL1 and ACOX3 to produce energy through β-oxidation in the GH transgenic Amago.
Collapse
Affiliation(s)
- Manabu Sugiyama
- Nihon University College of Bioresource Sciences , Kameino 1866, Fujisawa 252-0880 , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Novel associations of nonstructural Loci with paraoxonase activity. J Lipids 2012; 2012:189681. [PMID: 22577559 PMCID: PMC3345224 DOI: 10.1155/2012/189681] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 02/19/2012] [Indexed: 01/06/2023] Open
Abstract
The high-density-lipoprotein-(HDL-) associated esterase paraoxonase 1 (PON1) is a likely contributor to the antioxidant and antiatherosclerotic capabilities of HDL. Two nonsynonymous mutations in the structural gene, PON1, have been associated with variation in activity levels, but substantial interindividual differences remain unexplained and are greatest for substrates other than the eponymous paraoxon. PON1 activity levels were measured for three substrates-organophosphate paraoxon, arylester phenyl acetate, and lactone dihydrocoumarin-in 767 Mexican American individuals from San Antonio, Texas. Genetic influences on activity levels for each substrate were evaluated by association with approximately one million single nucleotide polymorphism (SNPs) while conditioning on PON1 genotypes. Significant associations were detected at five loci including regions on chromosomes 4 and 17 known to be associated with atherosclerosis and lipoprotein regulation and loci on chromosome 3 that regulate ubiquitous transcription factors. These loci explain 7.8% of variation in PON1 activity with lactone as a substrate, 5.6% with the arylester, and 3.0% with paraoxon. In light of the potential importance of PON1 in preventing cardiovascular disease/events, these novel loci merit further investigation.
Collapse
|
14
|
Hunt MC, Siponen MI, Alexson SEH. The emerging role of acyl-CoA thioesterases and acyltransferases in regulating peroxisomal lipid metabolism. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1397-410. [PMID: 22465940 DOI: 10.1016/j.bbadis.2012.03.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/03/2012] [Accepted: 03/16/2012] [Indexed: 11/28/2022]
Abstract
The importance of peroxisomes in lipid metabolism is now well established and peroxisomes contain approximately 60 enzymes involved in these lipid metabolic pathways. Several acyl-CoA thioesterase enzymes (ACOTs) have been identified in peroxisomes that catalyze the hydrolysis of acyl-CoAs (short-, medium-, long- and very long-chain), bile acid-CoAs, and methyl branched-CoAs, to the free fatty acid and coenzyme A. A number of acyltransferase enzymes, which are structurally and functionally related to ACOTs, have also been identified in peroxisomes, which conjugate (or amidate) bile acid-CoAs and acyl-CoAs to amino acids, resulting in the production of amidated bile acids and fatty acids. The function of ACOTs is to act as auxiliary enzymes in the α- and β-oxidation of various lipids in peroxisomes. Human peroxisomes contain at least two ACOTs (ACOT4 and ACOT8) whereas mouse peroxisomes contain six ACOTs (ACOT3, 4, 5, 6, 8 and 12). Similarly, human peroxisomes contain one bile acid-CoA:amino acid N-acyltransferase (BAAT), whereas mouse peroxisomes contain three acyltransferases (BAAT and acyl-CoA:amino acid N-acyltransferases 1 and 2: ACNAT1 and ACNAT2). This review will focus on the human and mouse peroxisomal ACOT and acyltransferase enzymes identified to date and discuss their cellular localizations, emerging structural information and functions as auxiliary enzymes in peroxisomal metabolic pathways.
Collapse
Affiliation(s)
- Mary C Hunt
- Dublin Institute of Technology, Dublin 8, Ireland.
| | | | | |
Collapse
|
15
|
Kang HW, Niepel MW, Han S, Kawano Y, Cohen DE. Thioesterase superfamily member 2/acyl-CoA thioesterase 13 (Them2/Acot13) regulates hepatic lipid and glucose metabolism. FASEB J 2012; 26:2209-21. [PMID: 22345407 DOI: 10.1096/fj.11-202853] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Members of the acyl-CoA thioesterase (Acot) gene family catalyze the hydrolysis of fatty acyl-CoAs, but their biological functions remain unknown. Thioesterase superfamily member 2 (Them2; synonym Acot13) is a broadly expressed mitochondria-associated Acot. Them2 was previously identified as an interacting protein of phosphatidylcholine transfer protein (PC-TP). Pctp(-/-) mice exhibit altered fatty acid metabolism that is accompanied by reduced hepatic glucose production. To examine the role of Them2 in regulating hepatic lipid and glucose homeostasis, we generated Them2(-/-) mice. In livers of Them2(-/-) mice compared with Them2(+/+) controls, a 1.9-fold increase in the K(m) of mitochondrial thioesterase activity was accompanied by a 28% increase in fatty acyl-CoA concentration. A reciprocal 23% decrease in free fatty acid concentration was associated with reduced activation of peroxisome proliferator-activated receptor α. However, fatty acid oxidation rates were preserved in livers of Them2(-/-) mice, suggesting that Them2 functions to limit β-oxidation. Hepatic glucose production was also decreased by 45% in the setting of reduced hepatocyte nuclear factor 4α (HNF4α) expression. When fed a high-fat diet, Them2(-/-) mice were resistant to increases in hepatic glucose production and steatosis. These findings reveal key roles for Them2 in the regulation of hepatic metabolism, which are potentially mediated by PC-TP-Them2 interactions.
Collapse
Affiliation(s)
- Hye Won Kang
- Department of Medicine, Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
16
|
Long JZ, Cravatt BF. The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem Rev 2011; 111:6022-63. [PMID: 21696217 DOI: 10.1021/cr200075y] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jonathan Z Long
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
17
|
Van Veldhoven PP. Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J Lipid Res 2010; 51:2863-95. [PMID: 20558530 DOI: 10.1194/jlr.r005959] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In humans, peroxisomes harbor a complex set of enzymes acting on various lipophilic carboxylic acids, organized in two basic pathways, alpha-oxidation and beta-oxidation; the latter pathway can also handle omega-oxidized compounds. Some oxidation products are crucial to human health (primary bile acids and polyunsaturated FAs), whereas other substrates have to be degraded in order to avoid neuropathology at a later age (very long-chain FAs and xenobiotic phytanic acid and pristanic acid). Whereas total absence of peroxisomes is lethal, single peroxisomal protein deficiencies can present with a mild or severe phenotype and are more informative to understand the pathogenic factors. The currently known single protein deficiencies equal about one-fourth of the number of proteins involved in peroxisomal FA metabolism. The biochemical properties of these proteins are highlighted, followed by an overview of the known diseases.
Collapse
Affiliation(s)
- Paul P Van Veldhoven
- Katholieke Universiteit Leuven, Department of Molecular Cell Biology, LIPIT, Campus Gasthuisberg, Herestraat, Leuven, Belgium.
| |
Collapse
|
18
|
Kirkby B, Roman N, Kobe B, Kellie S, Forwood JK. Functional and structural properties of mammalian acyl-coenzyme A thioesterases. Prog Lipid Res 2010; 49:366-77. [PMID: 20470824 DOI: 10.1016/j.plipres.2010.04.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/23/2010] [Accepted: 04/26/2010] [Indexed: 10/19/2022]
Abstract
Acyl-coenzyme A thioesterases (Acots) play important cellular roles in mammalian fatty acid metabolism through modulation of cellular concentrations of activated fatty acyl-CoAs. Acots catalyse the hydrolysis of the thioester bond present within acyl-CoA ester molecules to yield coenzyme A (CoASH) and the corresponding non-esterified fatty acid. Acyl-CoA thioesterases are expressed ubiquitously in both prokaryotes and eukaryotes and, in higher order organisms, the enzymes are expressed and localised in a tissue-dependent manner within the cytosol, mitochondria, peroxisomes and endoplasmic reticulum. Recent studies have led to advances in the functional and structural characterization of many mammalian Acot family members. These include the structure determination of both type-I and type-II Acot family members, structural elucidation of the START domain of ACOT11, identification of roles in arachidonic acid and inflammatory prostaglandin production by Acot7, and inclusion of a 13th Acot family member. Here, we review and analyse the current literature on mammalian Acots with respect to their characterization and summarize the current knowledge on the structure, function and regulation of this enzyme family.
Collapse
Affiliation(s)
- Brenda Kirkby
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | | | | | | | | |
Collapse
|
19
|
Mackie JT, Atshaves BP, Payne HR, McIntosh AL, Schroeder F, Kier AB. Phytol-induced hepatotoxicity in mice. Toxicol Pathol 2009; 37:201-8. [PMID: 19188468 DOI: 10.1177/0192623308330789] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phytanic acid is a branched-chain, saturated fatty acid present in high concentrations in dairy products and ruminant fat. Some other dietary fats contain lower levels of phytol, which is readily converted to phytanic acid after absorption. Phytanic acid is a peroxisome proliferator binding the nuclear transcription factor peroxisome proliferator-activated receptor alpha (PPARalpha) to induce expression of genes encoding enzymes of fatty acid oxidation in peroxisomes and mitochondria. Administration of dietary phytol (0.5% or 1%) to normal mice for twelve to eighteen days caused consistent PPARalpha-mediated responses, such as lower body weights, higher liver weights, peroxisome proliferation, increased catalase expression, and hepatocellular hypertrophy and hyperplasia. Female mice fed 0.5% phytol and male and female mice fed 1% phytol exhibited midzonal hepatocellular necrosis, periportal hepatocellular fatty vacuolation, and corresponding increases in liver levels of the phytol metabolites phytanic acid and pristanic acid. Hepatic expression of sterol carrier protein-x (SCP-x) was five- to twelve-fold lower in female mice than in male mice. These results suggest that phytol may cause selective midzonal hepatocellular necrosis in mice, an uncommon pattern of hepatotoxic injury, and that the greater susceptibility of female mice may reflect a lower capacity to oxidize phytanic acid because of their intrinsically lower hepatic expression of SCP-x.
Collapse
Affiliation(s)
- John T Mackie
- Department of Pathobiology, Texas A&M University, TVMC, College Station, Texas, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Reilly SJ, Tillander V, Ofman R, Alexson SEH, Hunt MC. The nudix hydrolase 7 is an Acyl-CoA diphosphatase involved in regulating peroxisomal coenzyme A homeostasis. J Biochem 2008; 144:655-63. [PMID: 18799520 DOI: 10.1093/jb/mvn114] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Coenzyme A (CoASH) is an obligate cofactor for lipids undergoing beta-oxidation in peroxisomes. Although the peroxisomal membrane appears to be impermeable to CoASH, peroxisomes contain their own pool of CoASH. It is believed that CoASH enters peroxisomes as acyl-CoAs, but it is not known how this pool is regulated. The mouse nudix hydrolase 7 (NUDT7alpha) was previously identified in peroxisomes as a CoA-diphosphatase, and therefore suggested to be involved in regulation of peroxisomal CoASH levels. Here we show that mouse NUDT7alpha mainly acts as an acyl-CoA diphosphatase, with highest activity towards medium-chain acyl-CoAs, and much lower activity with CoASH. Nudt7alpha mRNA is highly expressed in liver, brown adipose tissue and heart, similar to enzymes involved in peroxisomal lipid degradation. Nudt7alpha mRNA is down-regulated by Wy-14,643, a peroxisome proliferator-activated receptor alpha (PPARalpha) ligand, in a PPARalpha-dependent manner in mouse liver. In highly purified peroxisomes, nudix hydrolase activity is highest with C(6)-CoA and is decreased by fibrate treatment. Under certain conditions, such as treatment with peroxisome proliferators or fasting, an increase in peroxisomal CoASH levels has been reported, which is in line with a decreased expression/activity of NUDT7alpha. Taken together these data suggest that NUDT7alpha function is tightly linked to peroxisomal CoASH/acyl-CoA homeostasis.
Collapse
Affiliation(s)
- Sarah-Jayne Reilly
- Division of Clinical Chemistry C1-74, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital at Huddinge, SE-141 86 Stockholm, Sweden
| | | | | | | | | |
Collapse
|