1
|
Sun Q, Yang R, Chen T, Li S, Wang H, Kong D, Zhang W, Duan J, Zheng H, Shen Z, Zhang J. Icaritin attenuates ischemia-reperfusion injury by anti-inflammation, anti-oxidative stress, and anti-autophagy in mouse liver. Int Immunopharmacol 2024; 138:112533. [PMID: 38924868 DOI: 10.1016/j.intimp.2024.112533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (IR) injury is a major complication of liver transplantation and gravely affects patient prognosis. Icaritin (ICT), the primary plasma metabolite of icariin (ICA), plays a critical role in anti-inflammatory and immunomodulatory processes. However, the role of ICT in hepatic IR injury remains largely undefined. In this study, we aimed to elucidate the role of ICT in hepatic IR injury. METHODS We established hepatic IR injury models in animals, as well as an oxygen-glucose deprivation/reperfusion (OGD/R) cell model. Liver injury in vivo was assessed by measuring serum alanine aminotransferase (ALT) levels, necrotic areas by liver histology and local hepatic inflammatory responses. For in vitro analyses, we implemented flow-cytometric and western blot analyses, transmission electron microscopy, and an mRFP-GFP-LC3 adenovirus reporter assay to assess the effects of ICT on OGD/R injury in AML12 and THLE-2 cell lines. Signaling pathways were explored in vitro and in vivo to identify possible mechanisms underlying ICT action in hepatic IR injury. RESULTS Compared to the mouse model group, ICT preconditioning considerably protected the liver against IR stress, and diminished the levels of necrosis/apoptosis and inflammation-related cytokines. In additional studies, ICT treatment dramatically boosted the expression ratios of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR proteins in hepatic cells following OGD/R damage. We also applied LY294002 (a PI3K inhibitor) and RAPA (rapamycin, an mTOR inhibitor), which blocked the protective effects of ICT in hepatocytes subjected to OGD/R. CONCLUSION This study indicates that ICT attenuates ischemia-reperfusion injury by exerting anti-inflammation, anti-oxidative stress, and anti-autophagy effects, as demonstrated in mouse livers. We thus posit that ICT could have therapeutic potential for the treatment of hepatic IR injury.
Collapse
Affiliation(s)
- Qian Sun
- The First Central Clinical School, Tianjin Medical University, Tianjin, China.
| | - Ruining Yang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China.
| | - Tao Chen
- The First Central Clinical School, Tianjin Medical University, Tianjin, China.
| | - Shipeng Li
- Department of Hepatopancreaticobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China.
| | - Hao Wang
- Department of Kidney Transplantation, Shenzhen Third People's Hospital, China.
| | - Dejun Kong
- School of Medicine, Nankai University, Tianjin, China.
| | - Weiye Zhang
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
| | - Jinliang Duan
- School of Medicine, Nankai University, Tianjin, China.
| | - Hong Zheng
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
| | - Zhongyang Shen
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
| | - Jianjun Zhang
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
2
|
Secretory autophagy promotes Rab37-mediated exocytosis of tissue inhibitor of metalloproteinase 1. J Biomed Sci 2022; 29:103. [PMID: 36457117 PMCID: PMC9717497 DOI: 10.1186/s12929-022-00886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/20/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Rab37-mediated exocytosis of tissue inhibitor of metalloproteinase 1 (TIMP1), an inflammatory cytokine, under serum-depleted conditions which leads to suppression of lung cancer cell metastasis has been reported. Starvation is also a stimulus of autophagic activity. Herein, we reveal that starvation activates Rab37 and induces autophagy. METHODS We used an overexpression/knockdown system to determine the relationship between autophagy and Rab37 in vitro and in vivo. The autophagy activity was detected by immunoblotting, transmission electron microscope, autophagosome purification, and immunofluorescence under the confocal microscope. Lung-to-lung metastasis mouse model was used to clarify the role of autophagy and Rab37 in lung cancer. Clinical lung cancer patient specimens and an online big database were analyzed. RESULTS Initially, we demonstrated that active-form Rab37 increased LC3-II protein level (the marker of autophagosome) and TIMP1 secretion. Accordingly, silencing of Rab37 gene expression alleviated Rab37 and LC3-II levels as well as TIMP1 secretion, and induction of autophagy could not increase TIMP1 exocytosis under such conditions. Moreover, silencing the Atg5 or Atg7 gene of lung cancer cells harboring active-mutant Rab37 (Q89L) led to decreased autophagy activity and TIMP1 secretion. In the lung-to-lung metastasis mouse model, increased TIMP1 expression accompanied by amiodarone-induced autophagy led to decreased tumor nodules and cancer cell metastasis. These phenomena were reversed by silencing the Atg5 or Atg7 gene. Notably, increasing autophagy activity alone showed no effect on TIMP1 secretion under either Rab37 or Sec22b silencing conditions. We further detected colocalization of LC3 with either Rab37 or TIMP1, identified Rab37 and Sec22b proteins in the purified autophagosomes of the lung cancer cells harboring the active-form Rab37 gene, and confirmed that these proteins are involved in the secretion of TIMP1. We reveal that autophagic activity was significantly lower in the tumors compared to the non-tumor parts and was associated with the overall lung cancer patient survival rate. CONCLUSIONS We are the first to report that autophagy plays a promoting role in TIMP1 secretion and metastasis in a Rab37-dependent manner in lung cancer cells and the lung-to-lung mouse model.
Collapse
|
3
|
Ma J, Teng Y, Huang Y, Tao X, Fan Y. Autophagy plays an essential role in ultraviolet radiation-driven skin photoaging. Front Pharmacol 2022; 13:864331. [PMID: 36278173 PMCID: PMC9582953 DOI: 10.3389/fphar.2022.864331] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Photoaging is characterized by a chronic inflammatory response to UV light. One of the most prominent features of cutaneous photoaging is wrinkling, which is due primarily to a loss of collagen fibers and deposits of abnormal degenerative elastotic material within the dermis (actinic elastosis). These changes are thought to be mediated by inflammation, with subsequent upregulation of extracellular matrix-degrading proteases and down-regulation of collagen synthesis. Autophagy is a vital homeostatic cellular process of either clearing surplus or damaged cell components notably lipids and proteins or recycling the content of the cells’ cytoplasm to promote cell survival and adaptive responses during starvation and other oxidative and/or genotoxic stress conditions. Autophagy may also become a means of supplying nutrients to maintain a high cellular proliferation rate when needed. It has been suggested that loss of autophagy leads to both photodamage and the initiation of photoaging in UV exposed skin. Moreover, UV radiation of sunlight is capable of regulating a number of autophagy-linked genes. This review will focus on the protective effect of autophagy in the skin cells damaged by UV radiation. We hope to draw attention to the significance of autophagy regulation in the prevention and treatment of skin photoaging.
Collapse
|
4
|
Berg AL, Rowson-Hodel A, Wheeler MR, Hu M, Free SR, Carraway KL. Engaging the Lysosome and Lysosome-Dependent Cell Death in Cancer. Breast Cancer 2022. [DOI: 10.36255/exon-publications-breast-cancer-lysosome] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Zhang S, Peng X, Yang S, Li X, Huang M, Wei S, Liu J, He G, Zheng H, Yang L, Li H, Fan Q. The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders. Cell Death Dis 2022; 13:132. [PMID: 35136038 PMCID: PMC8825858 DOI: 10.1038/s41419-022-04593-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Autophagy is a conserved method of quality control in which cytoplasmic contents are degraded via lysosomes. Lipophagy, a form of selective autophagy and a novel type of lipid metabolism, has recently received much attention. Lipophagy is defined as the autophagic degradation of intracellular lipid droplets (LDs). Although much remains unknown, lipophagy appears to play a significant role in many organisms, cell types, metabolic states, and diseases. It participates in the regulation of intracellular lipid storage, intracellular free lipid levels (e.g., fatty acids), and energy balance. However, it remains unclear how intracellular lipids regulate autophagy. Impaired lipophagy can cause cells to become sensitive to death stimuli and may be responsible for the onset of a variety of diseases, including nonalcoholic fatty liver disease and metabolic syndrome. Like autophagy, the role of lipophagy in cancer is poorly understood, although analysis of specific autophagy receptors has helped to expand the diversity of chemotherapeutic targets. These studies have stimulated increasing interest in the role of lipophagy in the pathogenesis and treatment of cancer and other human diseases.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Mingyao Huang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Hongyu Zheng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Qing Fan
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
6
|
Mesquita A, Glenn J, Jenny A. Differential activation of eMI by distinct forms of cellular stress. Autophagy 2021; 17:1828-1840. [PMID: 32559125 PMCID: PMC8386722 DOI: 10.1080/15548627.2020.1783833] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
As one of the major, highly conserved catabolic pathways, autophagy delivers cytosolic components to lysosomes for degradation. It is essential for development, cellular homeostasis, and coping with stress. Reduced autophagy increases susceptibility to protein aggregation diseases and leads to phenotypes associated with aging. Of the three major forms of autophagy, macroautophagy (MA) can degrade organelles or aggregated proteins, and chaperone-mediated autophagy is specific for soluble proteins containing KFERQ-related targeting motifs. During endosomal microautophagy (eMI), cytoplasmic proteins are engulfed into late endosomes in an ESCRT machinery-dependent manner. eMI can be KFERQ-specific or occur in bulk and be induced by prolonged starvation. Its physiological regulation and function, however, are not understood. Here, we show that eMI in the Drosophila fat body, akin to the mammalian liver, is induced upon oxidative or genotoxic stress in an ESCRT and partially Hsc70-4-dependent manner. Interestingly, eMI activation is selective, as ER stress fails to elicit a response. Intriguingly, we find that reducing MA leads to a compensatory enhancement of eMI, suggesting a tight interplay between these degradative processes. Furthermore, we show that mutations in DNA damage response genes are sufficient to trigger eMI and that the response to oxidative stress is under the control of MAPK/JNK signaling. Our data suggest that, controlled by various signaling pathways, eMI allows an organ to react and adapt to specific types of stress and is thus likely critical to prevent disease.Abbreviations:Atg: autophagy-related; CMA: chaperone-mediated autophagy; DDR: DNA damage repair; Df: deficiency (deletion); (E)GFP: (enhanced) green fluorescent protein; eMI: endosomal microautophagy; ER: endoplasmatic reticulum; ESCRT: endosomal sorting complexes required for transport; Eto: etoposide; FLP: flipase; Hsc: heat shock cognate protein; LAMP2A: lysosomal-associated membrane protein 2A; LE: late endosome; MA: macroautophagy; MI: microautophagy; MVB: multivesicular body; PA: photoactivatable; Para: paraquat; ROS: reactive oxygen species; SEM: standard error of means; Tor: target of rapamycin [serine/threonine kinase]; UPR: unfolded protein response; Vps: vacuolar protein sorting.
Collapse
Affiliation(s)
- Ana Mesquita
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, NY, US
| | - James Glenn
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, NY, US
| | - Andreas Jenny
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, NY, US
- Department of Genetics, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, NY, US
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, NY, US
| |
Collapse
|
7
|
Sobolewski C, Legrand N. Celecoxib Analogues for Cancer Treatment: An Update on OSU-03012 and 2,5-Dimethyl-Celecoxib. Biomolecules 2021; 11:biom11071049. [PMID: 34356673 PMCID: PMC8302000 DOI: 10.3390/biom11071049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is an important enzyme involved in prostaglandins biosynthesis from arachidonic acid. COX-2 is frequently overexpressed in human cancers and plays a major tumor promoting function. Accordingly, many efforts have been devoted to efficiently target the catalytic site of this enzyme in cancer cells, by using COX-2 specific inhibitors such as celecoxib. However, despite their potent anti-tumor properties, the myriad of detrimental effects associated to the chronic inhibition of COX-2 in healthy tissues, has considerably limited their use in clinic. In addition, increasing evidence indicate that these anti-cancerous properties are not strictly dependent on the inhibition of the catalytic site. These findings have led to the development of non-active COX-2 inhibitors analogues aiming at preserving the antitumor effects of COX-2 inhibitors without their side effects. Among them, two celecoxib derivatives, 2,5-Dimethyl-Celecoxib and OSU-03012, have been developed and suggested for the treatment of viral (e.g., recently SARS-CoV-2), inflammatory, metabolic diseases and cancers. These molecules display stronger anti-tumor properties than celecoxib and thus may represent promising anti-cancer molecules. In this review, we discuss the impact of these two analogues on cancerous processes but also their potential for cancer treatment alone or in combination with existing approaches.
Collapse
Affiliation(s)
- Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Correspondence: ; Tel.: +41-22-379-5421
| | - Noémie Legrand
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland;
| |
Collapse
|
8
|
A comprehensive phenotypic characterization of a whole-body Wdr45 knock-out mouse. Mamm Genome 2021; 32:332-349. [PMID: 34043061 PMCID: PMC8458197 DOI: 10.1007/s00335-021-09875-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022]
Abstract
Pathogenic variants in the WDR45 (OMIM: 300,526) gene on chromosome Xp11 are the genetic cause of a rare neurological disorder characterized by increased iron deposition in the basal ganglia. As WDR45 encodes a beta-propeller scaffold protein with a putative role in autophagy, the disease has been named Beta-Propeller Protein-Associated Neurodegeneration (BPAN). BPAN represents one of the four most common forms of Neurodegeneration with Brain Iron Accumulation (NBIA). In the current study, we generated and characterized a whole-body Wdr45 knock-out (KO) mouse model. The model, developed using TALENs, presents a 20-bp deletion in exon 2 of Wdr45. Homozygous females and hemizygous males are viable, proving that systemic depletion of Wdr45 does not impair viability and male fertility in mice. The in-depth phenotypic characterization of the mouse model revealed neuropathology signs at four months of age, neurodegeneration progressing with ageing, hearing and visual impairment, specific haematological alterations, but no brain iron accumulation. Biochemically, Wdr45 KO mice presented with decreased complex I (CI) activity in the brain, suggesting that mitochondrial dysfunction accompanies Wdr45 deficiency. Overall, the systemic Wdr45 KO described here complements the two mouse models previously reported in the literature (PMIDs: 26,000,824, 31,204,559) and represents an additional robust model to investigate the pathophysiology of BPAN and to test therapeutic strategies for the disease.
Collapse
|
9
|
Chen Y, Xu Z, Zeng Y, Liu J, Wang X, Kang Y. Altered metabolism by autophagy defection affect liver regeneration. PLoS One 2021; 16:e0250578. [PMID: 33914811 PMCID: PMC8084245 DOI: 10.1371/journal.pone.0250578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/08/2021] [Indexed: 11/19/2022] Open
Abstract
Autophagy is the primary intracellular catabolic process for degrading and recycling long-lived proteins and damaged organelles, which maintains cellular homeostasis. Autophagy has key roles in development and differentiation. By using the mouse with liver specific knockout of autophagy related gene 5 (Atg5), a gene essential for autophagy, we investigated the possible role of autophagy in liver regeneration after 70% partial hepatectomy (PHx). Ablation of autophagy significantly impaired mouse liver regeneration, and this impairment was associated with reduced hepatocellular proliferation rate, down-regulated expression of cyclins and tumor suppressors, and increased hepatocellular apoptosis via the intrinsic apoptotic pathway. Ablation of autophagy does not affect IL-6 and TNF-α response after PHx, but the altered hepatic and systemic metabolic responses were observed in these mice, including reduced ATP and hepatic free fatty acid levels in the liver tissue, increased glucose level in the serum. Autophagy is required to promote hepatocellular proliferation by maintaining normal hepatic and systemic metabolism and suppress hepatocellular apoptosis in liver regeneration.
Collapse
Affiliation(s)
- Yi Chen
- Clinical Research Service Center, Henan Provincia People’s Hospital, Zhengzhou University People’s Hospital, Henan Province, Zhengzhou, China
| | - Zhiwei Xu
- Clinical Research Service Center, Henan Provincia People’s Hospital, Zhengzhou University People’s Hospital, Henan Province, Zhengzhou, China
| | - Yanli Zeng
- Department of Infectious Diseases, Henan Provincia People’s Hospital, Zhengzhou University People’s Hospital, Henan Province, Zhengzhou, China
| | - Junping Liu
- Department of Infectious Diseases, Henan Provincia People’s Hospital, Zhengzhou University People’s Hospital, Henan Province, Zhengzhou, China
| | - Xuemei Wang
- Department of Traditional Chinese Medicine, Henan Provincia People’s Hospital, Zhengzhou University People’s Hospital, Henan Province, Zhengzhou, China
| | - Yi Kang
- Department of Infectious Diseases, Henan Provincia People’s Hospital, Zhengzhou University People’s Hospital, Henan Province, Zhengzhou, China
| |
Collapse
|
10
|
Park JT, Lee YS, Cho KA, Park SC. Adjustment of the lysosomal-mitochondrial axis for control of cellular senescence. Ageing Res Rev 2018; 47:176-182. [PMID: 30142381 DOI: 10.1016/j.arr.2018.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/10/2018] [Accepted: 08/18/2018] [Indexed: 12/11/2022]
Abstract
Mitochondria and lysosomes undergo the most marked senescence-related alterations among all cellular organelles. Whereas mitochondria undergo gradual structural changes associated with reduced function, lysosomes exhibit progressively deteriorated function along with the accumulation of lipofuscins. Lysosomal dysfunction induces the deterioration of mitochondrial turnover, resulting in the generation of more reactive oxygen species (ROS), with the increased ROS levels in turn targeting lysosomes. This vicious feedback loop between lysosomes and mitochondria thus aggravates senescence phenotypes. Based on findings that lysosomal activity is diminished in senescent cells and that the resultant oxidative stress correlates with mitochondrial damage, the existence of a lysosomal-mitochondrial axis with a functional role in senescence has been proposed. In this review, we interrogate the interplay between lysosomes and mitochondria during senescence and propose the lysosomal-mitochondrial axis to serve a potential function as an inducer of senescence alleviation. Thus, learning how to control the lysosomal-mitochondrial axis should represent an important research directive for developing therapeutics toward ageing-related disease as well as the aging process itself. Further research focusing on the lysosomal-mitochondrial axis will add to our knowledge regarding aging and age-related pathologies, as well as provide new strategies for anti-aging intervention.
Collapse
|
11
|
Jeong AJ, Kim YJ, Lim MH, Lee H, Noh K, Kim BH, Chung JW, Cho CH, Kim S, Ye SK. Microgravity induces autophagy via mitochondrial dysfunction in human Hodgkin's lymphoma cells. Sci Rep 2018; 8:14646. [PMID: 30279524 PMCID: PMC6168562 DOI: 10.1038/s41598-018-32965-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023] Open
Abstract
Gravitational forces can impose physical stresses on the human body as it functions to maintain homeostasis. It has been reported that astronauts exposed to microgravity experience altered biological functions and many subsequent studies on the effects of microgravity have therefore been conducted. However, the anticancer mechanisms of simulated microgravity remain unclear. We previously showed that the proliferation of human Hodgkin's lymphoma (HL) cells was inhibited when these cells were cultured in time-averaged simulated microgravity (taSMG). In the present study, we investigated whether taSMG produced an anticancer effect. Exposure of human HL cells to taSMG for 2 days increased their reactive oxygen species (ROS) production and NADPH oxidase family gene expression, while mitochondrial mass, ATPase, ATP synthase, and intracellular ATP levels were decreased. Furthermore, human HL cells exposed to taSMG underwent autophagy via AMPK/Akt/mTOR and MAPK pathway modulation; such autophagy was inhibited by the ROS scavenger N-acetylcysteine (NAC). These results suggest an innovative therapeutic approach to HL that is markedly different from conventional chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Ae Jin Jeong
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yoon Jae Kim
- Interdisciplinary Program for Bioengineering, Graduate School, Seoul National University, Seoul, 08826, Korea
| | - Min Hyuk Lim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Haeri Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Kumhee Noh
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Byung-Hak Kim
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jin Woong Chung
- Department of Biological Science, Dong-A University, Busan, 49315, Republic of Korea
| | - Chung-Hyun Cho
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, and Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sungwan Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Ischemic/Hypoxic Disease Institute, and Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
12
|
Wu Z, Cai L, Lu J, Wang CD, Guan J, Chen X, Wu J, Zheng W, Wu Z, Li Q, Su Z. MicroRNA-93 mediates cabergoline-resistance by targeting ATG7 in prolactinoma. J Endocrinol 2018; 240:JOE-18-0203.R1. [PMID: 30389900 DOI: 10.1530/joe-18-0203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
Abstract
To date, the management of dopamine agonist (DA)-resistant prolactinomas remains a major clinical problem. Previously, we determined that miRNA-93 expression increases in DA-resistant prolactinomas; however, the role of miRNA-93 in the DA resistance remains largely unexplored. Hence, this study aimed to investigate the susceptibility of tumor cells to cabergoline (CAB) and the autophagy changes in MMQ and GH3 cells after miRNA-93 overexpression or inhibition. We used bioinformatics to identify the potential target of miRNA-93. Subsequently, we analyzed the correlation between miRNA-93 and autophagy-related 7 (ATG7) using protein expression analysis and luciferase assays. Furthermore, the change in the effect of miRNA-93 was measured after ATG7 overexpression. miRNA-93 expression was elevated in DA-resistant prolactinomas, whereas the expression of its identified target, ATG7, was downregulated. miRNA-93 overexpression suppressed the cytotoxic effect of CAB in MMQ and GH3 cells. In contrast, miRNA-93 downregulation enhanced CAB efficiency and promoted cell autophagy, eventually resulting in apoptosis. These results were further confirmed in vivo xenograft models in nude mice. ATG7 overexpression could reverse the inhibitory effect of miRNA-93 on CAB treatment. Taken together, our results suggest that miRNA-93 mediates CAB resistance via autophagy downregulation by targeting ATG7 and serves as a promising therapeutic target for prolactinoma.
Collapse
Affiliation(s)
- Zerui Wu
- Z Wu, Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin Cai
- L Cai, Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianglong Lu
- J Lu, Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cheng De Wang
- C Wang, neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiaqing Guan
- J Guan, Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xianbin Chen
- X Chen, Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinsen Wu
- J Wu, Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weiming Zheng
- W Zheng, Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhebao Wu
- Z Wu, Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qun Li
- Q Li, Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhipeng Su
- Z Su, Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Diogo CV, Yambire KF, Fernández Mosquera L, Branco F T, Raimundo N. Mitochondrial adventures at the organelle society. Biochem Biophys Res Commun 2018; 500:87-93. [PMID: 28456629 PMCID: PMC5930832 DOI: 10.1016/j.bbrc.2017.04.124] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 04/23/2017] [Indexed: 01/16/2023]
Abstract
Mitochondria are constantly communicating with the rest of the cell. Defects in mitochondria underlie severe pathologies, whose mechanisms remain poorly understood. It is becoming increasingly evident that mitochondrial malfunction resonates in other organelles, perturbing their function and their biogenesis. In this manuscript, we review the current knowledge on the cross-talk between mitochondria and other organelles, particularly lysosomes, peroxisomes and the endoplasmic reticulum. Several organelle interactions are mediated by transcriptional programs, and other signaling mechanisms are likely mediating organelle dysfunction downstream of mitochondrial impairments. Many of these organelle crosstalk pathways are likely to have a role in pathological processes.
Collapse
Affiliation(s)
- Cátia V Diogo
- Universitätsmedizin Göttingen, Institute fur Zellbiochemie, Humboldtallee 23, room 01.423, 37073 Göttingen, Germany
| | - King Faisal Yambire
- Universitätsmedizin Göttingen, Institute fur Zellbiochemie, Humboldtallee 23, room 01.423, 37073 Göttingen, Germany; International Max-Planck Research School in Neuroscience, Göttingen, Germany
| | - Lorena Fernández Mosquera
- Universitätsmedizin Göttingen, Institute fur Zellbiochemie, Humboldtallee 23, room 01.423, 37073 Göttingen, Germany
| | - Tiago Branco F
- Universitätsmedizin Göttingen, Institute fur Zellbiochemie, Humboldtallee 23, room 01.423, 37073 Göttingen, Germany
| | - Nuno Raimundo
- Universitätsmedizin Göttingen, Institute fur Zellbiochemie, Humboldtallee 23, room 01.423, 37073 Göttingen, Germany.
| |
Collapse
|
14
|
Vanadium(IV)-chlorodipicolinate alleviates hepatic lipid accumulation by inducing autophagy via the LKB1/AMPK signaling pathway in vitro and in vivo. J Inorg Biochem 2018; 183:66-76. [PMID: 29558683 DOI: 10.1016/j.jinorgbio.2018.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/06/2018] [Accepted: 03/11/2018] [Indexed: 12/16/2022]
Abstract
Numerous studies have demonstrated that vanadium compounds are able to improve lipemia and triglyceridemia in both humans and animals. However, the molecular mechanism remains elusive. The present study was conducted to investigate the anti-hyperlipidemic effect of vanadium(IV) complex with 4-chlorodipicolinic acid (VOdipic-Cl)-induced autophagy on hepatic lipid accumulation. To explore the possible underlying mechanisms, primary rat hepatocytes, human hepatoma cell line HepG2, and liver tissue from C57BL/6 mice fed a high-fat diet (HFD) were used. In vitro, cultured primary rat hepatocytes were treated with palmitate (0.25, 0.5 and 0.75 mM) prior to VOdipic-Cl (50, 100, and 200 μM) for 24 h, respectively. In vivo, C57BL/6 mice were fed with high-fat diet for 16 weeks. VOdipic-Cl (10 mg V/kg body weight) was given by daily gavage for 4 weeks. In vitro results showed that VOdipic-Cl significantly inhibited lipid droplet formation by increasing the level of conversion and punctuation of microtubule-associated proteins light chain 3 (LC3) in a dose-dependent manner, and activated liver kinase B-1 (LKB1) and adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. Confocal microscopy images also showed that VOdipic-Cl induced sequestration of lipid droplets (LDs) by autophagy. In vivo, VOdipic-Cl attenuated the increase in serum and liver triglyceride levels in the mice fed with high-fat diet, while significantly increased autophagy induction and activated LKB1 and AMPK phosphorylation in the liver. Taken together, these results suggest that VOdipic-Cl reduces hepatic lipid accumulation by inducing autophagy via the activation of LKB1/AMPK-dependent signaling pathway.
Collapse
|
15
|
Mui UN, Haley CT, Tyring SK. Viral Oncology: Molecular Biology and Pathogenesis. J Clin Med 2017; 6:E111. [PMID: 29186062 PMCID: PMC5742800 DOI: 10.3390/jcm6120111] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Oncoviruses are implicated in approximately 12% of all human cancers. A large number of the world's population harbors at least one of these oncoviruses, but only a small proportion of these individuals go on to develop cancer. The interplay between host and viral factors is a complex process that works together to create a microenvironment conducive to oncogenesis. In this review, the molecular biology and oncogenic pathways of established human oncoviruses will be discussed. Currently, there are seven recognized human oncoviruses, which include Epstein-Barr Virus (EBV), Human Papillomavirus (HPV), Hepatitis B and C viruses (HBV and HCV), Human T-cell lymphotropic virus-1 (HTLV-1), Human Herpesvirus-8 (HHV-8), and Merkel Cell Polyomavirus (MCPyV). Available and emerging therapies for these oncoviruses will be mentioned.
Collapse
Affiliation(s)
- Uyen Ngoc Mui
- Center for Clinical Studies, Houston, TX 77004, USA.
| | | | - Stephen K Tyring
- Center for Clinical Studies, Houston, TX 77004, USA.
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX 77004, USA.
| |
Collapse
|
16
|
Loos B, Klionsky DJ, Wong E. Augmenting brain metabolism to increase macro- and chaperone-mediated autophagy for decreasing neuronal proteotoxicity and aging. Prog Neurobiol 2017; 156:90-106. [DOI: 10.1016/j.pneurobio.2017.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022]
|
17
|
Lee CH, Lee KH, Jang AH, Yoo CG. The Impact of Autophagy on the Cigarette Smoke Extract-Induced Apoptosis of Bronchial Epithelial Cells. Tuberc Respir Dis (Seoul) 2017; 80:83-89. [PMID: 28119751 PMCID: PMC5256345 DOI: 10.4046/trd.2017.80.1.83] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/22/2016] [Accepted: 11/04/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Previous studies report that apoptosis and autophagy are involved in the pathogenesis of emphysema, and macroautophagy is one of the processes regulating the apoptosis pathway. However, few studies have evaluated whether chaperone-mediated autophagy (CMA) contributes to the regulation of apoptosis. In this study, we investigated the impact of autophagy, including both macroautophagy and CMA, on the apoptosis in bronchial epithelial cells. METHODS Cigarette smoke extract (CSE) was injected intratracheally into C57BL/6 mice, and emphysema and apoptosis were evaluated in the lungs. After treatment with CSE, apoptosis, macroautophagy, and CMA were measured in BEAS2-B cells, and the impact of autophagy on the apoptosis was evaluated following knockdown of autophagy-related genes by short interfering RNAs (siRNAs). RESULTS Intratracheal CSE injection resulted in the development of emphysema and an increase in apoptosis in mice. CSE increased the apoptosis in BEAS2-B cells, and also elevated the expression of proteins related to both macroautophagy and CMA in BEAS2-B cells. The knockdown experiment with siRNAs showed that macroautophagy increases apoptosis in BEAS2-B cells, while CMA suppresses apoptosis. CONCLUSION The intratracheal injection of CSE induces pulmonary emphysema and an increase in apoptosis in mice. CSE also induces apoptosis, macroautophagy, and CMA of bronchial epithelial cells. Macroautophagy and CMA regulate apoptosis in opposite directions.
Collapse
Affiliation(s)
- Chang-Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyoung-Hee Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - An-Hee Jang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Chul-Gyu Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Activation of autophagy and PPARγ protect colon cancer cells against apoptosis induced by interactive effects of butyrate and DHA in a cell type-dependent manner: The role of cell differentiation. J Nutr Biochem 2017; 39:145-155. [DOI: 10.1016/j.jnutbio.2016.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/28/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
|
19
|
Sala G, Marinig D, Arosio A, Ferrarese C. Role of Chaperone-Mediated Autophagy Dysfunctions in the Pathogenesis of Parkinson's Disease. Front Mol Neurosci 2016; 9:157. [PMID: 28066181 PMCID: PMC5179559 DOI: 10.3389/fnmol.2016.00157] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/08/2016] [Indexed: 12/20/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) represents a selective form of autophagy involved in the degradation of specific soluble proteins containing a pentapeptide motif that is recognized by a cytosolic chaperone able to deliver proteins to the lysosomes for degradation. Physiologically, CMA contributes to maintain crucial cellular functions including energetic balance and protein quality control. Dysfunctions in CMA have been associated to the pathogenesis of several neurodegenerative diseases characterized by accumulation and aggregation of proteins identified as CMA substrates. In particular, increasing evidence highlights the existence of a strong relationship between CMA defects and Parkinson’s disease (PD). Several mutations associated with familial forms of PD (SNCA, LRRK2, UCHL1 and DJ-1) have been demonstrated to block or reduce the activity of CMA, the main catabolic pathway for alpha-synuclein (asyn). CMA dysfunctions also leads to a mislocalization and inactivation of the transcription factor MEF2D that plays a key-role in the survival of dopaminergic neurons. Furthermore, reduced levels of CMA markers have been observed in post mortem brain samples from PD patients. The aim of this review article is to provide an organic revision of evidence for the involvement of CMA dysfunctions in the pathogenesis of PD. Updated findings obtained in patient’s specimens will be resumed, and results deriving from in vivo and in vitro studies will be discussed to evidence the current knowledge on the molecular mechanisms underlying CMA alterations in PD. Finally, the possibility of up-regulating CMA pathway as promising neuroprotective strategy will be considered.
Collapse
Affiliation(s)
- Gessica Sala
- Laboratory of Neurobiology, School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca Monza, Italy
| | - Daniele Marinig
- Laboratory of Neurobiology, School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-BicoccaMonza, Italy; PhD Program in Neuroscience, University of Milano-BicoccaMonza, Italy
| | - Alessandro Arosio
- Laboratory of Neurobiology, School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca Monza, Italy
| | - Carlo Ferrarese
- Laboratory of Neurobiology, School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-BicoccaMonza, Italy; Department of Neurology, San Gerardo Hospital, University of Milano-BicoccaMonza, Italy
| |
Collapse
|
20
|
Raimundo N, Fernández-Mosquera L, Yambire KF, Diogo CV. Mechanisms of communication between mitochondria and lysosomes. Int J Biochem Cell Biol 2016; 79:345-349. [PMID: 27613573 DOI: 10.1016/j.biocel.2016.08.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/01/2016] [Accepted: 08/20/2016] [Indexed: 12/17/2022]
Abstract
Mitochondria and lysosomes have long been studied in the context of their classic functions: energy factory and recycle bin, respectively. In the last twenty years, it became evident that these organelles are much more than simple industrial units, and are indeed in charge of many of cellular processes. Both mitochondria and lysosomes are now recognized as far-reaching signaling platforms, regulating many key aspects of cell and tissue physiology. It has furthermore become clear that mitochondria and lysosomes impact each other. The mechanisms underlying the cross-talk between these organelles are only now starting to be addressed. In this review, we briefly summarize how mitochondria, lysosomes and the lysosome-related process of autophagy affect each other in physiology and pathology.
Collapse
Affiliation(s)
- Nuno Raimundo
- Institute of Cellular Biochemistry, University Medical Center Goettingen, Germany.
| | | | - King Faisal Yambire
- Institute of Cellular Biochemistry, University Medical Center Goettingen, Germany
| | - Cátia V Diogo
- Institute of Cellular Biochemistry, University Medical Center Goettingen, Germany
| |
Collapse
|
21
|
Abstract
Autophagy is a lysosomal degradative pathway that functions to promote cell survival by supplying energy in times of stress or by removing damaged organelles and proteins after injury. The involvement of autophagy in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) was first suggested by the finding that this pathway mediates the breakdown of intracellular lipids in hepatocytes and therefore may regulate the development of hepatic steatosis. Subsequent studies have demonstrated additional critical functions for autophagy in hepatocytes and other hepatic cell types such as macrophages and stellate cells that regulate insulin sensitivity, hepatocellular injury, innate immunity, fibrosis, and carcinogenesis. These findings suggest a number of possible mechanistic roles for autophagy in the development of NAFLD and progression to NASH and its complications. The functions of autophagy in the liver, together with findings of decreased hepatic autophagy in association with conditions that predispose to NAFLD such as obesity and aging, suggest that autophagy may be a novel therapeutic target in this disease.
Collapse
|
22
|
Abstract
Apoptosis is a primary characteristic in the pathogenesis of liver disease. Hepatic apoptosis is regulated by autophagic activity. However, mechanisms mediating their interaction remain to be determined. Basal level of autophagy ensures the physiological turnover of old and damaged organelles. Autophagy also is an adaptive response under stressful conditions. Autophagy can control cell fate through different cross-talk signals. A complex interplay between hepatic autophagy and apoptosis determines the degree of hepatic apoptosis and the progression of liver disease as demonstrated by pre-clinical models and clinical trials. This review summarizes recent advances on roles of autophagy that plays in pathophysiology of liver. The autophagic pathway can be a novel therapeutic target for liver disease.
Collapse
Key Words
- ALT, alanine aminotransferase
- AMBRA-1, activating molecule in Beclin-1-regulated autophagy
- APAP, N-acetyl-p-aminophenol
- ATP, adenosine triphosphate
- Atg, autophagy-related gene
- BH3, Bcl-2 homology domain-3
- BNIP, Bcl-2/adenovirus E1B 19 kd-interacting protein
- Barkor, Beclin-1-associated autophagy-related key regulator
- Bcl-2, B-cell lymphoma-2
- Bcl-xL, B-cell lymphoma extra long
- Beclin-1, Bcl-2-interacting protein-1
- CSE, cigarette smoke extract
- DISC, death-inducing signaling complex
- DNA, DNA
- DRAM, damage regulated autophagic modulator
- Drp1, dynamin-related protein 1
- ER stress, endoplasmic reticulum stress
- FADD, Fas-associated protein with death domain
- FFA, free fatty acids
- HBV, hepatitis B virus
- HBx, hepatitis B X protein
- HCC, hepatocellular carcinoma
- HCV, hepatitis C virus
- HSC, hepatic stellate cells
- LAMP-2, lysosome-associated membrane protein 2
- LD, lipid droplets
- MDBs, Mallory-Denk bodies
- MOMP, mitochondrial outer membrane permiabilization
- Microtubule LC3, microtubule light chain 3
- PCD, programmed cell death
- PI3KC3, phosphatidylinositol-3-kinase class-3
- RNA, ribonucleic acid
- ROS, reactive oxygen species
- TNFα, tumor necrosis factor-α
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick-end labeling
- UVRAG, UV-resistance-associated gene
- Vps34, vacuolar protein sorting-34
- apoptosis
- autophagy
- c-FLIP, cellular FLICE-like inhibitor protein
- cross-talk
- liver injury
- mTOR, mammalian target of rapamycin
- mechanism
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Kewei Wang
- a Departments of Surgery; University of Illinois College of Medicine ; Peoria , IL , USA
| |
Collapse
|
23
|
Xilouri M, Brekk OR, Stefanis L. Autophagy and Alpha-Synuclein: Relevance to Parkinson's Disease and Related Synucleopathies. Mov Disord 2016; 31:178-92. [PMID: 26813776 DOI: 10.1002/mds.26477] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/21/2015] [Accepted: 10/25/2015] [Indexed: 12/14/2022] Open
Abstract
Evidence from human postmortem material, transgenic mice, and cellular/animal models of PD link alpha-synuclein accumulation to alterations in the autophagy lysosomal pathway. Conversely, alpha-synuclein mutations related to PD pathogenesis, as well as post-translational modifications of the wild-type protein, result in the generation of aberrant species that may impair further the function of the autophagy lysosomal pathway, thus generating a vicious cycle leading to neuronal death. Moreover, PD-linked mutations in lysosomal-related genes, such as glucocerebrosidase, have been also shown to contribute to alpha-synuclein accumulation and related toxicity, indicating that lysosomal dysfunction may, in part, account for the neurodegeneration observed in synucleinopathies. In the current review, we summarize findings related to the inter-relationship between alpha-synuclein and lysosomal proteolytic pathways, focusing especially on recent experimental strategies based on the manipulation of the autophagy lysosomal pathway to counteract alpha-synuclein-mediated neurotoxicity in vivo. Pinpointing the factors that regulate alpha-synuclein association to the lysosome may represent potential targets for therapeutic interventions in PD and related synucleinopathies.
Collapse
Affiliation(s)
- Maria Xilouri
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Oeystein Roed Brekk
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Leonidas Stefanis
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Second Department of Neurology, University of Athens Medical School, Athens, Greece
| |
Collapse
|
24
|
Wu SY, Lan SH, Liu HS. Autophagy and microRNA in hepatitis B virus-related hepatocellular carcinoma. World J Gastroenterol 2016; 22:176-187. [PMID: 26755869 PMCID: PMC4698484 DOI: 10.3748/wjg.v22.i1.176] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/15/2015] [Accepted: 10/26/2015] [Indexed: 02/06/2023] Open
Abstract
Approximately 350 million people worldwide are chronically infected by hepatitis B virus (HBV). HBV causes severe liver diseases including cirrhosis and hepatocellular carcinoma (HCC). In about 25% of affected patients, HBV infection proceeds to HCC. Therefore, the mechanisms by which HBV affects the host cell to promote viral replication and its pathogenesis have been the subject of intensive research efforts. Emerging evidence indicates that both autophagy and microRNAs (miRNAs) are involved in HBV replication and HBV-related hepatocarcinogenesis. In this review, we summarize how HBV induces autophagy, the role of autophagy in HBV infection, and HBV-related tumorigenesis. We further discuss the emerging roles of miRNAs in HBV infection and how HBV affects miRNAs biogenesis. The accumulating knowledge pertaining to autophagy and miRNAs in HBV replication and its pathogenesis may lead to the development of novel strategies against HBV infection and HBV-related HCC tumorigenesis.
Collapse
|
25
|
Wu H, Chen S, Ammar AB, Xu J, Wu Q, Pan K, Zhang J, Hong Y. Crosstalk Between Macroautophagy and Chaperone-Mediated Autophagy: Implications for the Treatment of Neurological Diseases. Mol Neurobiol 2015; 52:1284-1296. [PMID: 25330936 PMCID: PMC4586010 DOI: 10.1007/s12035-014-8933-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/09/2014] [Indexed: 12/19/2022]
Abstract
Macroautophagy and chaperone-mediated autophagy (CMA) are two important subtypes of autophagy that play a critical role in cellular quality control under physiological and pathological conditions. Despite the marked differences between these two autophagic pathways, macroautophagy and CMA are intimately connected with each other during the autophagy-lysosomal degradation process, in particular, in the setting of neurological illness. Macroautophagy serves as a backup mechanism to removal of malfunctioning proteins (i.e., aberrant α-synuclein) from the cytoplasm when CMA is compromised, and vice versa. The molecular mechanisms underlying the conversation between macroautophagy and CMA are being clarified. Herein, we survey current overviews concentrating on the complex interactions between macroautophagy and CMA, and present therapeutic potentials through utilization and manipulation of macroautophagy-CMA crosstalk in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Haijian Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Al-Baadani Ammar
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qun Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kum Pan
- Department of Neurological Surgery, Weill Cornell Medical College, New York, USA
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan Hong
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
26
|
Wang YD, Zhu LR, Chen Z. Autophagy in cholangiocarcinoma. Shijie Huaren Xiaohua Zazhi 2015; 23:3241-3246. [DOI: 10.11569/wcjd.v23.i20.3241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a process through which cells utilize lysosomal hydrolases to degrade abnormal proteins and damaged organelles. This process allows cells to reuse degradation products and degrade harmful substances to maintain intracellular stability. Autophagy is normally maintained at a low level. Cells under unfavorable conditions activate autophagy to cope with unfavorable adverse factors. Autophagy participates in many physiological and pathological processes, such as cell aging, bacterial invasion, neurodegenerative diseases, apoptosis and tumor development. Autophagy also plays important roles in tumorigenesis, tumor progression, metastasis, relapse, and drug resistance of a variety of tumors including cholangiocarcinoma. However, the detailed mechanisms remain unclear. Analysis of the mechanism and regulation of autophagy in the genesis and development of cholangiocarcinoma has important significance and application value. This review summarizes the advances in research of autophagy in cholangiocarcinoma.
Collapse
|
27
|
Joshi A, Iyengar R, Joo JH, Li-Harms XJ, Wright C, Marino R, Winborn BJ, Phillips A, Temirov J, Sciarretta S, Kriwacki R, Peng J, Shelat A, Kundu M. Nuclear ULK1 promotes cell death in response to oxidative stress through PARP1. Cell Death Differ 2015; 23:216-30. [PMID: 26138443 DOI: 10.1038/cdd.2015.88] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 05/07/2015] [Accepted: 05/14/2015] [Indexed: 01/06/2023] Open
Abstract
Reactive oxygen species (ROS) may cause cellular damage and oxidative stress-induced cell death. Autophagy, an evolutionarily conserved intracellular catabolic process, is executed by autophagy (ATG) proteins, including the autophagy initiation kinase Unc-51-like kinase (ULK1)/ATG1. Although autophagy has been implicated to have both cytoprotective and cytotoxic roles in the response to ROS, the role of individual ATG proteins, including ULK1, remains poorly characterized. In this study, we demonstrate that ULK1 sensitizes cells to necrotic cell death induced by hydrogen peroxide (H2O2). Moreover, we demonstrate that ULK1 localizes to the nucleus and regulates the activity of the DNA damage repair protein poly (ADP-ribose) polymerase 1 (PARP1) in a kinase-dependent manner. By enhancing PARP1 activity, ULK1 contributes to ATP depletion and death of H2O2-treated cells. Our study provides the first evidence of an autophagy-independent prodeath role for nuclear ULK1 in response to ROS-induced damage. On the basis of our data, we propose that the subcellular distribution of ULK1 has an important role in deciding whether a cell lives or dies on exposure to adverse environmental or intracellular conditions.
Collapse
Affiliation(s)
- A Joshi
- Pathology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - R Iyengar
- Pathology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J H Joo
- Pathology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - X J Li-Harms
- Pathology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - C Wright
- Pathology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - R Marino
- Pathology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - B J Winborn
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - A Phillips
- Structural Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J Temirov
- Cell and Tissue Imaging Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - S Sciarretta
- Cell Biology and Molecular Medicine Department, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - R Kriwacki
- Structural Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J Peng
- St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - A Shelat
- Chemical Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - M Kundu
- Pathology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
28
|
Abstract
The metabolism of malignant cells is profoundly altered in order to maintain their survival and proliferation in adverse microenvironmental conditions. Autophagy is an intracellular recycling process that maintains basal levels of metabolites and biosynthetic intermediates under starvation or other forms of stress, hence serving as an important mechanism for metabolic adaptation in cancer cells. Although it is widely acknowledged that autophagy sustains metabolism in neoplastic cells under duress, many questions remain with regard to the mutual relationship between autophagy and metabolism in cancer. Importantly, autophagy has often been described as a "double-edged sword" that can either impede or promote cancer initiation and progression. Here, we overview such a dual function of autophagy in tumorigenesis and our current understanding of the coordinated regulation of autophagy and cancer cell metabolism in the control of tumor growth, progression, and resistance to therapy.
Collapse
|
29
|
ZNF32 inhibits autophagy through the mTOR pathway and protects MCF-7 cells from stimulus-induced cell death. Sci Rep 2015; 5:9288. [PMID: 25786368 PMCID: PMC4365391 DOI: 10.1038/srep09288] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/24/2015] [Indexed: 02/05/2023] Open
Abstract
ZNF32 is a recently identified zinc finger protein and its functions remain largely unknown. Autophagy has been shown to affect cell proliferation and survival. Here, we innovatively show the effect of ZNF32 on cell autophagy and autophagy-associated cell death in breast carcinoma cells and also elucidate its underlying mechanisms. We examined the autophagic activity and LC3 II expression in human carcinoma cell lines with increased or decreased ZNF32 expression. Pharmacological inhibition (rapamycin) or activation (EGF) assays were used to investigate the function of the AKT/mTOR pathway during this process. H2O2- and diamide-induced MCF-7 cell death models were used to elucidate the role of ZNF32-associated autophagy in breast carcinoma cell death. Our results show that increasing ZNF32 expression in MCF-7 cells inhibits autophagy initiation by activating the AKT/mTOR pathway, and further reduced autophagy-associated cell death and maintained MCF-7 cell survival. Conversely, impairing ZNF32 expression by transfecting ZNF32 siRNA strongly promoted autophagy, further augmenting autophagy-associated cell death. Furthermore, correlations between ZNF32 and autophagy were observed in both MCF-7 xenograft tumors and in breast cancer patients. In conclusion, ZNF32 acts as an effective autophagy inhibitor to protect breast cancer cells from excessive stimulus-autophagy-induced cell death.
Collapse
|
30
|
Assessment of the effect of laser irradiations at different wavelengths (660, 810, 980, and 1064 nm) on autophagy in a rat model of mucositis. Lasers Med Sci 2015; 30:1289-95. [PMID: 25732242 DOI: 10.1007/s10103-015-1727-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/18/2015] [Indexed: 02/07/2023]
Abstract
It is known that high-dose radiation has an effect on tissue healing, but tissue healing does not occur when low dose radiation is applied. To clarify this issue, we compare the treatment success of low dose radiation with programmed cell death mechanisms on wounded tissue. In this study, we aimed to investigate the interactions of low and high-dose radiation using an autophagic mechanism. We included 35 adult Wistar-Albino rats in this study. All animals were injected with 100 mg/kg of 5-fluorouracil (5-FU) on the first day and 65 mg/kg of 5-FU on the third day. The tips of 18-gauge needles were used to develop a superficial scratching on the left cheek pouch mucosa by dragging in a linear movement on third and fifth days. After mucositis formation was clinically detected, animals were divided into five groups (n = 7). Different wavelengths of laser irradiations (1064 nm, Fidelis Plus, Fotona, Slovenia; 980 nm, FOX laser, A.R.C., Germany; 810 nm, Fotona XD, Fotona, Slovenia; 660 nm, HELBO, Medizintechnik GmbH, Wels, Austria) were performed on four groups once daily for 4 days. The laser irradiation was not performed on the control group. To get the tissue from the left cheek at the end of fourth day from all animals, oval excisional biopsy was performed. Molecular analysis assessments of pathological and normal tissue taken were performed. For this purpose, the expression analysis of autophagy genes was performed. The results were evaluated by normalization and statistics analysis. We found that Ulk1, Beclin1, and Atg5 expression levels were increased in the rats when the Nd:YAG laser was applied. This increase showed that a 1064-nm laser is needed to activate the autophagic mechanism. However, in the diode applications, we found that Beclin1, Atg10, Atg5, and Atg7 expressions numerically decreased. Atg5 is responsible for the elongation of autophagosome. Becn1 is a control gene in the control mechanism of autophagy. The reduction of the expression of these genes leads us to think that it may depend on the effect of drug (5-FU) used to form model. Expressions of therapeutic genes increase to ensure hemostasis, but in our study, expressions were found to decrease. More detailed studies are needed.
Collapse
|
31
|
Xilouri M, Stefanis L. Chaperone mediated autophagy to the rescue: A new-fangled target for the treatment of neurodegenerative diseases. Mol Cell Neurosci 2015; 66:29-36. [PMID: 25724482 DOI: 10.1016/j.mcn.2015.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/14/2015] [Accepted: 01/24/2015] [Indexed: 12/28/2022] Open
Abstract
One of the main pathways of lysosomal proteolysis is chaperone-mediated autophagy (CMA), which represents a selective mechanism for the degradation of specific soluble proteins within lysosomes. Along with the other two lysosomal pathways, macro- and micro-autophagy, CMA contributes to cellular quality control through the removal of damaged or malfunctioning proteins. The two intrinsic characteristics of CMA are the selective targeting and the direct translocation of substrate proteins into the lysosomal lumen, in a fine-tuned manner through the orchestrated action of a chaperone/co-chaperone complex localized both at the cytosol and the lysosomes. Even though CMA was originally identified as a stress-induced pathway, basal CMA activity is detectable in most cell types analyzed so far, including neurons. Additionally, CMA activity declines with age and this may become a major aggravating factor contributing to neurodegeneration. More specifically, it has been suggested that CMA impairment may underlie the accumulation of misfolded/aggregated proteins, such as alpha-synuclein or LRRK2, whose levels or conformations are critical to Parkinson's disease pathogenesis. On the other hand, CMA induction might accelerate clearance of pathogenic proteins and promote cell survival, suggesting that CMA represents a viable therapeutic target for the treatment of various proteinopathies. In the current review, we provide an overview of the current state of knowledge regarding the role of CMA under physiological and pathological conditions of the nervous system and discuss the implications of these findings for therapeutic interventions for Parkinson's disease and other neurodegenerative disorders. This article is part of Special Issue entitled "Neuronal Protein".
Collapse
Affiliation(s)
- Maria Xilouri
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Leonidas Stefanis
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Second Department of Neurology, University of Athens Medical School, Athens, Greece
| |
Collapse
|
32
|
Pride H, Yu Z, Sunchu B, Mochnick J, Coles A, Zhang Y, Buffenstein R, Hornsby PJ, Austad SN, Pérez VI. Long-lived species have improved proteostasis compared to phylogenetically-related shorter-lived species. Biochem Biophys Res Commun 2015; 457:669-75. [PMID: 25615820 DOI: 10.1016/j.bbrc.2015.01.046] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 01/08/2023]
Abstract
Our previous studies have shown that the liver from Naked Mole Rats (NMRs), a long-lived rodent, has increased proteasome activity and lower levels of protein ubiquitination compared to mice. This suggests that protein quality control might play a role in assuring species longevity. To determine whether enhanced proteostasis is a common mechanism in the evolution of other long-lived species, here we evaluated the major players in protein quality control including autophagy, proteasome activity, and heat shock proteins (HSPs), using skin fibroblasts from three phylogenetically-distinct pairs of short- and long-lived mammals: rodents, marsupials, and bats. Our results indicate that in all cases, macroautophagy was significantly enhanced in the longer-lived species, both at basal level and after induction by serum starvation. Similarly, basal levels of most HSPs were elevated in all the longer-lived species. Proteasome activity was found to be increased in the long-lived rodent and marsupial but not in bats. These observations suggest that long-lived species may have superior mechanisms to ensure protein quality, and support the idea that protein homeostasis might play an important role in promoting longevity.
Collapse
Affiliation(s)
| | - Zhen Yu
- Linus Pauling Institute, Oregon State University, USA
| | | | | | - Alexander Coles
- Department of Chemistry and Biochemistry, University of Michigan-Flint, MI 48502, USA
| | - Yiqiang Zhang
- Department of Physiology, The University of Texas Health Science Center, San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Rochelle Buffenstein
- Department of Physiology, The University of Texas Health Science Center, San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Peter J Hornsby
- Department of Physiology, The University of Texas Health Science Center, San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX, USA; South Texas Veteran's Health Care System, Audie L Murphy Division, San Antonio, TX 78249, USA
| | - Steven N Austad
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX, USA; Department of Cell and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Viviana I Pérez
- Linus Pauling Institute, Oregon State University, USA; Department of Biochemistry and Biophysics, Corvallis, OR 97331, USA.
| |
Collapse
|
33
|
Lee WS, Sung MS, Lee EG, Yoo HG, Cheon YH, Chae HJ, Yoo WH. A pathogenic role for ER stress-induced autophagy and ER chaperone GRP78/BiP in T lymphocyte systemic lupus erythematosus. J Leukoc Biol 2014; 97:425-33. [PMID: 25516752 DOI: 10.1189/jlb.6a0214-097r] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Abnormal regulation of ER stress and apoptosis has been implicated in autoimmune disorders. Particularly, ER stress-induced autophagy and the role of GRP78, or BiP in T lymphocyte survival and death in SLE are poorly understood. This study investigated the pathogenic roles of ER stress-induced autophagy and GRP78/BiP in apoptosis of T lymphocytes. We compared spontaneous and induced autophagy and apoptosis of T lymphocytes in healthy donors and patients with SLE. The molecular mechanism of altered autophagy and apoptosis was investigated in T lymphocytes transfected with siRNA for beclin 1 and CHOP and T lymphocytes overexpressing GRP78. Decreased autophagy and increased apoptosis in response to TG-induced ER stress were observed in lupus T lymphocytes. GRP78 and ER stress-signaling molecules, such as PERK, p-eIF2α, IRE1, and ATF6 decreased, whereas CHOP levels increased in lupus T cells in response to TG. The levels antiapoptotic molecules, Bcl-2 and Bcl-XL decreased, whereas the proapoptotic molecules, Bax and caspase 6, increased in lupus T cells. The TG-induced ER stress altered autophagy and apoptosis, which in turn, led to abnormal T cell homeostasis with increased apoptotic T cell death. We hypothesize that aberrant autophagy of T lymphocytes as a result of ER stress and decreased GRP78 expression is involved in the pathogenesis of SLE and might serve as important therapeutic targets.
Collapse
Affiliation(s)
- Won-Seok Lee
- *Department of Internal Medicine, Chonbuk National University Medical School, and Research Institute of Clinical Medicine of Chonbuk National University Hospital, and Department of Pharmacology, Chonbuk National University Medical School, Jeonju, Jeonbuk, South Korea; and Department of Pharmacy Practice, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Myung-Soon Sung
- *Department of Internal Medicine, Chonbuk National University Medical School, and Research Institute of Clinical Medicine of Chonbuk National University Hospital, and Department of Pharmacology, Chonbuk National University Medical School, Jeonju, Jeonbuk, South Korea; and Department of Pharmacy Practice, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Eun-Gyeong Lee
- *Department of Internal Medicine, Chonbuk National University Medical School, and Research Institute of Clinical Medicine of Chonbuk National University Hospital, and Department of Pharmacology, Chonbuk National University Medical School, Jeonju, Jeonbuk, South Korea; and Department of Pharmacy Practice, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Han-Gyul Yoo
- *Department of Internal Medicine, Chonbuk National University Medical School, and Research Institute of Clinical Medicine of Chonbuk National University Hospital, and Department of Pharmacology, Chonbuk National University Medical School, Jeonju, Jeonbuk, South Korea; and Department of Pharmacy Practice, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Yun-Hong Cheon
- *Department of Internal Medicine, Chonbuk National University Medical School, and Research Institute of Clinical Medicine of Chonbuk National University Hospital, and Department of Pharmacology, Chonbuk National University Medical School, Jeonju, Jeonbuk, South Korea; and Department of Pharmacy Practice, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Han-Jung Chae
- *Department of Internal Medicine, Chonbuk National University Medical School, and Research Institute of Clinical Medicine of Chonbuk National University Hospital, and Department of Pharmacology, Chonbuk National University Medical School, Jeonju, Jeonbuk, South Korea; and Department of Pharmacy Practice, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Wan-Hee Yoo
- *Department of Internal Medicine, Chonbuk National University Medical School, and Research Institute of Clinical Medicine of Chonbuk National University Hospital, and Department of Pharmacology, Chonbuk National University Medical School, Jeonju, Jeonbuk, South Korea; and Department of Pharmacy Practice, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
34
|
Gupta NA, Kolachala VL, Jiang R, Abramowsky C, Shenoi A, Kosters A, Pavuluri H, Anania F, Kirk AD. Mitigation of autophagy ameliorates hepatocellular damage following ischemia-reperfusion injury in murine steatotic liver. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1088-99. [PMID: 25258410 PMCID: PMC4254956 DOI: 10.1152/ajpgi.00210.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ischemia-reperfusion injury (IRI) is a common clinical consequence of hepatic surgery, cardiogenic shock, and liver transplantation. A steatotic liver is particularly vulnerable to IRI, responding with extensive hepatocellular injury. Autophagy, a lysosomal pathway balancing cell survival and cell death, is engaged in IRI, although its role in IRI of a steatotic liver is unclear. The role of autophagy was investigated in high-fat diet (HFD)-fed mice exposed to IRI in vivo and in steatotic hepatocytes exposed to hypoxic IRI (HIRI) in vitro. Two inhibitors of autophagy, 3-methyladenine and bafilomycin A1, protected the steatotic hepatocytes from HIRI. Exendin 4 (Ex4), a glucagon-like peptide 1 analog, also led to suppression of autophagy, as evidenced by decreased autophagy-associated proteins [microtubule-associated protein 1A/1B-light chain 3 (LC3) II, p62, high-mobility group protein B1, beclin-1, and autophagy-related protein 7], reduced hepatocellular damage, and improved mitochondrial structure and function in HFD-fed mice exposed to IRI. Decreased autophagy was further demonstrated by reversal of a punctate pattern of LC3 and decreased autophagic flux after IRI in HFD-fed mice. Under the same conditions, the effects of Ex4 were reversed by the competitive antagonist exendin 9-39. The present study suggests that, in IRI of hepatic steatosis, treatment of hepatocytes with Ex4 mitigates autophagy, ameliorates hepatocellular injury, and preserves mitochondrial integrity. These data suggest that therapies targeting autophagy, by Ex4 treatment in particular, may ameliorate the effects of IRI in highly prevalent steatotic liver.
Collapse
Affiliation(s)
- Nitika A. Gupta
- 1Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; ,2Transplant Services, Children's Healthcare of Atlanta, Atlanta, Georgia;
| | | | - Rong Jiang
- 1Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia;
| | - Carlos Abramowsky
- 1Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; ,3Department of Pathology, Emory University School of Medicine, Atlanta, Georgia;
| | - Asha Shenoi
- 1Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; ,2Transplant Services, Children's Healthcare of Atlanta, Atlanta, Georgia;
| | - Astrid Kosters
- 1Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia;
| | - Haritha Pavuluri
- 1Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia;
| | - Frank Anania
- 4Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and
| | - Allan D. Kirk
- 1Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; ,2Transplant Services, Children's Healthcare of Atlanta, Atlanta, Georgia; ,5Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
35
|
Bissoyi A, Nayak B, Pramanik K, Sarangi SK. Targeting cryopreservation-induced cell death: a review. Biopreserv Biobank 2014; 12:23-34. [PMID: 24620767 DOI: 10.1089/bio.2013.0032] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite marked developments in the field of cryopreservation of cells and tissues for research and therapeutic applications, post-thaw cell death remains a significant drawback faced by cryobiologists. Post cryopreservation apoptosis and necrosis are normally observed within 6 to 24 h after post-thaw culture. As a result, massive loss of cell viability and cellular function occur due to cryopreservation. However, in this new generation of cryopreservation science, scientists in this field are focusing on incorporation of apoptosis and necrosis inhibitors (zVAD-fmk, p38 MAPK inhibitor, ROCK inhibitor, etc.) to cryopreservation and post-thaw culture media. These inhibitors target and inhibit various proteins such as caspases, proteases, and kinases, involved in the cell death cascade, resulting in reduced intensity of apoptosis and necrosis in the cryopreserved cells and tissues, increased cell viability, and maintenance of cellular function; thus improved overall cryopreservation efficiency is achieved. The present article provides an overview of various cell death pathways, molecules mediating cryopreservation-induced apoptosis and the potential of certain molecules in targeting cryopreservation-induced delayed-onset cell death.
Collapse
Affiliation(s)
- A Bissoyi
- 1 Department of Biotechnology and Medical Engineering, National Institute of Technology , Rourkela, India
| | | | | | | |
Collapse
|
36
|
HLA DQB1 alleles are related with nonalcoholic fatty liver disease. Mol Biol Rep 2014; 41:7937-43. [PMID: 25156535 DOI: 10.1007/s11033-014-3688-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 08/20/2014] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease. NAFLD is a complex disease and inflammation is a crucial component in the disease pathogenesis. Recent genome wide association studies in hepatology area highlighted significant relations with human leukocyte antigen (HLA) DQ region and certain liver diseases. The previous animal models also emphasized the involvement of adaptive immune system in the liver damage pathways. To investigate possible polymorphisms in the HLA region that can contribute to the immune response affecting the NAFLD, we enrolled 93 consecutive biopsy proven NAFLD patients and a control group consisted of 101 healthy people and genotyped HLA DQB1 alleles at high resolution by sequence specific primers-polymerase chain reaction. The mean NAFLD activity score (NAS) was 5.2 ± 1.2, fibrosis score was 0.9 ± 0.9, ALT was 77 ± 47.4 U/L, AST was 49.4 ± 26.3 U/L. Among 13 HLA DQB1 alleles analyzed in this study, DQB1*06:04 was observed significantly at a more frequent rate among the NAFLD patients compared to that of healthy controls (12.9 vs. 2 % χ(2) = 8.6, P = 0.003, P c = 0.039, OR: 7.3 95 % CI 1.6-33.7). In addition, the frequency of DQB1*03:02 was significantly higher in the healthy control group than the NAFLD patients (24.8 vs. 7.5 %, χ(2) = 10.4, P = 0.001, P c = 0.013, OR: 0.2, 95 % CI 0.1-0.6). NAFLD patients were grouped according to their fibrosis score and NAS. The distribution of DQB1 alleles over stratified NAFLD patients did not reveal any statistically significant relation. Taken together, immune repertoire of individuals may have an effect on NAFLD pathogenesis and therefore, in NAFLD, adaptive immunity pathways should be investigated.
Collapse
|
37
|
Autophagy proteins regulate ERK phosphorylation. Nat Commun 2014; 4:2799. [PMID: 24240988 PMCID: PMC3868163 DOI: 10.1038/ncomms3799] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/22/2013] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a conserved pathway that maintains cellular quality control. Extracellular signal-regulated kinase (ERK) controls various aspects of cell physiology including proliferation. Multiple signalling cascades, including ERK, have been shown to regulate autophagy, however whether autophagy proteins (ATG) regulate cell signalling is unknown. Here we show that growth factor exposure increases the interaction of ERK cascade components with ATG proteins in the cytosol and nucleus. ERK and its upstream kinase MEK localize to the extra-luminal face of autophagosomes. ERK2 interacts with ATG proteins via its substrate-binding domains. Deleting Atg7 or Atg5 or blocking LC3 lipidation or ATG5–ATG12 conjugation decreases ERK phosphorylation. Conversely, increasing LC3-II availability by silencing the cysteine protease ATG4B or acute trehalose exposure increases ERK phosphorylation. Decreased ERK phosphorylation in Atg5−/− cells does not occur from overactive phosphatases. Our findings thus reveal an unconventional function of ATG proteins as cellular scaffolds in the regulation of ERK phosphorylation. The spatial organisation of mitogen-activated protein kinase (MAPK) signalling by scaffold proteins is an important determinant of signalling specificity. Martinez-Lopez et al. show that pre-autophagosomal structures can also act as scaffolds, recruiting the MAPK ERK1/2 and regulating its phosphorylation.
Collapse
|
38
|
Repnik U, Hafner Česen M, Turk B. Lysosomal membrane permeabilization in cell death: concepts and challenges. Mitochondrion 2014; 19 Pt A:49-57. [PMID: 24984038 DOI: 10.1016/j.mito.2014.06.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 01/06/2023]
Abstract
Late endocytic compartments include late endosomes, lysosomes and hybrid organelles. In the acidic lumen, cargo material derived from endocytosed and phagocytosed extracellular material and autophagy-derived intracellular material is degraded. In the event of lysosomal membrane permeabilization (LMP), the function of endo/lysosomal compartment is affected and the luminal contents are released into the cytosol to various extents. LMP can be a result of osmotic lysis or direct membranolytic activity of the compounds that accumulate in the lumen of endo/lysosomes. In addition to several synthetic compounds, such as dipeptide methyl esters and lysosomotropic detergents, endogenous agents that can cause LMP include ROS and lipid metabolites such as sphingosine and phosphatidic acid. Depending on the cell type and the dose, LMP can initiate the lysosomal apoptotic pathway, pyroptosis or necrosis. LMP can also amplify cell death signaling that was initiated outside the endocytic compartment, and hamper cell recovery via autophagy. However, mechanisms that connect LMP with cell death signaling are poorly understood, with the exception of the proteolytic activation of Bid by aspartic cathepsin D and cysteine cathepsins. Determination of LMP in a cell model system is methodologically challenging. Even more difficult is to prove that LMP is the primary event leading to cell death. Nevertheless, LMP may prove to be a valuable approach in therapy, either as a trigger of cell death or as a mechanism of therapeutic drug release in the case of delivery systems that target the endocytic pathway.
Collapse
Affiliation(s)
- Urška Repnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Maruša Hafner Česen
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Center of Excellence CIPKeBiP, Jamova 39, 1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia.
| |
Collapse
|
39
|
Zhang Y, Liu G, Dull RO, Schwartz DE, Hu G. Autophagy in pulmonary macrophages mediates lung inflammatory injury via NLRP3 inflammasome activation during mechanical ventilation. Am J Physiol Lung Cell Mol Physiol 2014; 307:L173-85. [PMID: 24838752 PMCID: PMC4101793 DOI: 10.1152/ajplung.00083.2014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The inflammatory response is a primary mechanism in the pathogenesis of ventilator-induced lung injury. Autophagy is an essential, homeostatic process by which cells break down their own components. We explored the role of autophagy in the mechanisms of mechanical ventilation-induced lung inflammatory injury. Mice were subjected to low (7 ml/kg) or high (28 ml/kg) tidal volume ventilation for 2 h. Bone marrow-derived macrophages transfected with a scrambled or autophagy-related protein 5 small interfering RNA were administered to alveolar macrophage-depleted mice via a jugular venous cannula 30 min before the start of the ventilation protocol. In some experiments, mice were ventilated in the absence and presence of autophagy inhibitors 3-methyladenine (15 mg/kg ip) or trichostatin A (1 mg/kg ip). Mechanical ventilation with a high tidal volume caused rapid (within minutes) activation of autophagy in the lung. Conventional transmission electron microscopic examination of lung sections showed that mechanical ventilation-induced autophagy activation mainly occurred in lung macrophages. Autophagy activation in the lungs during mechanical ventilation was dramatically attenuated in alveolar macrophage-depleted mice. Selective silencing of autophagy-related protein 5 in lung macrophages abolished mechanical ventilation-induced nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation and lung inflammatory injury. Pharmacological inhibition of autophagy also significantly attenuated the inflammatory responses caused by lung hyperinflation. The activation of autophagy in macrophages mediates early lung inflammation during mechanical ventilation via NLRP3 inflammasome signaling. Inhibition of autophagy activation in lung macrophages may therefore provide a novel and promising strategy for the prevention and treatment of ventilator-induced lung injury.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois; Department of Anesthesiology, Xuzhou Medical College, Xuzhou, China
| | - Gongjian Liu
- Department of Anesthesiology, Xuzhou Medical College, Xuzhou, China
| | - Randal O Dull
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois
| | - David E Schwartz
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois
| | - Guochang Hu
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois; Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois; and
| |
Collapse
|
40
|
Ryter SW, Mizumura K, Choi AMK. The impact of autophagy on cell death modalities. Int J Cell Biol 2014; 2014:502676. [PMID: 24639873 PMCID: PMC3932252 DOI: 10.1155/2014/502676] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/18/2013] [Indexed: 12/15/2022] Open
Abstract
Autophagy represents a homeostatic cellular mechanism for the turnover of organelles and proteins, through a lysosome-dependent degradation pathway. During starvation, autophagy facilitates cell survival through the recycling of metabolic precursors. Additionally, autophagy can modulate other vital processes such as programmed cell death (e.g., apoptosis), inflammation, and adaptive immune mechanisms and thereby influence disease pathogenesis. Selective pathways can target distinct cargoes (e.g., mitochondria and proteins) for autophagic degradation. At present, the causal relationship between autophagy and various forms of regulated or nonregulated cell death remains unclear. Autophagy can occur in association with necrosis-like cell death triggered by caspase inhibition. Autophagy and apoptosis have been shown to be coincident or antagonistic, depending on experimental context, and share cross-talk between signal transduction elements. Autophagy may modulate the outcome of other regulated forms of cell death such as necroptosis. Recent advances suggest that autophagy can dampen inflammatory responses, including inflammasome-dependent caspase-1 activation and maturation of proinflammatory cytokines. Autophagy may also act as regulator of caspase-1 dependent cell death (pyroptosis). Strategies aimed at modulating autophagy may lead to therapeutic interventions for diseases in which apoptosis or other forms of regulated cell death may play a cardinal role.
Collapse
Affiliation(s)
- Stefan W. Ryter
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
- Weil Cornell Medical College, 525 East 68th Street, Room M-522, Box 130, New York, NY 10065, USA
| | - Kenji Mizumura
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
- Weil Cornell Medical College, 525 East 68th Street, Room M-522, Box 130, New York, NY 10065, USA
| | - Augustine M. K. Choi
- Weil Cornell Medical College, 525 East 68th Street, Room M-522, Box 130, New York, NY 10065, USA
| |
Collapse
|
41
|
Nakahira K, Cloonan SM, Mizumura K, Choi AMK, Ryter SW. Autophagy: a crucial moderator of redox balance, inflammation, and apoptosis in lung disease. Antioxid Redox Signal 2014; 20:474-94. [PMID: 23879400 PMCID: PMC3894710 DOI: 10.1089/ars.2013.5373] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Autophagy is a fundamental cellular process that functions in the turnover of subcellular organelles and protein. Activation of autophagy may represent a cellular defense against oxidative stress, or related conditions that cause accumulation of damaged proteins or organelles. Selective forms of autophagy can maintain organelle populations or remove aggregated proteins. Autophagy can increase survival during nutrient deficiency and play a multifunctional role in host defense, by promoting pathogen clearance and modulating innate and adaptive immune responses. RECENT ADVANCES Autophagy has been described as an inducible response to oxidative stress. Once believed to represent a random process, recent studies have defined selective mechanisms for cargo assimilation into autophagosomes. Such mechanisms may provide for protein aggregate detoxification and mitochondrial homeostasis during oxidative stress. Although long studied as a cellular phenomenon, recent advances implicate autophagy as a component of human diseases. Altered autophagy phenotypes have been observed in various human diseases, including lung diseases such as chronic obstructive lung disease, cystic fibrosis, pulmonary hypertension, and idiopathic pulmonary fibrosis. CRITICAL ISSUES Although autophagy can represent a pro-survival process, in particular, during nutrient starvation, its role in disease pathogenesis may be multifunctional and complex. The relationship of autophagy to programmed cell death pathways is incompletely defined and varies with model system. FUTURE DIRECTIONS Activation or inhibition of autophagy may be used to alter the progression of human diseases. Further resolution of the mechanisms by which autophagy impacts the initiation and progression of diseases may lead to the development of therapeutics specifically targeting this pathway.
Collapse
Affiliation(s)
- Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital , Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
42
|
Jia G, Kong R, Ma ZB, Han B, Wang YW, Pan SH, Li YH, Sun B. The activation of c-Jun NH₂-terminal kinase is required for dihydroartemisinin-induced autophagy in pancreatic cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:8. [PMID: 24438216 PMCID: PMC3901759 DOI: 10.1186/1756-9966-33-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/17/2014] [Indexed: 11/21/2022]
Abstract
Background c-Jun NH2-terminal kinases (JNKs) are strongly activated by a stressful cellular environment, such as chemotherapy and oxidative stress. Autophagy is a protein-degradation system in which double-membrane vacuoles called autophagosomes are formed. The autophagy-related gene Beclin 1 plays a key role in this process. We previously found that autophagy was induced by dihydroartemisinin (DHA) in pancreatic cancer cells. However, little is known about the complex relationship between ROS, JNK activation, autophagy induction, and Beclin 1 expression. Methods Cell viability and CCK-8 assays were carried out to determine the cell proliferation; small interfering RNAs (siRNAs) were used to knockdown c-Jun NH2-terminal kinases (JNK1/2) genes; western blot was performed to detect the protein expression of LC3, JNK, Beclin 1, caspase 3 and β-actin; production of intracellular ROS was analyzed using FACS flow cytometry; autophagy induction was confirmed by electron microscopy. Results In the present study, we explored the role of DHA and Beclin 1 expression in autophagy. DHA-treated cells showed autophagy characteristics, and DHA also activated the JNK pathway and up-regulated the expression of Beclin 1. Conversely, blocking JNK signaling inhibited Beclin 1 up-regulation. JNK activation was found to primarily depend on reactive oxygen species (ROS) resulting from the DHA treatment. Moreover, JNK pathway inhibition and Beclin 1 silencing prevented the induction of DHA-induced autophagy. Conclusions These results suggest that the induction of autophagy by DHA is required for JNK-mediated Beclin 1 expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bei Sun
- Department of Pancreatic and Biliary Surgery; Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
43
|
Ramírez-Peinado S, León-Annicchiarico CL, Galindo-Moreno J, Iurlaro R, Caro-Maldonado A, Prehn JHM, Ryan KM, Muñoz-Pinedo C. Glucose-starved cells do not engage in prosurvival autophagy. J Biol Chem 2013; 288:30387-30398. [PMID: 24014036 PMCID: PMC3798503 DOI: 10.1074/jbc.m113.490581] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/01/2013] [Indexed: 11/06/2022] Open
Abstract
In response to nutrient shortage or organelle damage, cells undergo macroautophagy. Starvation of glucose, an essential nutrient, is thought to promote autophagy in mammalian cells. We thus aimed to determine the role of autophagy in cell death induced by glucose deprivation. Glucose withdrawal induces cell death that can occur by apoptosis (in Bax, Bak-deficient mouse embryonic fibroblasts or HeLa cells) or by necrosis (in Rh4 rhabdomyosarcoma cells). Inhibition of autophagy by chemical or genetic means by using 3-methyladenine, chloroquine, a dominant negative form of ATG4B or silencing Beclin-1, Atg7, or p62 indicated that macroautophagy does not protect cells undergoing necrosis or apoptosis upon glucose deprivation. Moreover, glucose deprivation did not induce autophagic flux in any of the four cell lines analyzed, even though mTOR was inhibited. Indeed, glucose deprivation inhibited basal autophagic flux. In contrast, the glycolytic inhibitor 2-deoxyglucose induced prosurvival autophagy. Further analyses indicated that in the absence of glucose, autophagic flux induced by other stimuli is inhibited. These data suggest that the role of autophagy in response to nutrient starvation should be reconsidered.
Collapse
Affiliation(s)
- Silvia Ramírez-Peinado
- From the Cell Death Regulation Group, IDIBELL (Bellvitge Biomedical Research Institute), L'Hospitalet de Llobregat, Barcelona, 08908 Spain
| | - Clara Lucía León-Annicchiarico
- From the Cell Death Regulation Group, IDIBELL (Bellvitge Biomedical Research Institute), L'Hospitalet de Llobregat, Barcelona, 08908 Spain
| | - Javier Galindo-Moreno
- From the Cell Death Regulation Group, IDIBELL (Bellvitge Biomedical Research Institute), L'Hospitalet de Llobregat, Barcelona, 08908 Spain
| | - Raffaella Iurlaro
- From the Cell Death Regulation Group, IDIBELL (Bellvitge Biomedical Research Institute), L'Hospitalet de Llobregat, Barcelona, 08908 Spain
| | - Alfredo Caro-Maldonado
- From the Cell Death Regulation Group, IDIBELL (Bellvitge Biomedical Research Institute), L'Hospitalet de Llobregat, Barcelona, 08908 Spain
| | - Jochen H M Prehn
- the Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland, and
| | - Kevin M Ryan
- Tumour Cell Death Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, Scotland, United Kingdom
| | - Cristina Muñoz-Pinedo
- From the Cell Death Regulation Group, IDIBELL (Bellvitge Biomedical Research Institute), L'Hospitalet de Llobregat, Barcelona, 08908 Spain,.
| |
Collapse
|
44
|
Misovic M, Milenkovic D, Martinovic T, Ciric D, Bumbasirevic V, Kravic-Stevovic T. Short-term exposure to UV-A, UV-B, and UV-C irradiation induces alteration in cytoskeleton and autophagy in human keratinocytes. Ultrastruct Pathol 2013; 37:241-8. [PMID: 23758094 DOI: 10.3109/01913123.2012.756568] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ultraviolet radiation (UV) induces a series of morphological and ultrastructural alterations in human epidermis. Alterations observed in irradiated keratinocytes in morphological studies done before were cell retraction with loss of intercellular interactions, surface blebbing, and eventually cell death by apoptosis. The aim of this study was to investigate effect of UV-A, UV-B, and UV-C irradiation on the cytoskeleton of human keratinocytes. Keratinocytes were obtained by exfoliative scrubbing procedure from buccal mucosa of healthy individuals, and treated with UV-A, UV-B, and UV-C radiation. Afterward, treated cell were labeled with anti-alfa-tubulin and anti-human-cytokeratin and analyzed by light and confocal microscopy. The intensity of the cytokeratin labeling was found to be much higher in all irradiated cells than in control cells as observed by light microscope and measured with the Image J program. This measurement showed that with the decrease in the wavelengths of UV irradiation the intensity of the labeling of cells increases. Although the authors expected to find the collapse of microtubules toward the cell nucleus or their rearrangement in UV-treated cells, these alterations were not verified on cell smears labeled with anti-alfa tubulin observed by confocal microscope. When they used electron microscopy to examine in more detail the morphology of irradiated cells, they did not find apoptotic cells, but found features of autophagy in UV-treated keratinocytes. The authors assume that autophagy found as a result of UV radiation of human keratinocytes acts as a cytoprotective mechanism against UV-induced apoptosis.
Collapse
Affiliation(s)
- Milan Misovic
- Institute of Histology and Embryology, Medical Faculty Belgrade, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
45
|
Czaja MJ, Ding WX, Donohue TM, Friedman SL, Kim JS, Komatsu M, Lemasters JJ, Lemoine A, Lin JD, Ou JHJ, Perlmutter DH, Randall G, Ray RB, Tsung A, Yin XM. Functions of autophagy in normal and diseased liver. Autophagy 2013; 9:1131-58. [PMID: 23774882 DOI: 10.4161/auto.25063] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autophagy has emerged as a critical lysosomal pathway that maintains cell function and survival through the degradation of cellular components such as organelles and proteins. Investigations specifically employing the liver or hepatocytes as experimental models have contributed significantly to our current knowledge of autophagic regulation and function. The diverse cellular functions of autophagy, along with unique features of the liver and its principal cell type the hepatocyte, suggest that the liver is highly dependent on autophagy for both normal function and to prevent the development of disease states. However, instances have also been identified in which autophagy promotes pathological changes such as the development of hepatic fibrosis. Considerable evidence has accumulated that alterations in autophagy are an underlying mechanism of a number of common hepatic diseases including toxin-, drug- and ischemia/reperfusion-induced liver injury, fatty liver, viral hepatitis and hepatocellular carcinoma. This review summarizes recent advances in understanding the roles that autophagy plays in normal hepatic physiology and pathophysiology with the intent of furthering the development of autophagy-based therapies for human liver diseases.
Collapse
Affiliation(s)
- Mark J Czaja
- Department of Medicine; Marion Bessin Liver Research Center; Albert Einstein College of Medicine; Bronx, NY USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Varma H, Gangadhar NM, Letso RR, Wolpaw AJ, Sriramaratnam R, Stockwell BR. Identification of a small molecule that induces ATG5-and-cathepsin-l-dependent cell death and modulates polyglutamine toxicity. Exp Cell Res 2013; 319:1759-1773. [PMID: 23588206 DOI: 10.1016/j.yexcr.2013.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/27/2013] [Accepted: 03/02/2013] [Indexed: 01/03/2023]
Abstract
Non-apoptotic cell death mechanisms are largely uncharacterized despite their importance in physiology and disease [1]. Here we sought to systematically identify non-apoptotic cell death pathways in mammalian cells. We screened 69,612 compounds for those that induce non-canonical cell death by counter screening in the presence of inhibitors of apoptosis and necrosis. We further selected compounds that require active protein synthesis for inducing cell death. Using this tiered approach, we identified NID-1 (Novel Inducer of Death-1), a small molecule that induces an active, energy-dependent cell death in diverse mammalian cell lines. NID-1-induced death required components of the autophagic machinery, including ATG5, and the lysosomal hydrolase cathepsin L, but was distinct from classical macroautophagy. Since macroautophagy can prevent cell death in several contexts, we tested and found that NID-1 suppressed cell death in a cell-based model of Huntington's disease, suggesting that NID-1 activates a specific pathway. Thus the discovery of NID-1 identifies a previously unexplored cell death pathway, and modulating this pathway may have therapeutic applications. Furthermore, these findings provide a proof-of-principle for using chemical screening to identify novel cell death paradigms.
Collapse
Affiliation(s)
- Hemant Varma
- Howard Hughes Medical Institute, Department of Biological Sciences, Columbia University, Northwest Corner Building, MC 4846, 550 West 120th Street, New York, NY 10027, United States; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, United States
| | - Nidhi M Gangadhar
- Howard Hughes Medical Institute, Department of Biological Sciences, Columbia University, Northwest Corner Building, MC 4846, 550 West 120th Street, New York, NY 10027, United States
| | - Reka R Letso
- Howard Hughes Medical Institute, Department of Biological Sciences, Columbia University, Northwest Corner Building, MC 4846, 550 West 120th Street, New York, NY 10027, United States
| | - Adam J Wolpaw
- Howard Hughes Medical Institute, Department of Biological Sciences, Columbia University, Northwest Corner Building, MC 4846, 550 West 120th Street, New York, NY 10027, United States
| | - Rohitha Sriramaratnam
- Howard Hughes Medical Institute, Department of Biological Sciences, Columbia University, Northwest Corner Building, MC 4846, 550 West 120th Street, New York, NY 10027, United States
| | - Brent R Stockwell
- Howard Hughes Medical Institute, Department of Biological Sciences, Columbia University, Northwest Corner Building, MC 4846, 550 West 120th Street, New York, NY 10027, United States; Department of Chemistry, Columbia University, Northwest Corner Building, MC 4846, 550 West 120th Street, New York, NY 10027, United States.
| |
Collapse
|
47
|
Keller CW, Schmitz M, Münz C, Lünemann JD, Schmidt J. TNF-α upregulates macroautophagic processing of APP/β-amyloid in a human rhabdomyosarcoma cell line. J Neurol Sci 2013; 325:103-7. [DOI: 10.1016/j.jns.2012.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 01/09/2023]
|
48
|
Mori C, Yamaguchi Y, Teranishi M, Takanami T, Nagase T, Kanno S, Yasui A, Higashitani A. Over-expression of ATR causes autophagic cell death. Genes Cells 2013. [DOI: 10.1111/gtc.12034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chihiro Mori
- Graduate School of Life Sciences; Tohoku University; Sendai; 980-8577; Japan
| | | | - Mika Teranishi
- Graduate School of Life Sciences; Tohoku University; Sendai; 980-8577; Japan
| | - Takako Takanami
- Graduate School of Life Sciences; Tohoku University; Sendai; 980-8577; Japan
| | - Takahiro Nagase
- Kazusa DNA Research Institute; Kisarazu; Chiba; 292-0818; Japan
| | - Shinichiro Kanno
- Institute of Development, Aging and Cancer, Tohoku University; Sendai; 980-8575; Japan
| | - Akira Yasui
- Institute of Development, Aging and Cancer, Tohoku University; Sendai; 980-8575; Japan
| | - Atsushi Higashitani
- Graduate School of Life Sciences; Tohoku University; Sendai; 980-8577; Japan
| |
Collapse
|
49
|
Jain MV, Paczulla AM, Klonisch T, Dimgba FN, Rao SB, Roberg K, Schweizer F, Lengerke C, Davoodpour P, Palicharla VR, Maddika S, Łos M. Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J Cell Mol Med 2013; 17:12-29. [PMID: 23301705 PMCID: PMC3823134 DOI: 10.1111/jcmm.12001] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/24/2012] [Indexed: 02/06/2023] Open
Abstract
The rapid accumulation of knowledge on apoptosis regulation in the 1990s was followed by the development of several experimental anticancer- and anti-ischaemia (stroke or myocardial infarction) drugs. Activation of apoptotic pathways or the removal of cellular apoptotic inhibitors has been suggested to aid cancer therapy and the inhibition of apoptosis was thought to limit ischaemia-induced damage. However, initial clinical studies on apoptosis-modulating drugs led to unexpected results in different clinical conditions and this may have been due to co-effects on non-apoptotic interconnected cell death mechanisms and the ‘yin-yang’ role of autophagy in survival versus cell death. In this review, we extend the analysis of cell death beyond apoptosis. Upon introduction of molecular pathways governing autophagy and necrosis (also called necroptosis or programmed necrosis), we focus on the interconnected character of cell death signals and on the shared cell death processes involving mitochondria (e.g. mitophagy and mitoptosis) and molecular signals playing prominent roles in multiple pathways (e.g. Bcl2-family members and p53). We also briefly highlight stress-induced cell senescence that plays a role not only in organismal ageing but also offers the development of novel anticancer strategies. Finally, we briefly illustrate the interconnected character of cell death forms in clinical settings while discussing irradiation-induced mitotic catastrophe. The signalling pathways are discussed in their relation to cancer biology and treatment approaches.
Collapse
Affiliation(s)
- Mayur V Jain
- Department of Clinical & Experimental Medicine, Division of Cell Biology, Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The endocytic pathway is a system specialized for the uptake of compounds from the cell microenvironment for their degradation. It contains an arsenal of hydrolases, including proteases, which are normally enclosed in membrane-bound organelles, but if released to the cytosol can initiate apoptosis signaling pathways. Endogenous and exogenous compounds have been identified that can mediate destabilization of lysosomal membranes, and it was shown that lysosomal proteases are not only able to initiate apoptotic signaling but can also amplify the apoptotic pathways initiated in other cellular compartments. The endocytic pathway also receives cargo destined for degradation via the autophagic pathway. By recycling energy and biosynthetic substrates, and by degrading damaged organelles and molecules, the endocytic system assists the autophagic system in resisting apoptotic stimuli. Steps leading to lysosomal membrane permeabilization and subsequent triggering of cell death as well as the therapeutic potential of intervention in lysosomal membrane permeabilization will be discussed.
Collapse
Affiliation(s)
- Urška Repnik
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|