1
|
Lovato TL, Blotz B, Bileckyj C, Johnston CA, Cripps RM. Modeling a variant of unknown significance in the Drosophila ortholog of the human cardiogenic gene NKX2.5. Dis Model Mech 2023; 16:dmm050059. [PMID: 37691628 PMCID: PMC10548113 DOI: 10.1242/dmm.050059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Sequencing of human genome samples has unearthed genetic variants for which functional testing is necessary to validate their clinical significance. We used the Drosophila system to analyze a variant of unknown significance in the human congenital heart disease gene NKX2.5 (also known as NKX2-5). We generated an R321N allele of the NKX2.5 ortholog tinman (tin) to model a human K158N variant and tested its function in vitro and in vivo. The R321N Tin isoform bound poorly to DNA in vitro and was deficient in activating a Tin-dependent enhancer in tissue culture. Mutant Tin also showed a significantly reduced interaction with a Drosophila T-box cardiac factor named Dorsocross1. We generated a tinR321N allele using CRISPR/Cas9, for which homozygotes were viable and had normal heart specification, but showed defects in the differentiation of the adult heart that were exacerbated by further loss of tin function. We propose that the human K158N variant is pathogenic through causing a deficiency in DNA binding and a reduced ability to interact with a cardiac co-factor, and that cardiac defects might arise later in development or adult life.
Collapse
Affiliation(s)
- TyAnna L. Lovato
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Brenna Blotz
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Cayleen Bileckyj
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | | | - Richard M. Cripps
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
2
|
Lovato TL, Blotz B, Bileckyj C, Johnston CA, Cripps RM. Using Drosophila to model a variant of unknown significance in the human cardiogenic gene Nkx2.5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546937. [PMID: 37425758 PMCID: PMC10327092 DOI: 10.1101/2023.06.28.546937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Sequencing of human genome samples has unearthed genetic variants for which functional testing is necessary to validate their clinical significance. We used the Drosophila system to analyze a variant of unknown significance in the human congenital heart disease gene, Nkx2 . 5 . We generated an R321N allele of the Nkx2 . 5 ortholog tinman ( tin ) to model a human K158N variant and tested its function in vitro and in vivo. The R321N Tin isoform bound poorly to DNA in vitro and was deficient in activating a Tin-dependent enhancer in tissue culture. Mutant Tin also showed a significantly reduced interaction with a Drosophila Tbox cardiac factor named Dorsocross1. We generated a tin R321N allele using CRISPR/Cas9, for which homozygotes were viable and had normal heart specification, but showed defects in the differentiation of the adult heart that were exacerbated by further loss of tin function. We conclude that the human K158N mutation is likely pathogenic through causing both a deficiency in DNA binding and a reduced ability to interact with a cardiac cofactor, and that cardiac defects might arise later in development or adult life.
Collapse
|
3
|
Ahmed A, Syed JN, Chi L, Wang Y, Perez-Romero C, Lee D, Kocaqi E, Caballero A, Yang J, Escalante-Covarrubias Q, Ishimura A, Suzuki T, Aguilar-Arnal L, Gonzales GB, Kim KH, Delgado-Olguín P. KDM8 epigenetically controls cardiac metabolism to prevent initiation of dilated cardiomyopathy. NATURE CARDIOVASCULAR RESEARCH 2023; 2:174-191. [PMID: 38665902 PMCID: PMC11041705 DOI: 10.1038/s44161-023-00214-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/05/2023] [Indexed: 04/28/2024]
Abstract
Cardiac metabolism is deranged in heart failure, but underlying mechanisms remain unclear. Here, we show that lysine demethylase 8 (Kdm8) maintains an active mitochondrial gene network by repressing Tbx15, thus preventing dilated cardiomyopathy leading to lethal heart failure. Deletion of Kdm8 in mouse cardiomyocytes increased H3K36me2 with activation of Tbx15 and repression of target genes in the NAD+ pathway before dilated cardiomyopathy initiated. NAD+ supplementation prevented dilated cardiomyopathy in Kdm8 mutant mice, and TBX15 overexpression blunted NAD+-activated cardiomyocyte respiration. Furthermore, KDM8 was downregulated in human hearts affected by dilated cardiomyopathy, and higher TBX15 expression defines a subgroup of affected hearts with the strongest downregulation of genes encoding mitochondrial proteins. Thus, KDM8 represses TBX15 to maintain cardiac metabolism. Our results suggest that epigenetic dysregulation of metabolic gene networks initiates myocardium deterioration toward heart failure and could underlie heterogeneity of dilated cardiomyopathy.
Collapse
Affiliation(s)
- Abdalla Ahmed
- Department of Translational Medicine, The Hospital for Sick Children, Toronto, Ontario Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada
| | - Jibran Nehal Syed
- Department of Translational Medicine, The Hospital for Sick Children, Toronto, Ontario Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada
| | - Lijun Chi
- Department of Translational Medicine, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Yaxu Wang
- Department of Translational Medicine, The Hospital for Sick Children, Toronto, Ontario Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada
| | - Carmina Perez-Romero
- Department of Translational Medicine, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Dorothy Lee
- Department of Translational Medicine, The Hospital for Sick Children, Toronto, Ontario Canada
- Department of Physiology, University of Toronto, Toronto, Ontario Canada
| | - Etri Kocaqi
- Department of Translational Medicine, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Amalia Caballero
- Department of Translational Medicine, The Hospital for Sick Children, Toronto, Ontario Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada
| | - Jielin Yang
- Department of Translational Medicine, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Quetzalcoatl Escalante-Covarrubias
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Akihiko Ishimura
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Gerard Bryan Gonzales
- Division of Human Nutrition and Health, Wageningen University, Wageningen, Netherlands
| | - Kyoung-Han Kim
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa and University of Ottawa Heart Institute, Ottawa, Ontario Canada
| | - Paul Delgado-Olguín
- Department of Translational Medicine, The Hospital for Sick Children, Toronto, Ontario Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada
- Heart & Stroke Richard Lewar Centre of Excellence, Toronto, Ontario Canada
| |
Collapse
|
4
|
Promoter-Adjacent DNA Hypermethylation Can Downmodulate Gene Expression: TBX15 in the Muscle Lineage. EPIGENOMES 2022; 6:epigenomes6040043. [PMID: 36547252 PMCID: PMC9778270 DOI: 10.3390/epigenomes6040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
TBX15, which encodes a differentiation-related transcription factor, displays promoter-adjacent DNA hypermethylation in myoblasts and skeletal muscle (psoas) that is absent from non-expressing cells in other lineages. By whole-genome bisulfite sequencing (WGBS) and enzymatic methyl-seq (EM-seq), these hypermethylated regions were found to border both sides of a constitutively unmethylated promoter. To understand the functionality of this DNA hypermethylation, we cloned the differentially methylated sequences (DMRs) in CpG-free reporter vectors and tested them for promoter or enhancer activity upon transient transfection. These cloned regions exhibited strong promoter activity and, when placed upstream of a weak promoter, strong enhancer activity specifically in myoblast host cells. In vitro CpG methylation targeted to the DMR sequences in the plasmids resulted in 86−100% loss of promoter or enhancer activity, depending on the insert sequence. These results as well as chromatin epigenetic and transcription profiles for this gene in various cell types support the hypothesis that DNA hypermethylation immediately upstream and downstream of the unmethylated promoter region suppresses enhancer/extended promoter activity, thereby downmodulating, but not silencing, expression in myoblasts and certain kinds of skeletal muscle. This promoter-border hypermethylation was not found in cell types with a silent TBX15 gene, and these cells, instead, exhibit repressive chromatin in and around the promoter. TBX18, TBX2, TBX3 and TBX1 display TBX15-like hypermethylated DMRs at their promoter borders and preferential expression in myoblasts. Therefore, promoter-adjacent DNA hypermethylation for downmodulating transcription to prevent overexpression may be used more frequently for transcription regulation than currently appreciated.
Collapse
|
5
|
Foster DB, Gu JM, Kim EH, Wolfson DW, O’Meally R, Cole RN, Cho HC. Tbx18 Orchestrates Cytostructural Transdifferentiation of Cardiomyocytes to Pacemaker Cells by Recruiting the Epithelial-Mesenchymal Transition Program. J Proteome Res 2022; 21:2277-2292. [PMID: 36006872 PMCID: PMC9552783 DOI: 10.1021/acs.jproteome.2c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/29/2022]
Abstract
Previously, we reported that heterologous expression of an embryonic transcription factor, Tbx18, reprograms ventricular cardiomyocytes into induced pacemaker cells (Tbx18-iPMs), though the key pathways are unknown. Here, we have used a tandem mass tag proteomic approach to characterize the impact of Tbx18 on neonatal rat ventricular myocytes. Tbx18 expression triggered vast proteome remodeling. Tbx18-iPMs exhibited increased expression of known pacemaker ion channels, including Hcn4 and Cx45 as well as upregulation of the mechanosensitive ion channels Piezo1, Trpp2 (PKD2), and TrpM7. Metabolic pathways were broadly downregulated, as were ion channels associated with ventricular excitation-contraction coupling. Tbx18-iPMs also exhibited extensive intracellular cytoskeletal and extracellular matrix remodeling, including 96 differentially expressed proteins associated with the epithelial-to-mesenchymal transition (EMT). RNAseq extended coverage of low abundance transcription factors, revealing upregulation of EMT-inducing Snai1, Snai2, Twist1, Twist2, and Zeb2. Finally, network diffusion mapping of >200 transcriptional regulators indicates EMT and heart development factors occupy adjacent network neighborhoods downstream of Tbx18 but upstream of metabolic control factors. In conclusion, transdifferentiation of cardiac myocytes into pacemaker cells entails massive electrogenic, metabolic, and cytostructural remodeling. Structural changes exhibit hallmarks of the EMT. The results aid ongoing efforts to maximize the yield and phenotypic stability of engineered biological pacemakers.
Collapse
Affiliation(s)
- D. Brian Foster
- Division
of Cardiology, Department of Medicine, The
Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Jin-mo Gu
- Department
of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
| | - Elizabeth H. Kim
- Cedars-Sinai
Medical Center, Los Angeles, California 90048, United States
| | - David W. Wolfson
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Robert O’Meally
- Proteomics
Core Facility, The Johns Hopkins University
School of Medicine, Baltimore, Maryland 21205, United States
| | - Robert N. Cole
- Proteomics
Core Facility, The Johns Hopkins University
School of Medicine, Baltimore, Maryland 21205, United States
| | - Hee Cheol Cho
- Department
of Surgery, The Johns Hopkins University
School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
6
|
Kurz J, Weiss AC, Lüdtke THW, Deuper L, Trowe MO, Thiesler H, Hildebrandt H, Heineke J, Duncan SA, Kispert A. GATA6 is a crucial factor for Myocd expression in the visceral smooth muscle cell differentiation program of the murine ureter. Development 2022; 149:dev200522. [PMID: 35905011 PMCID: PMC10656427 DOI: 10.1242/dev.200522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2023]
Abstract
Smooth muscle cells (SMCs) are a crucial component of the mesenchymal wall of the ureter, as they account for the efficient removal of the urine from the renal pelvis to the bladder by means of their contractile activity. Here, we show that the zinc-finger transcription factor gene Gata6 is expressed in mesenchymal precursors of ureteric SMCs under the control of BMP4 signaling. Mice with a conditional loss of Gata6 in these precursors exhibit a delayed onset and reduced level of SMC differentiation and peristaltic activity, as well as dilatation of the ureter and renal pelvis (hydroureternephrosis) at birth and at postnatal stages. Molecular profiling revealed a delayed and reduced expression of the myogenic driver gene Myocd, but the activation of signaling pathways and transcription factors previously implicated in activation of the visceral SMC program in the ureter was unchanged. Additional gain-of-function experiments suggest that GATA6 cooperates with FOXF1 in Myocd activation and SMC differentiation, possibly as pioneer and lineage-determining factors, respectively.
Collapse
Affiliation(s)
- Jennifer Kurz
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | - Anna-Carina Weiss
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | - Timo H.-W. Lüdtke
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | - Lena Deuper
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | - Mark-Oliver Trowe
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | - Hauke Thiesler
- Institut für Klinische Biochemie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | - Herbert Hildebrandt
- Institut für Klinische Biochemie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | - Joerg Heineke
- Abteilung für Kardiovaskuläre Physiologie, European Center for Angioscience, Medizinische Fakultät Mannheim, Universität Heidelberg, D-68167 Mannheim, Germany
| | - Stephen A. Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| |
Collapse
|
7
|
Proteomic analysis identifies ZMYM2 as endogenous binding partner of TBX18 protein in 293 and A549 cells. Biochem J 2021; 479:91-109. [PMID: 34935912 DOI: 10.1042/bcj20210642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
The TBX18 transcription factor regulates patterning and differentiation programs in the primordia of many organs yet the molecular complexes in which TBX18 resides to exert its crucial transcriptional function in these embryonic contexts have remained elusive. Here, we used 293 and A549 cells as an accessible cell source to search for endogenous protein interaction partners of TBX18 by an unbiased proteomic approach. We tagged endogenous TBX18 by CRISPR/Cas9 targeted genome editing with a triple FLAG peptide, and identified by anti-FLAG affinity purification and subsequent LC-MS analysis the ZMYM2 protein to be statistically enriched together with TBX18 in both 293 and A549 nuclear extracts. Using a variety of assays, we confirmed binding of TBX18 to ZMYM2, a component of the CoREST transcriptional corepressor complex. Tbx18 is coexpressed with Zmym2 in the mesenchymal compartment of the developing ureter of the mouse, and mutations in TBX18and in ZMYM2 were recently linked to congenital anomalies in the kidney and urinary tract (CAKUT) in line with a possible in vivo relevance of TBX18-ZMYM2 protein interaction in ureter development.
Collapse
|
8
|
Morine Y, Utsunomiya T, Saito Y, Yamada S, Imura S, Ikemoto T, Kitagawa A, Kobayashi Y, Takao S, Kosai K, Mimori K, Tanaka Y, Shimada M. Reduction of T-Box 15 gene expression in tumor tissue is a prognostic biomarker for patients with hepatocellular carcinoma. Oncotarget 2020; 11:4803-4812. [PMID: 33447348 PMCID: PMC7779253 DOI: 10.18632/oncotarget.27852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/08/2020] [Indexed: 01/19/2023] Open
Abstract
Genome-wide analysis is widely applied to detect molecular alterations during oncogenesis and tumor progression. We analyzed DNA methylation profiles of hepatocellular carcinoma (HCC), and investigated the clinical role of most heypermethylated of tumor, encodes T-box 15 (TBX15), which was originally involved in mesodermal differentiation. We conducted a genome-wide analysis of DNA methylation of tumor and non-tumor tissue of 15 patients with HCC, and revealed TBX15 was the most hypermethylated gene of tumor (Beta-value in tumor tissue = 0.52 compared with non-tumor tissue). Another validation set, which comprised 58 HCC with radical resection, was analyzed to investigate the relationships between tumor phenotype and TBX15 mRNA expression. TBX15 mRNA levels in tumor tissues were significantly lower compared with those of nontumor tissues (p < 0.0001). When we assigned a cutoff value = 0.5-fold, the overall survival 5-year survival rates of the low-expression group (n = 17) were significantly shorter compared with those of the high-expression group (n = 41) (43.3% vs. 86.2%, p = 0.001). Multivariate analysis identified low TBX15 expression as an independent prognostic factor for overall and disease-free survival. Therefore, genome-wide DNA methylation profiling indicates that hypermethylation and reduced expression of TBX15 in tumor tissue represents a potential biomarker for predicting poor survival of patients with HCC.
Collapse
Affiliation(s)
- Yuji Morine
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Tohru Utsunomiya
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yu Saito
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Shinichiro Yamada
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Satoru Imura
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Akihiro Kitagawa
- Department of Surgery, Kyushu University Beppu Hospital, Beppu 874-0838, Japan
| | - Yuta Kobayashi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu 874-0838, Japan
| | - Seiichiro Takao
- Department of Surgery, Kyushu University Beppu Hospital, Beppu 874-0838, Japan
| | - Keisuke Kosai
- Department of Surgery, Kyushu University Beppu Hospital, Beppu 874-0838, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu 874-0838, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Mitsuo Shimada
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
9
|
Yanni J, D'Souza A, Wang Y, Li N, Hansen BJ, Zakharkin SO, Smith M, Hayward C, Whitson BA, Mohler PJ, Janssen PML, Zeef L, Choudhury M, Zi M, Cai X, Logantha SJRJ, Nakao S, Atkinson A, Petkova M, Doris U, Ariyaratnam J, Cartwright EJ, Griffiths-Jones S, Hart G, Fedorov VV, Oceandy D, Dobrzynski H, Boyett MR. Silencing miR-370-3p rescues funny current and sinus node function in heart failure. Sci Rep 2020; 10:11279. [PMID: 32647133 PMCID: PMC7347645 DOI: 10.1038/s41598-020-67790-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/02/2020] [Indexed: 01/13/2023] Open
Abstract
Bradyarrhythmias are an important cause of mortality in heart failure and previous studies indicate a mechanistic role for electrical remodelling of the key pacemaking ion channel HCN4 in this process. Here we show that, in a mouse model of heart failure in which there is sinus bradycardia, there is upregulation of a microRNA (miR-370-3p), downregulation of the pacemaker ion channel, HCN4, and downregulation of the corresponding ionic current, If, in the sinus node. In vitro, exogenous miR-370-3p inhibits HCN4 mRNA and causes downregulation of HCN4 protein, downregulation of If, and bradycardia in the isolated sinus node. In vivo, intraperitoneal injection of an antimiR to miR-370-3p into heart failure mice silences miR-370-3p and restores HCN4 mRNA and protein and If in the sinus node and blunts the sinus bradycardia. In addition, it partially restores ventricular function and reduces mortality. This represents a novel approach to heart failure treatment.
Collapse
Affiliation(s)
- Joseph Yanni
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Alicia D'Souza
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Yanwen Wang
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Ning Li
- Physiology and Cell Biology, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia Research and Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, 43210, USA
| | - Brian J Hansen
- Physiology and Cell Biology, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia Research and Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, 43210, USA
| | - Stanislav O Zakharkin
- Physiology and Cell Biology, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Matthew Smith
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Christina Hayward
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Bryan A Whitson
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia Research and Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, 43210, USA
- Department of Surgery, Division of Cardiac Surgery, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Peter J Mohler
- Physiology and Cell Biology, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia Research and Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, 43210, USA
- Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Paul M L Janssen
- Physiology and Cell Biology, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia Research and Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, 43210, USA
- Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Leo Zeef
- Bioinformatics Core Facility, University of Manchester, Manchester, UK
| | - Moinuddin Choudhury
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Min Zi
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Xue Cai
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Sunil Jit R J Logantha
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Shu Nakao
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Andrew Atkinson
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Maria Petkova
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Ursula Doris
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Jonathan Ariyaratnam
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Sam Griffiths-Jones
- Division of Evolution and Genomics Sciences, University of Manchester, Manchester, UK
| | - George Hart
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Vadim V Fedorov
- Physiology and Cell Biology, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia Research and Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, 43210, USA
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
- Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
| | - Mark R Boyett
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200N, Copenhagen, Denmark.
| |
Collapse
|
10
|
Zhang X, Ehrlich KC, Yu F, Hu X, Meng XH, Deng HW, Shen H, Ehrlich M. Osteoporosis- and obesity-risk interrelationships: an epigenetic analysis of GWAS-derived SNPs at the developmental gene TBX15. Epigenetics 2020; 15:728-749. [PMID: 31975641 PMCID: PMC7574382 DOI: 10.1080/15592294.2020.1716491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A major challenge in translating findings from genome-wide association studies (GWAS) to biological mechanisms is pinpointing functional variants because only a very small percentage of variants associated with a given trait actually impact the trait. We used an extensive epigenetics, transcriptomics, and genetics analysis of the TBX15/WARS2 neighbourhood to prioritize this region's best-candidate causal variants for the genetic risk of osteoporosis (estimated bone density, eBMD) and obesity (waist-hip ratio or waist circumference adjusted for body mass index). TBX15 encodes a transcription factor that is important in bone development and adipose biology. Manual curation of 692 GWAS-derived variants gave eight strong candidates for causal SNPs that modulate TBX15 transcription in subcutaneous adipose tissue (SAT) or osteoblasts, which highly and specifically express this gene. None of these SNPs were prioritized by Bayesian fine-mapping. The eight regulatory causal SNPs were in enhancer or promoter chromatin seen preferentially in SAT or osteoblasts at TBX15 intron-1 or upstream. They overlap strongly predicted, allele-specific transcription factor binding sites. Our analysis suggests that these SNPs act independently of two missense SNPs in TBX15. Remarkably, five of the regulatory SNPs were associated with eBMD and obesity and had the same trait-increasing allele for both. We found that WARS2 obesity-related SNPs can be ascribed to high linkage disequilibrium with TBX15 intron-1 SNPs. Our findings from GWAS index, proxy, and imputed SNPs suggest that a few SNPs, including three in a 0.7-kb cluster, act as causal regulatory variants to fine-tune TBX15 expression and, thereby, affect both obesity and osteoporosis risk.
Collapse
Affiliation(s)
- Xiao Zhang
- Tulane Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University , New Orleans, LA, USA
| | - Kenneth C Ehrlich
- Tulane Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University , New Orleans, LA, USA
| | - Fangtang Yu
- Tulane Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University , New Orleans, LA, USA
| | - Xiaojun Hu
- Tulane Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University , New Orleans, LA, USA.,Department of Orthopedics, People's Hospital of Rongchang District , Chongqing, China
| | - Xiang-He Meng
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University , Changsha, Hunan, China
| | - Hong-Wen Deng
- Tulane Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University , New Orleans, LA, USA
| | - Hui Shen
- Tulane Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University , New Orleans, LA, USA
| | - Melanie Ehrlich
- Tulane Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University , New Orleans, LA, USA.,Tulane Cancer Center, Hayward Human Genetics Program, Tulane University Health Sciences , New Orleans, LA, USA
| |
Collapse
|
11
|
Abstract
The rate and rhythm of heart muscle contractions are coordinated by the cardiac conduction system (CCS), a generic term for a collection of different specialized muscular tissues within the heart. The CCS components initiate the electrical impulse at the sinoatrial node, propagate it from atria to ventricles via the atrioventricular node and bundle branches, and distribute it to the ventricular muscle mass via the Purkinje fibre network. The CCS thereby controls the rate and rhythm of alternating contractions of the atria and ventricles. CCS function is well conserved across vertebrates from fish to mammals, although particular specialized aspects of CCS function are found only in endotherms (mammals and birds). The development and homeostasis of the CCS involves transcriptional and regulatory networks that act in an embryonic-stage-dependent, tissue-dependent, and dose-dependent manner. This Review describes emerging data from animal studies, stem cell models, and genome-wide association studies that have provided novel insights into the transcriptional networks underlying CCS formation and function. How these insights can be applied to develop disease models and therapies is also discussed.
Collapse
|
12
|
Razy-Krajka F, Stolfi A. Regulation and evolution of muscle development in tunicates. EvoDevo 2019; 10:13. [PMID: 31249657 PMCID: PMC6589888 DOI: 10.1186/s13227-019-0125-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/08/2019] [Indexed: 12/16/2022] Open
Abstract
For more than a century, studies on tunicate muscle formation have revealed many principles of cell fate specification, gene regulation, morphogenesis, and evolution. Here, we review the key studies that have probed the development of all the various muscle cell types in a wide variety of tunicate species. We seize this occasion to explore the implications and questions raised by these findings in the broader context of muscle evolution in chordates.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
13
|
Moore-Morris T, van Vliet PP, Andelfinger G, Puceat M. Role of Epigenetics in Cardiac Development and Congenital Diseases. Physiol Rev 2019; 98:2453-2475. [PMID: 30156497 DOI: 10.1152/physrev.00048.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The heart is the first organ to be functional in the fetus. Heart formation is a complex morphogenetic process regulated by both genetic and epigenetic mechanisms. Congenital heart diseases (CHD) are the most prominent congenital diseases. Genetics is not sufficient to explain these diseases or the impact of them on patients. Epigenetics is more and more emerging as a basis for cardiac malformations. This review brings the essential knowledge on cardiac biology of development. It further provides a broad background on epigenetics with a focus on three-dimensional conformation of chromatin. Then, we summarize the current knowledge of the impact of epigenetics on cardiac cell fate decision. We further provide an update on the epigenetic anomalies in the genesis of CHD.
Collapse
Affiliation(s)
- Thomas Moore-Morris
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Patrick Piet van Vliet
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Gregor Andelfinger
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Michel Puceat
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| |
Collapse
|
14
|
Pane LS, Fulcoli FG, Cirino A, Altomonte A, Ferrentino R, Bilio M, Baldini A. Tbx1 represses Mef2c gene expression and is correlated with histone 3 deacetylation of the anterior heart field enhancer. Dis Model Mech 2018; 11:11/9/dmm029967. [PMID: 30166330 PMCID: PMC6176997 DOI: 10.1242/dmm.029967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
The TBX1 gene is haploinsufficient in 22q11.2 deletion syndrome (22q11.2DS), and genetic evidence from human patients and mouse models points to a major role of this gene in the pathogenesis of this syndrome. Tbx1 can activate and repress transcription, and previous work has shown that one of its functions is to negatively modulate cardiomyocyte differentiation. Tbx1 occupies the anterior heart field (AHF) enhancer of the Mef2c gene, which encodes a key cardiac differentiation transcription factor. Here, we show that increased dosage of Tbx1 correlates with downregulation of Mef2c expression and reduced acetylation of its AHF enhancer in cultured mouse myoblasts. Consistently, 22q11.2DS-derived and in vitro-differentiated human induced pluripotent stem cells (hiPSCs) expressed higher levels of MEF2C and showed increased AHF acetylation, compared with hiPSCs from a healthy donor. Most importantly, we show that in mouse embryos, loss of Tbx1 enhances the expression of the Mef2c-AHF-Cre transgene in a specific region of the splanchnic mesoderm, and in a dosage-dependent manner, providing an in vivo correlate of our cell culture data. These results indicate that Tbx1 regulates the Mef2c AHF enhancer by inducing histone deacetylation.
Collapse
Affiliation(s)
- Luna Simona Pane
- CNR Institute of Genetics and Biophysics Adriano Buzzati Traverso, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Filomena Gabriella Fulcoli
- CNR Institute of Genetics and Biophysics Adriano Buzzati Traverso, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Andrea Cirino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Napoli, Italy
| | - Alessandra Altomonte
- CNR Institute of Genetics and Biophysics Adriano Buzzati Traverso, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Rosa Ferrentino
- CNR Institute of Genetics and Biophysics Adriano Buzzati Traverso, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Marchesa Bilio
- CNR Institute of Genetics and Biophysics Adriano Buzzati Traverso, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Antonio Baldini
- CNR Institute of Genetics and Biophysics Adriano Buzzati Traverso, Via Pietro Castellino 111, 80131 Napoli, Italy .,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Napoli, Italy
| |
Collapse
|
15
|
Rivera-Reyes R, Kleppa MJ, Kispert A. Proteomic analysis identifies transcriptional cofactors and homeobox transcription factors as TBX18 binding proteins. PLoS One 2018; 13:e0200964. [PMID: 30071041 PMCID: PMC6071992 DOI: 10.1371/journal.pone.0200964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/30/2018] [Indexed: 01/04/2023] Open
Abstract
The TBX18 transcription factor is a crucial developmental regulator of several organ systems in mice, and loss of its transcriptional repression activity causes dilative nephropathies in humans. The molecular complexes with which TBX18 regulates transcription are poorly understood prompting us to use an unbiased proteomic approach to search for protein interaction partners. Using overexpressed dual tagged TBX18 as bait, we identified by tandem purification and subsequent LC-MS analysis TBX18 binding proteins in 293 cells. Clustering of functional annotations of the identified proteins revealed a highly significant enrichment of transcriptional cofactors and homeobox transcription factors. Using nuclear recruitment assays as well as GST pull-downs, we validated CBFB, GAR1, IKZF2, NCOA5, SBNO2 and CHD7 binding to the T-box of TBX18 in vitro. From these transcriptional cofactors, CBFB, CHD7 and IKZF2 enhanced the transcriptional repression of TBX18, while NCOA5 and SBNO2 dose-dependently relieved it. All tested homeobox transcription factors interacted with the T-box of TBX18 in pull-down assays, with members of the Pbx and Prrx subfamilies showing coexpression with Tbx18 in the developing ureter of the mouse. In summary, we identified and characterized new TBX18 binding partners that may influence the transcriptional activity of TBX18 in vivo.
Collapse
Affiliation(s)
| | - Marc-Jens Kleppa
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
16
|
|
17
|
Abstract
Ascidians are invertebrate chordates with a biphasic life cycle characterized by a dual body plan that displays simplified versions of chordate structures, such as a premetamorphic 40-cell notochord topped by a dorsal nerve cord and postmetamorphic pharyngeal slits. These relatively simple chordates are characterized by rapid development, compact genomes and ease of transgenesis, and thus provide the opportunity to rapidly characterize the genomic organization, developmental function, and transcriptional regulation of evolutionarily conserved gene families. This review summarizes the current knowledge on members of the T-box family of transcription factors in Ciona and other ascidians. In both chordate and nonchordate animals, these genes control a variety of morphogenetic processes, and their mutations are responsible for malformations and developmental defects in organisms ranging from flies to humans. In ascidians, T-box transcription factors are required for the formation and specialization of essential structures, including notochord, muscle, heart, and differentiated neurons. In recent years, the experimental advantages offered by ascidian embryos have allowed the rapid accumulation of a wealth of information on the molecular mechanisms that regulate the expression of T-box genes. These studies have also elucidated the strategies employed by these transcription factors to orchestrate the appropriate spatial and temporal deployment of the numerous target genes that they control.
Collapse
Affiliation(s)
- A Di Gregorio
- New York University College of Dentistry, New York, NY, United States.
| |
Collapse
|
18
|
Abstract
The nematode Caenorhabditis elegans is a simple metazoan animal that is widely used as a model to understand the genetic control of development. The completely sequenced C. elegans genome contains 22 T-box genes, and they encode factors that show remarkable diversity in sequence, DNA-binding specificity, and function. Only three of the C. elegans T-box factors can be grouped into the conserved subfamilies found in other organisms, while the remaining factors are significantly diverged and unlike those in most other animals. While some of the C. elegans factors can bind canonical T-box binding elements, others bind and regulate target gene expression through distinct sequences. The nine genetically characterized T-box factors have varied functions in development and morphogenesis of muscle, hypodermal tissues, and neurons, as well as in early blastomere fate specification, cell migration, apoptosis, and sex determination, but the functions of most of the C. elegans T-box factors have not yet been extensively characterized. Like T-box factors in other animals, interaction with a Groucho-family corepressor and posttranslational SUMOylation have been shown to affect C. elegans T-box factor activity, and it is likely that additional mechanisms affecting T-box factor activity will be discovered using the effective genetic approaches in this organism.
Collapse
|
19
|
Snitow M, Lu M, Cheng L, Zhou S, Morrisey EE. Ezh2 restricts the smooth muscle lineage during mouse lung mesothelial development. Development 2016; 143:3733-3741. [PMID: 27578795 DOI: 10.1242/dev.134932] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/17/2016] [Indexed: 01/12/2023]
Abstract
During development, the lung mesoderm generates a variety of cell lineages, including airway and vascular smooth muscle. Epigenetic changes in adult lung mesodermal lineages are thought to contribute towards diseases such as idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease, although the factors that regulate early lung mesoderm development are unknown. We show in mouse that the PRC2 component Ezh2 is required to restrict smooth muscle differentiation in the developing lung mesothelium. Mesodermal loss of Ezh2 leads to the formation of ectopic smooth muscle in the submesothelial region of the developing lung mesoderm. Loss of Ezh2 specifically in the developing mesothelium reveals a mesothelial cell-autonomous role for Ezh2 in repression of the smooth muscle differentiation program. Loss of Ezh2 derepresses expression of myocardin and Tbx18, which are important regulators of smooth muscle differentiation from the mesothelium and related cell lineages. Together, these findings uncover an Ezh2-dependent mechanism to restrict the smooth muscle gene expression program in the developing mesothelium and allow appropriate cell fate decisions to occur in this multipotent mesoderm lineage.
Collapse
Affiliation(s)
- Melinda Snitow
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - MinMin Lu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lan Cheng
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Su Zhou
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA .,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Gozzi G, Chelbi ST, Manni P, Alberti L, Fonda S, Saponaro S, Fabbiani L, Rivasi F, Benhattar J, Losi L. Promoter methylation and downregulated expression of the TBX15 gene in ovarian carcinoma. Oncol Lett 2016; 12:2811-2819. [PMID: 27698863 DOI: 10.3892/ol.2016.5019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/29/2016] [Indexed: 12/12/2022] Open
Abstract
TBX15 is a gene involved in the development of mesodermal derivatives. As the ovaries and the female reproductive system are of mesodermal origin, the aim of the present study was to determine the methylation status of the TBX15 gene promoter and the expression levels of TBX15 in ovarian carcinoma, which is the most lethal and aggressive type of gynecological tumor, in order to determine the role of TBX15 in the pathogenesis of ovarian carcinoma. This alteration could be used to predict tumor development, progression, recurrence and therapeutic effects. The study was conducted on 80 epithelial ovarian carcinoma and 17 control cases (normal ovarian and tubal tissues). TBX15 promoter methylation was first determined by pyrosequencing following bisulfite modification, then by cloning and sequencing, in order to obtain information about the epigenetic haplotype. Immunohistochemical analysis was performed to evaluate the correlation between the methylation and protein expression levels. Data revealed a statistically significant increase of the TBX15 promoter region methylation in 82% of the tumor samples and in various histological subtypes. Immunohistochemistry showed an inverse correlation between methylation levels and the expression of the TBX15 protein. Furthermore, numerous tumor samples displayed varying degrees of intratumor heterogeneity. Thus, the present study determined that ovarian carcinoma typically expresses low levels of TBX15 protein, predominantly due to an epigenetic mechanism. This may have a role in the pathogenesis of ovarian carcinoma independent of the histological subtype.
Collapse
Affiliation(s)
- Gaia Gozzi
- Pathological Anatomy Unit, Department of Life Sciences, University of Modena and Reggio Emilia, I-41124 Modena, Italy; University Institute of Pathology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Sonia T Chelbi
- University Institute of Pathology, Lausanne University Hospital, 1011 Lausanne, Switzerland; Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Paola Manni
- Pathological Anatomy Unit, Department of Life Sciences, University of Modena and Reggio Emilia, I-41124 Modena, Italy
| | - Loredana Alberti
- University Institute of Pathology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Sergio Fonda
- Pathological Anatomy Unit, Department of Life Sciences, University of Modena and Reggio Emilia, I-41124 Modena, Italy
| | - Sara Saponaro
- Pathological Anatomy Unit, Department of Life Sciences, University of Modena and Reggio Emilia, I-41124 Modena, Italy; University Institute of Pathology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Luca Fabbiani
- Department of Diagnostic Medicine, Clinic and Public Health, University of Modena and Reggio Emilia, I-41124 Modena, Italy
| | - Francesco Rivasi
- Department of Diagnostic Medicine, Clinic and Public Health, University of Modena and Reggio Emilia, I-41124 Modena, Italy
| | - Jean Benhattar
- University Institute of Pathology, Lausanne University Hospital, 1011 Lausanne, Switzerland; Biopath Lab, Medical Biology and Pathology, 1006 Lausanne, Switzerland
| | - Lorena Losi
- Pathological Anatomy Unit, Department of Life Sciences, University of Modena and Reggio Emilia, I-41124 Modena, Italy
| |
Collapse
|
21
|
Abstract
In this issue of Developmental Cell, Waldron et al. (2016) identify an interaction between a master regulator of heart development, TBX5, and the NuRD complex and describe how mutations affecting the interaction may contribute to congenital heart disease. Furthermore, these interactions may have contributed to the evolution of cardiac septation.
Collapse
Affiliation(s)
- Cornelis J Boogerd
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Sylvia M Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of Pharmacology and Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
22
|
Greulich F, Trowe MO, Leffler A, Stoetzer C, Farin HF, Kispert A. Misexpression of Tbx18 in cardiac chambers of fetal mice interferes with chamber-specific developmental programs but does not induce a pacemaker-like gene signature. J Mol Cell Cardiol 2016; 97:140-9. [PMID: 27180262 DOI: 10.1016/j.yjmcc.2016.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/13/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022]
Abstract
Initiation of cardiac excitation depends on a specialized group of cardiomyocytes at the venous pole of the heart, the sinoatrial node (SAN). The T-box transcription factor gene Tbx18 is expressed in the SAN myocardium and is required for formation of a large portion of the pacemaker. Previous studies suggested that Tbx18 is also sufficient to reprogram ventricular cardiomyocytes into SAN cells in rat, guinea-pig and pig hearts. To evaluate the consequences of misexpression of Tbx18 for imposing a nodal phenotype onto chamber myocardial cells in fetal mice, we used two independent conditional approaches with chamber-specific cre driver lines and an Hprt(Tbx18) misexpression allele. Myh6-Cre/+;Hprt(Tbx18/y) mice developed dilated atria with thickened walls, reduced right ventricles and septal defects that resulted in reduced embryonic and post-natal survival. Tagln-Cre/+;Hprt(Tbx18/y) mice exhibited slightly smaller hearts with rounded trabeculae that supported normal embryonic survival. Molecular analyses showed that the SAN gap junction and ion channel profile was not ectopically induced in chamber myocardium but the working myocardial gene program was partially inhibited in atria and ventricles of both misexpression models. Left atrial expression of Pitx2 was strongly repressed in Myh6-Cre/+;Hprt(Tbx18/y) embryos. We conclude that exclusion of Tbx18 expression from the developing atria and (right) ventricle is important to achieve normal cardiac left-right patterning and myocardial differentiation, and that Tbx18 is not sufficient to induce full SAN differentiation of chamber cardiomyocytes in fetal mice.
Collapse
Affiliation(s)
- Franziska Greulich
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany
| | - Mark-Oliver Trowe
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany
| | - Andreas Leffler
- Klinik für Anästhesiologie und Intensivmedizin, OE8050, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany
| | - Carsten Stoetzer
- Klinik für Anästhesiologie und Intensivmedizin, OE8050, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany
| | - Henner F Farin
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany.
| |
Collapse
|
23
|
Huber P, Crum T, Okkema PG. Function of the C. elegans T-box factor TBX-2 depends on interaction with the UNC-37/Groucho corepressor. Dev Biol 2016; 416:266-276. [PMID: 27265867 DOI: 10.1016/j.ydbio.2016.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 05/10/2016] [Accepted: 05/31/2016] [Indexed: 11/26/2022]
Abstract
T-box transcription factors are important regulators of development in all animals, and altered expression of T-box factors has been identified in an increasing number of diseases and cancers. Despite these important roles, the mechanism of T-box factor activity is not well understood. We have previously shown that the Caenorhabditis elegans Tbx2 subfamily member TBX-2 functions as a transcriptional repressor to specify ABa-derived pharyngeal muscle, and that this function depends on SUMOylation. Here we show that TBX-2 function also depends on interaction with the Groucho-family corepressor UNC-37. TBX-2 interacts with UNC-37 in yeast two-hybrid assays via a highly conserved engrailed homology 1 (eh1) motif located near the TBX-2 C-terminus. Reducing unc-37 phenocopies tbx-2 mutants, resulting in a specific loss of anterior ABa-derived pharyngeal muscles and derepression of the tbx-2 promoter. Moreover, double mutants containing hypomorphic alleles of unc-37 and tbx-2 exhibit enhanced phenotypes, providing strong genetic evidence that unc-37 and tbx-2 share common functions in vivo. To test whether interaction with UNC-37 is necessary for TBX-2 activity, we developed a transgene rescue assay using a tbx-2 containing fosmid and found that mutating the tbx-2 eh1 motif reduced rescue of a tbx-2 null mutant. These results indicate that TBX-2 function in vivo depends on interaction with UNC-37. As many T-box factors contain eh1 motifs, we suggest that interaction with Groucho-family corepressors is a common mechanism contributing to their activity.
Collapse
Affiliation(s)
- Paul Huber
- Department of Biological Sciences, Molecular, Cellular & Developmental Biology Research Group, University of Illinois at Chicago, Chicago, IL, USA
| | - Tanya Crum
- Department of Biological Sciences, Molecular, Cellular & Developmental Biology Research Group, University of Illinois at Chicago, Chicago, IL, USA
| | - Peter G Okkema
- Department of Biological Sciences, Molecular, Cellular & Developmental Biology Research Group, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
24
|
Abstract
T-box (Tbx) genes encode an ancient group of transcription factors that play important roles in patterning, specification, proliferation, and differentiation programs in vertebrate organogenesis. This is testified by severe organ malformation syndromes in mice homozygous for engineered null alleles of specific T-box genes and by the large number of human inherited organ-specific diseases that have been linked to mutations in these genes. One of the organ systems that has not been associated with loss of specific T-box gene function in human disease for long is the excretory system. However, this has changed with the finding that mutations in TBX18, a member of a vertebrate-specific subgroup within the Tbx1-subfamily of T-box transcription factor genes, cause congenital anomalies of the kidney and urinary tract, predominantly hydroureter and ureteropelvic junction obstruction. Gene expression analyses, loss-of-function studies, and lineage tracing in the mouse suggest a primary role for this transcription factor in specifying the ureteric mesenchyme in the common anlage of the kidney, the ureter, and the bladder. We review the function of Tbx18 in ureterogenesis and discuss the body of evidence that Tbx18 and other members of the T-box gene family, namely, Tbx1, Tbx2, Tbx3, and Tbx20, play additional roles in development and homeostasis of other components of the excretory system in vertebrates.
Collapse
|
25
|
Arribas J, Giménez E, Marcos R, Velázquez A. Novel antiapoptotic effect of TBX15: overexpression of TBX15 reduces apoptosis in cancer cells. Apoptosis 2016. [PMID: 26216026 DOI: 10.1007/s10495-015-1155-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
T-box genes regulate development processes, some of these genes having also a role in cell proliferation and survival. TBX15 is a T-box transcription factor that, recently, has been proposed as a marker in prostate cancer, but its function in carcinogenesis is unknown. Here the role of TBX15 in carcinogenesis was investigated using thyroid cancer cell lines. First, using western blot analysis, we show that the expression of TBX15 was altered in thyroid cancer cells lines with respect to normal thyroid cells. Transfection of thyroid cancer cells with TBX15, in the presence or absence of camptothecin as a cytotoxic agent, proved non effect of TBX15 in cell viability; but, it increased cell proliferation after 48 h of transfection (P < 0.01). Consistently, apoptosis was reduced in TBX15 transfected cells (P < 0.01) which also showed a decrease of the proapoptotic Bax regulator and an increase of the antiapoptotic Bcl2 and Bcl-XL regulators. Additionally, siRNA shutdown of constitutive TBX15 increased apoptosis. TBX15 transfection did not alter colony formation and cell migration. Taken together, these results indicate for the first time an antiapoptotic role of TBX15 in cancer cells, suggesting a contribution of TBX15 in carcinogenesis and the potential therapeutic target of TBX15.
Collapse
Affiliation(s)
- Jéssica Arribas
- Grup de Mutagènesi, Unitat de Genètica, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain,
| | | | | | | |
Collapse
|
26
|
Greulich F, Rudat C, Farin HF, Christoffels VM, Kispert A. Lack of Genetic Interaction between Tbx18 and Tbx2/Tbx20 in Mouse Epicardial Development. PLoS One 2016; 11:e0156787. [PMID: 27253890 PMCID: PMC4890940 DOI: 10.1371/journal.pone.0156787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/19/2016] [Indexed: 11/18/2022] Open
Abstract
The epicardium, the outermost layer of the heart, is an essential source of cells and signals for the formation of the cardiac fibrous skeleton and the coronary vasculature, and for the maturation of the myocardium during embryonic development. The molecular factors that control epicardial mobilization and differentiation, and direct the epicardial-myocardial cross-talk are, however, insufficiently understood. The T-box transcription factor gene Tbx18 is specifically expressed in the epicardium of vertebrate embryos. Loss of Tbx18 is dispensable for epicardial development, but may influence coronary vessel maturation. In contrast, over-expression of an activator version of TBX18 severely impairs epicardial development by premature differentiation of epicardial cells into SMCs indicating a potential redundancy of Tbx18 with other repressors of the T-box gene family. Here, we show that Tbx2 and Tbx20 are co-expressed with Tbx18 at different stages of epicardial development. Using a conditional gene targeting approach we find that neither the epicardial loss of Tbx2 nor the combined loss of Tbx2 and Tbx18 affects epicardial development. Similarly, we observed that the heterozygous loss of Tbx20 with and without additional loss of Tbx18 does not impact on epicardial integrity and mobilization in mouse embryos. Thus, Tbx18 does not function redundantly with Tbx2 or Tbx20 in epicardial development.
Collapse
Affiliation(s)
- Franziska Greulich
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Carsten Rudat
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Henner F. Farin
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Vincent M. Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
27
|
van Weerd JH, Christoffels VM. The formation and function of the cardiac conduction system. Development 2016; 143:197-210. [PMID: 26786210 DOI: 10.1242/dev.124883] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cardiac conduction system (CCS) consists of distinctive components that initiate and conduct the electrical impulse required for the coordinated contraction of the cardiac chambers. CCS development involves complex regulatory networks that act in stage-, tissue- and dose-dependent manners, and recent findings indicate that the activity of these networks is sensitive to common genetic variants associated with cardiac arrhythmias. Here, we review how these findings have provided novel insights into the regulatory mechanisms and transcriptional networks underlying CCS formation and function.
Collapse
Affiliation(s)
- Jan Hendrik van Weerd
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Vincent M Christoffels
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
28
|
Lee KY, Singh MK, Ussar S, Wetzel P, Hirshman MF, Goodyear LJ, Kispert A, Kahn CR. Tbx15 controls skeletal muscle fibre-type determination and muscle metabolism. Nat Commun 2015; 6:8054. [PMID: 26299309 PMCID: PMC4552045 DOI: 10.1038/ncomms9054] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/13/2015] [Indexed: 01/15/2023] Open
Abstract
Skeletal muscle is composed of both slow-twitch oxidative myofibers and fast-twitch glycolytic myofibers that differentially impact muscle metabolism, function and eventually whole-body physiology. Here we show that the mesodermal transcription factor T-box 15 (Tbx15) is highly and specifically expressed in glycolytic myofibers. Ablation of Tbx15 in vivo leads to a decrease in muscle size due to a decrease in the number of glycolytic fibres, associated with a small increase in the number of oxidative fibres. This shift in fibre composition results in muscles with slower myofiber contraction and relaxation, and also decreases whole-body oxygen consumption, reduces spontaneous activity, increases adiposity and glucose intolerance. Mechanistically, ablation of Tbx15 leads to activation of AMPK signalling and a decrease in Igf2 expression. Thus, Tbx15 is one of a limited number of transcription factors to be identified with a critical role in regulating glycolytic fibre identity and muscle metabolism. The transcriptional regulator Tbx15 has a role in organ development. Here Lee et al. show that Tbx15 influences fibre-type determination in murine skeletal muscles, explaining local and systemic metabolic derangements in heterozygous Tbx15 knockout mice.
Collapse
Affiliation(s)
- Kevin Y Lee
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, 1 Joslin Plaza, Boston, Massachusetts 02215, USA
| | - Manvendra K Singh
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.,Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School Singapore, National Heart Centre Singapore, 8 College Road, Singapore 169857, Singapore
| | - Siegfried Ussar
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, 1 Joslin Plaza, Boston, Massachusetts 02215, USA.,Institute for Diabetes and Obesity, Helmholtz Center, Parkring, 1385748 Munich/Garching, Germany
| | - Petra Wetzel
- Zentrum Physiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, 1 Joslin Plaza, Boston, Massachusetts 02215, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, 1 Joslin Plaza, Boston, Massachusetts 02215, USA
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, 1 Joslin Plaza, Boston, Massachusetts 02215, USA
| |
Collapse
|
29
|
Vivante A, Kleppa MJ, Schulz J, Kohl S, Sharma A, Chen J, Shril S, Hwang DY, Weiss AC, Kaminski MM, Shukrun R, Kemper MJ, Lehnhardt A, Beetz R, Sanna-Cherchi S, Verbitsky M, Gharavi AG, Stuart HM, Feather SA, Goodship JA, Goodship THJ, Woolf AS, Westra SJ, Doody DP, Bauer SB, Lee RS, Adam RM, Lu W, Reutter HM, Kehinde EO, Mancini EJ, Lifton RP, Tasic V, Lienkamp SS, Jüppner H, Kispert A, Hildebrandt F. Mutations in TBX18 Cause Dominant Urinary Tract Malformations via Transcriptional Dysregulation of Ureter Development. Am J Hum Genet 2015; 97:291-301. [PMID: 26235987 DOI: 10.1016/j.ajhg.2015.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/07/2015] [Indexed: 12/22/2022] Open
Abstract
Congenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of chronic kidney disease in the first three decades of life. Identification of single-gene mutations that cause CAKUT permits the first insights into related disease mechanisms. However, for most cases the underlying defect remains elusive. We identified a kindred with an autosomal-dominant form of CAKUT with predominant ureteropelvic junction obstruction. By whole exome sequencing, we identified a heterozygous truncating mutation (c.1010delG) of T-Box transcription factor 18 (TBX18) in seven affected members of the large kindred. A screen of additional families with CAKUT identified three families harboring two heterozygous TBX18 mutations (c.1570C>T and c.487A>G). TBX18 is essential for developmental specification of the ureteric mesenchyme and ureteric smooth muscle cells. We found that all three TBX18 altered proteins still dimerized with the wild-type protein but had prolonged protein half life and exhibited reduced transcriptional repression activity compared to wild-type TBX18. The p.Lys163Glu substitution altered an amino acid residue critical for TBX18-DNA interaction, resulting in impaired TBX18-DNA binding. These data indicate that dominant-negative TBX18 mutations cause human CAKUT by interference with TBX18 transcriptional repression, thus implicating ureter smooth muscle cell development in the pathogenesis of human CAKUT.
Collapse
Affiliation(s)
- Asaf Vivante
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer 52621, Israel
| | - Marc-Jens Kleppa
- Institut für Molekularbiologie, Medizinische Hochschule Hannover 30625, Germany
| | - Julian Schulz
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stefan Kohl
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Amita Sharma
- Pediatric Nephrology Unit and Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jing Chen
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daw-Yang Hwang
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Nephrology, Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Anna-Carina Weiss
- Institut für Molekularbiologie, Medizinische Hochschule Hannover 30625, Germany
| | - Michael M Kaminski
- Department of Medicine, Renal Division, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Rachel Shukrun
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Markus J Kemper
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anja Lehnhardt
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Rolf Beetz
- Center for Pediatric and Adolescent Medicine, University Medical Clinic, 55131 Mainz, Germany
| | | | - Miguel Verbitsky
- Department of Medicine, Columbia University, New York, NY 10023, USA
| | - Ali G Gharavi
- Department of Medicine, Columbia University, New York, NY 10023, USA
| | - Helen M Stuart
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester M13 9WL, UK
| | | | - Judith A Goodship
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Timothy H J Goodship
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Adrian S Woolf
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester M13 9WL, UK
| | - Sjirk J Westra
- Pediatric Radiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Daniel P Doody
- Department of Pediatric Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Stuart B Bauer
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard S Lee
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rosalyn M Adam
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Heiko M Reutter
- Department of Neonatology, Children's Hospital, University of Bonn, 53127 Bonn, Germany
| | - Elijah O Kehinde
- Division of Urology, Department of Surgery, Kuwait University, 13110 Safat, Kuwait
| | - Erika J Mancini
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK; School of Life Sciences, University of Sussex, Brighton BN1 9QD, UK
| | - Richard P Lifton
- Department of Human Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute
| | - Velibor Tasic
- Medical School Skopje, University Children's Hospital, 1000 Skopje, Macedonia
| | - Soeren S Lienkamp
- Department of Medicine, Renal Division, University of Freiburg Medical Center, 79106 Freiburg, Germany; Center for Biological Signaling Studies (BIOSS), 79104 Freiburg, Germany
| | - Harald Jüppner
- Pediatric Nephrology Unit and Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover 30625, Germany
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute.
| |
Collapse
|
30
|
Novel mutations in the transcriptional activator domain of the human TBX20 in patients with atrial septal defect. BIOMED RESEARCH INTERNATIONAL 2015; 2015:718786. [PMID: 25834824 PMCID: PMC4365367 DOI: 10.1155/2015/718786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/20/2014] [Indexed: 12/20/2022]
Abstract
Background. The relevance of TBX20 gene in heart development has been demonstrated in many animal models, but there are few works that try to elucidate the effect of TBX20 mutations in human congenital heart diseases. In these studies, all missense mutations associated with atrial septal defect (ASD) were found in the DNA-binding T-box domain, none in the transcriptional activator domain. Methods. We search for TBX20 mutations in a group of patients with ASD or ventricular septal defect (VSD) using the High Resolution Melting (HRM) method and DNA sequencing. Results. We report three missense mutations (Y309D, T370O, and M395R) within the transcriptional activator domain of human TBX20 that were associated with ASD. Conclusions. This is the first association of TBX20 transcriptional activator domain missense mutations with ASD. These findings could have implications for diagnosis, genetic screening, and patient follow-up.
Collapse
|
31
|
Epigenetic regulation of Tbx18 gene expression during endochondral bone formation. Cell Tissue Res 2014; 359:503-512. [PMID: 25380565 DOI: 10.1007/s00441-014-2028-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022]
Abstract
Endochondral bone formation is tightly regulated by the spatial and sequential expression of a series of transcription factors. To disclose the roles of TBX18, a member of the T-box transcription factor family, during endochondral bone formation, its spatial and temporal expression patterns were characterized in the limb skeletal region of the developing mouse together with those of established osteochondrogenic markers Sox9, Col2a1, and Runx2. TBX18 expression first appeared in condensed mesenchymal cells (chondro-progenitors) in embryonic-day-10.5 (E10.5) limb bud and was co-localized with Sox9 expression, whereas at E11.5 and E12.5, it became undetectable in mesenchymal cells committed to the chondrocyte lineage. From E13.5 to E18.5, TBX18 expression reappeared in chondrocytes, correlating strongly with Col2a1 expression; furthermore, low level TBX18 expression was found in the Runx2-positive perichondral osteoblastic cell lineage. At the postnatal stage, TBX18 expression was observed in epiphyseal chondrocytes and osteocytes within the lacunae of mature trabecular bone. On the assumption that such characteristic Tbx18 gene expression is epigenetically regulated during mouse limb development, we examined the methylation status of the CpG-island in the mouse Tbx18 gene by methylation-specific polymerase chain reaction. Hypermethylation of the Tbx18 gene promoter became evident at an early embryonic stage in TBX18-negative cells and then disappeared at a late embryonic stage in TBX18-positive cells. Therefore, the temporal suppression of Tbx18 gene expression by the hypermethylation of its promoter seems to trigger the differentiation of mesenchymal cells into hypertrophic chondrocytes in the early stages of endochondral ossification.
Collapse
|
32
|
Arendt LM, St. Laurent J, Wronski A, Caballero S, Lyle SR, Naber SP, Kuperwasser C. Human breast progenitor cell numbers are regulated by WNT and TBX3. PLoS One 2014; 9:e111442. [PMID: 25350852 PMCID: PMC4211891 DOI: 10.1371/journal.pone.0111442] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/28/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Although human breast development is mediated by hormonal and non-hormonal means, the mechanisms that regulate breast progenitor cell activity remain to be clarified. This limited understanding of breast progenitor cells has been due in part to the lack of appropriate model systems to detect and characterize their properties. METHODS To examine the effects of WNT signaling and TBX3 expression on progenitor activity in the breast, primary human mammary epithelial cells (MEC) were isolated from reduction mammoplasty tissues and transduced with lentivirus to overexpress WNT1 or TBX3 or reduce expression of their cognate receptors using shRNA. Changes in progenitor activity were quantified using characterized assays. We identified WNT family members expressed by cell populations within the epithelium and assessed alterations in expression of WNT family ligands by MECs in response to TBX3 overexpression and treatment with estrogen and progesterone. RESULTS Growth of MECs on collagen gels resulted in the formation of distinct luminal acinar and basal ductal colonies. Overexpression of TBX3 in MECs resulted in increased ductal colonies, while shTBX3 expression diminished both colony types. Increased WNT1 expression led to enhanced acinar colony formation, shLRP6 decreased both types of colonies. Estrogen stimulated the formation of acinar colonies in control MEC, but not shLRP6 MEC. Formation of ductal colonies was enhanced in response to progesterone. However, while shLRP6 decreased MEC responsiveness to progesterone, shTBX3 expression did not alter this response. CONCLUSIONS We identified two phenotypically distinguishable lineage-committed progenitor cells that contribute to different structural elements and are regulated via hormonal and non-hormonal mechanisms. WNT signaling regulates both types of progenitor activity. Progesterone favors the expansion of ductal progenitor cells, while estrogen stimulates the expansion of acinar progenitor cells. Paracrine WNT signaling is stimulated by estrogen and progesterone, while autocrine WNT signaling is induced by the embryonic T-box transcription factor TBX3.
Collapse
Affiliation(s)
- Lisa M. Arendt
- Developmental, Molecular, and Chemical Biology Department, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Jessica St. Laurent
- Developmental, Molecular, and Chemical Biology Department, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Ania Wronski
- Developmental, Molecular, and Chemical Biology Department, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Silvia Caballero
- Developmental, Molecular, and Chemical Biology Department, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Stephen R. Lyle
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Stephen P. Naber
- Department of Pathology, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Charlotte Kuperwasser
- Developmental, Molecular, and Chemical Biology Department, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
33
|
De novo TBR1 mutations in sporadic autism disrupt protein functions. Nat Commun 2014; 5:4954. [PMID: 25232744 DOI: 10.1038/ncomms5954] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/11/2014] [Indexed: 12/25/2022] Open
Abstract
Next-generation sequencing recently revealed that recurrent disruptive mutations in a few genes may account for 1% of sporadic autism cases. Coupling these novel genetic data to empirical assays of protein function can illuminate crucial molecular networks. Here we demonstrate the power of the approach, performing the first functional analyses of TBR1 variants identified in sporadic autism. De novo truncating and missense mutations disrupt multiple aspects of TBR1 function, including subcellular localization, interactions with co-regulators and transcriptional repression. Missense mutations inherited from unaffected parents did not disturb function in our assays. We show that TBR1 homodimerizes, that it interacts with FOXP2, a transcription factor implicated in speech/language disorders, and that this interaction is disrupted by pathogenic mutations affecting either protein. These findings support the hypothesis that de novo mutations in sporadic autism have severe functional consequences. Moreover, they uncover neurogenetic mechanisms that bridge different neurodevelopmental disorders involving language deficits.
Collapse
|
34
|
Sen A, Grimm S, Hofmeyer K, Pflugfelder GO. Optomotor-blindin the Development of theDrosophilaHS and VS Lobula Plate Tangential Cells. J Neurogenet 2014; 28:250-63. [DOI: 10.3109/01677063.2014.917645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Castellanos R, Xie Q, Zheng D, Cvekl A, Morrow BE. Mammalian TBX1 preferentially binds and regulates downstream targets via a tandem T-site repeat. PLoS One 2014; 9:e95151. [PMID: 24797903 PMCID: PMC4010391 DOI: 10.1371/journal.pone.0095151] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 03/24/2014] [Indexed: 11/20/2022] Open
Abstract
Haploinsufficiency or mutation of TBX1 is largely responsible for the etiology of physical malformations in individuals with velo-cardio-facial/DiGeorge syndrome (VCFS/DGS/22q11.2 deletion syndrome). TBX1 encodes a transcription factor protein that contains an evolutionarily conserved DNA binding domain termed the T-box that is shared with other family members. All T-box proteins, examined so far, bind to similar but not identical consensus DNA sequences, indicating that they have specific binding preferences. To identify the TBX1 specific consensus sequence, Systematic Evolution of Ligands by Exponential Enrichment (SELEX) was performed. In contrast to other TBX family members recognizing palindrome sequences, we found that TBX1 preferentially binds to a tandem repeat of 5′-AGGTGTGAAGGTGTGA-3′. We also identified a second consensus sequence comprised of a tandem repeat with a degenerated downstream site. We show that three known human disease-causing TBX1 missense mutations (F148Y, H194Q and G310S) do not alter nuclear localization, or disrupt binding to the tandem repeat consensus sequences, but they reduce transcriptional activity in cell culture reporter assays. To identify Tbx1-downstream genes, we performed an in silico genome wide analysis of potential cis-acting elements in DNA and found strong enrichment of genes required for developmental processes and transcriptional regulation. We found that TBX1 binds to 19 different loci in vitro, which may correspond to putative cis-acting binding sites. In situ hybridization coupled with luciferase gene reporter assays on three gene loci, Fgf8, Bmper, Otog-MyoD, show that these motifs are directly regulated by TBX1 in vitro. Collectively, the present studies establish new insights into molecular aspects of TBX1 binding to DNA. This work lays the groundwork for future in vivo studies, including chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) to further elucidate the molecular pathogenesis of VCFS/DGS.
Collapse
Affiliation(s)
- Raquel Castellanos
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Qing Xie
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Ophthalmology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Ophthalmology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Bernice E. Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
36
|
Zhao D, Wu Y, Chen K. Tbx3 isoforms are involved in pluripotency maintaining through distinct regulation of Nanog transcriptional activity. Biochem Biophys Res Commun 2014; 444:411-4. [PMID: 24472544 DOI: 10.1016/j.bbrc.2014.01.093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 01/20/2014] [Indexed: 11/16/2022]
Abstract
Tbx3, a member of T-box gene family, has been reported to play critical roles in embryonic development and cell fate determination. In mammalian tissues, Tbx3 is expressed as two isoforms called Tbx3 and Tbx3+2a. However, the differences between the two isoforms in pluripotency maintaining remain obscure. Here we show that both Tbx3 and Tbx3+2a are highly expressed in mouse embryonic stem cells (mESCs) or induced pluripotent stem cells (iPSCs). Overexpression of either Tbx3 or Tbx3+2a could induce the differentiation of mESCs. Mechanistic studies suggest both Tbx3 and Tbx3+2a inhibit the transcriptional activity of pluripotency related transcription factor Nanog. Moreover, Tbx3+2a could directly interact with Nanog while Tbx3 couldn't, indicating the requirement of the 2a domain in Nanog binding. In summary, our results not only reveal the essential roles of Tbx3 and Tbx3+2a in pluripotency maintaining, but also point out the different mechanistic modes between these two isoforms.
Collapse
Affiliation(s)
- Danyun Zhao
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yi Wu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Keshi Chen
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
37
|
Kaltenbrun E, Greco TM, Slagle CE, Kennedy LM, Li T, Cristea IM, Conlon FL. A Gro/TLE-NuRD corepressor complex facilitates Tbx20-dependent transcriptional repression. J Proteome Res 2013; 12:5395-409. [PMID: 24024827 DOI: 10.1021/pr400818c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cardiac transcription factor Tbx20 has a critical role in the proper morphogenetic development of the vertebrate heart, and its misregulation has been implicated in human congenital heart disease. Although it is established that Tbx20 exerts its function in the embryonic heart through positive and negative regulation of distinct gene programs, it is unclear how Tbx20 mediates proper transcriptional regulation of its target genes. Here, using a combinatorial proteomic and bioinformatic approach, we present the first characterization of Tbx20 transcriptional protein complexes. We have systematically investigated Tbx20 protein-protein interactions by immunoaffinity purification of tagged Tbx20 followed by proteomic analysis using GeLC-MS/MS, gene ontology classification, and functional network analysis. We demonstrate that Tbx20 is associated with a chromatin remodeling network composed of TLE/Groucho corepressors, members of the Nucleosome Remodeling and Deacetylase (NuRD) complex, the chromatin remodeling ATPases RUVBL1/RUVBL2, and the T-box repressor Tbx18. We determined that the interaction with TLE corepressors is mediated via an eh1 binding motif in Tbx20. Moreover, we demonstrated that ablation of this motif results in a failure to properly assemble the repression network and disrupts Tbx20 function in vivo. Importantly, we validated Tbx20-TLE interactions in the mouse embryonic heart, and identified developmental genes regulated by Tbx20-TLE binding, thereby confirming a primary role for a Tbx20-TLE repressor complex in embryonic heart development. Together, these studies suggest a model in which Tbx20 associates with a Gro/TLE-NuRD repressor complex to prevent inappropriate gene activation within the forming heart.
Collapse
Affiliation(s)
- Erin Kaltenbrun
- Departments of Biology and ‡Genetics, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | | | |
Collapse
|
38
|
Wu SP, Dong XR, Regan JN, Su C, Majesky MW. Tbx18 regulates development of the epicardium and coronary vessels. Dev Biol 2013; 383:307-20. [PMID: 24016759 DOI: 10.1016/j.ydbio.2013.08.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 11/16/2022]
Abstract
The epicardium and coronary vessels originate from progenitor cells in the proepicardium. Here we show that Tbx18, a T-box family member highly expressed in the proepicardium, controls critical early steps in coronary development. In Tbx18(-/-) mouse embryos, both the epicardium and coronary vessels exhibit structural and functional defects. At E12.5, the Tbx18-deficient epicardium contains protrusions and cyst-like structures overlying a disorganized coronary vascular plexus that contains ectopic structures resembling blood islands. At E13.5, the left and right coronary stems form correctly in mutant hearts. However, analysis of PECAM-1 whole mount immunostaining, distribution of SM22α(lacZ/+) activity, and analysis of coronary vascular casts suggest that defective vascular plexus remodeling produces a compromised arterial network at birth consisting of fewer distributing conduit arteries with smaller lumens and a reduced capacity to conduct blood flow. Gene expression profiles of Tbx18(-/-) hearts at E12.5 reveal altered expression of 79 genes that are associated with development of the vascular system including sonic hedgehog signaling components patched and smoothened, VEGF-A, angiopoietin-1, endoglin, and Wnt factors compared to wild type hearts. Thus, formation of coronary vasculature is responsive to Tbx18-dependent gene targets in the epicardium, and a poorly structured network of coronary conduit vessels is formed in Tbx18 null hearts due to defects in epicardial cell signaling and fate during heart development. Lastly, we demonstrate that Tbx18 possesses a SRF/CArG box dependent repressor activity capable of inhibiting progenitor cell differentiation into smooth muscle cells, suggesting a potential function of Tbx18 in maintaining the progenitor status of epicardial-derived cells.
Collapse
Affiliation(s)
- San-Pin Wu
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States.
| | | | | | | | | |
Collapse
|
39
|
Dikoglu E, Simsek-Kiper PO, Utine GE, Campos-Xavier B, Boduroglu K, Bonafé L, Superti-Furga A, Unger S. Homozygosity for a novel truncating mutation confirms TBX15
deficiency as the cause of Cousin syndrome. Am J Med Genet A 2013; 161A:3161-5. [DOI: 10.1002/ajmg.a.36173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/18/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Esra Dikoglu
- Division of Molecular Pediatrics; Department of Pediatrics; University of Lausanne, Centre Hospitalier Universitaire Vaudois; Lausanne Switzerland
| | - Pelin Ozlem Simsek-Kiper
- Pediatric Genetics Unit; Department of Pediatrics; Hacettepe University Faculty of Medicine; Ankara Turkey
| | - Gulen Eda Utine
- Pediatric Genetics Unit; Department of Pediatrics; Hacettepe University Faculty of Medicine; Ankara Turkey
| | - Belinda Campos-Xavier
- Division of Molecular Pediatrics; Department of Pediatrics; University of Lausanne, Centre Hospitalier Universitaire Vaudois; Lausanne Switzerland
| | - Koray Boduroglu
- Pediatric Genetics Unit; Department of Pediatrics; Hacettepe University Faculty of Medicine; Ankara Turkey
| | - Luisa Bonafé
- Division of Molecular Pediatrics; Department of Pediatrics; University of Lausanne, Centre Hospitalier Universitaire Vaudois; Lausanne Switzerland
| | - Andrea Superti-Furga
- Department of Pediatrics; University of Lausanne, Centre Hospitalier Universitaire Vaudois; Lausanne Switzerland
| | - Sheila Unger
- Service of Medical Genetics; University of Lausanne, Centre Hospitalier Universitaire Vaudois; Lausanne Switzerland
| |
Collapse
|
40
|
Abstract
Epicardial derivatives, including vascular smooth muscle cells and cardiac fibroblasts, are crucial for proper development of the coronary vasculature and cardiac fibrous matrix, both of which support myocardial integrity and function in the normal heart. Epicardial formation, epithelial-to-mesenchymal transition (EMT), and epicardium-derived cell (EPDC) differentiation are precisely regulated by complex interactions among signaling molecules and transcription factors. Here we review the roles of critical transcription factors that are required for specific aspects of epicardial development, EMT, and EPDC lineage specification in development and disease. Epicardial cells and subepicardial EPDCs express transcription factors including Wt1, Tcf21, Tbx18, and Nfatc1. As EPDCs invade the myocardium, epicardial progenitor transcription factors such as Wt1 are downregulated. EPDC differentiation into SMC and fibroblast lineages is precisely regulated by a complex network of transcription factors, including Tcf21 and Tbx18. These and other transcription factors also regulate epicardial EMT, EPDC invasion, and lineage maturation. In addition, there is increasing evidence that epicardial transcription factors are reactivated with adult cardiac ischemic injury. Determining the function of reactivated epicardial cells in myocardial infarction and fibrosis may improve our understanding of the pathogenesis of heart disease.
Collapse
|
41
|
Novel and functional variants within the TBX18 gene promoter in ventricular septal defects. Mol Cell Biochem 2013; 382:121-6. [DOI: 10.1007/s11010-013-1725-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/29/2013] [Indexed: 01/31/2023]
|
42
|
Function of the C. elegans T-box factor TBX-2 depends on SUMOylation. Cell Mol Life Sci 2013; 70:4157-68. [PMID: 23595631 PMCID: PMC3802552 DOI: 10.1007/s00018-013-1336-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/19/2013] [Accepted: 04/02/2013] [Indexed: 01/22/2023]
Abstract
T-box transcription factors are critical developmental regulators in all multi-cellular organisms, and altered T-box factor activity is associated with a variety of human congenital diseases and cancers. Despite the biological significance of T-box factors, their mechanism of action is not well understood. Here we examine whether SUMOylation affects the function of the C. elegans Tbx2 sub-family T-box factor TBX-2. We have previously shown that TBX-2 interacts with the E2 SUMO-conjugating enzyme UBC-9, and that loss of TBX-2 or UBC-9 produces identical defects in ABa-derived pharyngeal muscle development. We now show that TBX-2 is SUMOylated in mammalian cell assays, and that both UBC-9 interaction and SUMOylation depends on two SUMO consensus sites located in the T-box DNA binding domain and near the TBX-2 C-terminus, respectively. In co-transfection assays, a TBX-2:GAL4 fusion protein represses expression of a 5xGal4:tk:luciferase construct. However, this activity does not require SUMOylation, indicating SUMO is not generally required for TBX-2 repressor activity. In C. elegans, reducing SUMOylation enhances the phenotype of a temperature-sensitive tbx-2 mutant and results in ectopic expression of a gene normally repressed by TBX-2, demonstrating that SUMOylation is important for TBX-2 function in vivo. Finally, we show mammalian orthologs of TBX-2, Tbx2, and Tbx3, can also be SUMOylated, suggesting SUMOylation may be a conserved mechanism controlling T-box factor activity.
Collapse
|
43
|
Sun W, Zhao R, Yang Y, Wang H, Shao Y, Kong X. Comparative study of human aortic and mitral valve interstitial cell gene expression and cellular function. Genomics 2013; 101:326-35. [PMID: 23542235 DOI: 10.1016/j.ygeno.2013.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/04/2013] [Accepted: 03/14/2013] [Indexed: 11/29/2022]
Abstract
Valve interstitial cells (VICs) are essential for valvular pathogenesis. However, the transcriptional profiles and cellular functions of human aortic VICs (hAVICs) and mitral VICs (hMVICs) have not been directly compared. We performed NimbleGen gene expression profiling analyses of hAVICs and hMVICs. Seventy-eight known genes were differentially expressed between hAVICs and hMVICs. Higher expression of NKX2-5, TBX15, OGN, OMD, and CDKN1C and lower expression of TBX5, MMP1, and PCDH10 were found in hAVICs compared to hMVICs. The differences in these genes, excepting OGN and OMD, remained in rheumatic VICs. We also compared cell proliferation, migration, and response to mineralization medium. hMVICs proliferated more quickly but showed more calcium deposition and alkaline phosphatase activity than hAVICs after culture in mineralization medium, indicating that hMVICs were more susceptible to in vitro calcification. Our findings reveal differences in the transcription profiles and cellular functions of hAVICs and hMVICs.
Collapse
Affiliation(s)
- Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | | | | | | | | | | |
Collapse
|
44
|
Nuclear recruitment assay as a tool to validate transcription factor interactions in Mammalian cells. Methods Mol Biol 2013. [PMID: 23436367 DOI: 10.1007/978-1-62703-284-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Identification and verification of novel transcription factor interactions is an inherent step in the discovery of molecular mechanisms driving gene transcription and regulation. Co-immunoprecipitation and GST-pull down are often key techniques in the verification process. Despite wide applicability, their use may sometimes be restricted. We provide a detailed protocol for an intracellular immunofluorescence technique that may be used as an alternative or complimentary study for transcription factor interaction verification.
Collapse
|
45
|
Transrepression activity of T-box1 in a gene regulation network in mouse cells. Gene 2012; 510:162-70. [DOI: 10.1016/j.gene.2012.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 08/30/2012] [Accepted: 09/06/2012] [Indexed: 11/24/2022]
|
46
|
Abstract
The heart as a functional organ first appeared in bilaterians as a single peristaltic pump and evolved through arthropods, fish, amphibians, and finally mammals into a four-chambered engine controlling blood-flow within the body. The acquisition of cardiac complexity in the evolving heart was a product of gene duplication events and the co-option of novel signaling pathways to an ancestral cardiac-specific gene network. T-box factors belong to an evolutionary conserved family of transcriptional regulators with diverse roles in development. Their regulatory functions are integral in the initiation and potentiation of heart development, and mutations in these genes are associated with congenital heart defects. In this review we will discuss the evolutionary conserved cardiac regulatory functions of this family as well as their implication in disease in an aim to facilitate future gene-targeted and regenerative therapeutic remedies.
Collapse
Affiliation(s)
- Fadi Hariri
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, C.P. 6128, Succursale, Centre-ville Montréal, Quebec, H3C3J7, Canada
| | | | | |
Collapse
|
47
|
Najand N, Ryu JR, Brook WJ. In vitro site selection of a consensus binding site for the Drosophila melanogaster Tbx20 homolog midline. PLoS One 2012; 7:e48176. [PMID: 23133562 PMCID: PMC3485041 DOI: 10.1371/journal.pone.0048176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/20/2012] [Indexed: 11/22/2022] Open
Abstract
We employed in vitro site selection to identify a consensus binding sequence for the Drosophila melanogaster Tbx20 T-box transcription factor homolog Midline. We purified a bacterially expressed T-box DNA binding domain of Midline, and used it in four rounds of precipitation and polymerase-chain-reaction based amplification. We cloned and sequenced 54 random oligonucleotides selected by Midline. Electromobility shift-assays confirmed that 27 of these could bind the Midline T-box. Sequence alignment of these 27 clones suggests that Midline binds as a monomer to a consensus sequence that contains an AGGTGT core. Thus, the Midline consensus binding site we define in this study is similar to that defined for vertebrate Tbx20, but differs from a previously reported Midline binding sequence derived through site selection.
Collapse
Affiliation(s)
- Nima Najand
- Genes and Development Research Group, Alberta Children’s Hospital Research Institute, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Jae-Ryeon Ryu
- Genes and Development Research Group, Alberta Children’s Hospital Research Institute, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - William J. Brook
- Genes and Development Research Group, Alberta Children’s Hospital Research Institute, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
48
|
Tbx18 targets dermal condensates for labeling, isolation, and gene ablation during embryonic hair follicle formation. J Invest Dermatol 2012; 133:344-53. [PMID: 22992803 PMCID: PMC3530628 DOI: 10.1038/jid.2012.329] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
How cell fate decisions of stem and progenitor cells are regulated by their microenvironment or niche is a central question in stem cell and regenerative biology. While functional analysis of hair follicle epithelial stem cells by gene targeting is well-established, the molecular and genetic characterization of the dermal counterpart during embryonic morphogenesis has been lacking due to the absence of cell type-specific drivers. Here we report that T-box transcription factor Tbx18 specifically marks dermal papilla (DP) precursor cells during embryonic hair follicle morphogenesis. With Tbx18LacZ, Tbx18H2BGFP and Tbx18Cre knock-in mouse models we demonstrate LacZ/GFP expression and Cre activity in dermal condensates of nascent first-wave hair follicles at E14.5. Since Tbx18 expression becomes more widespread throughout the dermis at later developmental stages, we utilize tamoxifen-inducible Cre expressing mice, Tbx18MerCreMer, to exclusively target DP precursor cells and their progeny. Finally, we ablate Tbx18 in full knockout mice, but find no perturbations in hair follicle formation, suggesting that Tbx18 is dispensable for normal DP function. In summary, our study establishes Tbx18 as a genetic driver to target embryonic DP precursors for labeling, isolation and gene ablation that will greatly enhance investigations into their molecular functions during hair follicle morphogenesis.
Collapse
|
49
|
Greulich F, Farin HF, Schuster-Gossler K, Kispert A. Tbx18 function in epicardial development. Cardiovasc Res 2012; 96:476-83. [PMID: 22926762 DOI: 10.1093/cvr/cvs277] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS The embryonic epicardium is a source of smooth muscle cells and fibroblasts of the coronary vasculature and of the myocardium, but the molecular circuits that direct the temporal and spatial generation of these cell types from epicardium-derived cells are only partly known. We aimed to elucidate the functional significance of the conserved epicardial expression of the T-box transcription factor gene Tbx18 using transgenic technology in the mouse. METHODS AND RESULTS We show by cellular and molecular analyses that in Tbx18-deficient mice the epicardium is formed normally and that epicardial cells undergo an epithelial-mesenchymal transition, differentiate into smooth muscle cells and fibroblasts, and form a normal coronary vasculature and fibrous skeleton. Prolonged expression of Tbx18 in epicardium-derived cells by a transgenic approach in vivo does not affect the differentiation and migratory behaviour of these cells. In contrast, epicardial misexpression of a transcriptional activator version of Tbx18, Tbx18VP16, results in premature smooth muscle differentiation of epicardial cells. Inhibition of Notch and transforming growth factor beta receptor signalling in Tbx18VP16 expressing epicardial cells in explant cultures reverts this phenotype. CONCLUSION Tbx18 is dispensable for epicardial development, yet a repressive T-box function may be required to prevent premature smooth muscle cell differentiation by repressing transforming growth factor beta receptor and Notch signalling in the embryonic epicardium.
Collapse
Affiliation(s)
- Franziska Greulich
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, OE5250, Carl-Neuberg-Str.1, Hannover D-30625, Germany
| | | | | | | |
Collapse
|
50
|
The Tbx20 homolog Midline represses wingless in conjunction with Groucho during the maintenance of segment polarity. Dev Biol 2012; 369:319-29. [PMID: 22814213 DOI: 10.1016/j.ydbio.2012.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/07/2012] [Accepted: 07/09/2012] [Indexed: 11/20/2022]
Abstract
The regulation of the segment polarity gene wingless is essential for the correct patterning of the Drosophila ectoderm. We have previously shown that the asymmetric activation of wingless downstream of Hedghog-signaling depends on the T-box transcription factors, midline and H15. Hedgehog activates wingless anterior to the Hedgehog domain. midline/H15 are responsible in part for repressing wingless in cells posterior to the Hedgehog expressing cells. Here, we show that Midline binds the Groucho co-repressor directly via the engrailed homology-1 domain and requires an intact engrailed-homology-1 domain to repress wingless. In contrast, the regulation of Serrate, a second target of midline repression, is not dependent on the engrailed-homology-1 domain. Furthermore, we identify a midline responsive region of the wingless cis-regulatory region and show that Midline binds to sequences within this region. Mutating these sequences in transgenic reporter constructs results in ectopic reporter expression in the midline-expression domain, consistent with wingless being a direct target of Midline repression.
Collapse
|