1
|
Lum JS, Brown ML, Farrawell NE, Bartlett R, Chisholm CG, Gorman J, Dosseto A, Dux F, McInnes LE, Ecroyd H, McAlary L, Crouch PJ, Donnelly PS, Yerbury JJ. A polytherapy approach demonstrates therapeutic efficacy for the treatment of SOD1 associated amyotrophic lateral sclerosis. EBioMedicine 2025; 115:105692. [PMID: 40222103 PMCID: PMC12018197 DOI: 10.1016/j.ebiom.2025.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/03/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND SOD1 mutations are a significant contributor of familial amyotrophic lateral sclerosis (ALS) cases. SOD1 mutations increase the propensity for the protein to misfold and aggregate into insoluble proteinaceous deposits within motor neurons and neighbouring cells. The small molecule, CuATSM, has repeatedly shown in mouse models to be a promising therapeutic treatment for SOD1-associated ALS and is currently in Phase II/III clinical trials for the treatment of ALS. We have previously shown CuATSM stabilises various ALS-associated variants of the SOD1 protein, reducing misfolding and toxicity. Two additional FDA-approved small molecules, ebselen and telbivudine, have also been identified to reduce mutant SOD1 toxicity, providing additional potential therapeutic candidates that could be used in combination with CuATSM. Here, we aimed to investigate if CuATSM, ebselen and telbivudine (CET) polytherapy could improve on the therapeutic efficacy of CuATSM monotherapy for the treatment of SOD1-associated ALS. METHODS We utilised a 3D checkerboard approach to investigate whether a matrix of different concentrations CuATSM, ebselen and telbivudine could provide therapeutic improvements on cell survival, SOD1 folding and aggregation in SOD1G93A-transfected NSC-34 cells, compared to CuATSM alone. To progress the preclinical development of CET polytherapy, we evaluated the bioavailability and safety of in vivo polytherapy administration. Furthermore, we assessed and compared the effects of CET- and CuATSM-treatment on disease onset, motor function, survival and neuropathological features in SOD1G93A mice. FINDINGS CET polytherapy reduced inclusion formation and increased cell survival of NSC-34 cells overexpressing SOD1G93A compared to higher concentrations of CuATSM monotherapy. In addition, CET administration was bioavailable and tolerable in mice. CET treatment in SOD1G93A mice delayed disease onset, reduced motor impairments, and increased survival compared to vehicle- and CuATSM-treated mice. In line with these findings, biochemical analysis of lumbar spinal cords showed CET administration improved SOD1 folding, decreased misfolded SOD1 accumulation, and reduced motor neuron loss. INTERPRETATION These findings support CET polytherapy as an advantageous alternative compared to CuATSM monotherapy and highlight the potential of utilising small molecules targeting SOD1 as a polytherapy avenue for the treatment of SOD1-associated ALS. FUNDING This work was supported by a FightMND Drug Development Grant, an Australian National Health and Medical Research Council (NHMRC) Investigator Grant (No. 1194872) and a Motor Neuron Disease Research Institute of Australia Bill Gole Postdoctoral Fellowship.
Collapse
Affiliation(s)
- Jeremy S Lum
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia; School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Mikayla L Brown
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Natalie E Farrawell
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Rachael Bartlett
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Christen G Chisholm
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jody Gorman
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Florian Dux
- Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Lachlan E McInnes
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Heath Ecroyd
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Luke McAlary
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Peter J Crouch
- Department of Anatomy and Physiology, Centre for Muscle Research, University of Melbourne, Parkville, VIC 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Justin J Yerbury
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
2
|
Li YQ, Tan SS, Wu D, Zhang Q, Wang T, Zheng G. The role of intracellular and extracellular copper compartmentalization in Alzheimer's disease pathology and its implications for diagnosis and therapy. Front Neurosci 2025; 19:1553064. [PMID: 40143849 PMCID: PMC11936913 DOI: 10.3389/fnins.2025.1553064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Copper is a trace element indispensable for cellular physiology, integral to cellular redox balance, and a constituent of enzyme active sites, thereby playing a pivotal role in cellular physiological function. Concerning the pathogenesis of Alzheimer's disease (AD), the homeostatic balance of copper is perturbed both intracellularly and extracellularly. The copper-amyloid precursor protein (APP) complex facilitates the efflux of copper from cells, leading to intracellular copper depletion. Concurrently, extracellular copper associates with amyloid-beta (Aβ) plaques, precipitating copper-enriched Aβ deposition and augmenting reactive oxygen species (ROS) in the brain tissue, which finally culminates in oxidative brain damage. The interaction between copper and APP enhances the α-secretase pathway of APP processing while suppressing the β-secretase pathway, resulting in an increased production of soluble APP (sAPP), which contributes to neuroinflammation in the brain tissue. Utilizing the affinity of copper for Aβ plaques, the application of chelating agents to sequester copper within the brain can mitigate neurodegeneration associated with AD pathology. Furthermore, the use of metal imaging techniques to detect copper in the brain offers a potential diagnostic tool for the early identification of AD.
Collapse
Affiliation(s)
- Yu-Qi Li
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- School of Military Preventive Medicine and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi’an, China
| | - Shuang-Shuang Tan
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- School of Military Preventive Medicine and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi’an, China
| | - Di Wu
- Research Institution, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of Psychosomatic Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qian Zhang
- Center of Clinical Aerospace Medicine and Department of Aviation Medicine, Fourth Military Medical University, Xi’an, China
| | - Tao Wang
- School of Military Preventive Medicine and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi’an, China
| | - Gang Zheng
- School of Military Preventive Medicine and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
3
|
Nogueira-Machado JA, das Chagas Lima E Silva F, Rocha-Silva F, Gomes N. Amyotrophic Lateral Sclerosis (ALS): An Overview of Genetic and Metabolic Signaling Mechanisms. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:83-90. [PMID: 39171600 DOI: 10.2174/0118715273315891240801065231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 08/23/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a rare, progressive, and incurable disease. Sporadic (sALS) accounts for ninety percent of ALS cases, while familial ALS (fALS) accounts for around ten percent. Reports have identified over 30 different forms of familial ALS. Multiple types of fALS exhibit comparable symptoms with mutations in different genes and possibly with different predominant metabolic signals. Clinical diagnosis takes into account patient history but not genetic mutations, misfolded proteins, or metabolic signaling. As research on genetics and metabolic pathways advances, it is expected that the intricate complexity of ALS will compound further. Clinicians discuss whether a gene's presence is a cause of the disease or just an association or consequence. They believe that a mutant gene alone is insufficient to diagnose ALS. ALS, often perceived as a single disease, appears to be a complex collection of diseases with similar symptoms. This review highlights gene mutations, metabolic pathways, and muscle-neuron interactions.
Collapse
Affiliation(s)
| | | | - Fabiana Rocha-Silva
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Belo Horizonte, Minas Gerais, Brazil
| | - Nathalia Gomes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
4
|
Navale GR, Ahmed I, Lim MH, Ghosh K. Transition Metal Complexes as Therapeutics: A New Frontier in Combatting Neurodegenerative Disorders through Protein Aggregation Modulation. Adv Healthc Mater 2024; 13:e2401991. [PMID: 39221545 DOI: 10.1002/adhm.202401991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Neurodegenerative disorders (NDDs) are a class of debilitating diseases that progressively impair the protein structure and result in neurological dysfunction in the nervous system. Among these disorders, Alzheimer's disease (AD), prion diseases such as Creutzfeldt-Jakob disease (CJD), and Parkinson's disease (PD) are caused by protein misfolding and aggregation at the cellular level. In recent years, transition metal complexes have gained significant attention for their potential applications in diagnosing, imaging, and curing these NDDs. These complexes have intriguing possibilities as therapeutics due to their diverse ligand systems and chemical properties and can interact with biological systems with minimal detrimental effects. This review focuses on the recent progress in transition metal therapeutics as a new era of hope in the battle against AD, CJD, and PD by modulating protein aggregation in vitro and in vivo. It may shed revolutionary insights into unlocking new opportunities for researchers to develop metal-based drugs to combat NDDs.
Collapse
Affiliation(s)
- Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
| | - Imtiaz Ahmed
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| |
Collapse
|
5
|
Donohoe MN, Upadhyay A, Pratt DA. Ligand-Based Radical Reactivity of Metal Thiosemicarbazones Prompts the Identification of Platinum(II)-Based Cytoprotectants. J Am Chem Soc 2024; 146:31307-31320. [PMID: 39494512 DOI: 10.1021/jacs.4c12713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
CuATSM, a copper(II) complex of a bis(thiosemicarbazone) of diacetyl, prevents oxidative cell death and acts as a neuroprotectant in vivo, prompting its evaluation to treat amyotrophic lateral sclerosis and other neurodegenerative conditions in the clinic. We recently demonstrated that CuATSM functions as a potent radical-trapping antioxidant (RTA), inhibiting lipid peroxidation and associated ferroptotic cell death by a noncanonical mechanism based on radical addition to the ligand backbone. Herein we report our investigations of the generality of this reactivity, which include studies of corresponding complexes of various other metals, including Co, Ru, Ni, Pd, Pt, and Au. Inhibited autoxidations of styrene and dioxane reveal that most of these complexes exhibit RTA activity, consistent with ligand-based reactivity, but the identity of the metal atom nevertheless plays a role. In particular, analyses of the electronic structures of the complexes of metals within the same group (i.e., the group 10 metals Ni, Pd and Pt) highlight how the metal atom can modulate the ligand-based reactivity by enabling spin delocalization to the other thiosemicarbazone moiety. The RTA activity determined in organic solution largely translates to phospholipid bilayers and mammalian cells, where most complexes inhibited lipid peroxidation and associated ferroptotic cell death. A preliminary structure-activity study revealed Pt complexes with potencies eclipsing those of archetype ferroptosis inhibitors ferrostatin-1 and liproxstatin-1, suggesting that Pt (and to a lesser extent Ni) bis(thiosemicarbazone)s may be better suited to optimization for therapeutic development than those based on Cu.
Collapse
Affiliation(s)
- Michael N Donohoe
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Ontario, Canada
| | - Aditya Upadhyay
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Ontario, Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Ontario, Canada
| |
Collapse
|
6
|
Liu Y, Ma J, Zhang Q, Wang Y, Sun Q. Mechanism of Metal Complexes in Alzheimer's Disease. Int J Mol Sci 2024; 25:11873. [PMID: 39595941 PMCID: PMC11593898 DOI: 10.3390/ijms252211873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a kind of neurodegenerative diseases characterized by beta-amyloid deposition and neurofibrillary tangles and is also the main cause of dementia. According to statistics, the incidence of AD is constantly increasing, bringing a great burden to individuals and society. Nonetheless, there is no cure for AD, and the available drugs are very limited apart from cholinesterase inhibitors and N-Methyl-D-aspartic acid (NMDA) antagonists, which merely alleviate symptoms without delaying the progression of the disease. Therefore, there is an urgent need to develop a medicine that can delay the progression of AD or cure it. In recent years, increasing evidence suggests that metal complexes have the enormous potential to treat AD through inhibiting the aggregation and cytotoxicity of Aβ, interfering with the congregation and hyperphosphorylation of tau, regulating dysfunctional synaptic and unbalanced neurotransmitters, etc. In this review, we summarize the current metal complexes and their mechanisms of action for treating AD, including ruthenium, platinum, zinc, vanadium, copper, magnesium, and other complexes.
Collapse
Affiliation(s)
- Yi Liu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (Y.L.); (J.M.)
| | - Jiaying Ma
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (Y.L.); (J.M.)
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China;
| | - Yi Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China;
| | - Qi Sun
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (Y.L.); (J.M.)
| |
Collapse
|
7
|
Magrì A, Tomasello B, Naletova I, Tabbì G, Cairns WRL, Greco V, Sciuto S, La Mendola D, Rizzarelli E. New BDNF and NT-3 Cyclic Mimetics Concur with Copper to Activate Trophic Signaling Pathways as Potential Molecular Entities to Protect Old Brains from Neurodegeneration. Biomolecules 2024; 14:1104. [PMID: 39334869 PMCID: PMC11430436 DOI: 10.3390/biom14091104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
A low level of Neurotrophins (NTs), their Tyrosine Kinase Receptors (Trks), Vascular Endothelial Growth Factors (VEGFs) and their receptors, mainly VEGFR1 and VEGFR2, characterizes AD brains. The use of NTs and VEGFs as drugs presents different issues due to their low permeability of the blood-brain barrier, the poor pharmacokinetic profile, and the relevant side effects. To overcome these issues, different functional and structural NT mimics have been employed. Being aware that the N-terminus domain as the key domain of NTs for the binding selectivity and activation of Trks and the need to avoid or delay proteolysis, we herein report on the mimicking ability of two cyclic peptide encompassing the N-terminus of Brain Derived Growth Factor (BDNF), (c-[HSDPARRGELSV-]), cBDNF(1-12) and of Neurotrophin3 (NT3), (c-[YAEHKSHRGEYSV-]), cNT3(1-13). The two cyclic peptide features were characterized by a combined thermodynamic and spectroscopic approach (potentiometry, NMR, UV-vis and CD) that was extended to their copper(II) ion complexes. SH-SY5Y cell assays show that the Cu2+ present at the sub-micromolar level in the complete culture media affects the treatments with the two peptides. cBDNF(1-12) and cNT3(1-13) act as ionophores, induce neuronal differentiation and promote Trks and CREB phosphorylation in a copper dependent manner. Consistently, both peptide and Cu2+ stimulate BDNF and VEGF expression as well as VEGF release; cBDNF(1-12) and cNT3(1-13) induce the expression of Trks and VEGFRs.
Collapse
Affiliation(s)
- Antonio Magrì
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Irina Naletova
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
| | - Giovanni Tabbì
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
| | - Warren R. L. Cairns
- CNR-Institute of Polar Sciences (CNR-ISP), 155 Via Torino, 30172 Venice, Italy;
| | - Valentina Greco
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy;
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| |
Collapse
|
8
|
Blades B, Hung YH, Belaidi AA, Volitakis I, Schultz AG, Cater MA, Cheung NS, Bush AI, Ayton S, La Fontaine S. Impaired cellular copper regulation in the presence of ApoE4. J Neurochem 2024; 168:3284-3307. [PMID: 39135362 DOI: 10.1111/jnc.16198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 10/04/2024]
Abstract
The strongest genetic risk factor for late-onset Alzheimer's disease (AD) is allelic variation of the APOE gene, with the following risk structure: ε4 > ε3 > ε2. The biochemical basis for this risk profile is unclear. Here, we reveal a new role for the APOE gene product, apolipoprotein E (ApoE) in regulating cellular copper homeostasis, which is perturbed in the AD brain. Exposure of ApoE target replacement (TR) astrocytes (immortalised astrocytes from APOE knock-in mice) to elevated copper concentrations resulted in exacerbated copper accumulation in ApoE4- compared to ApoE2- and ApoE3-TR astrocytes. This effect was also observed in SH-SY5Y neuroblastoma cells treated with conditioned medium from ApoE4-TR astrocytes. Increased intracellular copper levels in the presence of ApoE4 may be explained by reduced levels and delayed trafficking of the copper transport protein, copper-transporting ATPase 1 (ATP7A/Atp7a), potentially leading to impaired cellular copper export. This new role for ApoE in copper regulation lends further biochemical insight into how APOE genotype confers risk for AD and reveals a potential contribution of ApoE4 to the copper dysregulation that is a characteristic pathological feature of the AD brain.
Collapse
Affiliation(s)
- Bryce Blades
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Ya Hui Hung
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Abdel A Belaidi
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Irene Volitakis
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Aaron G Schultz
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Michael A Cater
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Nam Sang Cheung
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Ashley I Bush
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Scott Ayton
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Sharon La Fontaine
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Gucký A, Hamuľaková S. Targeting Biometals in Alzheimer's Disease with Metal Chelating Agents Including Coumarin Derivatives. CNS Drugs 2024; 38:507-532. [PMID: 38829443 PMCID: PMC11182807 DOI: 10.1007/s40263-024-01093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/05/2024]
Abstract
Numerous physiological processes happening in the human body, including cerebral development and function, require the participation of biometal ions such as iron, copper, and zinc. Their dyshomeostasis may, however, contribute to the onset of Alzheimer's disease (AD) and potentially other neurodegenerative diseases. Chelation of biometal ions is therefore a therapeutic strategy against AD. This review provides a survey of natural and synthetic chelating agents that are or could potentially be used to target the metal hypothesis of AD. Since metal dyshomeostasis is not the only pathological aspect of AD, and the nature of this disorder is very complex and multifactiorial, the most efficient therapeutics should target as many neurotoxic factors as possible. Various coumarin derivatives match this description and apart from being able to chelate metal ions, they exhibit the capacity to inhibit cholinesterases (ChEs) and monoamine oxidase B (MAO-B) while also possessing antioxidant, anti-inflammatory, and numerous other beneficial effects. Compounds based on the coumarin scaffold therefore represent a desirable class of anti-AD therapeutics.
Collapse
Affiliation(s)
- Adrián Gucký
- Department of Biochemistry, Institute of Chemical Sciences, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 040 01, Kosice, Slovak Republic
| | - Slávka Hamuľaková
- Department of Organic Chemistry, Institute of Chemical Sciences, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 040 01, Kosice, Slovak Republic.
| |
Collapse
|
10
|
Zhao Q, Ma L, Chen S, Huang L, She G, Sun Y, Shi W, Mu L. Tracking mitochondrial Cu(I) fluctuations through a ratiometric fluorescent probe in AD model cells: Towards understanding how AβOs induce mitochondrial Cu(I) dyshomeostasis. Talanta 2024; 271:125716. [PMID: 38301373 DOI: 10.1016/j.talanta.2024.125716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Mitochondrial copper signaling pathway plays a role in Alzheimer's disease (AD), especially in relevant Amyloid-β oligomers (AβOs) neurotoxicity and mitochondrial dysfunction. Clarifying the relationship between mitochondrial copper homeostasis and both of mitochondrial dysfunction and AβOs neurotoxicity is important for understanding AD pathogenesis. Herein, we designed and synthesized a ratiometric fluorescent probe CHC-NS4 for Cu(I). CHC-NS4 possesses excellent ratiometric response, high selectivity to Cu(I) and specific ability to target mitochondria. Under mitochondrial dysfunction induced by oligomycin, mitochondrial Cu(I) levels gradually increased, which may be related to inhibition of ATP7A-mediated Cu(I) exportation and/or high expression of COX. On this basis, CHC-NS4 was further utilized to visualize the fluctuations of mitochondrial Cu(I) levels during progression of AD model cells induced by AβOs. It was found that mitochondrial Cu(I) levels were gradually elevated during the AD progression, which depended on not only AβOs concentration but also incubation time. Moreover, endocytosis maybe served as a prime pathway mode for mitochondrial Cu(I) dyshomeostasis induced by AβOs during AD progression. These results have provided a novel inspiration into mitochondrial copper biology in AD pathogenesis.
Collapse
Affiliation(s)
- Qiaowen Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyi Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siwei Chen
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Lushan Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongan Sun
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
11
|
Wasielewska JM, Szostak K, McInnes LE, Quek H, Chaves JCS, Liddell JR, Koistinaho J, Oikari LE, Donnelly PS, White AR. Patient-Derived Blood-Brain Barrier Model for Screening Copper Bis(thiosemicarbazone) Complexes as Potential Therapeutics in Alzheimer's Disease. ACS Chem Neurosci 2024; 15:1432-1455. [PMID: 38477556 DOI: 10.1021/acschemneuro.3c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia characterized by a progressive cognitive decline. Addressing neuroinflammation represents a promising therapeutic avenue to treat AD; however, the development of effective antineuroinflammatory compounds is often hindered by their limited blood-brain barrier (BBB) permeability. Consequently, there is an urgent need for accurate, preclinical AD patient-specific BBB models to facilitate the early identification of immunomodulatory drugs capable of efficiently crossing the human AD BBB. This study presents a unique approach to BBB drug permeability screening as it utilizes the familial AD patient-derived induced brain endothelial-like cell (iBEC)-based model, which exhibits increased disease relevance and serves as an improved BBB drug permeability assessment tool when compared to traditionally employed in vitro models. To demonstrate its utility as a small molecule drug candidate screening platform, we investigated the effects of diacetylbis(N(4)-methylthiosemicarbazonato)copper(II) (CuII(atsm)) and a library of metal bis(thiosemicarbazone) complexes─a class of compounds exhibiting antineuroinflammatory therapeutic potential in neurodegenerative disorders. By evaluating the toxicity, cellular accumulation, and permeability of those compounds in the AD patient-derived iBEC, we have identified 3,4-hexanedione bis(N(4)-methylthiosemicarbazonato)copper(II) (CuII(dtsm)) as a candidate with good transport across the AD BBB. Furthermore, we have developed a multiplex approach where AD patient-derived iBEC were combined with immune modulators TNFα and IFNγ to establish an in vitro model representing the characteristic neuroinflammatory phenotype at the patient's BBB. Here, we observed that treatment with CuII(dtsm) not only reduced the expression of proinflammatory cytokine genes but also reversed the detrimental effects of TNFα and IFNγ on the integrity and function of the AD iBEC monolayer. This suggests a novel pathway through which copper bis(thiosemicarbazone) complexes may exert neurotherapeutic effects on AD by mitigating BBB neuroinflammation and related BBB integrity impairment. Together, the presented model provides an effective and easily scalable in vitro BBB platform for screening AD drug candidates. Its improved translational potential makes it a valuable tool for advancing the development of metal-based compounds aimed at modulating neuroinflammation in AD.
Collapse
Affiliation(s)
- Joanna M Wasielewska
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Faculty of Medicine, University of Queensland, Herston, QLD 4006, Australia
| | - Kathryn Szostak
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lachlan E McInnes
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Hazel Quek
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Biomedical Science, University of Queensland, St. Lucia, QLD 4067, Australia
| | - Juliana C S Chaves
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Jeffrey R Liddell
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jari Koistinaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki 00014,Finland
- Neuroscience Centre, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Lotta E Oikari
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Paul S Donnelly
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Biomedical Science, University of Queensland, St. Lucia, QLD 4067, Australia
| |
Collapse
|
12
|
Shanab O, Mostafa L, Abdeen A, Atia R, Nassar AY, Youssef M, Ibrahim SF, Maher ZM, Imbrea F, Fericean L, Ghareeb K, Hasan T, Ghamry HI, Atawia RT, Sadeq O, Abdelkader A. Modulatory mechanisms of copper II-albumin complex toward N-nitrosodiethylamine-induced neurotoxicity in mice via regulating oxidative damage, inflammatory, and apoptotic signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115841. [PMID: 38113799 DOI: 10.1016/j.ecoenv.2023.115841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/17/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
N-nitrosodiethylamine (ND) is an extremely toxic unavoidable environmental contaminant. CopperII-albumin (CuAB) complex, a newly developed Cu complex, showed antioxidant and anti-inflammatory potential. Hereby, we explored the plausible neuroprotective role of CuAB complex toward ND-evoked neurotoxicity in mice. Twenty-four male mice were sorted into 4 groups (6 mice each). Control group, mice were administered oral distilled water; and CuAB group, mice received CuAB complex at a dose of 817 µg/kg orally, three times weekly. In ND group, ND was given intraperitoneally (50 mg/kg body weight, once weekly for 6 w). CuAB+ND group, mice were administered a combination of CuAB and ND. The brain was quickly extracted upon completion of the experimental protocol for the evaluation of the oxidative/antioxidative markers, inflammatory cytokines, and histopathological examination. Oxidative stress was induced after ND exposure indicated by a reduction in GSH and SOD1 level, with increased MDA level. In addition, decreased expression of SOD1 proteins, Nrf2, and 5-HT mRNA expression levels were noticed. An apoptotic cascade has also been elicited, evidenced by overexpression of Cyt c, Cl. Casp 3. In addition, increased regulation of proinflammatory genes (TNF-α, IL-6, iNOS, Casp1, and NF-κB (p65/p50); besides, increment of protein expression of P-IKBα and reduced expression of IKBα. Pretreatment with CuAB complex significantly ameliorated ND neuronal damage. Our results recommend CuAB complex supplementation because it exerts neuroprotective effects against ND-induced toxicity.
Collapse
Affiliation(s)
- Obeid Shanab
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Laila Mostafa
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Rania Atia
- Department of Physiology, Faculty of Medicine Zagazig University, Zagazig 44519, Egypt; Department of Basic Medical Science, Faculty of Applied Medical Science, Al-Baha University, Al-Baha 65779, Saudi Arabia
| | - Ahmed Y Nassar
- Department of Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohammed Youssef
- Department of Animal Physiology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Samah F Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Zainab M Maher
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Florin Imbrea
- Department of Crop Science, Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, 119, Calea Aradului, 300645 Timisoara, Romania.
| | - Liana Fericean
- Department of Biology and Plant protection, Faculty of Agriculture. University of Life Sciences "King Michael I" from Timișoara, Calea Aradului 119, CUI 3487181, Romania
| | - Khaled Ghareeb
- Department of Animal and Poultry Behavior and Management, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Tabinda Hasan
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Heba I Ghamry
- Nutrition and Food Sciences, Department of Home Economics, Faculty of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia
| | - Reem T Atawia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Omar Sadeq
- Department of Physiology and Pharmacology, Faculty of Medicine, Arab American University Palestine, Jenin B.P. 240, Palestine
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt.
| |
Collapse
|
13
|
Rowan JA, Rudd SE, Ganio K, McDevitt CA, White JM, Donnelly PS. Copper(II) Complexes of 2,2'- Bisdipyrrins: Synthesis, Characterization, Cell Uptake, and Radiolabeling with Copper-64. Inorg Chem 2023; 62:20666-20676. [PMID: 37552883 DOI: 10.1021/acs.inorgchem.3c01551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Complexes prepared with positron-emitting copper-64 are of interest as imaging agents for positron emission tomography (PET). This work investigates the potential of using acyclic tetrapyrrolic 2,2'-bisdipyrrins as ligands to prepare charge-neutral, lipophilic, cell-permeable, redox active complexes with positron-emitting copper-64. The synthesis and characterization of a series of tetrapyrrolic 2,2'-bisdipyrrin copper(II) complexes are reported. Four 2,2'-bisdipyrrin copper(II) complexes were prepared with different functional groups in the meso-position of the ligands. Two of the new copper(II) complexes, one palladium(II) complex, and one nickel(II) complex were characterized by X-ray crystallography, which demonstrated that the copper(II) is in a distorted square planar environment. An investigation of the electrochemical properties of the complexes by cyclic voltammetry revealed that the complexes undergo multiple quasi-reversible processes. A comparison of the cyclic voltammetry of the copper complexes with their palladium(II) analogues suggests that these redox processes are ligand-based and not metal-based. The copper(II) complexes are cell-permeable in A431 mammalian cells and are nontoxic at concentrations of 50 μM. The ligands can be radiolabeled with copper-64 at room temperature.
Collapse
Affiliation(s)
- Jacob A Rowan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Jonathan M White
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
14
|
O'Brien H, Davoodian T, Johnson MDL. The promise of copper ionophores as antimicrobials. Curr Opin Microbiol 2023; 75:102355. [PMID: 37406562 PMCID: PMC10529258 DOI: 10.1016/j.mib.2023.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023]
Abstract
Antibiotic-resistant microbe-mediated deaths are a major worldwide health issue. Unfortunately, due to microbial adaptation to develop resistance, some antibiotics are nullified early in their usage, and worse, resistance is detected before they can even be prescribed. Copper's toxicity since antiquity against microbes at the host-pathogen interface offers a fascinating weapon to fight antimicrobial resistance. Here, we briefly review why copper is so effective, how drugs that work with copper are effective antimicrobials, and how compounds such as these could reinvigorate investment in antimicrobial development.
Collapse
Affiliation(s)
- Henrik O'Brien
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Talish Davoodian
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Michael D L Johnson
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA; Valley Fever Center for Excellence, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA; BIO5 Institute, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA; Asthma and Airway Disease Research Center, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA.
| |
Collapse
|
15
|
Pyun J, Koay H, Runwal P, Mawal C, Bush AI, Pan Y, Donnelly PS, Short JL, Nicolazzo JA. Cu(ATSM) Increases P-Glycoprotein Expression and Function at the Blood-Brain Barrier in C57BL6/J Mice. Pharmaceutics 2023; 15:2084. [PMID: 37631298 PMCID: PMC10458578 DOI: 10.3390/pharmaceutics15082084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
P-glycoprotein (P-gp), expressed at the blood-brain barrier (BBB), is critical in preventing brain access to substrate drugs and effluxing amyloid beta (Aβ), a contributor to Alzheimer's disease (AD). Strategies to regulate P-gp expression therefore may impact central nervous system (CNS) drug delivery and brain Aβ levels. As we have demonstrated that the copper complex copper diacetyl bis(4-methyl-3-thiosemicarbazone) (Cu(ATSM)) increases P-gp expression and function in human brain endothelial cells, the present study assessed the impact of Cu(ATSM) on expression and function of P-gp in mouse brain endothelial cells (mBECs) and capillaries in vivo, as well as in peripheral organs. Isolated mBECs treated with Cu(ATSM) (100 nM for 24 h) exhibited a 1.6-fold increase in P-gp expression and a 20% reduction in accumulation of the P-gp substrate rhodamine 123. Oral administration of Cu(ATSM) (30 mg/kg/day) for 28 days led to a 1.5 & 1.3-fold increase in brain microvascular and hepatic expression of P-gp, respectively, and a 20% reduction in BBB transport of [3H]-digoxin. A metallomic analysis showed a 3.5 and 19.9-fold increase in Cu levels in brain microvessels and livers of Cu(ATSM)-treated mice. Our findings demonstrate that Cu(ATSM) increases P-gp expression and function at the BBB in vivo, with implications for CNS drug delivery and clearance of Aβ in AD.
Collapse
Affiliation(s)
- Jae Pyun
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.P.); (P.R.)
| | - HuiJing Koay
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia (P.S.D.)
| | - Pranav Runwal
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.P.); (P.R.)
| | - Celeste Mawal
- Oxidation Biology Lab, Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia; (C.M.); (A.I.B.)
| | - Ashley I. Bush
- Oxidation Biology Lab, Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia; (C.M.); (A.I.B.)
| | - Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.P.); (P.R.)
| | - Paul S. Donnelly
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia (P.S.D.)
| | - Jennifer L. Short
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| | - Joseph A. Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.P.); (P.R.)
| |
Collapse
|
16
|
García-García A, Rojas S, Rodríguez-Diéguez A. Therapy and diagnosis of Alzheimer's disease: from discrete metal complexes to metal-organic frameworks. J Mater Chem B 2023; 11:7024-7040. [PMID: 37435638 DOI: 10.1039/d3tb00427a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder affecting 44 million people worldwide. Although many issues (pathogenesis, genetics, clinical features, and pathological aspects) are still unknown, this disease is characterized by noticeable hallmarks such as the formation of β-amyloid plaques, hyperphosphorylation of tau proteins, the overproduction of reactive oxygen species, and the reduction of acetylcholine levels. There is still no cure for AD and the current treatments are aimed at regulating the cholinesterase levels, attenuating symptoms temporarily rather than preventing the AD progression. In this context, coordination compounds are regarded as a promissing tool in AD treatment and/or diagnosis. Coordination compounds (discrete or polymeric) possess several features that make them an interesting option for developing new drugs for AD (good biocompatibility, porosity, synergetic effects of ligand-metal, fluorescence, particle size, homogeneity, monodispersity, etc.). This review discusses the recent progress in the development of novel discrete metal complexes and metal-organic frameworks (MOFs) for the treatment, diagnosis and theragnosis of AD. These advanced therapies for AD treatment are organized according to the target: Aβ peptides, hyperphosphorylated tau proteins, synaptic dysfunction, and mitochondrial failure with subsequent oxidative stress.
Collapse
Affiliation(s)
- Amalia García-García
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur & Av. San Claudio, Col. San Manuel, 72570 Puebla, Mexico
| | - Sara Rojas
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| |
Collapse
|
17
|
Wegermann CA, Pirota V, Monzani E, Casella L, Costa LAS, Novato WTG, Machini MT, da Costa Ferreira AM. Interaction studies of oxindole-derivatives with β-amyloid peptides inhibiting its aggregation induced by metal ions. J Inorg Biochem 2023; 245:112227. [PMID: 37156056 DOI: 10.1016/j.jinorgbio.2023.112227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
Some hydrazones and Schiff bases derived from isatin, an endogenous oxindole formed in the metabolism of tryptophan, were obtained to investigate their effects on in vitro aggregation of β-amyloid peptides (Aβ), macromolecules implicated in Alzheimer's disease. Some hydrazone ligands, prepared by condensation reactions of isatin with hydrazine derivatives, showed a large affinity binding to the synthetic peptides Aβ, particularly to Aβ1-16. Measurements by NMR spectroscopy indicated that those interactions occur mainly at the metal binding site of the peptide, involving His6, His13, and His14 residues, and that hydrazone E-diastereoisomer interacts preferentially with the amyloid peptides. Experimental results were consistent with simulations using a docking approach, where it is demonstrated that the amino acid residues Glu3, His6, His13, and His14 are those that mostly interact with the ligands. Further, these oxindole-derived ligands can efficiently chelate copper(II) and zinc(II) ions, forming moderate stable [ML] 1:1 species. The corresponding formation constants were determined by UV/Vis spectroscopy, by titrations of the ligands with increasing amounts of metal salts, and the obtained log K values were in the range 2.74 to 5.11. Both properties, good affinity for amyloid peptides, and reasonably good capacity of chelating biometal ions, like copper and zinc, can explain the efficient inhibition of Aβ fragments aggregation, as shown by experiments carried out with the oxindole derivatives in the presence of metal ions.
Collapse
Affiliation(s)
- Camila Anchau Wegermann
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Valentina Pirota
- Dipartimento di Chimica, Università degli Studi di Pavia, Pavia, Italy.
| | - Enrico Monzani
- Dipartimento di Chimica, Università degli Studi di Pavia, Pavia, Italy.
| | - Luigi Casella
- Dipartimento di Chimica, Università degli Studi di Pavia, Pavia, Italy.
| | - Luiz Antônio Sodré Costa
- NEQC - Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora, MG, Brazil.
| | - Willian Tássio Gomes Novato
- NQTCM, Núcleo de Química Teórica e Computacional de Macaé, Instituto Multidisciplinar de Química, CM UFRJ Macaé, Universidade Federal do Rio de Janeiro, RJ, Brazil.
| | - M Teresa Machini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Ana Maria da Costa Ferreira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Malikidogo KP, Drommi M, Atrián-Blasco E, Hormann J, Kulak N, Esmieu C, Hureau C. Ability of Azathiacyclen Ligands To Stop Cu(Aβ)-Induced Production of Reactive Oxygen Species: [3N1S] Is the Right Donor Set. Chemistry 2023; 29:e202203667. [PMID: 36606721 DOI: 10.1002/chem.202203667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease that leads to the progressive and irreversible loss of mental functions. The amyloid beta (Aβ) peptide involved in the disease is responsible for the production of damaging reactive oxygen species (ROS) when bound to Cu ions. A therapeutic approach that consists of removing Cu ions from Aβ to alter this deleterious interaction is currently being developed. In this context, we report the ability of five different 12-membered thiaazacyclen ligands to capture Cu from Aβ and to redox silence it. We propose that the presence of a sole sulfur atom in the ligand increases the rate of Cu capture and removal from Aβ, while the kinetic aspect of the chelation was an issue encountered with the 4N parent ligand. The best ligand for removing Cu from Aβ and inhibiting the associated ROS production is the 1-thia-4,7,10-triazacyclododecane [3N1S]. Indeed the replacement of more N by S atoms makes the corresponding Cu complexes easier to reduce and thus able to produce ROS on their own. In addition, the ligand with three sulfur atoms has a weaker affinity for CuII than Aβ, and is thus unable to remove Cu from CuAβ.
Collapse
Affiliation(s)
- Kyangwi P Malikidogo
- LCC-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France.,Université Grenoble Alpes, DCM (UMR 5250) - CNRS and CEA, IRIG, LCBM (UMR, 5249, Grenoble, France
| | - Marielle Drommi
- LCC-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France
| | - Elena Atrián-Blasco
- LCC-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France.,Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
| | - Jan Hormann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Nora Kulak
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany.,Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Charlène Esmieu
- LCC-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France
| | | |
Collapse
|
19
|
Nikseresht S, Hilton JBW, Liddell JR, Kysenius K, Bush AI, Ayton S, Koay H, Donnelly PS, Crouch PJ. Transdermal Application of Soluble Cu II(atsm) Increases Brain and Spinal Cord Uptake Compared to Gavage with an Insoluble Suspension. Neuroscience 2023; 509:125-131. [PMID: 36436699 DOI: 10.1016/j.neuroscience.2022.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
CuII(atsm) is a blood-brain barrier permeant copper(II) compound that is under investigation in human clinical trials for the treatment of neurodegenerative diseases of the central nervous system (CNS). Imaging in humans by positron emission tomography shows the compound accumulates in affected regions of the CNS in patients. Most therapeutic studies to date have utilised oral administration of CuII(atsm) in an insoluble form, as either solid tablets or a liquid suspension. However, two pre-clinical studies have demonstrated disease-modifying outcomes following transdermal application of soluble CuII(atsm) prepared in dimethyl sulphoxide. Whether differences in the method of administration lead to different degrees of tissue accumulation of the compound has never been examined. Here, we compare the two methods of administration in wild-type mice by assessing changes in tissue concentrations of copper. Both administration methods resulted in elevated copper concentrations in numerous tissues, with the largest increases evident in the liver, brain and spinal cord. In all instances where treatment with CuII(atsm) resulted in elevated tissue copper, transdermal application of soluble CuII(atsm) led to higher concentrations of copper. In contrast to CuII(atsm), an equivalent dose of copper(II) chloride resulted in minimal changes to tissue copper concentrations, regardless of the administration method. Data presented herein provide quantitative insight to transdermal application of soluble CuII(atsm) as a potential alternative to oral administration of the compound in an insoluble formulation.
Collapse
Affiliation(s)
- Sara Nikseresht
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - James B W Hilton
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jeffrey R Liddell
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kai Kysenius
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ashley I Bush
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Scott Ayton
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - HuiJing Koay
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Peter J Crouch
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
20
|
Varesi A, Campagnoli LIM, Carrara A, Pola I, Floris E, Ricevuti G, Chirumbolo S, Pascale A. Non-Enzymatic Antioxidants against Alzheimer's Disease: Prevention, Diagnosis and Therapy. Antioxidants (Basel) 2023; 12:180. [PMID: 36671042 PMCID: PMC9855271 DOI: 10.3390/antiox12010180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although substantial research has been conducted to elucidate the complex pathophysiology of AD, the therapeutic approach still has limited efficacy in clinical practice. Oxidative stress (OS) has been established as an early driver of several age-related diseases, including neurodegeneration. In AD, increased levels of reactive oxygen species mediate neuronal lipid, protein, and nucleic acid peroxidation, mitochondrial dysfunction, synaptic damage, and inflammation. Thus, the identification of novel antioxidant molecules capable of detecting, preventing, and counteracting AD onset and progression is of the utmost importance. However, although several studies have been published, comprehensive and up-to-date overviews of the principal anti-AD agents harboring antioxidant properties remain scarce. In this narrative review, we summarize the role of vitamins, minerals, flavonoids, non-flavonoids, mitochondria-targeting molecules, organosulfur compounds, and carotenoids as non-enzymatic antioxidants with AD diagnostic, preventative, and therapeutic potential, thereby offering insights into the relationship between OS and neurodegeneration.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Ilaria Pola
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elena Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
21
|
Ma H, Dong Y, Chu Y, Guo Y, Li L. The mechanisms of ferroptosis and its role in alzheimer’s disease. Front Mol Biosci 2022; 9:965064. [PMID: 36090039 PMCID: PMC9459389 DOI: 10.3389/fmolb.2022.965064] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/25/2022] [Indexed: 12/06/2022] Open
Abstract
Alzheimer’s disease (AD) accounts for two-thirds of all dementia cases, affecting 50 million people worldwide. Only four of the more than 100 AD drugs developed thus far have successfully improved AD symptoms. Furthermore, these improvements are only temporary, as no treatment can stop or reverse AD progression. A growing number of recent studies have demonstrated that iron-dependent programmed cell death, known as ferroptosis, contributes to AD-mediated nerve cell death. The ferroptosis pathways within nerve cells include iron homeostasis regulation, cystine/glutamate (Glu) reverse transporter (system xc−), glutathione (GSH)/glutathione peroxidase 4 (GPX4), and lipid peroxidation. In the regulation pathway of AD iron homeostasis, abnormal iron uptake, excretion and storage in nerve cells lead to increased intracellular free iron and Fenton reactions. Furthermore, decreased Glu transporter expression leads to Glu accumulation outside nerve cells, resulting in the inhibition of the system xc− pathway. GSH depletion causes abnormalities in GPX4, leading to excessive accumulation of lipid peroxides. Alterations in these specific pathways and amino acid metabolism eventually lead to ferroptosis. This review explores the connection between AD and the ferroptosis signaling pathways and amino acid metabolism, potentially informing future AD diagnosis and treatment methodologies.
Collapse
Affiliation(s)
- Hongyue Ma
- Department of Neurology, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Yan Dong
- Department of Neurology, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Yanqin Guo
- Department of Neurology, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
- *Correspondence: Yanqin Guo, ; Luxin Li,
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
- *Correspondence: Yanqin Guo, ; Luxin Li,
| |
Collapse
|
22
|
Pyun J, McInnes LE, Donnelly PS, Mawal C, Bush AI, Short JL, Nicolazzo JA. Copper bis(thiosemicarbazone) complexes modulate P-glycoprotein expression and function in human brain microvascular endothelial cells. J Neurochem 2022; 162:226-244. [PMID: 35304760 PMCID: PMC9540023 DOI: 10.1111/jnc.15609] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 12/02/2022]
Abstract
P-glycoprotein (P-gp) is an efflux transporter at the blood-brain barrier (BBB) that hinders brain access of substrate drugs and clears endogenous molecules such as amyloid beta (Aβ) from the brain. As biometals such as copper (Cu) modulate many neuronal signalling pathways linked to P-gp regulation, it was hypothesised that the bis(thiosemicarbazone) (BTSC) Cu-releasing complex, copper II glyoxal bis(4-methyl-3-thiosemicarbazone) (CuII [GTSM]), would enhance P-gp expression and function at the BBB, while copper II diacetyl bis(4-methyl-3-thiosemicarbazone) (CuII [ATSM]), which only releases Cu under hypoxic conditions, would not modulate P-gp expression. Following treatment with 25-250 nM CuII (BTSC)s for 8-48 h, expression of P-gp mRNA and protein in human brain endothelial (hCMEC/D3) cells was assessed by RT-qPCR and Western blot, respectively. P-gp function was assessed by measuring accumulation of the fluorescent P-gp substrate, rhodamine 123 and intracellular Cu levels were quantified by inductively coupled plasma mass spectrometry. Interestingly, CuII (ATSM) significantly enhanced P-gp expression and function 2-fold and 1.3-fold, respectively, whereas CuII (GTSM) reduced P-gp expression 0.5-fold and function by 200%. As both compounds increased intracellular Cu levels, the effect of different BTSC backbones, independent of Cu, on P-gp expression was assessed. However, only the Cu-ATSM complex enhanced P-gp expression and this was mediated partly through activation (1.4-fold) of the extracellular signal-regulated kinase 1 and 2, an outcome that was significantly attenuated in the presence of an inhibitor of the mitogen-activated protein kinase regulatory pathway. Our findings suggest that CuII (ATSM) and CuII (GTSM) have the potential to modulate the expression and function of P-gp at the BBB to impact brain drug delivery and clearance of Aβ.
Collapse
Affiliation(s)
- Jae Pyun
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Lachlan E. McInnes
- Bio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneParkvilleVictoriaAustralia
| | - Paul S. Donnelly
- Bio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneParkvilleVictoriaAustralia
| | - Celeste Mawal
- Oxidation Biology Lab, Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Ashley I. Bush
- Oxidation Biology Lab, Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Jennifer L. Short
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Joseph A. Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| |
Collapse
|
23
|
Zinc in Cognitive Impairment and Aging. Biomolecules 2022; 12:biom12071000. [PMID: 35883555 PMCID: PMC9312494 DOI: 10.3390/biom12071000] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Zinc, an essential micronutrient for life, was first discovered in 1869 and later found to be indispensable for the normal development of plants and for the normal growth of rats and birds. Zinc plays an important role in many physiological and pathological processes in normal mammalian brain development, especially in the development of the central nervous system. Zinc deficiency can lead to neurodegenerative diseases, mental abnormalities, sleep disorders, tumors, vascular diseases, and other pathological conditions, which can cause cognitive impairment and premature aging. This study aimed to review the important effects of zinc and zinc-associated proteins in cognitive impairment and aging, to reveal its molecular mechanism, and to highlight potential interventions for zinc-associated aging and cognitive impairments.
Collapse
|
24
|
Singh SK, Balendra V, Obaid AA, Esposto J, Tikhonova MA, Gautam NK, Poeggeler B. Copper-Mediated β-Amyloid Toxicity and its Chelation Therapy in Alzheimer's Disease. Metallomics 2022; 14:6554256. [PMID: 35333348 DOI: 10.1093/mtomcs/mfac018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/08/2022] [Indexed: 01/10/2023]
Abstract
The link between bio-metals, Alzheimer's disease (AD), and its associated protein, amyloid-β (Aβ) is very complex and one of the most studied aspects currently. Alzheimer's disease, a progressive neurodegenerative disease, is proposed to occurs due to the misfolding and aggregation of Aβ. Dyshomeostasis of metal ions and their interaction with Aβ has largely been implicated in AD. Copper plays a crucial role in amyloid-β toxicity and AD development potentially occurs through direct interaction with the copper-binding motif of APP and different amino acid residues of Aβ. Previous reports suggest that high levels of copper accumulation in the AD brain result in modulation of toxic Aβ peptide levels, implicating the role of copper in the pathophysiology of AD. In this review, we explore the possible mode of copper ion interaction with Aβ which accelerates the kinetics of fibril formation and promote amyloid-β mediated cell toxicity in Alzheimer's disease and the potential use of various copper chelators in the prevention of copper-mediated Aβ toxicity.
Collapse
Affiliation(s)
- Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow-226002, India
| | - Vyshnavy Balendra
- Saint James School of Medicine, Park Ridge, Illinois, United States of America 60068
| | - Ahmad A Obaid
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Josephine Esposto
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, CanadaK9L 0G2
| | - Maria A Tikhonova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Scientific Research Institute of Neurosciences and Medicine; Timakov st., 4, Novosibirsk, 630117, Russia
| | - Naveen Kumar Gautam
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Burkhard Poeggeler
- Johann-Friedrich-Blumenbach-Institute for Zoology & Anthropology, Faculty of Biology and Psychology, Georg-August-University of Göttingen, Am Türmchen 3,33332 Gütersloh, Germany
| |
Collapse
|
25
|
Priessner M, Summers PA, Lewis BW, Sastre M, Ying L, Kuimova MK, Vilar R. Selective Detection of Cu
+
Ions in Live Cells via Fluorescence Lifetime Imaging Microscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Martin Priessner
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - Peter A. Summers
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - Benjamin W. Lewis
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - Magdalena Sastre
- Department of Brain Sciences Imperial College London Hammersmith Campus London W12 0NN UK
| | - Liming Ying
- National Heart and Lung Institute Molecular Sciences Research Hub White City Campus Imperial College London London W12 0BZ UK
| | - Marina K. Kuimova
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - Ramon Vilar
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| |
Collapse
|
26
|
Priessner M, Summers PA, Lewis BW, Sastre M, Ying L, Kuimova MK, Vilar R. Selective Detection of Cu + Ions in Live Cells via Fluorescence Lifetime Imaging Microscopy. Angew Chem Int Ed Engl 2021; 60:23148-23153. [PMID: 34379368 PMCID: PMC8596571 DOI: 10.1002/anie.202109349] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/06/2022]
Abstract
Copper is an essential trace element in living organisms with its levels and localisation being carefully managed by the cellular machinery. However, if misregulated, deficiency or excess of copper ions can lead to several diseases. Therefore, it is important to have reliable methods to detect, monitor and visualise this metal in cells. Herein we report a new optical probe based on BODIPY, which shows a switch-on in its fluorescence intensity upon binding to copper(I), but not in the presence of high concentration of other physiologically relevant metal ions. More interestingly, binding to copper(I) leads to significant changes in the fluorescence lifetime of the new probe, which can be used to visualize copper(I) pools in lysosomes of live cells via fluorescence lifetime imaging microscopy (FLIM).
Collapse
Affiliation(s)
- Martin Priessner
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUK
| | - Peter A. Summers
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUK
| | - Benjamin W. Lewis
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUK
| | - Magdalena Sastre
- Department of Brain SciencesImperial College LondonHammersmith CampusLondonW12 0NNUK
| | - Liming Ying
- National Heart and Lung InstituteMolecular Sciences Research HubWhite City CampusImperial College LondonLondonW12 0BZUK
| | - Marina K. Kuimova
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUK
| | - Ramon Vilar
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUK
| |
Collapse
|
27
|
Bajaj K, Buchanan RM, Grapperhaus CA. Antifungal activity of thiosemicarbazones, bis(thiosemicarbazones), and their metal complexes. J Inorg Biochem 2021; 225:111620. [PMID: 34619407 DOI: 10.1016/j.jinorgbio.2021.111620] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/18/2021] [Indexed: 12/25/2022]
Abstract
Fungi are ubiquitous in nature, and typically cause little or no environmental or pathogenic damage to their plant, animal, and human hosts. However, a small but growing number of pathogenic fungi are spreading world-wide at an alarming rate threatening global ecosystem health and proliferation. Many of these emerging pathogens have developed multi-drug resistance to front line therapeutics increasing the urgency for the development of new antifungal agents. This review examines the development of thiosemicarbazones, bis(thiosemicarbazones), and their metal complexes as potential antifungal agents against more than 65 different fungal strains. The fungistatic activity of the compounds are quantified based on the zone of inhibition, minimum inhibitory concentration, or growth inhibition percentage. In this review, reported activities were standardized based on molar concentrations to simplify comparisons between different compounds. Of all the fungal strains reported in the review, A. niger in particular was very resistant towards a majority of tested compounds. Our analysis of the data shows that metal complexes are typically more active than non-coordinated ligands with copper(II) and zinc(II) complexes generally displaying the highest activity.
Collapse
Affiliation(s)
- Kritika Bajaj
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, KY 40292, United States of America
| | - Robert M Buchanan
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, KY 40292, United States of America
| | - Craig A Grapperhaus
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, KY 40292, United States of America.
| |
Collapse
|
28
|
La Mendola D, Arena G, Pietropaolo A, Satriano C, Rizzarelli E. Metal ion coordination in peptide fragments of neurotrophins: A crucial step for understanding the role and signaling of these proteins in the brain. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Plascencia-Villa G, Perry G. Preventive and Therapeutic Strategies in Alzheimer's Disease: Focus on Oxidative Stress, Redox Metals, and Ferroptosis. Antioxid Redox Signal 2021; 34:591-610. [PMID: 32486897 PMCID: PMC8098758 DOI: 10.1089/ars.2020.8134] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Significance: Alzheimer's disease (AD) is the most common cause of dementia in the elderly. AD is currently ranked as the sixth leading cause of death, but some sources put it as third, after heart disease and cancer. Currently, there are no effective therapeutic approaches to treat or slow the progression of chronic neurodegeneration. In addition to the accumulation of amyloid-β (Aβ) and tau, AD patients show progressive neuronal loss and neuronal death, also high oxidative stress that correlates with abnormal levels or overload of brain metals. Recent Advances: Several promising compounds targeting oxidative stress, redox metals, and neuronal death are under preclinical or clinical evaluation as an alternative or complementary therapeutic strategy in mild cognitive impairment and AD. Here, we present a general analysis and overview, discuss limitations, and suggest potential directions for these treatments for AD and related dementia. Critical Issues: Most of the disease-modifying therapeutic strategies for AD under evaluation in clinical trials have focused on components of the amyloid cascade, including antibodies to reduce levels of Aβ and tau, as well as inhibitors of secretases. Unfortunately, several of the amyloid-focused therapeutics have failed the clinical outcomes or presented side effects, and numerous clinical trials of compounds have been halted, reducing realistic options for the development of effective AD treatments. Future Directions: The focus of research on AD and related dementias is shifting to alternative or innovative areas, such as ApoE, lipids, synapses, oxidative stress, cell death mechanisms, neuroimmunology, and neuroinflammation, as well as brain metabolism and bioenergetics.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas, USA
| | - George Perry
- Department of Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas, USA
| |
Collapse
|
30
|
Gleason A, Bush AI. Iron and Ferroptosis as Therapeutic Targets in Alzheimer's Disease. Neurotherapeutics 2021; 18:252-264. [PMID: 33111259 PMCID: PMC8116360 DOI: 10.1007/s13311-020-00954-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD), one of the most common neurodegenerative diseases worldwide, has a devastating personal, familial, and societal impact. In spite of profound investment and effort, numerous clinical trials targeting amyloid-β, which is thought to have a causative role in the disease, have not yielded any clinically meaningful success to date. Iron is an essential cofactor in many physiological processes in the brain. An extensive body of work links iron dyshomeostasis with multiple aspects of the pathophysiology of AD. In particular, regional iron load appears to be a risk factor for more rapid cognitive decline. Existing iron-chelating agents have been in use for decades for other indications, and there are preliminary data that some of these could be effective in AD. Many novel iron-chelating compounds are under development, some with in vivo data showing potential Alzheimer's disease-modifying properties. This heretofore underexplored therapeutic class has considerable promise and could yield much-needed agents that slow neurodegeneration in AD.
Collapse
Affiliation(s)
- Andrew Gleason
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Ashley I Bush
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
31
|
Lei P, Ayton S, Bush AI. The essential elements of Alzheimer's disease. J Biol Chem 2020; 296:100105. [PMID: 33219130 PMCID: PMC7948403 DOI: 10.1074/jbc.rev120.008207] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
Treatments for Alzheimer’s disease (AD) directed against the prominent amyloid plaque neuropathology are yet to be proved effective despite many phase 3 clinical trials. There are several other neurochemical abnormalities that occur in the AD brain that warrant renewed emphasis as potential therapeutic targets for this disease. Among those are the elementomic signatures of iron, copper, zinc, and selenium. Here, we review these essential elements of AD for their broad potential to contribute to Alzheimer’s pathophysiology, and we also highlight more recent attempts to translate these findings into therapeutics. A reinspection of large bodies of discovery in the AD field, such as this, may inspire new thinking about pathogenesis and therapeutic targets.
Collapse
Affiliation(s)
- Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
32
|
|
33
|
Meggyesy PM, Masaldan S, Clatworthy SAS, Volitakis I, Eyckens DJ, Aston-Mourney K, Cater MA. Copper Ionophores as Novel Antiobesity Therapeutics. Molecules 2020; 25:E4957. [PMID: 33120881 PMCID: PMC7672559 DOI: 10.3390/molecules25214957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 12/30/2022] Open
Abstract
The therapeutic utility of the copper ionophore disulfiram was investigated in a diet-induced obesity mouse model (C57BL/6J background), both through administration in feed (0.05 to 1% (w/w)) and via oral gavage (150 mg/kg) for up to eight weeks. Mice were monitored for body weight, fat deposition (perigonadal fat pads), metabolic changes (e.g., glucose dyshomeostasis) and pathologies (e.g., hepatic steatosis, hyperglycaemia and hypertriglyceridemia) associated with a high-fat diet. Metal-related pharmacological effects across major organs and serums were investigated using inductively coupled plasma mass spectrometry (ICP-MS). Disulfiram treatments (all modes) augmented hepatic copper in mice, markedly moderated body weight and abolished the deleterious systemic changes associated with a high-fat diet. Likewise, another chemically distinct copper ionophore H2(gtsm), administered daily (oral gavage), also augmented hepatic copper and moderated mouse body weight. Postmortem histological examinations of the liver and other major organs, together with serum aminotransferases, supported the reported therapeutic safety of disulfiram. Disulfiram specifically altered systemic copper in mice and altered hepatic copper metabolism, perturbing the incorporation of copper into ceruloplasmin (holo-ceruloplasmin biosynthesis) and subsequently reducing serum copper concentrations. Serum ceruloplasmin represents a biomarker for disulfiram activity. Our results establish copper ionophores as a potential class of antiobesity agents.
Collapse
Affiliation(s)
- Peter M. Meggyesy
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; (P.M.M.); (S.M.); (S.A.S.C.)
| | - Shashank Masaldan
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; (P.M.M.); (S.M.); (S.A.S.C.)
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia;
| | - Sharnel A. S. Clatworthy
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; (P.M.M.); (S.M.); (S.A.S.C.)
| | - Irene Volitakis
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia;
| | - Daniel J. Eyckens
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia;
| | - Kathryn Aston-Mourney
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical~Translation, Deakin University, Geelong 3220, Australia;
| | - Michael A. Cater
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; (P.M.M.); (S.M.); (S.A.S.C.)
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
34
|
Ejaz HW, Wang W, Lang M. Copper Toxicity Links to Pathogenesis of Alzheimer's Disease and Therapeutics Approaches. Int J Mol Sci 2020; 21:E7660. [PMID: 33081348 PMCID: PMC7589751 DOI: 10.3390/ijms21207660] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible, age-related progressive neurological disorder, and the most common type of dementia in aged people. Neuropathological lesions of AD are neurofibrillary tangles (NFTs), and senile plaques comprise the accumulated amyloid-beta (Aβ), loaded with metal ions including Cu, Fe, or Zn. Some reports have identified metal dyshomeostasis as a neurotoxic factor of AD, among which Cu ions seem to be a central cationic metal in the formation of plaque and soluble oligomers, and have an essential role in the AD pathology. Cu-Aβ complex catalyzes the generation of reactive oxygen species (ROS) and results in oxidative damage. Several studies have indicated that oxidative stress plays a crucial role in the pathogenesis of AD. The connection of copper levels in AD is still ambiguous, as some researches indicate a Cu deficiency, while others show its higher content in AD, and therefore there is a need to increase and decrease its levels in animal models, respectively, to study which one is the cause. For more than twenty years, many in vitro studies have been devoted to identifying metals' roles in Aβ accumulation, oxidative damage, and neurotoxicity. Towards the end, a short review of the modern therapeutic approach in chelation therapy, with the main focus on Cu ions, is discussed. Despite the lack of strong proofs of clinical advantage so far, the conjecture that using a therapeutic metal chelator is an effective strategy for AD remains popular. However, some recent reports of genetic-regulating copper transporters in AD models have shed light on treating this refractory disease. This review aims to succinctly present a better understanding of Cu ions' current status in several AD features, and some conflicting reports are present herein.
Collapse
Affiliation(s)
- Hafza Wajeeha Ejaz
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth WA6027, Australia;
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
35
|
Lamtai M, Zghari O, Ouakki S, Marmouzi I, Mesfioui A, El Hessni A, Ouichou A. Chronic copper exposure leads to hippocampus oxidative stress and impaired learning and memory in male and female rats. Toxicol Res 2020; 36:359-366. [PMID: 33005595 PMCID: PMC7494722 DOI: 10.1007/s43188-020-00043-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/18/2020] [Accepted: 02/18/2020] [Indexed: 01/12/2023] Open
Abstract
Environmental and occupational exposures to copper (Cu) play a pivotal role in the etiology of some neurological diseases and reduced cognitive functions. However, the precise mechanisms of its effects on cognitive function have not been yet thoroughly established. In our study, we aimed to investigate the behavior and neurochemical alterations in hippocampus of male and female rats, chronically exposed to copper chloride (CuCl2) and the possible involvement of oxidative stress. Twenty-four rats, for each gender, were divided into control and three test groups (n = 6), and were injected intraperitoneally with saline (0.9% NaCl) or CuCl2 (0.25 mg/kg, 0.5 mg/kg and 1 mg/kg) for 8 weeks. After the treatment period, Y-maze test was used for the evaluation of spatial working memory and the Morris Water Maze (MWM) to test the spatial learning and memory. Biochemical determination of oxidative stress levels in hippocampus was performed. The main results of the present work are working memory impairment in spatial Y-maze which induced by higher Cu intake (1 mg/kg) in male and female rats. Also, In the MWM test, the spatial learning and memory were significantly impaired in rats treated with Cu at dose of 1 mg/kg. Additionally, markers of oxidative stress such as catalase, superoxide dismutase, lipid peroxidation products and nitric oxide levels were significantly altered following Cu treatments. These data propose that compromised behavior following Cu exposure is associated with increase in oxidative stress.
Collapse
Affiliation(s)
- Mouloud Lamtai
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| | - Oussama Zghari
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| | - Sihame Ouakki
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| | - Ilias Marmouzi
- Laboratoire de Pharmacologie et Toxicologie, équipe de Pharmacocinétique, Faculté de Médicine et Pharmacie, University Mohammed V in Rabat, Rabat Instituts, Rabat, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| | - Aboubaker El Hessni
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| | - Ali Ouichou
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| |
Collapse
|
36
|
Sagnou M, Mavroidi B, Kaminari A, Boukos N, Pelecanou M. Novel Isatin Thiosemicarbazone Derivatives as Potent Inhibitors of β-Amyloid Peptide Aggregation and Toxicity. ACS Chem Neurosci 2020; 11:2266-2276. [PMID: 32598129 DOI: 10.1021/acschemneuro.0c00208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Inhibition of β-amyloid peptide (Αβ) aggregation in Alzheimer's disease (AD) is among the therapeutic approaches against AD which still attracts scientific research interest. In the search for compounds that interact with Aβ and disrupt its typical aggregation course toward oligomeric or polymeric toxic assemblies, small organic molecules of natural origin, combining low molecular weight (necessary blood-brain barrier penetration) and low toxicity (necessary for pharmacological application), are greatly sought after. Isatin (1H-indoline-2,3-dione), a natural endogenous indole, and many of its derivatives exhibit a wide spectrum of neuropharmacological and chemotherapeutic properties. The synthesis and biological evaluation of four new isatins as inhibitors of Aβ aggregation is presented herein. In these derivatives, the N-phenyl thiosemicarbazide moiety is joined at the 3-oxo position of isatin through Schiff base formation, and substitutions are present at the indole nitrogen and position 5 of the isatin core. Biophysical studies employing circular dichroism, thioflavin T fluorescence assay, and transmission electron microscopy reveal the potential of the isatin thiosemicarbazones (ITSCs) to alter the course of Αβ aggregation, with two of the derivatives exhibiting outstanding inhibition of the aggregation process, preventing completely the formation of amyloid fibrils. Furthermore, in in vitro studies in primary neuronal cell cultures, the ITSCs were found to inhibit the Aβ-induced neurotoxicity and reactive oxygen species production at concentrations as low as 1 μM. Taken all together, the novel ITSCs can be considered as privileged structures for further development as potential AD therapeutics.
Collapse
Affiliation(s)
- Marina Sagnou
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece
| | - Barbara Mavroidi
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece
| | - Archontia Kaminari
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece
| | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece
| | - Maria Pelecanou
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece
| |
Collapse
|
37
|
Noor A, Hayne DJ, Lim S, Van Zuylekom JK, Cullinane C, Roselt PD, McLean CA, White JM, Donnelly PS. Copper Bis(thiosemicarbazonato)-stilbenyl Complexes That Bind to Amyloid-β Plaques. Inorg Chem 2020; 59:11658-11669. [PMID: 32799487 DOI: 10.1021/acs.inorgchem.0c01520] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease is characterized by the presence of extracellular amyloid-β plaques. Positron emission tomography (PET) imaging with tracers radiolabeled with positron-emitting radionuclides that bind to amyloid-β plaques can assist in the diagnosis of Alzheimer's disease. With the goal of designing new imaging agents radiolabeled with positron-emitting copper-64 radionuclides that bind to amyloid-β plaques, a family of bis(thiosemicarbazone) ligands with appended substituted stilbenyl functional groups has been prepared. The ligands form charge-neutral and stable complexes with copper(II). The new ligands can be radiolabeled with copper-64 at room temperature. Two lead complexes were demonstrated to bind to amyloid-β plaques present in post-mortem brain tissue from subjects with clinically diagnosed Alzheimer's disease and crossed the blood-brain barrier in mice. The work presented here provides strategies to prepare compounds with radionuclides of copper that can be used for targeted brain PET imaging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Catriona A McLean
- Department of Anatomical Pathology, The Alfred Hospital, Victoria 3181, Australia
| | | | | |
Collapse
|
38
|
Matesanz AI, Caballero AB, Lorenzo C, Espargaró A, Sabaté R, Quiroga AG, Gamez P. Thiosemicarbazone Derivatives as Inhibitors of Amyloid-β Aggregation: Effect of Metal Coordination. Inorg Chem 2020; 59:6978-6987. [DOI: 10.1021/acs.inorgchem.0c00467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ana I. Matesanz
- Department of Inorganic Chemistry (M-07), School of Sciences, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ana B. Caballero
- nanoBIC, Departament de Química Inorgànica i Orgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Carmen Lorenzo
- Department of Inorganic Chemistry (M-07), School of Sciences, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alba Espargaró
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
- Departament de Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Raimon Sabaté
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
- Departament de Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Adoración G. Quiroga
- Department of Inorganic Chemistry (M-07), School of Sciences, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Patrick Gamez
- nanoBIC, Departament de Química Inorgànica i Orgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
39
|
Southon A, Szostak K, Acevedo KM, Dent KA, Volitakis I, Belaidi AA, Barnham KJ, Crouch PJ, Ayton S, Donnelly PS, Bush AI. Cu II (atsm) inhibits ferroptosis: Implications for treatment of neurodegenerative disease. Br J Pharmacol 2020; 177:656-667. [PMID: 31655003 DOI: 10.1111/bph.14881] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Diacetyl-bis(4-methyl-3-thiosemicarbazonato)copperII (CuII (atsm)) ameliorates neurodegeneration and delays disease progression in mouse models of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD), yet the mechanism of action remains uncertain. Promising results were recently reported for separate Phase 1 studies in ALS patients and PD patients. Affected tissue in these disorders shares features of elevated Fe, low glutathione and increased lipid peroxidation consistent with ferroptosis, a novel form of regulated cell death. We therefore evaluated the ability of CuII (atsm) to inhibit ferroptosis. EXPERIMENTAL APPROACH Ferroptosis was induced in neuronal cell models by inhibition of glutathione peroxidase-4 activity with RSL3 or by blocking cystine uptake with erastin. Cell viability and lipid peroxidation were assessed and the efficacy of CuII (atsm) was compared to the known antiferroptotic compound liproxstatin-1. KEY RESULTS CuII (atsm) protected against lipid peroxidation and ferroptotic lethality in primary and immortalised neuronal cell models (EC50 : ≈130 nM, within an order of magnitude of liproxstatin-1). NiII (atsm) also prevented ferroptosis with similar potency, whereas ionic CuII did not. In cell-free systems, CuII (atsm) and NiII (atsm) inhibited FeII -induced lipid peroxidation, consistent with these compounds quenching lipid radicals. CONCLUSIONS AND IMPLICATIONS The antiferroptotic activity of CuII (atsm) could therefore be the disease-modifying mechanism being tested in ALS and PD trials. With potency in vitro approaching that of liproxstatin-1, CuII (atsm) possesses favourable properties such as oral bioavailability and entry into the brain that make it an attractive investigational product for clinical trials of ferroptosis-related diseases.
Collapse
Affiliation(s)
- Adam Southon
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Kathryn Szostak
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Karla M Acevedo
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Krista A Dent
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Irene Volitakis
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Abdel A Belaidi
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Kevin J Barnham
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Peter J Crouch
- Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Tan HY, Ng KY, Koh RY, Chye SM. Pharmacological Effects of Melatonin as Neuroprotectant in Rodent Model: A Review on the Current Biological Evidence. Cell Mol Neurobiol 2020; 40:25-51. [PMID: 31435851 PMCID: PMC11448813 DOI: 10.1007/s10571-019-00724-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022]
Abstract
The progressive loss of structure and functions of neurons, including neuronal death, is one of the main factors leading to poor quality of life. Promotion of functional recovery of neuron after injury is a great challenge in neuroregenerative studies. Melatonin, a hormone is secreted by pineal gland and has antioxidative, anti-inflammatory, and anti-apoptotic properties. Besides that, melatonin has high cell permeability and is able to cross the blood-brain barrier. Apart from that, there are no reported side effects associated with long-term usage of melatonin at both physiological and pharmacological doses. Thus, in this review article, we summarize the pharmacological effects of melatonin as neuroprotectant in central nervous system injury, ischemic-reperfusion injury, optic nerve injury, peripheral nerve injury, neurotmesis, axonotmesis, scar formation, cell degeneration, and apoptosis in rodent models.
Collapse
Affiliation(s)
- Hui Ying Tan
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Rhun Yian Koh
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia.
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
41
|
Bonaccorso C, Marzo T, La Mendola D. Biological Applications of Thiocarbohydrazones and Their Metal Complexes: A Perspective Review. Pharmaceuticals (Basel) 2019; 13:E4. [PMID: 31881715 PMCID: PMC7169414 DOI: 10.3390/ph13010004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/28/2022] Open
Abstract
Although organic compounds account for more than 99% of currently approved clinical drugs, the established clinical use of cisplatin in cancer or auranofin in rheumatoid arthritis have paved the way to several research initiatives to identify metal-based drugs for a wide range of human diseases. Nitrogen and sulfur donor ligands, characterized by different binding motifs, have been the subject in recent years of one of the main research areas in coordination chemistry. Among the nitrogen/sulfur compounds, very little is known about thiocarbohydrazones (TCH), the higher homologues of the well-known thiosemicarbazones (TSC), and their metal complexes. The extra hydrazine moiety provides the ligands of variable metal binding modes, structural diversity and promising biological implications. The interesting coordination chemistry of TCH has mainly been focused on symmetric derivatives, which are relatively simple to synthesize while few examples of asymmetric ligands have been reported. This informative review on TCHs and their metal complexes will be helpful for improving the design of metal-based pharmaceuticals for applications ranging from anticancer to antinfective therapy.
Collapse
Affiliation(s)
- Carmela Bonaccorso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Tiziano Marzo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy;
| | - Diego La Mendola
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy;
| |
Collapse
|
42
|
Redox active metals in neurodegenerative diseases. J Biol Inorg Chem 2019; 24:1141-1157. [PMID: 31650248 DOI: 10.1007/s00775-019-01731-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022]
Abstract
Copper (Cu) and iron (Fe) are redox active metals essential for the regulation of cellular pathways that are fundamental for brain function, including neurotransmitter synthesis and release, neurotransmission, and protein turnover. Cu and Fe are tightly regulated by sophisticated homeostatic systems that tune the levels and localization of these redox active metals. The regulation of Cu and Fe necessitates their coordination to small organic molecules and metal chaperone proteins that restrict their reactions to specific protein centres, where Cu and Fe cycle between reduced (Fe2+, Cu+) and oxidised states (Fe3+, Cu2+). Perturbation of this regulation is evident in the brain affected by neurodegeneration. Here we review the evidence that links Cu and Fe dyshomeostasis to neurodegeneration as well as the promising preclinical and clinical studies reporting pharmacological intervention to remedy Cu and Fe abnormalities in the treatment of Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS).
Collapse
|
43
|
Hunsaker EW, Franz KJ. Emerging Opportunities To Manipulate Metal Trafficking for Therapeutic Benefit. Inorg Chem 2019; 58:13528-13545. [PMID: 31247859 DOI: 10.1021/acs.inorgchem.9b01029] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The indispensable requirement for metals in life processes has led to the evolution of sophisticated mechanisms that allow organisms to maintain dynamic equilibria of these ions. This dynamic control of the level, speciation, and availability of a variety of metal ions allows organisms to sustain biological processes while avoiding toxicity. When functioning properly, these mechanisms allow cells to return to their metal homeostatic set points following shifts in the metal availability or other stressors. These periods of transition, when cells are in a state of flux in which they work to regain homeostasis, present windows of opportunity to pharmacologically manipulate targets associated with metal-trafficking pathways in ways that could either facilitate a return to homeostasis and the recovery of cellular function or further push cells outside of homeostasis and into cellular distress. The purpose of this Viewpoint is to highlight emerging opportunities for chemists and chemical biologists to develop compounds to manipulate metal-trafficking processes for therapeutic benefit.
Collapse
Affiliation(s)
- Elizabeth W Hunsaker
- Department of Chemistry , Duke University , French Family Science Center, 124 Science Drive , Durham , North Carolina 27708 , United States
| | - Katherine J Franz
- Department of Chemistry , Duke University , French Family Science Center, 124 Science Drive , Durham , North Carolina 27708 , United States
| |
Collapse
|
44
|
Esmieu C, Guettas D, Conte-Daban A, Sabater L, Faller P, Hureau C. Copper-Targeting Approaches in Alzheimer’s Disease: How To Improve the Fallouts Obtained from in Vitro Studies. Inorg Chem 2019; 58:13509-13527. [DOI: 10.1021/acs.inorgchem.9b00995] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | | | | | - Peter Faller
- LCC−CNRS, Université de Toulouse, CNRS, Toulouse, France
| | | |
Collapse
|
45
|
Kang J, Nam JS, Lee HJ, Nam G, Rhee HW, Kwon TH, Lim MH. Chemical strategies to modify amyloidogenic peptides using iridium(iii) complexes: coordination and photo-induced oxidation. Chem Sci 2019; 10:6855-6862. [PMID: 31391908 PMCID: PMC6657414 DOI: 10.1039/c9sc00931k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Effective chemical strategies, i.e., coordination and coordination-/photo-mediated oxidation, are rationally developed towards modification of amyloidogenic peptides and subsequent control of their aggregation and toxicity.
Amyloidogenic peptides are considered central pathological contributors towards neurodegeneration as observed in neurodegenerative disorders [e.g., amyloid-β (Aβ) peptides in Alzheimer's disease (AD)]; however, their roles in the pathologies of such diseases have not been fully elucidated since they are challenging targets to be studied due to their heterogeneous nature and intrinsically disordered structure. Chemical approaches to modify amyloidogenic peptides would be valuable in advancing our molecular-level understanding of their involvement in neurodegeneration. Herein, we report effective chemical strategies for modification of Aβ peptides (i.e., coordination and coordination-/photo-mediated oxidation) implemented by a single Ir(iii) complex in a photo-dependent manner. Such peptide variations can be achieved by our rationally designed Ir(iii) complexes (Ir-Me, Ir-H, Ir-F, and Ir-F2) leading to significantly modulating the aggregation pathways of two main Aβ isoforms, Aβ40 and Aβ42, as well as the production of toxic Aβ species. Overall, we demonstrate chemical tactics for modification of amyloidogenic peptides in an effective and manageable manner utilizing the coordination capacities and photophysical properties of transition metal complexes.
Collapse
Affiliation(s)
- Juhye Kang
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea . .,Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea .
| | - Jung Seung Nam
- Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea .
| | - Hyuck Jin Lee
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea . .,Department of Chemistry Education , Kongju National University , Gongju 32588 , Republic of Korea
| | - Geewoo Nam
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea . .,Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea .
| | - Hyun-Woo Rhee
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| | - Tae-Hyuk Kwon
- Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea .
| | - Mi Hee Lim
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea .
| |
Collapse
|
46
|
McInnes LE, Noor A, Kysenius K, Cullinane C, Roselt P, McLean CA, Chiu FCK, Powell AK, Crouch PJ, White JM, Donnelly PS. Potential Diagnostic Imaging of Alzheimer's Disease with Copper-64 Complexes That Bind to Amyloid-β Plaques. Inorg Chem 2019; 58:3382-3395. [PMID: 30785268 DOI: 10.1021/acs.inorgchem.8b03466] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Amyloid-β plaques, consisting of aggregated amyloid-β peptides, are one of the pathological hallmarks of Alzheimer's disease. Copper complexes formed using positron-emitting copper radionuclides that cross the blood-brain barrier and bind to specific molecular targets offer the possibility of noninvasive diagnostic imaging using positron emission tomography. New thiosemicarbazone-pyridylhydrazone based ligands that incorporate pyridyl-benzofuran functional groups designed to bind amyloid-β plaques have been synthesized. The ligands form stable complexes with copper(II) ( Kd = 10-18 M) and can be radiolabeled with copper-64 at room temperature. Subtle changes to the periphery of the ligand backbone alter the metabolic stability of the complexes in mouse and human liver microsomes, and influenced the ability of the complexes to cross the blood-brain barrier in mice. A lead complex was selected based on possessing the best metabolic stability and brain uptake in mice. Synthesis of this lead complex with isotopically enriched copper-65 allowed us to show that the complex bound to amyloid-β plaques present in post-mortem human brain tissue using laser ablation-inductively coupled plasma-mass spectrometry. This work provides insight into strategies to target metal complexes to amyloid-β plaques, and how small modifications to ligands can dramatically alter the metabolic stability of metal complexes as well as their ability to cross the blood-brain barrier.
Collapse
Affiliation(s)
| | | | | | - Carleen Cullinane
- Research Division , Peter MacCallum Cancer Centre , Melbourne , Victoria , Australia , 3000.,The Sir Peter MacCallum Department of Oncology , The University of Melbourne , Parkville , Victoria , Australia , 3000
| | - Peter Roselt
- Research Division , Peter MacCallum Cancer Centre , Melbourne , Victoria , Australia , 3000
| | - Catriona A McLean
- Department of Anatomical Pathology , The Alfred Hospital , Melbourne , Victoria , Australia , 3181
| | - Francis C K Chiu
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria , Australia , 3052
| | - Andrew K Powell
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria , Australia , 3052
| | | | | | | |
Collapse
|
47
|
Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2019; 12:25. [PMID: 30837838 PMCID: PMC6382748 DOI: 10.3389/fnmol.2019.00025] [Citation(s) in RCA: 496] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a versatile RNA/DNA binding protein involved in RNA-related metabolism. Hyper-phosphorylated and ubiquitinated TDP-43 deposits act as inclusion bodies in the brain and spinal cord of patients with the motor neuron diseases: amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). While the majority of ALS cases (90-95%) are sporadic (sALS), among familial ALS cases 5-10% involve the inheritance of mutations in the TARDBP gene and the remaining (90-95%) are due to mutations in other genes such as: C9ORF72, SOD1, FUS, and NEK1 etc. Strikingly however, the majority of sporadic ALS patients (up to 97%) also contain the TDP-43 protein deposited in the neuronal inclusions, which suggests of its pivotal role in the ALS pathology. Thus, unraveling the molecular mechanisms of the TDP-43 pathology seems central to the ALS therapeutics, hence, we comprehensively review the current understanding of the TDP-43's pathology in ALS. We discuss the roles of TDP-43's mutations, its cytoplasmic mis-localization and aberrant post-translational modifications in ALS. Also, we evaluate TDP-43's amyloid-like in vitro aggregation, its physiological vs. pathological oligomerization in vivo, liquid-liquid phase separation (LLPS), and potential prion-like propagation propensity of the TDP-43 inclusions. Finally, we describe the various evolving TDP-43-induced toxicity mechanisms, such as the impairment of endocytosis and mitotoxicity etc. and also discuss the emerging strategies toward TDP-43 disaggregation and ALS therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Basant K. Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| |
Collapse
|
48
|
Huat TJ, Camats-Perna J, Newcombe EA, Valmas N, Kitazawa M, Medeiros R. Metal Toxicity Links to Alzheimer's Disease and Neuroinflammation. J Mol Biol 2019; 431:1843-1868. [PMID: 30664867 DOI: 10.1016/j.jmb.2019.01.018] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/11/2022]
Abstract
As the median age of the population increases, the number of individuals with Alzheimer's disease (AD) and the associated socio-economic burden are predicted to worsen. While aging and inherent genetic predisposition play major roles in the onset of AD, lifestyle, physical fitness, medical condition, and social environment have emerged as relevant disease modifiers. These environmental risk factors can play a key role in accelerating or decelerating disease onset and progression. Among known environmental risk factors, chronic exposure to various metals has become more common among the public as the aggressive pace of anthropogenic activities releases excess amount of metals into the environment. As a result, we are exposed not only to essential metals, such as iron, copper, zinc and manganese, but also to toxic metals including lead, aluminum, and cadmium, which perturb metal homeostasis at the cellular and organismal levels. Herein, we review how these metals affect brain physiology and immunity, as well as their roles in the accumulation of toxic AD proteinaceous species (i.e., β-amyloid and tau). We also discuss studies that validate the disruption of immune-related pathways as an important mechanism of toxicity by which metals can contribute to AD. Our goal is to increase the awareness of metals as players in the onset and progression of AD.
Collapse
Affiliation(s)
- Tee Jong Huat
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia; Centre for Stem Cell Ageing and Regenerative Engineering, The University of Queensland, Brisbane, Australia.
| | - Judith Camats-Perna
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Estella A Newcombe
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Nicholas Valmas
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Masashi Kitazawa
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, USA
| | - Rodrigo Medeiros
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
49
|
McInnes LE, Noor A, Roselt PD, McLean CA, White JM, Donnelly PS. A Copper Complex of a Thiosemicarbazone-Pyridylhydrazone Ligand Containing a Vinylpyridine Functional Group as a Potential Imaging Agent for Amyloid-β Plaques. Aust J Chem 2019. [DOI: 10.1071/ch19311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Complexes containing positron-emitting radionuclides of copper have the potential to be of use for diagnostic imaging with positron emission tomography. Alzheimer’s disease is characterised by the presence of amyloid-β plaques in the brain. A new thiosemicarbazone-pyridyl hydrazone tetradentate ligand with a pyridyl-4-vinylpyridine functional group was prepared with the aim of making a copper complex that binds to amyloid-β plaques to assist in the diagnosis of Alzheimer’s disease. The ligand forms a charge neutral complex with copper(ii) that was characterised by X-ray crystallography and the electrochemical behaviour of the complex was investigated by cyclic voltammetry. The new ligand can be radiolabelled with positron-emitting copper-64 at room temperature in excellent radiochemical yields. The new complex interacts with synthetic amyloid-β fibrils and binds amyloid-β plaques present in post-mortem Alzheimer’s disease brain tissue.
Collapse
|
50
|
Alkyl Length Effects on the DNA Transport Properties of Cu (II) and Zn(II) Metallovesicles: An In Vitro and In Vivo Study. JOURNAL OF DRUG DELIVERY 2018; 2018:2851579. [PMID: 30534433 PMCID: PMC6252230 DOI: 10.1155/2018/2851579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/12/2018] [Indexed: 12/02/2022]
Abstract
Cationic liposomes with DNA-transportation properties have attracted considerable attention for their ability to deliver medicinal oligonucleotides to mammalian cells. Amongst these are metalloliposomes that use transition metal ions to confer the lipid molecules cationic charge and unique advantages such as redox- and ligand-exchange triggered DNA-release properties. In this study, lipophilic copper (II) and zinc (II) complexes of 1-alkyl-1,4,7-triazacyclononane were prepared to investigate their ability to bind and transfect double stranded DNA with mammalian cells in vitro and in vivo. The copper(II)-surfactant complexes Cu(TACN-C8)2 (1), Cu(TACN-C10)2 (2), Cu(TACN-C12)2 (3), Cu(TACN-C14)2 (4), Cu(TACN-C16)2 (5), and Cu(TACN-C18)2 (6) that comprise ligands that vary in the length of the alkyl group and the zinc (II)-surfactant complex of Zn(TACN-C12)2 (7) were synthesized. The critical micelle concentration (CMC) for 1-7 was measured using fluorescence spectroscopy and an evaluation of the transfection efficiency of the complexes was assessed using the pEGFP-N1 plasmid and HEK 293-T cells. An inverse relationship between DNA transfection efficiency and CMC of the Cu(II) metallosurfactants was observed. The highest transfection efficiency of 38% was observed for Cu(TACN-C12)2 corresponding to the surfactant with dodecyl alkyl chain having a CMC of 50 μM. Further, an in vivo experiment using mice models was conducted to test the Cu(TACN-C12)2 (3) and Zn(TACN-C12)2 (7) metallosurfactants delivering a DNA vaccine designed for protection against leishmaniasis disease and the study revealed that the Cu-lipoplex elicited the production of significantly more T cells than the Zn-lipoplex and the control group in vivo.
Collapse
|