1
|
Ma Y, Lai J, Wan Q, Sun L, Wang Y, Li X, Zhang Q, Wu J. Exploring the common mechanisms and biomarker ST8SIA4 of atherosclerosis and ankylosing spondylitis through bioinformatics analysis and machine learning. Front Cardiovasc Med 2024; 11:1421071. [PMID: 39131703 PMCID: PMC11310936 DOI: 10.3389/fcvm.2024.1421071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Background Atherosclerosis (AS) is a major contributor to cerebrovascular and cardiovascular events. There is growing evidence that ankylosing spondylitis is closely linked to AS, often co-occurring with it; however, the shared pathogenic mechanisms between the two conditions are not well understood. This study employs bioinformatics approaches to identify common biomarkers and pathways between AS and ankylosing spondylitis. Methods Gene expression datasets for AS (GSE100927, GSE28829, GSE155512) and ankylosing spondylitis (GSE73754, GSE25101) were obtained from the Gene Expression Omnibus (GEO). Differential expression genes (DEGs) and module genes for AS and ankylosing spondylitis were identified using the Limma R package and weighted gene co-expression network analysis (WGCNA) techniques, respectively. The machine learning algorithm SVM-RFE was applied to pinpoint promising biomarkers, which were then validated in terms of their expression levels and diagnostic efficacy in AS and ankylosing spondylitis, using two separate GEO datasets. Furthermore, the interaction of the key biomarker with the immune microenvironment was investigated via the CIBERSORT algorithm, single-cell analysis was used to identify the locations of common diagnostic markers. Results The dataset GSE100927 contains 524 DEGs associated with AS, whereas dataset GSE73754 includes 1,384 genes categorized into modules specific to ankylosing spondylitis. Analysis of these datasets revealed an overlap of 71 genes between the DEGs of AS and the modular genes of ankylosing spondylitis. Utilizing the SVM-RFE algorithm, 15 and 24 central diagnostic genes were identified in datasets GSE100927 and GSE73754, respectively. Further validation of six key genes using external datasets confirmed ST8SIA4 as a common diagnostic marker for both conditions. Notably, ST8SIA4 is upregulated in samples from both diseases. Additionally, ROC analysis confirmed the robust diagnostic utility of ST8SIA4. Moreover, analysis through CIBERSORT suggested an association of the ST8SIA4 gene with the immune microenvironment in both disease contexts. Single-cell analysis revealed that ST8SIA4 is primarily expressed in Macrophages, Monocytes, T cells, and CMPs. Conclusion This study investigates the role of ST8SIA4 as a common diagnostic gene and the involvement of the lysosomal pathway in both AS and ankylosing spondylitis. The findings may yield potential diagnostic biomarkers and offer new insights into the shared pathogenic mechanisms underlying these conditions.
Collapse
Affiliation(s)
- Yirong Ma
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Junyu Lai
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qiang Wan
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Liqiang Sun
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yang Wang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xingliang Li
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qinhe Zhang
- Department of Acupuncture and Tuina, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jianguang Wu
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
2
|
Ghosh S, Chaudhuri S, Roy P, Lahiri D. 4D Printing in Biomedical Engineering: a State-of-the-Art Review of Technologies, Biomaterials, and Application. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res 2022; 10:17. [PMID: 35197462 PMCID: PMC8866424 DOI: 10.1038/s41413-021-00180-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/26/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
Bone defects combined with tumors, infections, or other bone diseases are challenging in clinical practice. Autologous and allogeneic grafts are two main traditional remedies, but they can cause a series of complications. To address this problem, researchers have constructed various implantable biomaterials. However, the original pathological microenvironment of bone defects, such as residual tumors, severe infection, or other bone diseases, could further affect bone regeneration. Thus, the rational design of versatile biomaterials with integrated bone therapy and regeneration functions is in great demand. Many strategies have been applied to fabricate smart stimuli-responsive materials for bone therapy and regeneration, with stimuli related to external physical triggers or endogenous disease microenvironments or involving multiple integrated strategies. Typical external physical triggers include light irradiation, electric and magnetic fields, ultrasound, and mechanical stimuli. These stimuli can transform the internal atomic packing arrangements of materials and affect cell fate, thus enhancing bone tissue therapy and regeneration. In addition to the external stimuli-responsive strategy, some specific pathological microenvironments, such as excess reactive oxygen species and mild acidity in tumors, specific pH reduction and enzymes secreted by bacteria in severe infection, and electronegative potential in bone defect sites, could be used as biochemical triggers to activate bone disease therapy and bone regeneration. Herein, we summarize and discuss the rational construction of versatile biomaterials with bone therapeutic and regenerative functions. The specific mechanisms, clinical applications, and existing limitations of the newly designed biomaterials are also clarified.
Collapse
|
4
|
Vaill M, Chen DY, Diaz S, Varki A. Improved methods to characterize the length and quantity of highly unstable PolySialic acids subject category: (Carbohydrates, chromatographic techniques). Anal Biochem 2021; 635:114426. [PMID: 34687617 DOI: 10.1016/j.ab.2021.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022]
Abstract
Polysialic acid (polySia) is a linear homopolymer of α2-8-linked sialic acids that is highly expressed during early stages of mammalian brain development and modulates a multitude of cellular functions. While degree of polymerization (DP) can affect such functions, currently available methods do not accurately characterize this parameter, because of the instability of the polymer. We developed two improved methods to characterize the DP and total polySia content in biological samples. PolySia chains with exposed reducing termini can be derivatized with DMB for subsequent HPLC analysis. However, application to biological samples of polySia-glycoproteins requires release of polySia chains from the underlying glycan, which is difficult to achieve without concurrent partial hydrolysis of the α2-8-linkages of the polySia chain, affecting its accurate characterization. We report an approach to protect internal α2-8sia linkages of long polySia chains, using previously known esterification conditions that generate stable polylactone structures. Such polylactonized molecules are more stable during acid hydrolysis release and acidic DMB derivatization. Additionally, we used the highly specific Endoneuraminidase-NF enzyme to discriminate polysialic acid and other sialic acid and developed an approach to precisely measure the total content of polySia in a biological sample. These two methods provide improved quantification and characterization of polySia.
Collapse
Affiliation(s)
- Michael Vaill
- Department of Cellular & Molecular Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Glycobiology Research and Training Center (GRTC), University of California, San Diego, La Jolla, CA, USA
| | - Dillon Y Chen
- Department of Cellular & Molecular Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Glycobiology Research and Training Center (GRTC), University of California, San Diego, La Jolla, CA, USA
| | - Sandra Diaz
- Department of Cellular & Molecular Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Glycobiology Research and Training Center (GRTC), University of California, San Diego, La Jolla, CA, USA
| | - Ajit Varki
- Department of Cellular & Molecular Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Glycobiology Research and Training Center (GRTC), University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Rivero O, Alhama-Riba J, Ku HP, Fischer M, Ortega G, Álmos P, Diouf D, van den Hove D, Lesch KP. Haploinsufficiency of the Attention-Deficit/Hyperactivity Disorder Risk Gene St3gal3 in Mice Causes Alterations in Cognition and Expression of Genes Involved in Myelination and Sialylation. Front Genet 2021; 12:688488. [PMID: 34650588 PMCID: PMC8505805 DOI: 10.3389/fgene.2021.688488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Genome wide association meta-analysis identified ST3GAL3, a gene encoding the beta-galactosidase-alpha-2,3-sialyltransferase-III, as a risk gene for attention-deficit/hyperactivity disorder (ADHD). Although loss-of-function mutations in ST3GAL3 are implicated in non-syndromic autosomal recessive intellectual disability (NSARID) and West syndrome, the impact of ST3GAL3 haploinsufficiency on brain function and the pathophysiology of neurodevelopmental disorders (NDDs), such as ADHD, is unknown. Since St3gal3 null mutant mice display severe developmental delay and neurological deficits, we investigated the effects of partial inactivation of St3gal3 in heterozygous (HET) knockout (St3gal3±) mice on behavior as well as expression of markers linked to myelination processes and sialylation pathways. Our results reveal that male St3gal3 HET mice display cognitive deficits, while female HET animals show increased activity, as well as increased cognitive control, compared to their wildtype littermates. In addition, we observed subtle alterations in the expression of several markers implicated in oligodendrogenesis, myelin formation, and protein sialylation as well as cell adhesion/synaptic target glycoproteins of ST3GAL3 in a brain region- and/or sex-specific manner. Taken together, our findings indicate that haploinsufficiency of ST3GAL3 results in a sex-dependent alteration of cognition, behavior and markers of brain plasticity.
Collapse
Affiliation(s)
- Olga Rivero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Valencia, Spain
| | - Judit Alhama-Riba
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Hsing-Ping Ku
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Matthias Fischer
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Gabriela Ortega
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Péter Álmos
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - David Diouf
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
6
|
Hachem NE, Humpfle L, Simon P, Kaese M, Weinhold B, Günther J, Galuska SP, Middendorff R. The Loss of Polysialic Acid Impairs the Contractile Phenotype of Peritubular Smooth Muscle Cells in the Postnatal Testis. Cells 2021; 10:1347. [PMID: 34072405 PMCID: PMC8230264 DOI: 10.3390/cells10061347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
In the testis, the germinal epithelium of seminiferous tubules is surrounded by contractile peritubular cells, which are involved in sperm transport. Interestingly, in postnatal testis, polysialic acid (polySia), which is also an essential player for the development of the brain, was observed around the tubules. Western blotting revealed a massive decrease of polySia from postnatal day 1 towards puberty, together with a fundamental reduction of the net-like intertubular polySia. Using polysialyltransferase knockout mice, we investigated the consequences of the loss of polySia in the postnatal testis. Compared to postnatal wild-type animals, polySia knockouts showed slightly reduced smooth muscle actin (SMA) immunostaining of peritubular smooth muscle cells (SMCs), while calponin, marking more differentiated SMCs, dramatically decreased. In contrast, testicular SMA and calponin immunostaining remained unchanged in vascular SMCs in all genotypes. In addition, the cGMP-dependent protein kinase PKG I, a key enzyme of SMC relaxation, was nearly undetectable in the peritubular SMCs. Cell proliferation in the peritubular layer increased significantly in the knockouts, as shown by proliferating cell nuclear anti (PCNA) staining. Taken together, in postnatal testis, the absence of polySia resulted in an impaired differentiation of peritubular, but not vascular, SMCs to a more synthetic phenotype. Thus, polySia might influence the maintenance of a differentiated phenotype of non-vascular SMCs.
Collapse
Affiliation(s)
- Nadim E. Hachem
- Department of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany; (N.E.H.); (L.H.)
| | - Luisa Humpfle
- Department of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany; (N.E.H.); (L.H.)
| | - Peter Simon
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstr. 24, 35392 Giessen, Germany; (P.S.); (M.K.)
| | - Miriam Kaese
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstr. 24, 35392 Giessen, Germany; (P.S.); (M.K.)
| | - Birgit Weinhold
- Institute of Clinical Biochemistry, OE 4340, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany;
| | - Juliane Günther
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Sebastian P. Galuska
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstr. 24, 35392 Giessen, Germany; (P.S.); (M.K.)
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Ralf Middendorff
- Department of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany; (N.E.H.); (L.H.)
| |
Collapse
|
7
|
Schmitt-Ulms G, Mehrabian M, Williams D, Ehsani S. The IDIP framework for assessing protein function and its application to the prion protein. Biol Rev Camb Philos Soc 2021; 96:1907-1932. [PMID: 33960099 DOI: 10.1111/brv.12731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023]
Abstract
The quest to determine the function of a protein can represent a profound challenge. Although this task is the mandate of countless research groups, a general framework for how it can be approached is conspicuously lacking. Moreover, even expectations for when the function of a protein can be considered to be 'known' are not well defined. In this review, we begin by introducing concepts pertinent to the challenge of protein function assignments. We then propose a framework for inferring a protein's function from four data categories: 'inheritance', 'distribution', 'interactions' and 'phenotypes' (IDIP). We document that the functions of proteins emerge at the intersection of inferences drawn from these data categories and emphasise the benefit of considering them in an evolutionary context. We then apply this approach to the cellular prion protein (PrPC ), well known for its central role in prion diseases, whose function continues to be considered elusive by many investigators. We document that available data converge on the conclusion that the function of the prion protein is to control a critical post-translational modification of the neural cell adhesion molecule in the context of epithelial-to-mesenchymal transition and related plasticity programmes. Finally, we argue that this proposed function of PrPC has already passed the test of time and is concordant with the IDIP framework in a way that other functions considered for this protein fail to achieve. We anticipate that the IDIP framework and the concepts analysed herein will aid the investigation of other proteins whose primary functional assignments have thus far been intractable.
Collapse
Affiliation(s)
- Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 0S8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | | | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - Sepehr Ehsani
- Theoretical and Philosophical Biology, Department of Philosophy, University College London, Bloomsbury, London, WC1E 6BT, U.K.,Ronin Institute for Independent Scholarship, Montclair, NJ, 07043, U.S.A
| |
Collapse
|
8
|
Bule P, Chuzel L, Blagova E, Wu L, Gray MA, Henrissat B, Rapp E, Bertozzi CR, Taron CH, Davies GJ. Inverting family GH156 sialidases define an unusual catalytic motif for glycosidase action. Nat Commun 2019; 10:4816. [PMID: 31645552 PMCID: PMC6811678 DOI: 10.1038/s41467-019-12684-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Sialic acids are a family of related sugars that play essential roles in many biological events intimately linked to cellular recognition in both health and disease. Sialidases are therefore orchestrators of cellular biology and important therapeutic targets for viral infection. Here, we sought to define if uncharacterized sialidases would provide distinct paradigms in sialic acid biochemistry. We show that a recently discovered sialidase family, whose first member EnvSia156 was isolated from hot spring metagenomes, defines an unusual structural fold and active centre constellation, not previously described in sialidases. Consistent with an inverting mechanism, EnvSia156 reveals a His/Asp active center in which the His acts as a Brønsted acid and Asp as a Brønsted base in a single-displacement mechanism. A predominantly hydrophobic aglycone site facilitates accommodation of a variety of 2-linked sialosides; a versatility that offers the potential for glycan hydrolysis across a range of biological and technological platforms.
Collapse
Affiliation(s)
- Pedro Bule
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Léa Chuzel
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Elena Blagova
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Liang Wu
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Melissa A Gray
- Department of Chemistry, Stanford University, Stanford, CA, 94305-4404, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Centre National de la Recherche Scientifique (CNRS, UMR7257), Institut National Agronomique (INRA, USC 1408) and Aix-Marseille Université (AMU), 13288 Marseille cedex 9, Marseille, France
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
- glyXera GmbH, Leipziger Strasse 44-ZENIT, Magdeburg, Germany
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, 94305-4404, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305-4404, USA
| | | | - Gideon J Davies
- Department of Chemistry, University of York, York, YO10 5DD, UK.
| |
Collapse
|
9
|
Guo X, Elkashef SM, Loadman PM, Patterson LH, Falconer RA. Recent advances in the analysis of polysialic acid from complex biological systems. Carbohydr Polym 2019; 224:115145. [PMID: 31472857 DOI: 10.1016/j.carbpol.2019.115145] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022]
Abstract
Polysialic acid (polySia) is a unique, well-characterised carbohydrate polymer highly-expressed on the cell surface of neurons in the early stages of mammalian brain development. Post-embryogenesis, it is also re-expressed in a number of tumours of neuroendocrine origin. It plays important roles in modulating cell-cell, and cell-matrix adhesion and migration, tumour invasion and metastasis. Techniques for structural and quantitative characterisation of polySia from tumours and cancer cells are thus essential in exploring the relationship between polySia expression levels and structural and functional changes associated with cancer progression and metastasis. A variety of techniques have been developed to structurally and quantitatively analyse polySia in clinical tissues and other biological samples. In this review, analytical approaches used for the determination of polySia in biological matrices in the past 20 years are discussed, with a particular focus on chemical approaches, and quantitative analysis.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Sara M Elkashef
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Paul M Loadman
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Laurence H Patterson
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Robert A Falconer
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom.
| |
Collapse
|
10
|
Lui YS, Sow WT, Tan LP, Wu Y, Lai Y, Li H. 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater 2019; 92:19-36. [PMID: 31071476 DOI: 10.1016/j.actbio.2019.05.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022]
Abstract
Three-dimensional (3D) printing has revolutionized the world manufacturing production. In biomedical applications, however, 3D printed constructs fell short of expectations mainly due to their inability to adequately mimic the dynamic human tissues. To date, most of the 3D printed biomedical structures are largely static and inanimate as they lack the time-dependant dimension. To adequately address the dynamic healing and regeneration process of human tissues, 4D printing emerges as an important development where "time" is incorporated into the conventional concept of 3D printing as the fourth dimension. As such, additive manufacturing (AM) evolves from 3D to 4D printing and in the process putting stimulus-responsive materials in the limelight. In this review, the state-of-the-art efforts in integrating the time-dependent behaviour of stimulus-responsive materials in 4D printing will be discussed. In addition, current literatures on the interactions between various types of stimuli (categorized under physical, chemical and biological signals) with the associated stimulus-responsive materials will be the major focus in this review. Lastly, potential usage of 4D printing in biomedical applications will also be discussed, followed by technical considerations as well as outlook for future discoveries. STATEMENT OF SIGNIFICANCE: In this Review, we have demonstrated the significance of 4D printing in biomedical applications, in which "time" has been incorporated into the conventional concept of 3D printing as the 4th dimension. As such, 4D printing differentiates and evolves from 3D printing using stimulus-responsive materials which can actively respond to external stimuli and more sophisticated "hardware"-printer which can achieve multi-printing via mathematical-predicted designs that are programmed to consider the transformation of 3D constructs over time. The emphasize will be on the interactions between various types of stimuli (categorized under physical, chemical and biological signals) with the associated stimulus-responsive materials, followed by technical considerations as well as outlook for future discoveries.
Collapse
Affiliation(s)
- Yuan Siang Lui
- School of Materials Science & Engineering, Nanyang Technological University, 639798, Singapore
| | - Wan Ting Sow
- School of Materials Science & Engineering, Nanyang Technological University, 639798, Singapore
| | - Lay Poh Tan
- School of Materials Science & Engineering, Nanyang Technological University, 639798, Singapore.
| | - Yunlong Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian Province 361002, PR China
| | - Yuekun Lai
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang Province 325011, PR China; College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China; National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, PR China
| | - Huaqiong Li
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, PR China; Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang Province 325011, PR China.
| |
Collapse
|
11
|
Polysialic Acid Modulates the Binding of External Lactoferrin in Neutrophil Extracellular Traps. BIOLOGY 2019; 8:biology8020020. [PMID: 30925725 PMCID: PMC6627751 DOI: 10.3390/biology8020020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/28/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Neutrophil extracellular traps (NETs) are formed by neutrophils during inflammation. Among other things, these DNA constructs consist of antimicrobial proteins such as lactoferrin and histones. With these properties, NETs capture and destroy invading microorganisms. The carbohydrate polysialic acid (polySia) interacts with both lactoferrin and histones. Previous experiments demonstrated that, in humans, lactoferrin inhibits the release of NET and that this effect is supported by polySia. In this study, we examined the interplay of lactoferrin and polySia in already-formed NETs from bovine neutrophils. The binding of polySia was considered to occur at the lactoferricin (LFcin)-containing domain of lactoferrin. The interaction with the peptide LFcin was studied in more detail using groups of defined polySia chain lengths, which suggested a chain-length-dependent interaction mechanism with LFcin. The LFcin domain of lactoferrin was found to interact with DNA. Therefore, the possibility that polySia influences the integration of lactoferrin into the DNA-structures of NETs was tested by isolating bovine neutrophils and inducing NETosis. Experiments with NET fibers saturated with lactoferrin demonstrated that polySia initiates the incorporation of external lactoferrin in already-loaded NETs. Thus, polySia may modulate the constituents of NET.
Collapse
|
12
|
Kanu NJ, Gupta E, Vates UK, Singh GK. An insight into biomimetic 4D printing. RSC Adv 2019; 9:38209-38226. [PMID: 35541793 PMCID: PMC9075844 DOI: 10.1039/c9ra07342f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/04/2019] [Indexed: 12/29/2022] Open
Abstract
4D printed objects are indexed under additive manufacturing (AM) objects. The 4D printed materials are stimulus-responsive and have shape-changing features. However, the manufacturing of such objects is still a challenging task. For this, the designing space has to be explored in the initial stages, which is lagging so far. This paper encompasses two recent approaches to explore the conceptual design of 4D printed objects in detail: (a) an application-based modeling and simulation approach for phytomimetic structures and (b) a voxel-based modeling and simulation approach. The voxel-based modeling and simulation approach has the enhanced features for the rapid testing (prior to moving into design procedures) of the given distribution of such 4D printed smart materials (SMs) while checking for behaviors, particularly when these intelligent materials are exposed to a stimulus. The voxel-based modeling and simulation approach is further modified using bi-exponential expressions to encode the time-dependent behavior of the bio-inspired 4D printed materials. The shape-changing materials are inspired from biological objects, such as flowers, which are temperature-sensitive or touch-sensitive, and can be 4D printed in such a way that they are encrypted with a decentralized, anisotropic enlargement feature under a restrained alignment of cellulose fibers as in the case of composite hydrogels. Such plant-inspired architectures can change shapes when immersed in water. This paper also outlines a review of the 4D printing of (a) smart photocurable and biocompatible scaffolds with renewable plant oils, which can be a better alternative to traditional polyethylene glycol diacrylate (PEGDA) to support human bone marrow mesenchymal stem cells (hMSCs), and (b) a biomimetic dual shape-changing tube having applications in biomedical engineering as a bioimplant. The future applications would be based on these smart and intelligent materials; thus, it is important to modify the existing voxel-based modeling and simulation approach and discuss efficient printing methods to fabricate such bio-inspired materials. 4D printed objects are indexed under additive manufacturing (AM) objects.![]()
Collapse
Affiliation(s)
| | | | | | - Gyanendra Kumar Singh
- Federal Technical and Vocational Education and Training Institute
- Addis Ababa
- Ethiopia
| |
Collapse
|
13
|
Mori A, Hane M, Niimi Y, Kitajima K, Sato C. Different properties of polysialic acids synthesized by the polysialyltransferases ST8SIA2 and ST8SIA4. Glycobiology 2018; 27:834-846. [PMID: 28810663 DOI: 10.1093/glycob/cwx057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/17/2017] [Indexed: 12/19/2022] Open
Abstract
Polysialic acid (polySia) is mainly found as a modification of neural cell adhesion molecule (NCAM) in whole embryonic brains, as well as restricted areas of adult vertebrate brains, including the hippocampus. PolySia shows not only repulsive effects on NCAM-involved cell-cell interactions due to its bulky and hydrated properties, but also attractive effects on the interaction with neurologically active molecules, which exerts a reservoir function. Two different polysialyltransferases, ST8SIA2 and ST8SIA4, are involved in the synthesis of polySia chains; however, to date, the differences of the properties between polySia chains synthesized by these two enzymes remain unknown. In this study, to clarify this point, we first prepared polySia-NCAMs from HEK293 cells stably expressing ST8SIA4 and ST8SIA2, or ST8SIA2 (SNP-7), a mutant ST8SIA2 derived from a schizophrenia patient. The conventional sensitive chemical and immunological characterizations showed that the quantity and quality (structural features) of polySia are not so much different between ST8SIA4- and ST8SIA2-synthesized ones, apart from those of ST8SIA2 (SNP-7). Then, we assessed the homophilic and heterophilic interactions mediated by polySia-NCAM by adopting a surface plasmon resonance measurement as an in vitro analytical method. Our novel findings are as follows: (i) the ST8SIA2- and ST8SIA4-synthesized polySia-NCAMs exhibited different attractive and repulsive effects than each other; (ii) both polySia- and oligoSia-NCAMs synthesized by ST8SIA2 were able to bind polySia-NCAMs; (iii) the polySia-NCAM synthesized by a ST8SIA2 (SNP-7) showed markedly altered attractive and repulsive properties. Collectively, polySia-NCAM is suggested to simultaneously possess both attractive and repulsive properties that are highly regulated by the two polysialyltransferases.
Collapse
Affiliation(s)
- Airi Mori
- Bioscience and Biotechnology Center.,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Masaya Hane
- Bioscience and Biotechnology Center.,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yuki Niimi
- Bioscience and Biotechnology Center.,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center.,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Chihiro Sato
- Bioscience and Biotechnology Center.,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
14
|
Galuska CE, Lütteke T, Galuska SP. Is Polysialylated NCAM Not Only a Regulator during Brain Development But also during the Formation of Other Organs? BIOLOGY 2017; 6:biology6020027. [PMID: 28448440 PMCID: PMC5485474 DOI: 10.3390/biology6020027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 11/16/2022]
Abstract
In mammals several cell adhesion molecules are involved during the pre- and postnatal development of all organ systems. A very prominent member of this family is the neural cell adhesion molecule (NCAM). Interestingly, NCAM can be a target for a special form of posttranslational modification: polysialylation. Whereas nearly all extracellular proteins bear mono-sialic acid residues, only a very small group can be polysialylated. Polysialic acid is a highly negatively-charged sugar polymer and can comprise more than 90 sialic acid residues in postnatal mouse brains increasing dramatically the hydrodynamic radius of their carriers. Thus, adhesion and communication processes on cell surfaces are strongly influenced allowing, e.g., the migration of neuronal progenitor cells. In the developing brain the essential role of polysialylated NCAM has been demonstrated in many studies. In comparison to the neuronal system, however, during the formation of other organs the impact of the polysialylated form of NCAM is not well characterized and the number of studies is limited so far. This review summarizes these observations and discusses possible roles of polysialylated NCAM during the development of organs other than the brain.
Collapse
Affiliation(s)
- Christina E Galuska
- Department of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Thomas Lütteke
- ITech Progress GmbH, Donnersbergweg 4, 67059 Ludwigshafen, Germany.
| | - Sebastian P Galuska
- Department of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
15
|
Mehrabian M, Hildebrandt H, Schmitt-Ulms G. NCAM1 Polysialylation: The Prion Protein's Elusive Reason for Being? ASN Neuro 2016; 8:8/6/1759091416679074. [PMID: 27879349 PMCID: PMC5122176 DOI: 10.1177/1759091416679074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/08/2016] [Accepted: 10/02/2016] [Indexed: 01/06/2023] Open
Abstract
Much confusion surrounds the physiological function of the cellular prion protein (PrPC). It is, however, anticipated that knowledge of its function will shed light on its contribution to neurodegenerative diseases and suggest ways to interfere with the cellular toxicity central to them. Consequently, efforts to elucidate its function have been all but exhaustive. Building on earlier work that uncovered the evolutionary descent of the prion founder gene from an ancestral ZIP zinc transporter, we recently investigated a possible role of PrPC in a morphogenetic program referred to as epithelial-to-mesenchymal transition (EMT). By capitalizing on PrPC knockout cell clones in a mammalian cell model of EMT and using a comparative proteomics discovery strategy, neural cell adhesion molecule-1 emerged as a protein whose upregulation during EMT was perturbed in PrPC knockout cells. Follow-up work led us to observe that PrPC regulates the polysialylation of the neural cell adhesion molecule NCAM1 in cells undergoing morphogenetic reprogramming. In addition to governing cellular migration, polysialylation modulates several other cellular plasticity programs PrPC has been phenotypically linked to. These include neurogenesis in the subventricular zone, controlled mossy fiber sprouting and trimming in the hippocampal formation, hematopoietic stem cell renewal, myelin repair and maintenance, integrity of the circadian rhythm, and glutamatergic signaling. This review revisits this body of literature and attempts to present it in light of this novel contextual framework. When approached in this manner, a coherent model of PrPC acting as a regulator of polysialylation during specific cell and tissue morphogenesis events comes into focus.
Collapse
Affiliation(s)
- Mohadeseh Mehrabian
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Herbert Hildebrandt
- Institute for Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Berger RP, Sun YH, Kulik M, Lee JK, Nairn AV, Moremen KW, Pierce M, Dalton S. ST8SIA4-Dependent Polysialylation is Part of a Developmental Program Required for Germ Layer Formation from Human Pluripotent Stem Cells. Stem Cells 2016; 34:1742-52. [PMID: 27074314 DOI: 10.1002/stem.2379] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/18/2022]
Abstract
Polysialic acid (PSA) is a carbohydrate polymer of repeating α-2,8 sialic acid residues that decorates multiple targets, including neural cell adhesion molecule (NCAM). PST and STX encode the two enzymes responsible for PSA modification of target proteins in mammalian cells, but despite widespread polysialylation in embryonic development, the majority of studies have focused strictly on the role of PSA in neurogenesis. Using human pluripotent stem cells (hPSCs), we have revisited the developmental role of PST and STX and show that early progenitors of the three embryonic germ layers are polysialylated on their cell surface. Changes in polysialylation can be attributed to lineage-specific expression of polysialyltransferase genes; PST is elevated in endoderm and mesoderm, while STX is elevated in ectoderm. In hPSCs, PST and STX genes are epigenetically marked by overlapping domains of H3K27 and H3K4 trimethylation, indicating that they are held in a "developmentally-primed" state. Activation of PST transcription during early mesendoderm differentiation is under control of the T-Goosecoid transcription factor network, a key regulatory axis required for early cell fate decisions in the vertebrate embryo. This establishes polysialyltransferase genes as part of a developmental program associated with germ layer establishment. Finally, we show by shRNA knockdown and CRISPR-Cas9 genome editing that PST-dependent cell surface polysialylation is essential for endoderm specification. This is the first report to demonstrate a role for a glycosyltransferase in hPSC lineage specification. Stem Cells 2016;34:1742-1752.
Collapse
Affiliation(s)
- Ryan P Berger
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia, USA.,Center for Molecular Medicine, The University of Georgia, Athens, Georgia, USA
| | - Yu Hua Sun
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia, USA.,Center for Molecular Medicine, The University of Georgia, Athens, Georgia, USA
| | - Michael Kulik
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia, USA.,Center for Molecular Medicine, The University of Georgia, Athens, Georgia, USA
| | - Jin Kyu Lee
- Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, USA
| | - Alison V Nairn
- Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, USA
| | - Michael Pierce
- Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia, USA.,Center for Molecular Medicine, The University of Georgia, Athens, Georgia, USA
| |
Collapse
|
17
|
Kaese M, Galuska CE, Simon P, Braun BC, Cabrera-Fuentes HA, Middendorff R, Wehrend A, Jewgenow K, Galuska SP. Polysialylation takes place in granulosa cells during apoptotic processes of atretic tertiary follicles. FEBS J 2015; 282:4595-606. [PMID: 26392163 DOI: 10.1111/febs.13519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 08/14/2015] [Accepted: 09/16/2015] [Indexed: 11/30/2022]
Abstract
In the neuronal system, polysialic acid (polySia) is known to be involved in several cellular processes such as the modulation of cell-cell interactions. This highly negatively-charged sugar moiety is mainly present as a post-translational modification of the neural cell adhesion molecule (NCAM). More than 20 years ago, differently glycosylated forms of NCAM were detected in the ovaries. However, the exact isoform of NCAM, as well as its biological function, remained unknown. Our analysis revealed that granulosa cells of feline tertiary follicles express the polysialylated form of NCAM-140. Unexpectedly, polySia was only expressed in the granulosa layers of atretic follicles and not of healthy follicles. By contrast, only the un-polysialylated form of NCAM was present on the membrane of granulosa cells of healthy follicles. To study a possible cellular function of polySia in feline follicles, a primary granulosa cell culture model was used. Interestingly, loss of polySia leads to a significant inhibition of apoptosis, demonstrating that polySia is involved during atretic processes in granulosa cells. Thus, polySia might not only directly influence regeneration processes as shown, for example, in the neuronal system, but also apoptosis.
Collapse
Affiliation(s)
- Miriam Kaese
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Christina E Galuska
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Peter Simon
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany.,Institute of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Beate C Braun
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Hector A Cabrera-Fuentes
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore
| | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Axel Wehrend
- Clinic of Obstetrics, Gynecology and Andrology for Small and Large Animals, Justus-Liebig-University, Giessen, Germany
| | - Katarina Jewgenow
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Sebastian P Galuska
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
18
|
Simon P, Feuerstacke C, Kaese M, Saboor F, Middendorff R, Galuska SP. Polysialylation of NCAM characterizes the proliferation period of contractile elements during postnatal development of the epididymis. PLoS One 2015; 10:e0123960. [PMID: 25822229 PMCID: PMC4379024 DOI: 10.1371/journal.pone.0123960] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/11/2015] [Indexed: 11/19/2022] Open
Abstract
Polysialic acid (polySia) attached to the neural cell adhesion molecule (NCAM) regulates inter alia the proliferation and differentiation via the interactions with neurotrophins. Since in postnatal epididymis neurotrophins and their receptors like the Low-Affinity Nerve Growth Factor Receptor p75 and TrK B receptor are expressed, we wanted to analyze if the polysialylation of NCAM is also involved during the development of the epididymis. To this end, we monitored the developmental changes in the expression of the polysialyltransferases and NCAM polysialylation using murine epididymis at different time points during postnatal development. Our results revealed that during postnatal development of the epididymis both polysialyltransferases, ST8SiaII and ST8SiaIV, were expressed and that the expression levels dropped with increasing age. In agreement with the expression levels of the polysialyltransferases the highest content of polysialylated NCAM was present during the first 10 days after birth. Interestingly, proliferating smooth muscle cell populations prevalently expressed polysialylated NCAM. Furthermore, we observed that inverse to the decrease in polysialylation of smooth muscle cells a strong up-regulation of collagen takes place suggesting a functional relationship since collagen was recently described to induce the turnover of polysialylated NCAM via an induction of endocytosis in cellulo. The same time course of polySia and collagen synthesis was also observed in other regions of the male reproductive system e.g. vas deferens and tunica albuginea (testis). Together, we identified a spatio-temporal expression pattern of polySia-NCAM characterized by high proliferation rate of smooth muscle cells and low collagen content.
Collapse
Affiliation(s)
- Peter Simon
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstr. 24, 35392, Giessen, Germany
- Department of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Aulweg 123, 35385, Giessen, Germany
| | - Caroline Feuerstacke
- Department of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Aulweg 123, 35385, Giessen, Germany
| | - Miriam Kaese
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstr. 24, 35392, Giessen, Germany
| | - Farhan Saboor
- Department of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Aulweg 123, 35385, Giessen, Germany
| | - Ralf Middendorff
- Department of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Aulweg 123, 35385, Giessen, Germany
- * E-mail: (RM); (SPG)
| | - Sebastian P. Galuska
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstr. 24, 35392, Giessen, Germany
- * E-mail: (RM); (SPG)
| |
Collapse
|
19
|
Werneburg S, Mühlenhoff M, Stangel M, Hildebrandt H. Polysialic acid on SynCAM 1 in NG2 cells and on neuropilin-2 in microglia is confined to intracellular pools that are rapidly depleted upon stimulation. Glia 2015; 63:1240-55. [DOI: 10.1002/glia.22815] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/20/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Sebastian Werneburg
- Hannover Medical School; Institute for Cellular Chemistry; Carl-Neuberg-Straße 1 Hannover Germany
- Center for Systems Neuroscience (ZSN); Hannover Germany
| | - Martina Mühlenhoff
- Hannover Medical School; Institute for Cellular Chemistry; Carl-Neuberg-Straße 1 Hannover Germany
| | - Martin Stangel
- Center for Systems Neuroscience (ZSN); Hannover Germany
- Clinical Neuroimmunology and Neurochemistry; Department of Neurology; Hannover Medical School; Carl-Neuberg-Straße 1 Hannover Germany
| | - Herbert Hildebrandt
- Hannover Medical School; Institute for Cellular Chemistry; Carl-Neuberg-Straße 1 Hannover Germany
- Center for Systems Neuroscience (ZSN); Hannover Germany
| |
Collapse
|
20
|
Colley KJ, Kitajima K, Sato C. Polysialic acid: biosynthesis, novel functions and applications. Crit Rev Biochem Mol Biol 2014; 49:498-532. [PMID: 25373518 DOI: 10.3109/10409238.2014.976606] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As an anti-adhesive, a reservoir for key biological molecules, and a modulator of signaling, polysialic acid (polySia) is critical for nervous system development and maintenance, promotes cancer metastasis, tissue regeneration and repair, and is implicated in psychiatric diseases. In this review, we focus on the biosynthesis and functions of mammalian polySia, and the use of polySia in therapeutic applications. PolySia modifies a small subset of mammalian glycoproteins, with the neural cell adhesion molecule, NCAM, serving as its major carrier. Studies show that mammalian polysialyltransferases employ a unique recognition mechanism to limit the addition of polySia to a select group of proteins. PolySia has long been considered an anti-adhesive molecule, and its impact on cell adhesion and signaling attributed directly to this property. However, recent studies have shown that polySia specifically binds neurotrophins, growth factors, and neurotransmitters and that this binding depends on chain length. This work highlights the importance of considering polySia quality and quantity, and not simply its presence or absence, as its various roles are explored. The capsular polySia of neuroinvasive bacteria allows these organisms to evade the host immune response. While this "stealth" characteristic has made meningitis vaccine development difficult, it has also made polySia a worthy replacement for polyetheylene glycol in the generation of therapeutic proteins with low immunogenicity and improved circulating half-lives. Bacterial polysialyltransferases are more promiscuous than the protein-specific mammalian enzymes, and new studies suggest that these enzymes have tremendous therapeutic potential, especially for strategies aimed at neural regeneration and tissue repair.
Collapse
Affiliation(s)
- Karen J Colley
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago , Chicago, IL , USA and
| | | | | |
Collapse
|
21
|
Schnaar RL, Gerardy-Schahn R, Hildebrandt H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev 2014; 94:461-518. [PMID: 24692354 DOI: 10.1152/physrev.00033.2013] [Citation(s) in RCA: 515] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Every cell in nature carries a rich surface coat of glycans, its glycocalyx, which constitutes the cell's interface with its environment. In eukaryotes, the glycocalyx is composed of glycolipids, glycoproteins, and proteoglycans, the compositions of which vary among different tissues and cell types. Many of the linear and branched glycans on cell surface glycoproteins and glycolipids of vertebrates are terminated with sialic acids, nine-carbon sugars with a carboxylic acid, a glycerol side-chain, and an N-acyl group that, along with their display at the outmost end of cell surface glycans, provide for varied molecular interactions. Among their functions, sialic acids regulate cell-cell interactions, modulate the activities of their glycoprotein and glycolipid scaffolds as well as other cell surface molecules, and are receptors for pathogens and toxins. In the brain, two families of sialoglycans are of particular interest: gangliosides and polysialic acid. Gangliosides, sialylated glycosphingolipids, are the most abundant sialoglycans of nerve cells. Mouse genetic studies and human disorders of ganglioside metabolism implicate gangliosides in axon-myelin interactions, axon stability, axon regeneration, and the modulation of nerve cell excitability. Polysialic acid is a unique homopolymer that reaches >90 sialic acid residues attached to select glycoproteins, especially the neural cell adhesion molecule in the brain. Molecular, cellular, and genetic studies implicate polysialic acid in the control of cell-cell and cell-matrix interactions, intermolecular interactions at cell surfaces, and interactions with other molecules in the cellular environment. Polysialic acid is essential for appropriate brain development, and polymorphisms in the human genes responsible for polysialic acid biosynthesis are associated with psychiatric disorders including schizophrenia, autism, and bipolar disorder. Polysialic acid also appears to play a role in adult brain plasticity, including regeneration. Together, vertebrate brain sialoglycans are key regulatory components that contribute to proper development, maintenance, and health of the nervous system.
Collapse
|
22
|
Ulm C, Saffarzadeh M, Mahavadi P, Müller S, Prem G, Saboor F, Simon P, Middendorff R, Geyer H, Henneke I, Bayer N, Rinné S, Lütteke T, Böttcher-Friebertshäuser E, Gerardy-Schahn R, Schwarzer D, Mühlenhoff M, Preissner KT, Günther A, Geyer R, Galuska SP. Soluble polysialylated NCAM: a novel player of the innate immune system in the lung. Cell Mol Life Sci 2013; 70:3695-708. [PMID: 23619613 PMCID: PMC11113884 DOI: 10.1007/s00018-013-1342-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 11/27/2022]
Abstract
Posttranslational modification of the neural cell adhesion molecule (NCAM) by polysialic acid (polySia) is well studied in the nervous system and described as a dynamic modulator of plastic processes like precursor cell migration, axon fasciculation, and synaptic plasticity. Here, we describe a novel function of polysialylated NCAM (polySia-NCAM) in innate immunity of the lung. In mature lung tissue of healthy donors, polySia was exclusively attached to the transmembrane isoform NCAM-140 and located to intracellular compartments of epithelial cells. In patients with chronic obstructive pulmonary disease, however, increased polySia levels and processing of the NCAM carrier were observed. Processing of polysialylated NCAM was reproduced in a mouse model by bleomycin administration leading to an activation of the inflammasome and secretion of interleukin (IL)-1β. As shown in a cell culture model, polySia-NCAM-140 was kept in the late trans-Golgi apparatus of lung epithelial cells and stimulation by IL-1β or lipopolysaccharide induced metalloprotease-mediated ectodomain shedding, resulting in the secretion of soluble polySia-NCAM. Interestingly, polySia chains of secreted NCAM neutralized the cytotoxic activity of extracellular histones as well as DNA/histone-network-containing "neutrophil extracellular traps", which are formed during invasion of microorganisms. Thus, shedding of polySia-NCAM by lung epithelial cells may provide a host-protective mechanism to reduce tissue damage during inflammatory processes.
Collapse
Affiliation(s)
- Christina Ulm
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Mona Saffarzadeh
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Poornima Mahavadi
- Department of Internal Medicine II, Justus-Liebig-University, Giessen, Germany
| | - Sandra Müller
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Gerlinde Prem
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Farhan Saboor
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Peter Simon
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Hildegard Geyer
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Ingrid Henneke
- Department of Internal Medicine II, Justus-Liebig-University, Giessen, Germany
| | - Nils Bayer
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Susanne Rinné
- Institute of Physiology and Pathophysiology, Philipps-University, Marburg, Germany
| | - Thomas Lütteke
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University, Giessen, Germany
| | | | | | - David Schwarzer
- Institute of Cellular Chemistry, Medical School, Hannover, Germany
| | | | | | - Andreas Günther
- Department of Internal Medicine II, Justus-Liebig-University, Giessen, Germany
| | - Rudolf Geyer
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | | |
Collapse
|
23
|
Rollenhagen M, Buettner FFR, Reismann M, Jirmo AC, Grove M, Behrens GMN, Gerardy-Schahn R, Hanisch FG, Mühlenhoff M. Polysialic acid on neuropilin-2 is exclusively synthesized by the polysialyltransferase ST8SiaIV and attached to mucin-type o-glycans located between the b2 and c domain. J Biol Chem 2013; 288:22880-92. [PMID: 23801331 DOI: 10.1074/jbc.m113.463927] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neuropilin-2 (NRP2) is well known as a co-receptor for class 3 semaphorins and vascular endothelial growth factors, involved in axon guidance and angiogenesis. Moreover, NRP2 was shown to promote chemotactic migration of human monocyte-derived dendritic cells (DCs) toward the chemokine CCL21, a function that relies on the presence of polysialic acid (polySia). In vertebrates, this posttranslational modification is predominantly found on the neural cell adhesion molecule (NCAM), where it is synthesized on N-glycans by either of the two polysialyltransferases, ST8SiaII or ST8SiaIV. In contrast to NCAM, little is known on the biosynthesis of polySia on NRP2. Here we identified the polySia attachment sites and demonstrate that NRP2 is recognized only by ST8SiaIV. Although polySia-NRP2 was found on bone marrow-derived DCs from wild-type and St8sia2(-/-) mice, polySia was completely lost in DCs from St8sia4(-/-) mice despite normal NRP2 expression. In COS-7 cells, co-expression of NRP2 with ST8SiaIV but not ST8SiaII resulted in the formation of polySia-NRP2, highlighting distinct acceptor specificities of the two polysialyltransferases. Notably, ST8SiaIV synthesized polySia selectively on a NRP2 glycoform that was characterized by the presence of sialylated core 1 and core 2 O-glycans. Based on a comprehensive site-directed mutagenesis study, we localized the polySia attachment sites to an O-glycan cluster located in the linker region between b2 and c domain. Combined alanine exchange of Thr-607, -613, -614, -615, -619, and -624 efficiently blocked polysialylation. Restoration of single sites only partially rescued polysialylation, suggesting that within this cluster, polySia is attached to more than one site.
Collapse
Affiliation(s)
- Manuela Rollenhagen
- Institute of Cellular Chemistry, Medical School Hannover, Hannover 30623, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Simon P, Bäumner S, Busch O, Röhrich R, Kaese M, Richterich P, Wehrend A, Müller K, Gerardy-Schahn R, Mühlenhoff M, Geyer H, Geyer R, Middendorff R, Galuska SP. Polysialic acid is present in mammalian semen as a post-translational modification of the neural cell adhesion molecule NCAM and the polysialyltransferase ST8SiaII. J Biol Chem 2013; 288:18825-33. [PMID: 23671285 DOI: 10.1074/jbc.m113.451112] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fertilization in animals is a complex sequence of several biochemical events beginning with the insemination into the female reproductive tract and, finally, leading to embryogenesis. Studies by Kitajima and co-workers (Miyata, S., Sato, C., and Kitajima, K. (2007) Trends Glycosci. Glyc, 19, 85-98) demonstrated the presence of polysialic acid (polySia) on sea urchin sperm. Based on these results, we became interested in the potential involvement of sialic acid polymers in mammalian fertilization. Therefore, we isolated human sperm and performed analyses, including Western blotting and mild 1,2-diamino-4,5-methylenedioxybenzene-HPLC, that revealed the presence α2,8-linked polySia chains. Further analysis by a glyco-proteomics approach led to the identification of two polySia carriers. Interestingly, besides the neural cell adhesion molecule, the polysialyltransferase ST8SiaII has also been found to be a target for polysialylation. Further analysis of testis and epididymis tissue sections demonstrated that only epithelial cells of the caput were polySia-positive. During the epididymal transit, polySia carriers were partially integrated into the sperm membrane of the postacrosomal region. Because polySia is known to counteract histone as well as neutrophil extracellular trap-mediated cytotoxicity against host cells, which plays a role after insemination, we propose that polySia in semen represents a cytoprotective element to increase the number of vital sperm.
Collapse
Affiliation(s)
- Peter Simon
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pacharra S, Hanisch FG, Mühlenhoff M, Faissner A, Rauch U, Breloy I. The Lecticans of Mammalian Brain Perineural Net Are O-Mannosylated. J Proteome Res 2013; 12:1764-71. [DOI: 10.1021/pr3011028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandra Pacharra
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Köln, Germany
| | - Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Köln, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Köln, Germany
| | | | - Andreas Faissner
- Department for Cell Morphology and Molecular
Neurobiology, Ruhr-University Bochum, Bochum,
Germany
| | - Uwe Rauch
- Department of Experimental
Medical Science, Biomedical Center B12, Lund University, Lund, Sweden
| | - Isabelle Breloy
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Köln, Germany
| |
Collapse
|
26
|
Mühlenhoff M, Rollenhagen M, Werneburg S, Gerardy-Schahn R, Hildebrandt H. Polysialic Acid: Versatile Modification of NCAM, SynCAM 1 and Neuropilin-2. Neurochem Res 2013; 38:1134-43. [DOI: 10.1007/s11064-013-0979-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 12/27/2022]
|
27
|
Thompson MG, Foley DA, Colley KJ. The polysialyltransferases interact with sequences in two domains of the neural cell adhesion molecule to allow its polysialylation. J Biol Chem 2013; 288:7282-93. [PMID: 23341449 DOI: 10.1074/jbc.m112.438374] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neural cell adhesion molecule (NCAM) is the major substrate for the polysialyltransferases (polySTs), ST8SiaII/STX and ST8SiaIV/PST. The polysialylation of NCAM N-glycans decreases cell adhesion and alters signaling. Previous work demonstrated that the first fibronectin type III repeat (FN1) of NCAM is required for polyST recognition and the polysialylation of the N-glycans on the adjacent Ig5 domain. In this work, we highlight the importance of an FN1 acidic patch in polyST recognition and also reveal that the polySTs are required to interact with sequences in the Ig5 domain for polysialylation to occur. We find that features of the Ig5 domain of the olfactory cell adhesion molecule (OCAM) are responsible for its lack of polysialylation. Specifically, two basic OCAM Ig5 residues (Lys and Arg) found near asparagines equivalent to those carrying the polysialylated N-glycans in NCAM substantially decrease or eliminate polysialylation when used to replace the smaller and more neutral residues (Ser and Asn) in analogous positions in NCAM Ig5. This decrease in polysialylation does not reflect altered glycosylation but instead is correlated with a decrease in polyST-NCAM binding. In addition, inserting non-conserved OCAM sequences into NCAM Ig5, including an "extra" N-glycosylation site, decreases or completely blocks NCAM polysialylation. Taken together, these results indicate that the polySTs not only recognize an acidic patch in the FN1 domain of NCAM but also must contact sequences in the Ig5 domain for polysialylation of Ig5 N-glycans to occur.
Collapse
Affiliation(s)
- Matthew G Thompson
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
28
|
|
29
|
Rollenhagen M, Kuckuck S, Ulm C, Hartmann M, Galuska SP, Geyer R, Geyer H, Mühlenhoff M. Polysialylation of the synaptic cell adhesion molecule 1 (SynCAM 1) depends exclusively on the polysialyltransferase ST8SiaII in vivo. J Biol Chem 2012; 287:35170-35180. [PMID: 22908220 DOI: 10.1074/jbc.m112.375642] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Polysialic acid is a unique carbohydrate polymer specifically attached to a limited number of glycoproteins. Among them is synaptic cell adhesion molecule 1 (SynCAM 1), a member of the immunoglobulin (Ig) superfamily composed of three extracellular Ig-like domains. Polysialylation of SynCAM 1 is cell type-specific and was exclusively found in NG2 cells, a class of multifunctional progenitor cells that form specialized synapses with neurons. Here, we studied the molecular requirements for SynCAM 1 polysialylation. Analysis of mice lacking one of the two polysialyltransferases, ST8SiaII or ST8SiaIV, revealed that polysialylation of SynCAM 1 is exclusively mediated by ST8SiaII throughout postnatal brain development. Alternative splicing of the three variable exons 8a, 8b, and 8c can theoretically give rise to eight transmembrane isoforms of SynCAM 1. We detected seven transcript variants in the developing mouse brain, including three variants containing exon 8c, which was so far regarded as a cryptic exon in mice. Polysialylation of SynCAM 1 was restricted to four isoforms in perinatal brain. However, cell culture experiments demonstrated that all transmembrane isoforms of SynCAM 1 can be polysialylated by ST8SiaII. Moreover, analysis of domain deletion constructs revealed that Ig1, which harbors the polysialylation site, is not sufficient as an acceptor for ST8SiaII. The minimal polypeptide required for polysialylation contained Ig1 and Ig2, suggesting an important role for Ig2 as a docking site for ST8SiaII.
Collapse
Affiliation(s)
- Manuela Rollenhagen
- Institute of Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Sarah Kuckuck
- Institute of Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Christina Ulm
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, 35392 Giessen, Germany
| | - Maike Hartmann
- Institute of Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Sebastian P Galuska
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, 35392 Giessen, Germany
| | - Rudolf Geyer
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, 35392 Giessen, Germany
| | - Hildegard Geyer
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, 35392 Giessen, Germany
| | - Martina Mühlenhoff
- Institute of Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
30
|
A universal fluorescent acceptor for high-performance liquid chromatography analysis of pro- and eukaryotic polysialyltransferases. Anal Biochem 2012; 427:107-15. [DOI: 10.1016/j.ab.2012.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/07/2012] [Accepted: 05/14/2012] [Indexed: 11/19/2022]
|
31
|
Weinhold B, Sellmeier M, Schaper W, Blume L, Philippens B, Kats E, Bernard U, Galuska SP, Geyer H, Geyer R, Worthmann K, Schiffer M, Groos S, Gerardy-Schahn R, Münster-Kühnel AK. Deficits in sialylation impair podocyte maturation. J Am Soc Nephrol 2012; 23:1319-28. [PMID: 22745475 DOI: 10.1681/asn.2011090947] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The role of sialylation in kidney biology is not fully understood. The synthesis of sialoglycoconjugates, which form the outermost structures of animal cells, requires CMP-sialic acid, which is a product of the nuclear enzyme CMAS. We used a knock-in strategy to create a mouse with point mutations in the canonical nuclear localization signal of CMAS, which relocated the enzyme to the cytoplasm of transfected cells without affecting its activity. Although insufficient to prevent nuclear entry in mice, the mutation led to a drastically reduced concentration of nuclear-expressed enzyme. Mice homozygous for the mutation died from kidney failure within 72 hours after birth. The Cmas(nls) mouse exhibited podocyte foot process effacement, absence of slit diaphragms, and massive proteinuria, recapitulating features of nephrin-knockout mice and of patients with Finnish-type congenital nephrotic syndrome. Although the Cmas(nls) mouse displayed normal sialylation in all organs including kidney, a critical shortage of CMP-sialic acid prevented sialylation of nephrin and podocalyxin in the maturing podocyte where it is required during the formation of foot processes. Accordingly, the sialylation defects progressed with time and paralleled the morphologic changes. In summary, sialylation is critical during the development of the glomerular filtration barrier and required for the proper function of nephrin. Whether altered sialylation impairs nephrin function in human disease requires further study.
Collapse
Affiliation(s)
- Birgit Weinhold
- Institute for Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
33
|
Jakobsson E, Schwarzer D, Jokilammi A, Finne J. Endosialidases: Versatile Tools for the Study of Polysialic Acid. Top Curr Chem (Cham) 2012; 367:29-73. [PMID: 22851159 DOI: 10.1007/128_2012_349] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polysialic acid is an α2,8-linked N-acetylneuraminic acid polymer found on the surface of both bacterial and eukaryotic cells. Endosialidases are bacteriophage-borne glycosyl hydrolases that specifically cleave polysialic acid. The crystal structure of an endosialidase reveals a trimeric mushroom-shaped molecule which, in addition to the active site, harbors two additional polysialic acid binding sites. Folding of the protein crucially depends on an intramolecular C-terminal chaperone domain that is proteolytically released in an intramolecular reaction. Based on structural data and previous considerations, an updated catalytic mechanism is discussed. Endosialidases degrade polysialic acid in a processive mode of action, and a model for its mechanism is suggested. The review summarizes the structural and biochemical elucidations of the last decade and the importance of endosialidases in biochemical and medical applications. Active endosialidases are important tools in studies on the biological roles of polysialic acid, such as the pathogenesis of septicemia and meningitis by polysialic acid-encapsulated bacteria, or its role as a modulator of the adhesion and interactions of neural and other cells. Endosialidase mutants that have lost their polysialic acid cleaving activity while retaining their polysialic acid binding capability have been fused to green fluorescent protein to provide an efficient tool for the specific detection of polysialic acid.
Collapse
Affiliation(s)
- Elina Jakobsson
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | | | | | | |
Collapse
|
34
|
Galuska SP, Geyer H, Weinhold B, Kontou M, Röhrich RC, Bernard U, Gerardy-Schahn R, Reutter W, Münster-Kühnel A, Geyer R. Quantification of nucleotide-activated sialic acids by a combination of reduction and fluorescent labeling. Anal Chem 2010; 82:4591-8. [PMID: 20429516 DOI: 10.1021/ac100627e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sialic acids usually represent the terminal monosaccharide of glycoconjugates and are directly involved in many biological processes. The cellular concentration of their nucleotide-activated form is one pacemaker for the highly variable sialylation of glycoconjugates. Hence, the determination of CMP-sialic acid levels is an important factor to understand the complex glycosylation machinery of cells and to standardize the production of glycotherapeutics. We have established a highly sensitive strategy to quantify the concentration of nucleotide-activated sialic acid by a combination of reduction and fluorescent labeling using the fluorophore 1,2-diamino-4,5-methylenedioxybenzene (DMB). The labeling with DMB requires free keto as well as carboxyl groups of the sialic acid molecule. Reduction of the keto group prior to the labeling process precludes the labeling of nonactivated sialic acids. Since the keto group is protected against reduction by the CMP-substitution, labeling of nucleotide-activated sialic acids is still feasible after reduction. Subsequent combination of the DMB-high-performance liquid chromatography (HPLC) application with mass spectrometric approaches, such as matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry (MALDI-TOF-MS) and electrospray-ionization (ESI)-MS, allows the unambiguous identification of both natural and modified CMP-sialic acids and localization of potential substituents. Thus, the described strategy offers a sensitive detection, identification, and quantification of nucleotide-activated sialic acid derivatives in the femtomole range without the need for nucleotide-activated standards.
Collapse
Affiliation(s)
- Sebastian P Galuska
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Synaptic cell adhesion molecule SynCAM 1 is a target for polysialylation in postnatal mouse brain. Proc Natl Acad Sci U S A 2010; 107:10250-5. [PMID: 20479255 DOI: 10.1073/pnas.0912103107] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Among the large set of cell surface glycan structures, the carbohydrate polymer polysialic acid (polySia) plays an important role in vertebrate brain development and synaptic plasticity. The main carrier of polySia in the nervous system is the neural cell adhesion molecule NCAM. As polySia with chain lengths of more than 40 sialic acid residues was still observed in brain of newborn Ncam(-/-) mice, we performed a glycoproteomics approach to identify the underlying protein scaffolds. Affinity purification of polysialylated molecules from Ncam(-/-) brain followed by peptide mass fingerprinting led to the identification of the synaptic cell adhesion molecule SynCAM 1 as a so far unknown polySia carrier. SynCAM 1 belongs to the Ig superfamily and is a powerful inducer of synapse formation. Importantly, the appearance of polysialylated SynCAM 1 was not restricted to the Ncam(-/-) background but was found to the same extent in perinatal brain of WT mice. PolySia was located on N-glycans of the first Ig domain, which is known to be involved in homo- and heterophilic SynCAM 1 interactions. Both polysialyltransferases, ST8SiaII and ST8SiaIV, were able to polysialylate SynCAM 1 in vitro, and polysialylation of SynCAM 1 completely abolished homophilic binding. Analysis of serial sections of perinatal Ncam(-/-) brain revealed that polySia-SynCAM 1 is expressed exclusively by NG2 cells, a multifunctional glia population that can receive glutamatergic input via unique neuron-NG2 cell synapses. Our findings sug-gest that polySia may act as a dynamic modulator of SynCAM 1 functions during integration of NG2 cells into neural networks.
Collapse
|
36
|
Divergent impact of the polysialyltransferases ST8SiaII and ST8SiaIV on polysialic acid expression in immature neurons and interneurons of the adult cerebral cortex. Neuroscience 2010; 167:825-37. [DOI: 10.1016/j.neuroscience.2010.02.067] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 12/15/2022]
|
37
|
Inoko E, Nishiura Y, Tanaka H, Takahashi T, Furukawa K, Kitajima K, Sato C. Developmental stage-dependent expression of an 2,8-trisialic acid unit on glycoproteins in mouse brain. Glycobiology 2010; 20:916-28. [DOI: 10.1093/glycob/cwq049] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Galuska SP, Geyer H, Bleckmann C, Röhrich RC, Maass K, Bergfeld AK, Mühlenhoff M, Geyer R. Mass Spectrometric Fragmentation Analysis of Oligosialic and Polysialic Acids. Anal Chem 2010; 82:2059-66. [DOI: 10.1021/ac902809q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian P. Galuska
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany, and Institute of Cellular Chemistry, Medical School Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Hildegard Geyer
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany, and Institute of Cellular Chemistry, Medical School Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Christina Bleckmann
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany, and Institute of Cellular Chemistry, Medical School Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - René C. Röhrich
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany, and Institute of Cellular Chemistry, Medical School Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Kai Maass
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany, and Institute of Cellular Chemistry, Medical School Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Anne K. Bergfeld
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany, and Institute of Cellular Chemistry, Medical School Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Martina Mühlenhoff
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany, and Institute of Cellular Chemistry, Medical School Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Rudolf Geyer
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany, and Institute of Cellular Chemistry, Medical School Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
39
|
Hildebrandt H, Mühlenhoff M, Gerardy-Schahn R. Polysialylation of NCAM. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:95-109. [DOI: 10.1007/978-1-4419-1170-4_6] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Structural basis for the polysialylation of the neural cell adhesion molecule. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:111-26. [PMID: 20017018 DOI: 10.1007/978-1-4419-1170-4_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
41
|
Janas T, Nowotarski K, Janas T. Polysialic acid can mediate membrane interactions by interacting with phospholipids. Chem Phys Lipids 2009; 163:286-91. [PMID: 20018185 DOI: 10.1016/j.chemphyslip.2009.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 10/21/2009] [Accepted: 12/09/2009] [Indexed: 11/30/2022]
Abstract
Polysialic acid (polySia) is expressed on the surface of neural cells, neuroinvasive bacterial cells and several tumor cells. PolySia chains attached to NCAM can influence both trans interactions between membranes of two cells and cis interactions. Here, we report on the involvement of phospholipids in regulation of membrane interactions by polySia. The pH at the surface of liposomes, specific molecular area of phosphatidylcholine molecules, phase transition of DPPC bilayers, cyclic voltammograms of BLMs, and electron micrographs of phosphatidylcholine vesicles were studied after addition of polysialic acid free in solution. The results indicate that polySia chains can associate with phosphatidylcholine bilayers, incorporate into the polar part of a phospholipid monolayer, modulate cis interactions between phosphatidylcholine molecules, and facilitate trans interactions between apposing phospholipid vesicles. These observations imply that polySia attached to NCAM or to lipids can behave similarly.
Collapse
Affiliation(s)
- Teresa Janas
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | | |
Collapse
|
42
|
Mühlenhoff M, Oltmann-Norden I, Weinhold B, Hildebrandt H, Gerardy-Schahn R. Brain development needs sugar: the role of polysialic acid in controlling NCAM functions. Biol Chem 2009; 390:567-74. [PMID: 19426138 DOI: 10.1515/bc.2009.078] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polysialic acid (polySia) is a major regulator of cell-cell interactions in the developing nervous system and a key factor in maintaining neural plasticity. As a polyanionic molecule with high water binding capacity, polySia increases the intercellular space and creates conditions that are permissive for cellular plasticity. While the prevailing model highlights polySia as a non-specific regulator of cell-cell contacts, this review concentrates on recent studies in knockout mice indicating that a crucial function of polySia resides in controlling interactions mediated by its predominant protein carrier, the neural cell adhesion molecule NCAM.
Collapse
Affiliation(s)
- Martina Mühlenhoff
- Institute of Cellular Chemistry, OE 4330, Hannover Medical School, D-30625 Hannover, Germany.
| | | | | | | | | |
Collapse
|
43
|
Morley TJ, Willis LM, Whitfield C, Wakarchuk WW, Withers SG. A new sialidase mechanism: bacteriophage K1F endo-sialidase is an inverting glycosidase. J Biol Chem 2009; 284:17404-10. [PMID: 19411257 PMCID: PMC2719380 DOI: 10.1074/jbc.m109.003970] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Indexed: 12/15/2022] Open
Abstract
Bacteriophages specific for Escherichia coli K1 express a tailspike protein that degrades the polysialic acid coat of E. coli K1 that is essential for bacteriophage infection. This enzyme is specific for polysialic acid and is a member of a family of endo-sialidases. This family is unusual because all other previously reported sialidases outside of this family are exo- or trans-sialidases. The recently determined structure of an endo-sialidase derived from bacteriophage K1F (endoNF) revealed an active site that lacks a number of the residues that are conserved in other sialidases, implying a new, endo-sialidase-specific catalytic mechanism. Using synthetic trifluoromethylumbelliferyl oligosialoside substrates, kinetic parameters for hydrolysis at a single cleavage site were determined. Measurement of kcat/Km at a series of pH values revealed a dependence on a single protonated group of pKa 5. Mutation of a putative active site acidic residue, E581A, resulted in complete loss of sialidase activity. Direct 1H NMR analysis of the hydrolysis of trifluoromethylumbelliferyl sialotrioside revealed that endoNF is an inverting sialidase. All other wild type sialidases previously reported are retaining glycosidases, implying a new mechanism of sialidase action specific to this family of endo-sialidases.
Collapse
Affiliation(s)
- Thomas J. Morley
- From the Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1
| | - Lisa M. Willis
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, and
| | - Chris Whitfield
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, and
| | - Warren W. Wakarchuk
- the Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Stephen G. Withers
- From the Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1
| |
Collapse
|
44
|
Hildebrandt H, Mühlenhoff M, Oltmann-Norden I, Röckle I, Burkhardt H, Weinhold B, Gerardy-Schahn R. Imbalance of neural cell adhesion molecule and polysialyltransferase alleles causes defective brain connectivity. Brain 2009; 132:2831-8. [DOI: 10.1093/brain/awp117] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
45
|
Bleckmann C, Geyer H, Reinhold V, Lieberoth A, Schachner M, Kleene R, Geyer R. Glycomic analysis of N-linked carbohydrate epitopes from CD24 of mouse brain. J Proteome Res 2009; 8:567-82. [PMID: 19053835 DOI: 10.1021/pr800729r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Murine CD24 is an abundantly glycosylated glycoprotein that plays important roles in the central nervous system and the immune system. It has been proposed that the functions of CD24 are primarily mediated by its N- and/or O-linked glycans. Applying a highly sensitive glycomics approach which included matrix-assisted laser-desorption ionization and electrospray ionization ion trap mass spectrometry, we have performed a detailed analysis of the N-linked glycans of CD24. Our data revealed a highly heterogeneous pattern of mainly complex type glycans expressing distinct carbohydrate epitopes, like 3-linked sialic acid, Le(X) or blood group H antigens, bisecting N-acetylglucosamine residues and N-acetyllactosamine repeats as well as high-mannose and hybrid type species.
Collapse
Affiliation(s)
- Christina Bleckmann
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Kanato Y, Kitajima K, Sato C. Direct binding of polysialic acid to a brain-derived neurotrophic factor depends on the degree of polymerization. Glycobiology 2008; 18:1044-53. [PMID: 18796648 DOI: 10.1093/glycob/cwn084] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Polysialic acid (polySia) is the homopolymer of sialic acid and negatively regulates neuronal cell-cell and cell-extracellular matrix interactions through steric and repulsive hindrance due to its bulky polyanionic structure. Whether polySia also functions as a positive regulator in the nervous system through binding to specific ligands is not known. In the present study, we demonstrated that a brain-derived neurotrophic factor (BDNF) dimer binds directly to polySia to form a large complex with an M(r) greater than 2000 kDa under physiologic conditions. Although somewhat affected by the linkage and type of sialic acid components in the polySia, the complex formation is highly dependent on the polySia chain length. The minimum degree of polymerization required for the complex formation is 12. This is the first study to demonstrate the biologic significance of the degree of polySia polymerization in eukaryotes. Similar large polySia complexes form with other neurotrophic factors such as nerve growth factor, neurotrophin-3, and neurotrophin-4. Furthermore, the BDNF, after making a complex with polySia, can bind to the BDNF receptors, TrkB and p75NTR. The complex formation of BDNF with polySia upregulates growth or/and survival of neuroblastoma cells. These findings suggest that polySia functions as a reservoir of BDNF and other neurotrophic factors and may serve to regulate their local concentrations on the cell surface.
Collapse
Affiliation(s)
- Yukihiro Kanato
- Graduate School of Bioagricultural Sciences and Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
47
|
Hildebrandt H, Mühlenhoff M, Gerardy-Schahn R. WITHDRAWN: Polysialylation of NCAM. Neurochem Res 2008. [PMID: 18461443 DOI: 10.1007/s11064-008-9724-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2008] [Indexed: 12/15/2022]
Affiliation(s)
- Herbert Hildebrandt
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | | | | |
Collapse
|