1
|
Khan MZ, Zugaza JL, Torres Aleman I. The signaling landscape of insulin-like growth factor 1. J Biol Chem 2025; 301:108047. [PMID: 39638246 PMCID: PMC11748690 DOI: 10.1016/j.jbc.2024.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The sheer amplitude of biological actions of insulin-like growth factor I (IGF-1) affecting all types of cells in all tissues suggests a vast signaling landscape for this ubiquitous humoral signal. While the canonical signaling pathways primarily involve the Ras/MAPK and PI3K/AKT cascades, the evolutionary conservation of insulin-like peptides (ILPs) and their pathways hints at the potential for novel functions to emerge over time. Indeed, the evolutionary trajectory of ILPs opens the possibility of either novel functions for these two pathways, novel downstream routes, or both. Evidence supporting this notion includes observations of neofunctionalization in bony fishes or crustaceans, and the involvement of ILPs pathways in invertebrate eusociality or in vertebrate bone physiology, respectively. Such evolutionary processes likely contribute to the rich diversity of ILPs signaling observed today. Moreover, the interplay between conserved signaling pathways, such as those implicated in aging (predominantly involving the PI3K-AKT route), and lesser known pathways, such as those mediated by biased G-protein coupled receptors and others even less known, may underpin the context-dependent actions characteristic of ILPs signaling. While canonical IGF-1 signaling is often assumed to account for the intracellular pathways utilized by this growth factor, a comprehensive analysis of all the pathways mediated by the IGF-1 receptor (IGF-1R) remains lacking. This review aims to explore both canonical and non-canonical routes of IGF-1R action across various cell types, offering a detailed examination of the mechanisms underlying IGF-1 signaling and highlighting the significant gaps in our current understanding.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain
| | - Jose Luis Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque Science Foundation, Bilbao, Spain
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain; Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
2
|
An W, Hall C, Li J, Hung A, Wu J, Park J, Wang L, Bai XC, Choi E. Activation of the insulin receptor by insulin-like growth factor 2. Nat Commun 2024; 15:2609. [PMID: 38521788 PMCID: PMC10960814 DOI: 10.1038/s41467-024-46990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Insulin receptor (IR) controls growth and metabolism. Insulin-like growth factor 2 (IGF2) has different binding properties on two IR isoforms, mimicking insulin's function. However, the molecular mechanism underlying IGF2-induced IR activation remains unclear. Here, we present cryo-EM structures of full-length human long isoform IR (IR-B) in both the inactive and IGF2-bound active states, and short isoform IR (IR-A) in the IGF2-bound active state. Under saturated IGF2 concentrations, both the IR-A and IR-B adopt predominantly asymmetric conformations with two or three IGF2s bound at site-1 and site-2, which differs from that insulin saturated IR forms an exclusively T-shaped symmetric conformation. IGF2 exhibits a relatively weak binding to IR site-2 compared to insulin, making it less potent in promoting full IR activation. Cell-based experiments validated the functional importance of IGF2 binding to two distinct binding sites in optimal IR signaling and trafficking. In the inactive state, the C-terminus of α-CT of IR-B contacts FnIII-2 domain of the same protomer, hindering its threading into the C-loop of IGF2, thus reducing the association rate of IGF2 with IR-B. Collectively, our studies demonstrate the activation mechanism of IR by IGF2 and reveal the molecular basis underlying the different affinity of IGF2 to IR-A and IR-B.
Collapse
Affiliation(s)
- Weidong An
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Catherine Hall
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Jie Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Albert Hung
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Jiayi Wu
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Junhee Park
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Liwei Wang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Abstract
Insulin is a peptide hormone essential for maintaining normal blood glucose levels. Individuals unable to secrete sufficient insulin or not able to respond properly to insulin develop diabetes. Since the discovery of insulin its structure and function has been intensively studied with the aim to develop effective diabetes treatments. The three-dimensional crystal structure of this 51 amino acid peptide paved the way for discoveries, outlined in this review, of determinants important for receptor binding and hormone stability that have been instrumental in development of insulin analogs used in the clinic today. Important for the future development of effective diabetes treatments will be a detailed understanding of the insulin receptor structure and function. Determination of the three-dimensional structure of the insulin receptor, a receptor tyrosine kinase, proved challenging but with the recent advent of high-resolution cryo-electron microscopy significant progress has been made. There are now >40 structures of the insulin:insulin receptor complex deposited in the Protein Data Bank. From these structures we have a detailed picture of how insulin binds and activates the receptor. Still lacking are details of the initial binding events and the exact sequence of structural changes within the receptor and insulin. In this review, the focus will be on the most recent structural studies of insulin:insulin receptor complexes and how they have contributed to the current understanding of insulin receptor activation and signaling outcome. Molecular mechanisms underlying insulin receptor signaling bias emerging from the latest structures are described.
Collapse
Affiliation(s)
- Briony E Forbes
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
4
|
Lin J, Selicharová I, Mitrová K, Fabre B, Miriyala VM, Lepšík M, Jiráček J, Hernández MSG. Targeting the insulin receptor with hormone and peptide dimers. J Pept Sci 2023; 29:e3461. [PMID: 36336650 DOI: 10.1002/psc.3461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Insulin is a key hormone involved in the regulation of overall energetic homeostasis of the organism. The dimeric character of the receptor for insulin evokes ideas about its activation or inhibition with peptide dimers that could either trigger or block the structural transition of the insulin receptor, leading to its activation. Herewith, we present the chemical engineering and biological characterization of several series of insulin dimers or dimers of specific peptides that should be able to bind receptors for insulin or insulin growth factor 1. The hormones or peptides in the dimers were interconnected with different linkers, consisting of triazole moieties and 3, 6, 8, 11, or 23 polyethylene glycol units. The prepared dimers were weaker in binding to insulin receptors than human insulin. However, some of the insulin dimers showed preferential binding specificity toward the isoform A of the insulin receptor, and the insulin dimers also stimulated the insulin receptor more strongly than would be consistent with their binding affinities. Our results suggest that designing insulin dimers may be a promising strategy for modulating the ability of the hormone to activate the receptor or to alter its specificity toward insulin receptor isoforms.
Collapse
Affiliation(s)
- Jingjing Lin
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Katarína Mitrová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Benjamin Fabre
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vijay Madhav Miriyala
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | | |
Collapse
|
5
|
Ataie-Ashtiani S, Forbes B. A Review of the Biosynthesis and Structural Implications of Insulin Gene Mutations Linked to Human Disease. Cells 2023; 12:cells12071008. [PMID: 37048081 PMCID: PMC10093311 DOI: 10.3390/cells12071008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
The discovery of the insulin hormone over 100 years ago, and its subsequent therapeutic application, marked a key landmark in the history of medicine and medical research. The many roles insulin plays in cell metabolism and growth have been revealed by extensive investigations into the structure and function of insulin, the insulin tyrosine kinase receptor (IR), as well as the signalling cascades, which occur upon insulin binding to the IR. In this review, the insulin gene mutations identified as causing disease and the structural implications of these mutations will be discussed. Over 100 studies were evaluated by one reviewing author, and over 70 insulin gene mutations were identified. Mutations may impair insulin gene transcription and translation, preproinsulin trafficking and proinsulin sorting, or insulin-IR interactions. A better understanding of insulin gene mutations and the resultant pathophysiology can give essential insight into the molecular mechanisms underlying impaired insulin biosynthesis and insulin-IR interaction.
Collapse
|
6
|
Jiráček J, Selicharová I, Žáková L. Mutations at hypothetical binding site 2 in insulin and insulin-like growth factors 1 and 2. VITAMINS AND HORMONES 2023; 123:187-230. [PMID: 37717985 DOI: 10.1016/bs.vh.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Elucidating how insulin and the related insulin-like growth factors 1 and 2 (IGF-1 and IGF-2) bind to their cellular receptors (IR and IGF-1R) and how the receptors are activated has been the holy grail for generations of scientists. However, deciphering the 3D structure of tyrosine kinase receptors and their hormone-bound complexes has been complicated by the flexible and dimeric nature of the receptors and the dynamic nature of their interaction with hormones. Therefore, mutagenesis of hormones and kinetic studies first became an important tool for studying receptor interactions. It was suggested that hormones could bind to receptors through two binding sites on the hormone surface called site 1 and site 2. A breakthrough in knowledge came with the solution of cryoelectron microscopy (cryoEM) structures of hormone-receptor complexes. In this chapter, we document in detail the mutagenesis of insulin, IGF-1, and IGF-2 with emphasis on modifications of the hypothetical binding site 2 in the hormones, and we discuss the results of structure-activity studies in light of recent cryoEM structures of hormone complexes with IR and IGF-1R.
Collapse
Affiliation(s)
- Jiří Jiráček
- From Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic.
| | - Irena Selicharová
- From Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Žáková
- From Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
De Meyts P. [The insulin receptor discovery is 50 years old - A review of achieved progress]. Biol Aujourdhui 2022; 216:7-28. [PMID: 35876517 DOI: 10.1051/jbio/2022007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 06/15/2023]
Abstract
The isolation of insulin from the pancreas and its purification to a degree permitting its safe administration to type 1 diabetic patients were accomplished 100 years ago at the University of Toronto by Banting, Best, Collip and McLeod and constitute undeniably one of the major medical therapeutic revolutions, recognized by the attribution of the 1923 Nobel Prize in Physiology or Medicine to Banting and McLeod. The clinical spin off was immediate as well as the internationalization of insulin's commercial production. The outcomes regarding basic research were much slower, in particular regarding the molecular mechanisms of insulin action on its target cells. It took almost a half-century before the determination of the tri-dimensional structure of insulin in 1969 and the characterization of its cell receptor in 1970-1971. The demonstration that the insulin receptor is in fact an enzyme named tyrosine kinase came in the years 1982-1985, and the crystal structure of the intracellular kinase domain 10 years later. The crystal structure of the first intracellular kinase substrate (IRS-1) in 1991 paved the way for the elucidation of the intracellular signalling pathways but it took 15 more years to obtain the complete crystal structure of the extracellular receptor domain (without insulin) in 2006. Since then, the determination of the structure of the whole insulin-receptor complex in both the inactive and activated states has made considerable progress, not least due to recent improvement in the resolution power of cryo-electron microscopy. I will here review the steps in the development of the concept of hormone receptor, and of our knowledge of the structure and molecular mechanism of activation of the insulin receptor.
Collapse
Affiliation(s)
- Pierre De Meyts
- de Duve Institute, Department of Cell Signalling, Avenue Hippocrate 74, B-1200 Bruxelles, Belgique - Novo Nordisk A/S, Department of Stem Cell Research, Novo Nordisk Park 1, DK-2760 Maaloev, Danemark
| |
Collapse
|
8
|
Determinants of IGF-II influencing stability, receptor binding and activation. Sci Rep 2022; 12:4695. [PMID: 35304516 PMCID: PMC8933565 DOI: 10.1038/s41598-022-08467-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Insulin like growth factor II (IGF-II) is involved in metabolic and mitogenic signalling in mammalian cells and plays important roles in normal fetal development and postnatal growth. It is structurally similar to insulin and binds not only with high affinity to the type 1 insulin-like growth factor receptor (IGF-1R) but also to the insulin receptor isoform A (IR-A). As IGF-II expression is commonly upregulated in cancer and its signalling promotes cancer cell survival, an antagonist that blocks IGF-II action without perturbing insulin signalling would be invaluable. The high degree of structural homology between the IR and IGF-1R makes selectively targeting either receptor in the treatment of IGF-II-dependent cancers very challenging. However, there are sequence differences between insulin and IGF-II that convey receptor selectivity and influence binding affinity and signalling outcome. Insulin residue YB16 is a key residue involved in maintaining insulin stability, dimer formation and IR binding. Mutation of this residue to glutamine (as found in IGF-II) results in reduced binding affinity. In this study we sought to determine if the equivalent residue Q18 in IGF-II plays a similar role. We show through site-directed mutagenesis of Q18 that this residue contributes to IGF-II structural integrity, selectivity of IGF-1R/IR binding, but surprisingly does not influence IR-A signalling activation. These findings provide insights into a unique IGF-II residue that can influence receptor binding specificity whilst having little influence on signalling outcome.
Collapse
|
9
|
Xiong X, Blakely A, Kim JH, Menting JG, Schäfer IB, Schubert HL, Agrawal R, Gutmann T, Delaine C, Zhang YW, Artik GO, Merriman A, Eckert D, Lawrence MC, Coskun Ü, Fisher SJ, Forbes BE, Safavi-Hemami H, Hill CP, Chou DHC. Symmetric and asymmetric receptor conformation continuum induced by a new insulin. Nat Chem Biol 2022; 18:511-519. [PMID: 35289328 PMCID: PMC9248236 DOI: 10.1038/s41589-022-00981-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 01/24/2022] [Indexed: 02/02/2023]
Abstract
Cone snail venoms contain a wide variety of bioactive peptides, including insulin-like molecules with distinct structural features, binding modes and biochemical properties. Here, we report an active humanized cone snail venom insulin with an elongated A chain and a truncated B chain, and use cryo-electron microscopy (cryo-EM) and protein engineering to elucidate its interactions with the human insulin receptor (IR) ectodomain. We reveal how an extended A chain can compensate for deletion of B-chain residues, which are essential for activity of human insulin but also compromise therapeutic utility by delaying dissolution from the site of subcutaneous injection. This finding suggests approaches to developing improved therapeutic insulins. Curiously, the receptor displays a continuum of conformations from the symmetric state to a highly asymmetric low-abundance structure that displays coordination of a single humanized venom insulin using elements from both of the previously characterized site 1 and site 2 interactions.
Collapse
Affiliation(s)
- Xiaochun Xiong
- Department of Pediatrics, Division of Endocrinology and Diabetes, Stanford University, Stanford, CA, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Alan Blakely
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Jin Hwan Kim
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - John G Menting
- WEHI, Parkville, Victoria, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ingmar B Schäfer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Heidi L Schubert
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Rahul Agrawal
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Theresia Gutmann
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Carlie Delaine
- Discipline of Medical Biochemistry and Cell Biology, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Yi Wolf Zhang
- Department of Pediatrics, Division of Endocrinology and Diabetes, Stanford University, Stanford, CA, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Gizem Olay Artik
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Membrane Biochemistry and Lipid Research, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Allanah Merriman
- Discipline of Medical Biochemistry and Cell Biology, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Debbie Eckert
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Michael C Lawrence
- WEHI, Parkville, Victoria, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ünal Coskun
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Membrane Biochemistry and Lipid Research, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Simon J Fisher
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Briony E Forbes
- Discipline of Medical Biochemistry and Cell Biology, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Helena Safavi-Hemami
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA. .,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Christopher P Hill
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| | - Danny Hung-Chieh Chou
- Department of Pediatrics, Division of Endocrinology and Diabetes, Stanford University, Stanford, CA, USA. .,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
10
|
Ong SC, Belgi A, Merriman AL, Delaine CA, van Lierop B, Andrikopoulos S, Robinson AJ, Forbes BE. Minimizing Mitogenic Potency of Insulin Analogues Through Modification of a Disulfide Bond. Front Endocrinol (Lausanne) 2022; 13:907864. [PMID: 35832429 PMCID: PMC9271792 DOI: 10.3389/fendo.2022.907864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanisms by which insulin activates the insulin receptor to promote metabolic processes and cellular growth are still not clear. Significant advances have been gained from recent structural studies in understanding how insulin binds to its receptor. However, the way in which specific interactions lead to either metabolic or mitogenic signalling remains unknown. Currently there are only a few examples of insulin receptor agonists that have biased signalling properties. Here we use novel insulin analogues that differ only in the chemical composition at the A6-A11 bond, as it has been changed to a rigid, non-reducible C=C linkage (dicarba bond), to reveal mechanisms underlying signaling bias. We show that introduction of an A6-A11 cis-dicarba bond into either native insulin or the basal/long acting insulin glargine results in biased signalling analogues with low mitogenic potency. This can be attributed to reduced insulin receptor activation that prevents effective receptor internalization and mitogenic signalling. Insight gained into the receptor interactions affected by insertion of an A6-A11 cis-dicarba bond will ultimately assist in the development of new insulin analogues for the treatment of diabetes that confer low mitogenic activity and therefore pose minimal risk of promoting cancer with long term use.
Collapse
Affiliation(s)
- Shee Chee Ong
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University of South Australia, Bedford Park, SA, Australia
| | - Alessia Belgi
- School of Chemistry, Monash University, Clayton, VIC, Australia
| | - Allanah L. Merriman
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University of South Australia, Bedford Park, SA, Australia
| | - Carlie A. Delaine
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University of South Australia, Bedford Park, SA, Australia
| | | | | | | | - Briony E. Forbes
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University of South Australia, Bedford Park, SA, Australia
- *Correspondence: Briony E. Forbes,
| |
Collapse
|
11
|
Macháčková K, Mlčochová K, Potalitsyn P, Hanková K, Socha O, Buděšínský M, Muždalo A, Lepšík M, Černeková M, Radosavljević J, Fábry M, Mitrová K, Chrudinová M, Lin J, Yurenko Y, Hobza P, Selicharová I, Žáková L, Jiráček J. Mutations at hypothetical binding site 2 in insulin and insulin-like growth factors 1 and 2 result in receptor- and hormone-specific responses. J Biol Chem 2019; 294:17371-17382. [PMID: 31558604 PMCID: PMC6873181 DOI: 10.1074/jbc.ra119.010072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/23/2019] [Indexed: 11/26/2022] Open
Abstract
Information on how insulin and insulin-like growth factors 1 and 2 (IGF-1 and -2) activate insulin receptors (IR-A and -B) and the IGF-1 receptor (IGF-1R) is crucial for understanding the difference in the biological activities of these peptide hormones. Cryo-EM studies have revealed that insulin uses its binding sites 1 and 2 to interact with IR-A and have identified several critical residues in binding site 2. However, mutagenesis studies suggest that Ile-A10, Ser-A12, Leu-A13, and Glu-A17 also belong to insulin's site 2. Here, to resolve this discrepancy, we mutated these insulin residues and the equivalent residues in IGFs. Our findings revealed that equivalent mutations in the hormones can result in differential biological effects and that these effects can be receptor-specific. We noted that the insulin positions A10 and A17 are important for its binding to IR-A and IR-B and IGF-1R and that A13 is important only for IR-A and IR-B binding. The IGF-1/IGF-2 positions 51/50 and 54/53 did not appear to play critical roles in receptor binding, but mutations at IGF-1 position 58 and IGF-2 position 57 affected the binding. We propose that IGF-1 Glu-58 interacts with IGF-1R Arg-704 and belongs to IGF-1 site 1, a finding supported by the NMR structure of the less active Asp-58–IGF-1 variant. Computational analyses indicated that the aforementioned mutations can affect internal insulin dynamics and inhibit adoption of a receptor-bound conformation, important for binding to receptor site 1. We provide a molecular model and alternative hypotheses for how the mutated insulin residues affect activity.
Collapse
Affiliation(s)
- Kateřina Macháčková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Květoslava Mlčochová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Pavlo Potalitsyn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Kateřina Hanková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Ondřej Socha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Anja Muždalo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Michaela Černeková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Jelena Radosavljević
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics, Czech Academy of Sciences, 166 37 Prague 6, Czech Republic
| | - Katarína Mitrová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Martina Chrudinová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Jingjing Lin
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Yevgen Yurenko
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| |
Collapse
|
12
|
Hill JW, Elias CF. Neuroanatomical Framework of the Metabolic Control of Reproduction. Physiol Rev 2019; 98:2349-2380. [PMID: 30109817 DOI: 10.1152/physrev.00033.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A minimum amount of energy is required for basic physiological processes, such as protein biosynthesis, thermoregulation, locomotion, cardiovascular function, and digestion. However, for reproductive function and survival of the species, extra energy stores are necessary. Production of sex hormones and gametes, pubertal development, pregnancy, lactation, and parental care all require energy reserves. Thus the physiological systems that control energy homeostasis and reproductive function coevolved in mammals to support both individual health and species subsistence. In this review, we aim to gather scientific knowledge produced by laboratories around the world on the role of the brain in integrating metabolism and reproduction. We describe essential neuronal networks, highlighting key nodes and potential downstream targets. Novel animal models and genetic tools have produced substantial advances, but critical gaps remain. In times of soaring worldwide obesity and metabolic dysfunction, understanding the mechanisms by which metabolic stress alters reproductive physiology has become crucial for human health.
Collapse
Affiliation(s)
- Jennifer W Hill
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| | - Carol F Elias
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
13
|
Toledo Pinto TG, Batista-Silva LR, Medeiros RCA, Lara FA, Moraes MO. Type I Interferons, Autophagy and Host Metabolism in Leprosy. Front Immunol 2018; 9:806. [PMID: 29755459 PMCID: PMC5932357 DOI: 10.3389/fimmu.2018.00806] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/03/2018] [Indexed: 12/12/2022] Open
Abstract
For those with leprosy, the extent of host infection by Mycobacterium leprae and the progression of the disease depend on the ability of mycobacteria to shape a safe environment for its replication during early interaction with host cells. Thus, variations in key genes such as those in pattern recognition receptors (NOD2 and TLR1), autophagic flux (PARK2, LRRK2, and RIPK2), effector immune cytokines (TNF and IL12), and environmental factors, such as nutrition, have been described as critical determinants for infection and disease progression. While parkin-mediated autophagy is observed as being essential for mycobacterial clearance, leprosy patients present a prominent activation of the type I IFN pathway and its downstream genes, including OASL, CCL2, and IL10. Activation of this host response is related to a permissive phenotype through the suppression of IFN-γ response and negative regulation of autophagy. Finally, modulation of host metabolism was observed during mycobacterial infection. Both changes in lipid and glucose homeostasis contribute to the persistence of mycobacteria in the host. M. leprae-infected cells have an increased glucose uptake, nicotinamide adenine dinucleotide phosphate generation by pentose phosphate pathways, and downregulation of mitochondrial activity. In this review, we discussed new pathways involved in the early mycobacteria–host interaction that regulate innate immune pathways or metabolism and could be new targets to host therapy strategies.
Collapse
Affiliation(s)
| | | | | | - Flávio Alves Lara
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | | |
Collapse
|
14
|
Papaioannou A, Kuyucak S, Kuncic Z. Elucidating the Activation Mechanism of the Insulin-Family Proteins with Molecular Dynamics Simulations. PLoS One 2016; 11:e0161459. [PMID: 27548502 PMCID: PMC4993506 DOI: 10.1371/journal.pone.0161459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/05/2016] [Indexed: 12/27/2022] Open
Abstract
The insulin-family proteins bind to their own receptors, but insulin-like growth factor II (IGF-II) can also bind to the A isoform of the insulin receptor (IR-A), activating unique and alternative signaling pathways from those of insulin. Although extensive studies of insulin have revealed that its activation is associated with the opening of the B chain-C terminal (BC-CT), the activation mechanism of the insulin-like growth factors (IGFs) still remains unknown. Here, we present the first comprehensive study of the insulin-family proteins comparing their activation process and mechanism using molecular dynamics simulations to reveal new insights into their specificity to the insulin receptor. We have found that all the proteins appear to exhibit similar stochastic dynamics in their conformational change to an active state. For the IGFs, our simulations show that activation involves two opening locations: the opening of the BC-CT section away from the core, similar to insulin; and the additional opening of the BC-CT section away from the C domain. Furthermore, we have found that these two openings occur simultaneously in IGF-I, but not in IGF-II, where they can occur independently. This suggests that the BC-CT section and the C domain behave as a unified domain in IGF-I, but as two independent domains in IGF-II during the activation process, implying that the IGFs undergo different activation mechanisms for receptor binding. The probabilities of the active and inactive states of the proteins suggest that IGF-II is hyperactive compared to IGF-I. The hinge residue and the hydrophobic interactions in the core are found to play a critical role in the stability and activity of IGFs. Overall, our simulations have elucidated the crucial differences and similarities in the activation mechanisms of the insulin-family proteins, providing new insights into the molecular mechanisms responsible for the observed differences between IGF-I and IGF-II in receptor binding.
Collapse
Affiliation(s)
- Anastasios Papaioannou
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Physics, University of Sydney, Sydney, NSW, Australia
- * E-mail: (AP); (ZK)
| | - Serdar Kuyucak
- School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Zdenka Kuncic
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Physics, University of Sydney, Sydney, NSW, Australia
- * E-mail: (AP); (ZK)
| |
Collapse
|
15
|
Křížková K, Chrudinová M, Povalová A, Selicharová I, Collinsová M, Vaněk V, Brzozowski AM, Jiráček J, Žáková L. Insulin–Insulin-like Growth Factors Hybrids as Molecular Probes of Hormone:Receptor Binding Specificity. Biochemistry 2016; 55:2903-13. [DOI: 10.1021/acs.biochem.6b00140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Květoslava Křížková
- Institute
of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic v.v.i., Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
- Charles University in Prague, Faculty of Science,
Department of Biochemistry, Hlavova 8, 128 43 Praha 2, Czech Republic
| | - Martina Chrudinová
- Institute
of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic v.v.i., Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
- Charles University in Prague, Faculty of Science,
Department of Biochemistry, Hlavova 8, 128 43 Praha 2, Czech Republic
| | - Anna Povalová
- Institute
of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic v.v.i., Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
- Charles University in Prague, Faculty of Science,
Department of Biochemistry, Hlavova 8, 128 43 Praha 2, Czech Republic
| | - Irena Selicharová
- Institute
of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic v.v.i., Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
| | - Michaela Collinsová
- Institute
of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic v.v.i., Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
| | - Václav Vaněk
- Institute
of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic v.v.i., Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
| | - Andrzej M. Brzozowski
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Jiří Jiráček
- Institute
of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic v.v.i., Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
| | - Lenka Žáková
- Institute
of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic v.v.i., Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
| |
Collapse
|
16
|
Cieniewicz AM, Cooper PR, McGehee J, Lingham RB, Kihm AJ. Novel method demonstrates differential ligand activation and phosphatase-mediated deactivation of insulin receptor tyrosine-specific phosphorylation. Cell Signal 2016; 28:1037-47. [PMID: 27155325 DOI: 10.1016/j.cellsig.2016.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/14/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
Insulin receptor signaling is a complex cascade leading to a multitude of intracellular functional responses. Three natural ligands, insulin, IGF1 and IGF2, are each capable of binding with different affinities to the insulin receptor, and result in variable biological responses. However, it is likely these affinity differences alone cannot completely explain the myriad of diverse cellular outcomes. Ligand binding initiates activation of a signaling cascade resulting in phosphorylation of the IR itself and other intracellular proteins. The direct catalytic activity along with the temporally coordinated assembly of signaling proteins is critical for insulin receptor signaling. We hypothesized that determining differential phosphorylation among individual tyrosine sites activated by ligand binding or dephosphorylation by phosphatases could provide valuable insight into insulin receptor signaling. Here, we present a sensitive, novel immunoassay adapted from Meso Scale Discovery technology to quantitatively measure changes in site-specific phosphorylation levels on endogenous insulin receptors from HuH7 cells. We identified insulin receptor phosphorylation patterns generated upon differential ligand activation and phosphatase-mediated deactivation. The data demonstrate that insulin, IGF1 and IGF2 elicit different insulin receptor phosphorylation kinetics and potencies that translate to downstream signaling. Furthermore, we show that insulin receptor deactivation, regulated by tyrosine phosphatases, occurs distinctively across specific tyrosine residues. In summary, we present a novel, quantitative and high-throughput assay that has uncovered differential ligand activation and site-specific deactivation of the insulin receptor. These results may help elucidate some of the insulin signaling mechanisms, discriminate ligand activity and contribute to a better understanding of insulin receptor signaling. We propose this methodology as a powerful approach to characterize agonists and antagonists of the insulin receptor and can be adapted to serve as a platform to evaluate ligands of alternate receptor systems.
Collapse
Affiliation(s)
- Anne M Cieniewicz
- Biologics Research, Janssen BioTherapeutics, Janssen R & D Spring House, PA 19477, USA.
| | - Philip R Cooper
- Biologics Research, Janssen BioTherapeutics, Janssen R & D Spring House, PA 19477, USA
| | - Jennifer McGehee
- Biologics Research, Janssen BioTherapeutics, Janssen R & D Spring House, PA 19477, USA
| | - Russell B Lingham
- Biologics Research, Janssen BioTherapeutics, Janssen R & D Spring House, PA 19477, USA
| | - Anthony J Kihm
- Biologics Research, Janssen BioTherapeutics, Janssen R & D Spring House, PA 19477, USA.
| |
Collapse
|
17
|
Schultz I, Wurzel J, Meinel L. Drug delivery of Insulin-like growth factor I. Eur J Pharm Biopharm 2015; 97:329-37. [DOI: 10.1016/j.ejpb.2015.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/20/2022]
|
18
|
Vashisth H. Theoretical and computational studies of peptides and receptors of the insulin family. MEMBRANES 2015; 5:48-83. [PMID: 25680077 PMCID: PMC4384091 DOI: 10.3390/membranes5010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/28/2015] [Indexed: 01/05/2023]
Abstract
Synergistic interactions among peptides and receptors of the insulin family are required for glucose homeostasis, normal cellular growth and development, proliferation, differentiation and other metabolic processes. The peptides of the insulin family are disulfide-linked single or dual-chain proteins, while receptors are ligand-activated transmembrane glycoproteins of the receptor tyrosine kinase (RTK) superfamily. Binding of ligands to the extracellular domains of receptors is known to initiate signaling via activation of intracellular kinase domains. While the structure of insulin has been known since 1969, recent decades have seen remarkable progress on the structural biology of apo and liganded receptor fragments. Here, we review how this useful structural information (on ligands and receptors) has enabled large-scale atomically-resolved simulations to elucidate the conformational dynamics of these biomolecules. Particularly, applications of molecular dynamics (MD) and Monte Carlo (MC) simulation methods are discussed in various contexts, including studies of isolated ligands, apo-receptors, ligand/receptor complexes and intracellular kinase domains. The review concludes with a brief overview and future outlook for modeling and computational studies in this family of proteins.
Collapse
Affiliation(s)
- Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham, NH 03824, USA.
| |
Collapse
|
19
|
Henderson ST, Brierley GV, Surinya KH, Priebe IK, Catcheside DEA, Wallace JC, Forbes BE, Cosgrove LJ. Delineation of the IGF-II C domain elements involved in binding and activation of the IR-A, IR-B and IGF-IR. Growth Horm IGF Res 2015; 25:20-27. [PMID: 25458127 DOI: 10.1016/j.ghir.2014.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 09/05/2014] [Accepted: 09/26/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Human insulin-like growth factor-I and -II (IGF-I and -II) ligands share a high degree of sequence and structural homology. Despite their similarities, IGF-I and IGF-II exhibit differential receptor binding and activation characteristics. The C domains of IGF-I and IGF-II are the primary determinants of binding specificity to the insulin-like growth factor I receptor (IGF-IR), insulin receptor exon 11- (IR-A) and exon 11+ (IR-B) isoforms. DESIGN Three IGF-II analogues were generated in order to delineate the C domain residues that confer the differential receptor binding affinity and activation properties of the IGFs. Chimeric IGF-II analogues IGF-IICI(N) and IGF-IICI(C) contained partial IGF-I C domain substitutions (IGF-I residues underlined) GYGSSSRRSR and SRVSRRAPQT, respectively. RESULTS The IGF-IICI(N) analogue bound the IR-A and IGF-IR with high affinity but bound the IR-B with a relatively lower affinity than IGF-II, suggesting a negative interaction between the exon-11 encoded peptide in the IR-B and the C-domain. The ability of IGF-IICI(N) to activate receptors and elicit cell viability responses was generally proportional to its relative receptor binding affinity but appeared to act as a partial agonist equivalent to IGF-I when binding and activating the IGF-IR. In contrast, IGF-IICI(C) bound IGF-IR with high affinity but elicited lower receptor activation and cell viability responses. Analogue IGF-IICI(S) contained a truncated IGF-I C domain (GSSSRRAT) and generally displayed a relatively poor ability to bind, activate and elicit viability responses via each receptor. CONCLUSIONS Together, the IGF analogues demonstrate that both flanks of the IGF-II C domain play important roles in the greater ability of IGF-II to bind and activate IR receptors than IGF-I.
Collapse
Affiliation(s)
- S T Henderson
- Commonwealth Scientific Industrial Research Organisation, Preventative Health National Research Flagship, Adelaide, South Australia 5000, Australia; School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia
| | - G V Brierley
- Commonwealth Scientific Industrial Research Organisation, Preventative Health National Research Flagship, Adelaide, South Australia 5000, Australia
| | - K H Surinya
- Commonwealth Scientific Industrial Research Organisation, Preventative Health National Research Flagship, Adelaide, South Australia 5000, Australia
| | - I K Priebe
- Commonwealth Scientific Industrial Research Organisation, Preventative Health National Research Flagship, Adelaide, South Australia 5000, Australia
| | - D E A Catcheside
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia
| | - J C Wallace
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - B E Forbes
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - L J Cosgrove
- Commonwealth Scientific Industrial Research Organisation, Preventative Health National Research Flagship, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
20
|
Affiliation(s)
- Pierre De Meyts
- Department of Diabetes Biology; Novo Nordisk A/S; Måløv Denmark
- De Meyts R&D Consulting; Kraainem; Belgium
| |
Collapse
|
21
|
Bennesch MA, Picard D. Minireview: Tipping the balance: ligand-independent activation of steroid receptors. Mol Endocrinol 2015; 29:349-63. [PMID: 25625619 DOI: 10.1210/me.2014-1315] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Steroid receptors are prototypical ligand-dependent transcription factors and a textbook example for allosteric regulation. According to this canonical model, binding of cognate steroid is an absolute requirement for transcriptional activation. Remarkably, the simple one ligand-one receptor model could not be farther from the truth. Steroid receptors, notably the sex steroid receptors, can receive multiple inputs. Activation of steroid receptors by other signals, working through their own signaling pathways, in the absence of the cognate steroids, represents the most extreme form of signaling cross talk. Compared with cognate steroids, ligand-independent activation pathways produce similar but not identical outputs. Here we review the phenomena and discuss what is known about the underlying molecular mechanisms and the biological significance. We hypothesize that steroid receptors may have evolved to be trigger happy. In addition to their cognate steroids, many posttranslational modifications and interactors, modulated by other signals, may be able to tip the balance.
Collapse
Affiliation(s)
- Marcela A Bennesch
- Département de Biologie Cellulaire, Université de Genève, Sciences III, CH-1211 Genève 4, Switzerland
| | | |
Collapse
|
22
|
Rajapaksha H, Forbes BE. Ligand-Binding Affinity at the Insulin Receptor Isoform-A and Subsequent IR-A Tyrosine Phosphorylation Kinetics are Important Determinants of Mitogenic Biological Outcomes. Front Endocrinol (Lausanne) 2015; 6:107. [PMID: 26217307 PMCID: PMC4493403 DOI: 10.3389/fendo.2015.00107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The insulin receptor (IR) is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A) arises from alternative splicing of exon 11 and has different ligand binding and signaling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II) with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival, and migration by activating some unique signaling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signaling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signaling (MAPK and Akt) and receptor internalization rates (related to mitogenic signaling). We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic [(His(4), Tyr(15), Thr(49), Ile(51)) IGF-I, qIGF-I] or metabolic (S597 peptide) biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signaling through the IR-A. The threefold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316, and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide, it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I.
Collapse
Affiliation(s)
- Harinda Rajapaksha
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Briony E. Forbes
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Medical Biochemistry, School of Medicine, Flinders University of South Australia, Bedford Park, SA, Australia
- *Correspondence: Briony E. Forbes, Department of Medical Biochemistry, Flinders University of South Australia, C/O Flinders Medical Centre, Flinders Drive, Bedford Park, SA 5042, Australia,
| |
Collapse
|
23
|
Pandyarajan V, Smith BJ, Phillips NB, Whittaker L, Cox GP, Wickramasinghe N, Menting JG, Wan ZL, Whittaker J, Ismail-Beigi F, Lawrence MC, Weiss MA. Aromatic anchor at an invariant hormone-receptor interface: function of insulin residue B24 with application to protein design. J Biol Chem 2014; 289:34709-27. [PMID: 25305014 DOI: 10.1074/jbc.m114.608562] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystallographic studies of insulin bound to fragments of the insulin receptor have recently defined the topography of the primary hormone-receptor interface. Here, we have investigated the role of Phe(B24), an invariant aromatic anchor at this interface and site of a human mutation causing diabetes mellitus. An extensive set of B24 substitutions has been constructed and tested for effects on receptor binding. Although aromaticity has long been considered a key requirement at this position, Met(B24) was found to confer essentially native affinity and bioactivity. Molecular modeling suggests that this linear side chain can serve as an alternative hydrophobic anchor at the hormone-receptor interface. These findings motivated further substitution of Phe(B24) by cyclohexanylalanine (Cha), which contains a nonplanar aliphatic ring. Contrary to expectations, [Cha(B24)]insulin likewise exhibited high activity. Furthermore, its resistance to fibrillation and the rapid rate of hexamer disassembly, properties of potential therapeutic advantage, were enhanced. The crystal structure of the Cha(B24) analog, determined as an R6 zinc-stabilized hexamer at a resolution of 1.5 Å, closely resembles that of wild-type insulin. The nonplanar aliphatic ring exhibits two chair conformations with partial occupancies, each recapitulating the role of Phe(B24) at the dimer interface. Together, these studies have defined structural requirements of an anchor residue within the B24-binding pocket of the insulin receptor; similar molecular principles are likely to pertain to insulin-related growth factors. Our results highlight in particular the utility of nonaromatic side chains as probes of the B24 pocket and suggest that the nonstandard Cha side chain may have therapeutic utility.
Collapse
Affiliation(s)
| | - Brian J Smith
- the La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | | | | | | | | | - John G Menting
- the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia, and
| | | | | | | | - Michael C Lawrence
- the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia, and the Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael A Weiss
- From the Departments of Biochemistry, Medicine, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106,
| |
Collapse
|
24
|
Wolfe A, Divall S, Wu S. The regulation of reproductive neuroendocrine function by insulin and insulin-like growth factor-1 (IGF-1). Front Neuroendocrinol 2014; 35:558-72. [PMID: 24929098 PMCID: PMC4175134 DOI: 10.1016/j.yfrne.2014.05.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/01/2014] [Accepted: 05/27/2014] [Indexed: 12/27/2022]
Abstract
The mammalian reproductive hormone axis regulates gonadal steroid hormone levels and gonadal function essential for reproduction. The neuroendocrine control of the axis integrates signals from a wide array of inputs. The regulatory pathways important for mediating these inputs have been the subject of numerous studies. One class of proteins that have been shown to mediate metabolic and growth signals to the CNS includes Insulin and IGF-1. These proteins are structurally related and can exert endocrine and growth factor like action via related receptor tyrosine kinases. The role that insulin and IGF-1 play in controlling the hypothalamus and pituitary and their role in regulating puberty and nutritional control of reproduction has been studied extensively. This review summarizes the in vitro and in vivo models that have been used to study these neuroendocrine structures and the influence of these growth factors on neuroendocrine control of reproduction.
Collapse
Affiliation(s)
- Andrew Wolfe
- Johns Hopkins University School of Medicine, Department of Pediatrics, Division of Endocrinology, Baltimore, MD 21287, United States.
| | - Sara Divall
- Johns Hopkins University School of Medicine, Department of Pediatrics, Division of Endocrinology, Baltimore, MD 21287, United States
| | - Sheng Wu
- Johns Hopkins University School of Medicine, Department of Pediatrics, Division of Endocrinology, Baltimore, MD 21287, United States
| |
Collapse
|
25
|
Kosinová L, Veverka V, Novotná P, Collinsová M, Urbanová M, Moody NR, Turkenburg JP, Jiráček J, Brzozowski AM, Žáková L. Insight into the structural and biological relevance of the T/R transition of the N-terminus of the B-chain in human insulin. Biochemistry 2014; 53:3392-402. [PMID: 24819248 PMCID: PMC4047818 DOI: 10.1021/bi500073z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
The N-terminus of the B-chain of
insulin may adopt two alternative
conformations designated as the T- and R-states. Despite the recent
structural insight into insulin–insulin receptor (IR) complexes,
the physiological relevance of the T/R transition is still unclear.
Hence, this study focused on the rational design, synthesis, and characterization
of human insulin analogues structurally locked in expected R- or T-states.
Sites B3, B5, and B8, capable of affecting the conformation of the
N-terminus of the B-chain, were subjects of rational substitutions
with amino acids with specific allowed and disallowed dihedral φ
and ψ main-chain angles. α-Aminoisobutyric acid was systematically
incorporated into positions B3, B5, and B8 for stabilization of the
R-state, and N-methylalanine and d-proline
amino acids were introduced at position B8 for stabilization of the
T-state. IR affinities of the analogues were compared and correlated
with their T/R transition ability and analyzed against their crystal
and nuclear magnetic resonance structures. Our data revealed that
(i) the T-like state is indeed important for the folding efficiency
of (pro)insulin, (ii) the R-state is most probably incompatible with
an active form of insulin, (iii) the R-state cannot be induced or
stabilized by a single substitution at a specific site, and (iv) the
B1–B8 segment is capable of folding into a variety of low-affinity
T-like states. Therefore, we conclude that the active conformation
of the N-terminus of the B-chain must be different from the “classical”
T-state and that a substantial flexibility of the B1–B8 segment,
where GlyB8 plays a key role, is a crucial prerequisite for an efficient
insulin–IR interaction.
Collapse
Affiliation(s)
- Lucie Kosinová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vassilakos G, Philippou A, Tsakiroglou P, Koutsilieris M. Biological activity of the e domain of the IGF-1Ec as addressed by synthetic peptides. Hormones (Athens) 2014; 13:182-96. [PMID: 24776619 DOI: 10.1007/bf03401333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) is a multipotent growth factor involved in the growth, development and regulation of homeostasis in a tissue-specific manner. Alternative splicing, multiple transcription initiation sites and different polyadelynation signals give rise to diverse mRNA isoforms, such as IGF-1Ea, IGF-1Eb and IGF-1Ec transcripts. There is increasing interest in the expression of the IGF-1 isoforms and their potential distinct biological role. IGF-1Ec results from alternative splicing of exons 4-5-6 and its expression is upregulated in various conditions and pathologies. Recent studies have shown that IGF-1Ec is preferentially increased after injury in skeletal muscle during post-infarctal myocardium remodelling and in cancer tissues and cell lines. A synthetic analogue corresponding to the last 24 aa of the E domain of the IGF-1Ec isoform has been used to elucidate its potential biological role. The aim of the present review is to describe and discuss the putative bioactivity of the E domain of the IGF-1Ec isoform.
Collapse
Affiliation(s)
- George Vassilakos
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastassios Philippou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsakiroglou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
27
|
Collier RJ, Bauman DE. Update on human health concerns of recombinant bovine somatotropin use in dairy cows. J Anim Sci 2014; 92:1800-7. [DOI: 10.2527/jas.2013-7383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- R. J. Collier
- School of Animal and Comparative Biomedical Sciences University of Arizona, Tucson 85719
| | - D. E. Bauman
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
28
|
Zaykov AN, Mayer JP, Gelfanov VM, DiMarchi RD. Chemical synthesis of insulin analogs through a novel precursor. ACS Chem Biol 2014; 9:683-91. [PMID: 24328449 DOI: 10.1021/cb400792s] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insulin remains a challenging synthetic target due in large part to its two-chain, disulfide-constrained structure. Biomimetic single chain precursors inspired by proinsulin that utilize short peptides to join the A and B chains can dramatically enhance folding efficiency. Systematic chemical analysis of insulin precursors using an optimized synthetic protocol identified a 49 amino acid peptide named DesDi, which folds with high efficiency by virtue of an optimized structure and could be proteolytically converted to bioactive two-chain insulin. In subsequent applications, we observed that the folding of the DesDi precursor was highly tolerant to amino acid substitution at various insulin residues. The versatility of DesDi as a synthetic insulin precursor was demonstrated through the preparation of several alanine mutants (A10, A16, A18, B12, B15), as well as ValA16, an analog that was unattainable in prior reports. In vitro bioanalysis highlighted the importance of the native, hydrophobic residues at A16 and B15 as part of the core structure of the hormone and revealed the significance of the A18 residue to receptor selectivity. We propose that the DesDi precursor is a versatile synthetic intermediate for the preparation of diverse insulin analogs. It should enable a more comprehensive analysis of function to insulin structure than might not be otherwise possible through conventional approaches.
Collapse
Affiliation(s)
- Alexander N. Zaykov
- Indiana University, Department
of Chemistry, Bloomington, Indiana 47405, United States of America
| | - John P. Mayer
- Indiana University, Department
of Chemistry, Bloomington, Indiana 47405, United States of America
| | - Vasily M. Gelfanov
- Indiana University, Department
of Chemistry, Bloomington, Indiana 47405, United States of America
| | - Richard D. DiMarchi
- Indiana University, Department
of Chemistry, Bloomington, Indiana 47405, United States of America
| |
Collapse
|
29
|
Kaur ZP, Ochman AR, Mayer JP, Gelfanov VM, DiMarchi RD. Discovery of high potency, single-chain insulin analogs with a shortened B-chain and nonpeptide linker. ACS Chem Biol 2013; 8:1822-9. [PMID: 23730814 DOI: 10.1021/cb4002624] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of novel, single chain insulin analogs containing polyethylene glycol based connecting segments were synthesized by native chemical ligation and tested for biological activity. While the full length single chain insulin analogs exhibited low potency, deletion of amino acids B26-B30 unexpectedly generated markedly higher activity. This observation is unprecedented in all previous studies of single chain insulin analogs and is consistent with the presumption that in the native hormone this sequence must translocate to achieve high potency insulin receptor interaction. Optimization of the sequence yielded an insulin analog with potency and selectivity comparable to that of native insulin. These results establish a basis for discovery of novel higher potency, single chain insulin analogs of shortened length.
Collapse
Affiliation(s)
- Zachary P. Kaur
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United
States
| | | | - John P. Mayer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United
States
| | - Vasily M. Gelfanov
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United
States
| | - Richard D. DiMarchi
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United
States
| |
Collapse
|
30
|
Haisa M. The type 1 insulin-like growth factor receptor signalling system and targeted tyrosine kinase inhibition in cancer. J Int Med Res 2013; 41:253-64. [PMID: 23569026 DOI: 10.1177/0300060513476585] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Type 1 insulin-like growth factor receptor (IGF1R) signalling plays a critical role in normal cell growth, and in cancer development and progression. IGF1R and the insulin-like growth factors 1 and 2 (IGF1 and IGF2) are involved in various aspects of the malignant phenotype, suggesting that IGF1R is a potential target for cancer therapy. IGF1R is particularly important in the establishment and maintenance of the transformed phenotype, in mediating proliferation, and for the survival of tumour cells with anchorage-independent growth. IGF1R also exerts antiapoptotic activity and has a substantial influence on the control of the cell and body size. This property enables transformed cells to form macroscopic tumours and to survive the process of detachment required for metastasis. Pharmaceutical companies are investigating molecules that target IGF1R, including specific low molecular weight tyrosine kinase inhibitors and monoclonal antibodies, both of which possess various advantages and display different activity profiles. This review article focuses on the preclinical and clinical development of low molecular weight IGF1R tyrosine kinase inhibitors. It is critical to pursue a thorough molecular analysis of the metabolic activity of IGF1R to avoid possible side-effects of its inhibition.
Collapse
Affiliation(s)
- Minoru Haisa
- Department of Surgery, Okayama City Hospital, Okayama, Japan.
| |
Collapse
|
31
|
Žáková L, Kletvíková E, Veverka V, Lepsík M, Watson CJ, Turkenburg JP, Jirácek J, Brzozowski AM. Structural integrity of the B24 site in human insulin is important for hormone functionality. J Biol Chem 2013; 288:10230-40. [PMID: 23447530 DOI: 10.1074/jbc.m112.448050] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite the recent first structural insight into the insulin-insulin receptor complex, the role of the C terminus of the B-chain of insulin in this assembly remains unresolved. Previous studies have suggested that this part of insulin must rearrange to reveal amino acids crucial for interaction with the receptor. The role of the invariant Phe(B24), one of the key residues of the hormone, in this process remains unclear. For example, the B24 site functionally tolerates substitutions to D-amino acids but not to L-amino acids. Here, we prepared and characterized a series of B24-modified insulin analogues, also determining the structures of [D-HisB24]-insulin and [HisB24]-insulin. The inactive [HisB24]-insulin molecule is remarkably rigid due to a tight accommodation of the L-His side chain in the B24 binding pocket that results in the stronger tethering of B25-B28 residues to the protein core. In contrast, the highly active [D-HisB24]-insulin is more flexible, and the reverse chirality of the B24C(α) atom swayed the D-His(B24) side chain into the solvent. Furthermore, the pocket vacated by Phe(B24) is filled by Phe(B25), which mimics the Phe(B24) side and main chains. The B25→B24 downshift results in a subsequent downshift of Tyr(B26) into the B25 site and the departure of B26-B30 residues away from the insulin core. Our data indicate the importance of the aromatic L-amino acid at the B24 site and the structural invariance/integrity of this position for an effective binding of insulin to its receptor. Moreover, they also suggest limited, B25-B30 only, unfolding of the C terminus of the B-chain upon insulin activation.
Collapse
Affiliation(s)
- Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
It is increasingly apparent that not only is a cure for the current worldwide diabetes epidemic required, but also for its major complications, affecting both small and large blood vessels. These complications occur in the majority of individuals with both type 1 and type 2 diabetes. Among the most prevalent microvascular complications are kidney disease, blindness, and amputations, with current therapies only slowing disease progression. Impaired kidney function, exhibited as a reduced glomerular filtration rate, is also a major risk factor for macrovascular complications, such as heart attacks and strokes. There have been a large number of new therapies tested in clinical trials for diabetic complications, with, in general, rather disappointing results. Indeed, it remains to be fully defined as to which pathways in diabetic complications are essentially protective rather than pathological, in terms of their effects on the underlying disease process. Furthermore, seemingly independent pathways are also showing significant interactions with each other to exacerbate pathology. Interestingly, some of these pathways may not only play key roles in complications but also in the development of diabetes per se. This review aims to comprehensively discuss the well validated, as well as putative mechanisms involved in the development of diabetic complications. In addition, new fields of research, which warrant further investigation as potential therapeutic targets of the future, will be highlighted.
Collapse
Affiliation(s)
- Josephine M Forbes
- Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | |
Collapse
|
33
|
Rajapaksha H, Alvino C, McCarthy P, Forbes BE. The insulin-like growth factor mutation database (IGFmdb). Growth Horm IGF Res 2012; 22:158-166. [PMID: 22698731 DOI: 10.1016/j.ghir.2012.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/15/2012] [Accepted: 05/20/2012] [Indexed: 02/07/2023]
Abstract
Insulin-like growth factors (IGF-I and IGF-II), and insulin are evolutionarily conserved hormonal regulators of eukaryotic growth and development. Through interactions with their cognate receptors, all three molecules can influence cellular growth, proliferation, differentiation, migration, and survival, as well as metabolic processes. As such, perturbations in signaling by IGFs and insulin are a well-documented cause of altered growth, development and survival during both embryonic and post-natal life. A key approach in understanding how IGFs and insulin elicit their biological effects has been through identifying structural features of the ligands that influence their receptor interactions. Over the years, the study of many hundreds of specifically engineered IGF and insulin analogues has provided a wealth of knowledge about how specific residues of these ligands contribute to ligand:receptor interactions. Some analogues have even provided the basis for designing therapeutic agents for the treatment of IGF and insulin-related diseases. As the list of IGF and insulin analogues continues to grow we find that, while many have been produced and studied, it would be of considerable value to have a central repository from which information about specific analogues and their receptor binding data were readily available in an easily searchable and comparable format. To address this, we have created the "Insulin-like growth factor mutation database" (IGFmdb). The IGFmdb is a web-based curated database of annotated ligand analogues and their receptor binding affinities that can be accessed via http://www.adelaide.edu.au/igfmutation. Currently the IGFmdb contains receptor-binding data for 67 IGF-II analogues that were publicly accessible prior to 2012, as well as 67 IGF-I analogues, including all of those produced and characterised in our laboratory. A small number of these are IGF species homologues. There are also 32 insulin analogues within IGFmdb that were reported within the included IGF analogue studies, representing only a small fraction of existing insulin mutants. Future developments of the IGFmdb will incorporate receptor-binding data for all publicly accessible IGF-I analogues and the data will be expanded to include IGF-binding protein (IGFBP) binding affinities.
Collapse
Affiliation(s)
- Harinda Rajapaksha
- Discipline of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, SA, Australia
| | | | | | | |
Collapse
|
34
|
Takahashi H, Okamura D, Starr ME, Saito H, Evers BM. Age-dependent reduction of the PI3K regulatory subunit p85α suppresses pancreatic acinar cell proliferation. Aging Cell 2012; 11:305-14. [PMID: 22212451 DOI: 10.1111/j.1474-9726.2011.00787.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is important for tissue proliferation. Previously, we found that tissue regeneration after partial pancreatic resection was markedly attenuated in aged mice as compared to young mice and that this attenuation was because of an age-dependent reduction of PI3K/Akt signaling in the pancreatic acini; however, the mechanisms for the age-associated decline of pancreatic PI3K/Akt signaling remained unknown. To better delineate the mechanisms for the decreased PI3K/Akt activation with aging, age-associated changes in cell proliferation and PI3K/Akt signaling were investigated in the present study using in vitro primary pancreatic acinar cell cultures derived from young and aged mice. In response to treatment with insulin-like growth factor 1 (IGF-1), acinar cells from young but not aged mice showed increased activation of PI3K/Akt signaling and cell proliferation, indicating that intrinsic cellular mechanisms cause the age-associated changes in pancreatic acinar cells. We also found that the expression of PI3K p85α subunit, but not IGF-1 receptor or other PI3K subunits, was significantly reduced in pancreatic acinar cells from aged mice; this age-associated reduction of p85α was confirmed in both mouse and human pancreatic tissues. Finally, small interfering RNA (siRNA)-mediated knockdown of p85α expression in acinar cells from young mice resulted in markedly attenuated activation of PI3K/Akt downstream signaling in response to IGF-1. From these results, we conclude that exocrine pancreatic expression of PI3K p85α subunit is attenuated by aging, which is likely responsible for the age-associated decrease in activation of pancreatic PI3K signaling and acinar cell proliferation in response to growth-promoting stimuli.
Collapse
Affiliation(s)
- Hitoshi Takahashi
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
35
|
Winter PW, Van Orden AK, Roess DA, Barisas BG. Actin-dependent clustering of insulin receptors in membrane microdomains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:467-73. [DOI: 10.1016/j.bbamem.2011.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 10/16/2022]
|
36
|
Morcavallo A, Genua M, Palummo A, Kletvikova E, Jiracek J, Brzozowski AM, Iozzo RV, Belfiore A, Morrione A. Insulin and insulin-like growth factor II differentially regulate endocytic sorting and stability of insulin receptor isoform A. J Biol Chem 2012; 287:11422-36. [PMID: 22318726 DOI: 10.1074/jbc.m111.252478] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The insulin receptor isoform A (IR-A) binds both insulin and insulin-like growth factor (IGF)-II, although the affinity for IGF-II is 3-10-fold lower than insulin depending on a cell and tissue context. Notably, in mouse embryonic fibroblasts lacking the IGF-IR and expressing solely the IR-A (R-/IR-A), IGF-II is a more potent mitogen than insulin. As receptor endocytosis and degradation provide spatial and temporal regulation of signaling events, we hypothesized that insulin and IGF-II could affect IR-A biological responses by differentially regulating IR-A trafficking. Using R-/IR-A cells, we discovered that insulin evoked significant IR-A internalization, a process modestly affected by IGF-II. However, the differential internalization was not due to IR-A ubiquitination. Notably, prolonged stimulation of R-/IR-A cells with insulin, but not with IGF-II, targeted the receptor to a degradative pathway. Similarly, the docking protein insulin receptor substrate 1 (IRS-1) was down-regulated after prolonged insulin but not IGF-II exposure. Similar results were also obtained in experiments using [NMeTyr(B26)]-insulin, an insulin analog with IR-A binding affinity similar to IGF-II. Finally, we discovered that IR-A was internalized through clathrin-dependent and -independent pathways, which differentially regulated the activation of downstream effectors. Collectively, our results suggest that a lower affinity of IGF-II for the IR-A promotes lower IR-A phosphorylation and activation of early downstream effectors vis à vis insulin but may protect IR-A and IRS-1 from down-regulation thereby evoking sustained and robust mitogenic stimuli.
Collapse
Affiliation(s)
- Alaide Morcavallo
- Department of Urology and Endocrine Mechanisms and Hormone Action Program, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fluorescence correlation spectroscopic examination of insulin and insulin-like growth factor 1 binding to live cells. Biophys Chem 2011; 159:303-10. [DOI: 10.1016/j.bpc.2011.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 12/14/2022]
|
38
|
Antolíková E, Žáková L, Turkenburg JP, Watson CJ, Hančlová I, Šanda M, Cooper A, Kraus T, Brzozowski AM, Jiráček J. Non-equivalent role of inter- and intramolecular hydrogen bonds in the insulin dimer interface. J Biol Chem 2011; 286:36968-77. [PMID: 21880708 PMCID: PMC3196076 DOI: 10.1074/jbc.m111.265249] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/03/2011] [Indexed: 11/06/2022] Open
Abstract
Apart from its role in insulin receptor (IR) activation, the C terminus of the B-chain of insulin is also responsible for the formation of insulin dimers. The dimerization of insulin plays an important role in the endogenous delivery of the hormone and in the administration of insulin to patients. Here, we investigated insulin analogues with selective N-methylations of peptide bond amides at positions B24, B25, or B26 to delineate their structural and functional contribution to the dimer interface. All N-methylated analogues showed impaired binding affinities to IR, which suggests a direct IR-interacting role for the respective amide hydrogens. The dimerization capabilities of analogues were investigated by isothermal microcalorimetry. Selective N-methylations of B24, B25, or B26 amides resulted in reduced dimerization abilities compared with native insulin (K(d) = 8.8 μM). Interestingly, although the N-methylation in [NMeTyrB26]-insulin or [NMePheB24]-insulin resulted in K(d) values of 142 and 587 μM, respectively, the [NMePheB25]-insulin did not form dimers even at high concentrations. This effect may be attributed to the loss of intramolecular hydrogen bonding between NHB25 and COA19, which connects the B-chain β-strand to the core of the molecule. The release of the B-chain β-strand from this hydrogen bond lock may result in its higher mobility, thereby shifting solution equilibrium toward the monomeric state of the hormone. The study was complemented by analyses of two novel analogue crystal structures. All examined analogues crystallized only in the most stable R(6) form of insulin oligomers (even if the dimer interface was totally disrupted), confirming the role of R(6)-specific intra/intermolecular interactions for hexamer stability.
Collapse
Affiliation(s)
- Emília Antolíková
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Lenka Žáková
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Johan P. Turkenburg
- the York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5YW, United Kingdom, and
| | - Christopher J. Watson
- the York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5YW, United Kingdom, and
| | - Ivona Hančlová
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Miloslav Šanda
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Alan Cooper
- the School of Chemistry, Glasgow University, College of Science and Engineering, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Tomáš Kraus
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - A. Marek Brzozowski
- the York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5YW, United Kingdom, and
| | - Jiří Jiráček
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
39
|
Kamrava M, Gius D, Casagrande G, Kohn E. Will targeting insulin growth factor help us or hurt us?: An oncologist's perspective. Ageing Res Rev 2011; 10:62-70. [PMID: 19896561 PMCID: PMC2888889 DOI: 10.1016/j.arr.2009.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/22/2009] [Accepted: 10/28/2009] [Indexed: 12/17/2022]
Abstract
The insulin/insulin growth factor (IGF) pathway is a critical mediator of longevity and aging. Efforts to extend longevity by altering the insulin/IGF pathway may have varying effects on other physiological processes. Reduced insulin/IGF levels may decrease the incidence of certain cancers as well as the risk of developing metastatic disease. However, it may also increase the risk of developing cardiovascular disease as well as cardiovascular related mortality. Pursuing the right insulin/IGF pathway targets will require striking a balance between inhibiting cancer cell development and progression and avoiding damage to tissues under normal insulin/IGF-mediated control. This review will discuss the roles of the insulin/IGF pathway in aging and longevity and the development of cancer cell metastasis and considerations in taking insulin/IGF directed targets to the oncology clinic.
Collapse
Affiliation(s)
- Mitchell Kamrava
- Molecular Radiation Oncology Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute
| | - David Gius
- Molecular Radiation Oncology Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute
| | - Giovanna Casagrande
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute
| | - Elise Kohn
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute
| |
Collapse
|
40
|
Yehezkel E, Weinstein D, Simon M, Sarfstein R, Laron Z, Werner H. Long-acting insulin analogues elicit atypical signalling events mediated by the insulin receptor and insulin-like growth factor-I receptor. Diabetologia 2010; 53:2667-75. [PMID: 20835859 DOI: 10.1007/s00125-010-1899-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 08/05/2010] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS Insulin analogues were developed to improve the pharmacological properties of injected insulin and to better mimic endogenous insulin output. However, certain insulin analogues have been suggested to display IGF-I-like biological activities. Furthermore, several recent epidemiological studies have suggested a potential increase in cancer risk for treatment of diabetes patients with long-acting analogue insulin glargine (A21Gly,B31Arg,B32Arg human insulin). Additional studies, however, reported no increased cancer risk. The purpose of the present study was to identify the receptor(s) and signal transduction pathways responsible for the biological actions of insulin glargine and insulin detemir (B29Lys[ε-tetradecanoyl],desB30 human insulin). METHODS The colon cancer-derived cell line HCT116 was treated with increasing doses of insulin glargine, insulin detemir, regular insulin or IGF-I, and receptor activation was evaluated by immunoprecipitation assays. IGF-I receptor (IGF-IR) internalisation following insulin glargine treatment was assessed by confocal microscopy. Activation of the Akt and extracellular signal-regulated kinase pathways was evaluated by western blots. The anti-apoptotic effect of the analogues was measured by poly-(ADP ribose) polymerase antibody and annexin assays. RESULTS We found evidence for dual activation of the insulin receptor and IGF-IR by the analogues. Dose-dependency experiments showed that insulin glargine was able to phosphorylate the IGF-IR at fivefold lower doses than those required to activate the insulin receptor. We also showed that insulin glargine can lead to prolonged activation of the receptors and therefore promote abnormal signalling. Confocal imaging experiments showed that insulin glargine, but not regular insulin induced IGF-IR internalisation similarly to IGF-I. Finally, both analogues displayed IGF-I-like anti-apoptotic activities and stimulated cell cycle progression. CONCLUSIONS/INTERPRETATION Our data indicate that insulin glargine and insulin detemir display atypical signalling activities that differ from those elicited by regular insulin and involve activation of the anti-apoptotic IGF-IR.
Collapse
MESH Headings
- Apoptosis/drug effects
- Cell Cycle/drug effects
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical
- HCT116 Cells
- Humans
- Hypoglycemic Agents/pharmacology
- Insulin/analogs & derivatives
- Insulin/pharmacology
- Insulin Detemir
- Insulin Glargine
- Insulin, Long-Acting/analogs & derivatives
- Insulin, Long-Acting/pharmacology
- Receptor, IGF Type 1/agonists
- Receptor, IGF Type 1/metabolism
- Receptor, IGF Type 1/physiology
- Receptor, Insulin/agonists
- Receptor, Insulin/metabolism
- Receptor, Insulin/physiology
- Signal Transduction/drug effects
- Time Factors
Collapse
Affiliation(s)
- E Yehezkel
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
41
|
Sajid W, Kulahin N, Schluckebier G, Ribel U, Henderson HR, Tatar M, Hansen BF, Svendsen AM, Kiselyov VV, Nørgaard P, Wahlund PO, Brandt J, Kohanski RA, Andersen AS, De Meyts P. Structural and biological properties of the Drosophila insulin-like peptide 5 show evolutionary conservation. J Biol Chem 2010; 286:661-73. [PMID: 20974844 DOI: 10.1074/jbc.m110.156018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the crystal structure of two variants of Drosophila melanogaster insulin-like peptide 5 (DILP5) at a resolution of 1.85 Å. DILP5 shares the basic fold of the insulin peptide family (T conformation) but with a disordered B-chain C terminus. DILP5 dimerizes in the crystal and in solution. The dimer interface is not similar to that observed in vertebrates, i.e. through an anti-parallel β-sheet involving the B-chain C termini but, in contrast, is formed through an anti-parallel β-sheet involving the B-chain N termini. DILP5 binds to and activates the human insulin receptor and lowers blood glucose in rats. It also lowers trehalose levels in Drosophila. Reciprocally, human insulin binds to the Drosophila insulin receptor and induces negative cooperativity as in the human receptor. DILP5 also binds to insect insulin-binding proteins. These results show high evolutionary conservation of the insulin receptor binding properties despite divergent insulin dimerization mechanisms.
Collapse
Affiliation(s)
- Waseem Sajid
- Receptor Systems Biology Laboratory, Insulin and Incretin Biology, Hagedorn Research Institute, 2820 Gentofte, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
[Research progress on the relationship between insulin-like growth factor-I and lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2010; 13:642-7. [PMID: 20681455 PMCID: PMC6015150 DOI: 10.3779/j.issn.1009-3419.2010.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
|
44
|
All-atom structural models for complexes of insulin-like growth factors IGF1 and IGF2 with their cognate receptor. J Mol Biol 2010; 400:645-58. [PMID: 20488191 DOI: 10.1016/j.jmb.2010.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 04/04/2010] [Accepted: 05/12/2010] [Indexed: 01/09/2023]
Abstract
Type 1 insulin-like growth factor receptor (IGF1R) is a membrane-spanning glycoprotein of the insulin receptor family that has been implicated in a variety of cancers. The key questions related to molecular mechanisms governing ligand recognition by IGF1R remain unanswered, partly due to the lack of testable structural models of apo or ligand-bound receptor complexes. Using a homology model of the IGF1R ectodomain IGF1RDeltabeta, we present the first experimentally consistent all-atom structural models of IGF1/IGF1RDeltabeta and IGF2/IGF1RDeltabeta complexes. Our explicit-solvent molecular dynamics (MD) simulation of apo-IGF1RDeltabeta shows that it displays asymmetric flexibility mechanisms that result in one of two binding pockets accessible to growth factors IGF1 and IGF2, as demonstrated via an MD-assisted Monte Carlo docking procedure. Our MD-generated ensemble of structures of apo and IGF1-bound IGF1RDeltabeta agrees reasonably well with published small-angle X-ray scattering data. We observe simultaneous contacts of each growth factor with sites 1 and 2 of IGF1R, suggesting cross-linking of receptor subunits. Our models provide direct evidence in favor of suggested electrostatic complementarity between the C-domain (IGF1) and the cysteine-rich domain (IGF1R). Our IGF1/IGF1RDeltabeta model provides structural bases for the observation that a single IGF1 molecule binds to IGF1RDeltabeta at low concentrations in small-angle X-ray scattering studies. We also suggest new possible structural bases for differences in the affinities of insulin, IGF1, and IGF2 for their noncognate receptors.
Collapse
|
45
|
Sajid W, Holst PA, Kiselyov VV, Andersen AS, Conlon JM, Kristensen C, Kjeldsen T, Whittaker J, Chan SJ, De Meyts P. Structural basis of the aberrant receptor binding properties of hagfish and lamprey insulins. Biochemistry 2009; 48:11283-95. [PMID: 19863112 PMCID: PMC2781304 DOI: 10.1021/bi901269j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The insulin from the Atlantic hagfish (Myxine glutinosa) has been one of the most studied insulins from both a structural and a biological viewpoint; however, some aspects of its biology remain controversial, and there has been no satisfying structural explanation for its low biological potency. We have re-examined the receptor binding kinetics, as well as the metabolic and mitogenic properties, of this phylogenetically ancient insulin, as well as that from another extant representative of the ancient chordates, the river lamprey (Lampetra fluviatilis). Both insulins share unusual binding kinetics and biological properties with insulin analogues that have single mutations at residues that contribute to the hexamerization surface. We propose and demonstrate by reciprocal amino acid substitutions between hagfish and human insulins that the reduced biological activity of hagfish insulin results from unfavorable substitutions, namely, A10 (Ile to Arg), B4 (Glu to Gly), B13 (Glu to Asn), and B21 (Glu to Val). We likewise suggest that the altered biological activity of lamprey insulin may reflect substitutions at A10 (Ile to Lys), B4 (Glu to Thr), and B17 (Leu to Val). The substitution of Asp at residue B10 in hagfish insulin and of His at residue A8 in both hagfish and lamprey insulins may help compensate for unfavorable changes in other regions of the molecules. The data support the concept that the set of unusual properties of insulins bearing certain mutations in the hexamerization surface may reflect those of the insulins evolutionarily closer to the ancestral insulin gene product.
Collapse
Affiliation(s)
- Waseem Sajid
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Gentofte, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhao M, Wan ZL, Whittaker L, Xu B, Phillips NB, Katsoyannis PG, Ismail-Beigi F, Whittaker J, Weiss MA. Design of an insulin analog with enhanced receptor binding selectivity: rationale, structure, and therapeutic implications. J Biol Chem 2009; 284:32178-87. [PMID: 19773552 DOI: 10.1074/jbc.m109.028399] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Insulin binds with high affinity to the insulin receptor (IR) and with low affinity to the type 1 insulin-like growth factor (IGF) receptor (IGFR). Such cross-binding, which reflects homologies within the insulin-IGF signaling system, is of clinical interest in relation to the association between hyperinsulinemia and colorectal cancer. Here, we employ nonstandard mutagenesis to design an insulin analog with enhanced affinity for the IR but reduced affinity for the IGFR. Unnatural amino acids were introduced by chemical synthesis at the N- and C-capping positions of a recognition alpha-helix (residues A1 and A8). These sites adjoin the hormone-receptor interface as indicated by photocross-linking studies. Specificity is enhanced more than 3-fold on the following: (i) substitution of Gly(A1) by D-Ala or D-Leu, and (ii) substitution of Thr(A8) by diaminobutyric acid (Dab). The crystal structure of [D-Ala(A1),Dab(A8)]insulin, as determined within a T(6) zinc hexamer to a resolution of 1.35 A, is essentially identical to that of human insulin. The nonstandard side chains project into solvent at the edge of a conserved receptor-binding surface shared by insulin and IGF-I. Our results demonstrate that modifications at this edge discriminate between IR and IGFR. Because hyperinsulinemia is typically characterized by a 3-fold increase in integrated postprandial insulin concentrations, we envisage that such insulin analogs may facilitate studies of the initiation and progression of cancer in animal models. Future development of clinical analogs lacking significant IGFR cross-binding may enhance the safety of insulin replacement therapy in patients with type 2 diabetes mellitus at increased risk of colorectal cancer.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ward CW, Lawrence MC. Ligand-induced activation of the insulin receptor: a multi-step process involving structural changes in both the ligand and the receptor. Bioessays 2009; 31:422-34. [PMID: 19274663 DOI: 10.1002/bies.200800210] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Current models of insulin binding to the insulin receptor (IR) propose (i) that there are two binding sites on the surface of insulin which engage with two binding sites on the receptor and (ii) that ligand binding involves structural changes in both the ligand and the receptor. Many of the features of insulin binding to its receptor, namely B-chain helix interactions with the leucine-rich repeat domain and A-chain residue interactions with peptide loops from another part of the receptor, are also seen in models of relaxin and insulin-like peptide 3 binding to their receptors. We show that these principles can likely be extended to the group of mimetic peptides described by Schäffer and coworkers, which are reported to have no sequence identity with insulin. This review summarizes our current understanding of ligand-induced activation of the IR and highlights the key issues that remain to be addressed.
Collapse
Affiliation(s)
- Colin W Ward
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | | |
Collapse
|
48
|
De Meyts P, Gauguin L, Svendsen AM, Sarhan M, Knudsen L, Nøhr J, Kiselyov VV. Structural basis of allosteric ligand-receptor interactions in the insulin/relaxin peptide family: implications for other receptor tyrosine kinases and G-protein-coupled receptors. Ann N Y Acad Sci 2009; 1160:45-53. [PMID: 19416158 DOI: 10.1111/j.1749-6632.2009.03837.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The insulin/relaxin superfamily of peptide hormones comprises 10 members in humans. The three members of the insulin-related subgroup bind to receptor tyrosine kinases (RTKs), while four of the seven members of the relaxin-like subgroup are now known to bind to G-protein-coupled receptors (GPCRs), the so-called relaxin family peptide receptors (RXFPs). Both systems have a long evolutionary history and play a critical role in fundamental biological processes, such as metabolism, growth, survival and longevity, and reproduction. The structural biology and ligand-binding kinetics of the insulin and insulin-like growth factor I receptors have been studied in great detail, culminating in the recent crystal structure of the insulin receptor extracellular domain. Some of the fundamental properties of these receptors, including constitutive dimerization and negative cooperativity, have recently been shown to extend to other RTKs and GPCRs, including RXFPs, confirming kinetic observations made over 30 years ago.
Collapse
Affiliation(s)
- Pierre De Meyts
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Gentofte, Denmark
| | | | | | | | | | | | | |
Collapse
|
49
|
Alvino CL, McNeil KA, Ong SC, Delaine C, Booker GW, Wallace JC, Whittaker J, Forbes BE. A novel approach to identify two distinct receptor binding surfaces of insulin-like growth factor II. J Biol Chem 2009; 284:7656-64. [PMID: 19139090 DOI: 10.1074/jbc.m808061200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Very little is known about the residues important for the interaction of insulin-like growth factor II (IGF-II) with the type 1 IGF receptor (IGF-1R) and the insulin receptor (IR). Insulin, to which IGF-II is homologous, is proposed to cross-link opposite halves of the IR dimer through two receptor binding surfaces, site 1 and site 2. In the present study we have analyzed the contribution of IGF-II residues equivalent to insulin's two binding surfaces toward the interaction of IGF-II with the IGF-1R and IR. Four "site 1" and six "site 2" analogues were produced and analyzed in terms of IGF-1R and IR binding and activation. The results show that Val(43), Phe(28), and Val(14) (equivalent to site 1) are critical to IGF-1R and IR binding, whereas mutation to alanine of Gln(18) affects only IGF-1R and not IR binding. Alanine substitutions at Glu(12), Asp(15), Phe(19), Leu(53), and Glu(57) analogues resulted in significant (>2-fold) decreases in affinity for both the IGF-1R and IR. Furthermore, taking a novel approach using a monomeric, single-chain minimized IGF-1R we have defined a distinct second binding surface formed by Glu(12), Phe(19), Leu(53), and Glu(57) that potentially engages the IGF-1R at one or more of the FnIII domains.
Collapse
Affiliation(s)
- Clair L Alvino
- School of Molecular and Biomedical Science, The University of Adelaide, Gate 8, Victoria Drive, Adelaide, South Australia 5005, Australia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Rentería ME, Gandhi NS, Vinuesa P, Helmerhorst E, Mancera RL. A comparative structural bioinformatics analysis of the insulin receptor family ectodomain based on phylogenetic information. PLoS One 2008; 3:e3667. [PMID: 18989367 PMCID: PMC2577065 DOI: 10.1371/journal.pone.0003667] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 10/20/2008] [Indexed: 01/01/2023] Open
Abstract
The insulin receptor (IR), the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor-related receptor (IRR) are covalently-linked homodimers made up of several structural domains. The molecular mechanism of ligand binding to the ectodomain of these receptors and the resulting activation of their tyrosine kinase domain is still not well understood. We have carried out an amino acid residue conservation analysis in order to reconstruct the phylogeny of the IR Family. We have confirmed the location of ligand binding site 1 of the IGF1R and IR. Importantly, we have also predicted the likely location of the insulin binding site 2 on the surface of the fibronectin type III domains of the IR. An evolutionary conserved surface on the second leucine-rich domain that may interact with the ligand could not be detected. We suggest a possible mechanical trigger of the activation of the IR that involves a slight 'twist' rotation of the last two fibronectin type III domains in order to face the likely location of insulin. Finally, a strong selective pressure was found amongst the IRR orthologous sequences, suggesting that this orphan receptor has a yet unknown physiological role which may be conserved from amphibians to mammals.
Collapse
Affiliation(s)
- Miguel E. Rentería
- Western Australian Biomedical Research Institute and School of Biomedical Sciences, Curtin University of Technology, Perth, Western Austrailia, Australia
| | - Neha S. Gandhi
- Western Australian Biomedical Research Institute and School of Biomedical Sciences, Curtin University of Technology, Perth, Western Austrailia, Australia
| | - Pablo Vinuesa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Erik Helmerhorst
- Western Australian Biomedical Research Institute and School of Biomedical Sciences, Curtin University of Technology, Perth, Western Austrailia, Australia
| | - Ricardo L. Mancera
- Western Australian Biomedical Research Institute and School of Biomedical Sciences, Curtin University of Technology, Perth, Western Austrailia, Australia
- School of Pharmacy, Curtin University of Technology, Perth, Western Austrailia, Australia
| |
Collapse
|