1
|
Tang W, Du X, Wu Z, Nie Z, Yu C, Gao Y. circ-Erbb2ip from adipose-derived mesenchymal stem cell-derived exosomes promotes wound healing in diabetic mice by inducing the miR-670-5p/Nrf1 axis. Cell Signal 2024; 121:111245. [PMID: 38849105 DOI: 10.1016/j.cellsig.2024.111245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/16/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND To investigate the mechanism of exosomes (Exo) secretion by hypoxic pretreated adipose-derived mesenchymal stem cells (ADSCs) promoting skin wound healing in diabetic (DM) mice. METHODS High-throughput sequencing was used to investigate abnormal expression of circRNA in hypoxic pretreatment ADSCs exosome (HExo) and ADSCs exosome (Exo). Bioinformatics analysis and luciferase reporting analysis were used to clarify the interacted relationship among circRNA, miRNA and mRNA. EPCs cells were employ to analysis the ROS, inflammatory cytokines expression, angiogenic differentiation function under hypoxic condition by using immunofluorescence, ELISA detection and tube forming experiment. DM ulceration mice model were constructed and the therapeutic effect of Exo were detected using immunohistochemistry, immunofluorescence. RESULTS The result show that HExo have more treatment effect than Exo in promotes cutaneous wound healing of DM mice. High-throughput sequencing found that circ-Erbb2ip play a role in HExo mediated tissues repair. Downregulation circ-Erbb2ip decreased the therapeutic effect of HExo to wound healing in diabetic mice. Bioinformatics analysis and luciferase reporting analysis confirmed that both miR-670-5p and Nrf1 were downstream targets of circ-Erbb2ip. Downregulation of Nrf1 or overexpression of miR-670-5p reversed the protective effect of circ-Erbb2ip to EPCs after exposure to high glucose microenvironment. Upregulation circ-Erbb2ip increased the therapeutic effect of Exo to wound healing in diabetic mice by increased angiogenesis and decreased ROS, inflammatory cytokines expression. CONCLUSION In conclusion, ADSC-Exos containing circ-Erbb2ip promotes wound healing by targeting miR-670-5p/Nrf1 pathway, and their effects in promoting soft tissue wound healing warrant further study.
Collapse
Affiliation(s)
- Wenbo Tang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China; The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Xiaoying Du
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China; The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Zifu Wu
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Zhonglin Nie
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Chaowen Yu
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China.
| | - Yong Gao
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China; The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China.
| |
Collapse
|
2
|
Morrish F, Gingras H, Noonan J, Huang L, Sweet IR, Kuok IT, Knoblaugh SE, Hockenbery DM. Mitochondrial diabetes in mice expressing a dominant-negative allele of nuclear respiratory factor-1 (Nrf1) in pancreatic β-cells. Biochem Biophys Res Commun 2024; 737:150478. [PMID: 39128225 DOI: 10.1016/j.bbrc.2024.150478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Genetic polymorphisms in nuclear respiratory factor-1 (Nrf1), a key transcriptional regulator of nuclear-encoded mitochondrial proteins, have been linked to diabetes. Homozygous deletion of Nrf1 is embryonic lethal in mice. Our goal was to generate mice with β-cell-specific reduction in NRF1 function to investigate the relationship between NRF1 and diabetes. We report the generation of mice expressing a dominant-negative allele of Nrf1 (DNNRF1) in pancreatic β-cells. Heterozygous transgenic mice had high fed blood glucose levels detected at 3 wks of age, which persisted through adulthood. Plasma insulin levels in DNNRF1 transgenic mice were reduced, while insulin sensitivity remained intact in young animals. Islet size was reduced with increased numbers of apoptotic cells, and insulin content in islets by immunohistochemistry was low. Glucose-stimulated insulin secretion in isolated islets was reduced in DNNRF1-mice, but partially rescued by KCl, suggesting that decreased mitochondrial function contributed to the insulin secretory defect. Electron micrographs demonstrated abnormal mitochondrial morphology in β-cells. Expression of NRF1 target genes Tfam, Tfb1m and Tfb2m, and islet cytochrome c oxidase and succinate dehydrogenase activities were reduced in DNNRF1-mice. Rescue of mitochondrial function with low level activation of transgenic c-Myc in β-cells was sufficient to restore β-cell mass and prevent diabetes. This study demonstrates that reduced NRF1 function can lead to loss of β-cell function and establishes a model to study the interplay between regulators of bi-genomic gene transcription in diabetes.
Collapse
Affiliation(s)
- Fionnuala Morrish
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Helene Gingras
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Joanna Noonan
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Li Huang
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ian R Sweet
- University of Washington Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Iok Teng Kuok
- University of Washington Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Sue E Knoblaugh
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David M Hockenbery
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
3
|
Morrish F, Gingras H, Noonan J, Huang L, Sweet IR, Kuok IT, Knoblaugh SE, Hockenbery DM. Mitochondrial diabetes in mice expressing a dominant-negative allele of nuclear respiratory factor-1 ( Nrf1 ) in pancreatic β-cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.524153. [PMID: 38014068 PMCID: PMC10680558 DOI: 10.1101/2023.01.22.524153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Genetic polymorphisms in nuclear respiratory factor-1 ( NRF1 ), a key transcriptional regulator of nuclear-encoded mitochondrial proteins, have been linked to diabetes. Homozygous deletion of Nrf1 is embryonic lethal in mice. Our goal was to generate mice with β-cell-specific reduction in NRF1 function to investigate the relationship between NRF1 and diabetes. We report the generation of mice expressing a dominant-negative allele of Nrf1 (DNNRF1) in pancreatic β-cells. Heterozygous transgenic mice had high fed blood glucose levels detected at 3 wks of age, which persisted through adulthood. Plasma insulin levels in DNNRF1 transgenic mice were reduced, while insulin sensitivity remained intact in young animals. Islet size was reduced with increased numbers of apoptotic cells, and insulin content in islets by immunohistochemistry was low. Glucose-stimulated insulin secretion in isolated islets was reduced in DNNRF1-mice, but partially rescued by KCl, suggesting that decreased mitochondrial function contributed to the insulin secretory defect. Electron micrographs demonstrated abnormal mitochondrial morphology in β- cells. Expression of NRF1 target genes Tfam , T@1m and T@2m , and islet cytochrome c oxidase and succinate dehydrogenase activities were reduced in DNNRF1-mice. Rescue of mitochondrial function with low level activation of transgenic c-Myc in β-cells was sufficient to restore β-cell mass and prevent diabetes. This study demonstrates that reduced NRF1 function can lead to loss of β-cell function and establishes a model to study the interplay between regulators of bi- genomic gene transcription in diabetes.
Collapse
|
4
|
Cao K, Xu J, Cao W, Wang X, Lv W, Zeng M, Zou X, Liu J, Feng Z. Assembly of mitochondrial succinate dehydrogenase in human health and disease. Free Radic Biol Med 2023; 207:247-259. [PMID: 37490987 DOI: 10.1016/j.freeradbiomed.2023.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Mitochondrial succinate dehydrogenase (SDH), also known as electron transport chain (ETC) Complex II, is the only enzyme complex engaged in both oxidative phosphorylation and the tricarboxylic acid (TCA) cycle. SDH has received increasing attention due to its crucial role in regulating mitochondrial metabolism and human health. Despite having the fewest subunits among the four ETC complexes, functional SDH is formed via a sequential and well-coordinated assembly of subunits. Along with the discovery of subunit-specific assembly factors, the dynamic involvement of the SDH assembly process in a broad range of diseases has been revealed. Recently, we reported that perturbation of SDH assembly in different tissues leads to interesting and distinct pathophysiological changes in mice, indicating a need to understand the intricate SDH assembly process in human health and diseases. Thus, in this review, we summarize recent findings on SDH pathogenesis with respect to disease and a focus on SDH assembly.
Collapse
Affiliation(s)
- Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jie Xu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Wenli Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Xueqiang Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China
| | - Weiqiang Lv
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Mengqi Zeng
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China
| | - Xuan Zou
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China.
| | - Zhihui Feng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China.
| |
Collapse
|
5
|
Sharma S, Tyagi W, Tamang R, Das S. HDAC5 modulates SATB1 transcriptional activity to promote lung adenocarcinoma. Br J Cancer 2023; 129:586-600. [PMID: 37400677 PMCID: PMC10421875 DOI: 10.1038/s41416-023-02341-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/29/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Dysregulation of histone deacetylases has been linked to diverse cancers. HDAC5 is a histone deacetylase belonging to Class IIa family of histone deacetylases. Limited substrate repertoire restricts the understanding of molecular mechanisms underlying its role in tumorigenesis. METHODS We employed a biochemical screen to identify SATB1 as HDAC5-interacting protein. Coimmunoprecipitation and deacetylation assay were performed to validate SATB1 as a HDAC5 substrate. Proliferation, migration assay and xenograft studies were performed to determine the effect of HDAC5-SATB1 interaction on tumorigenesis. RESULTS Here we report that HDAC5 binds to and deacetylates SATB1 at the conserved lysine 411 residue. Furthermore, dynamic regulation of acetylation at this site is determined by TIP60 acetyltransferase. We also established that HDAC5-mediated deacetylation is critical for SATB1-dependent downregulation of key tumor suppressor genes. Deacetylated SATB1 also represses SDHA-induced epigenetic remodeling and anti-proliferative transcriptional program. Thus, SATB1 spurs malignant phenotype in a HDAC5-dependent manner. CONCLUSIONS Our study highlights the pivotal role of HDAC5 in tumorigenesis. Our findings provide key insights into molecular mechanisms underlying SATB1 promoted tumor growth and metastasis.
Collapse
Affiliation(s)
- Shalakha Sharma
- Molecular Oncology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Witty Tyagi
- Molecular Oncology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rohini Tamang
- Molecular Oncology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sanjeev Das
- Molecular Oncology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
6
|
Bénit P, Goncalves J, El Khoury R, Rak M, Favier J, Gimenez-Roqueplo AP, Rustin P. Succinate Dehydrogenase, Succinate, and Superoxides: A Genetic, Epigenetic, Metabolic, Environmental Explosive Crossroad. Biomedicines 2022; 10:1788. [PMID: 35892689 PMCID: PMC9394281 DOI: 10.3390/biomedicines10081788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Research focused on succinate dehydrogenase (SDH) and its substrate, succinate, culminated in the 1950s accompanying the rapid development of research dedicated to bioenergetics and intermediary metabolism. This allowed researchers to uncover the implication of SDH in both the mitochondrial respiratory chain and the Krebs cycle. Nowadays, this theme is experiencing a real revival following the discovery of the role of SDH and succinate in a subset of tumors and cancers in humans. The aim of this review is to enlighten the many questions yet unanswered, ranging from fundamental to clinically oriented aspects, up to the danger of the current use of SDH as a target for a subclass of pesticides.
Collapse
Affiliation(s)
- Paule Bénit
- NeuroDiderot, Inserm, Université Paris Cité, F-75019 Paris, France; (P.B.); (M.R.)
| | - Judith Goncalves
- Paris Centre de Recherche Cardiovasculaire (PARCC), Inserm, Université Paris Cité, F-75015 Paris, France; (J.G.); (J.F.)
| | - Riyad El Khoury
- Department of Pathology and Laboratory Medicine, Neuromuscular Diagnostic Laboratory, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
| | - Malgorzata Rak
- NeuroDiderot, Inserm, Université Paris Cité, F-75019 Paris, France; (P.B.); (M.R.)
| | - Judith Favier
- Paris Centre de Recherche Cardiovasculaire (PARCC), Inserm, Université Paris Cité, F-75015 Paris, France; (J.G.); (J.F.)
| | - Anne-Paule Gimenez-Roqueplo
- Département de Médecine Génomique des Tumeurs et des Cancers, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, F-75015 Paris, France;
| | - Pierre Rustin
- NeuroDiderot, Inserm, Université Paris Cité, F-75019 Paris, France; (P.B.); (M.R.)
| |
Collapse
|
7
|
Fahlbusch P, Nikolic A, Hartwig S, Jacob S, Kettel U, Köllmer C, Al-Hasani H, Lehr S, Müller-Wieland D, Knebel B, Kotzka J. Adaptation of Oxidative Phosphorylation Machinery Compensates for Hepatic Lipotoxicity in Early Stages of MAFLD. Int J Mol Sci 2022; 23:ijms23126873. [PMID: 35743314 PMCID: PMC9224893 DOI: 10.3390/ijms23126873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 12/10/2022] Open
Abstract
Alterations in mitochondrial function are an important control variable in the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), while also noted by increased de novo lipogenesis (DNL) and hepatic insulin resistance. We hypothesized that the organization and function of a mitochondrial electron transport chain (ETC) in this pathologic condition is a consequence of shifted substrate availability. We addressed this question using a transgenic mouse model with increased hepatic insulin resistance and DNL due to constitutively active human SREBP-1c. The abundance of ETC complex subunits and components of key metabolic pathways are regulated in the liver of these animals. Further omics approaches combined with functional assays in isolated liver mitochondria and primary hepatocytes revealed that the SREBP-1c-forced fatty liver induced a substrate limitation for oxidative phosphorylation, inducing enhanced complex II activity. The observed increased expression of mitochondrial genes may have indicated a counteraction. In conclusion, a shift of available substrates directed toward activated DNL results in increased electron flows, mainly through complex II, to compensate for the increased energy demand of the cell. The reorganization of key compounds in energy metabolism observed in the SREBP-1c animal model might explain the initial increase in mitochondrial function observed in the early stages of human MAFLD.
Collapse
Affiliation(s)
- Pia Fahlbusch
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Aleksandra Nikolic
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Sylvia Jacob
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
| | - Ulrike Kettel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
| | - Cornelia Köllmer
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
| | - Hadi Al-Hasani
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
- Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Stefan Lehr
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Dirk Müller-Wieland
- Clinical Research Centre, Department of Internal Medicine I, University Hospital Aachen, 52074 Aachen, Germany;
| | - Birgit Knebel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
- Correspondence: ; Tel.: +49-211-3382-536
| | - Jörg Kotzka
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
8
|
Yuan T, Zhou T, Qian M, Du J, Liu Y, Wang J, Li Y, Fan G, Yan F, Dai X, Li X, Wu Y, Dong X, He Q, Zhu H, Yang B. SDHA/B reduction promotes hepatocellular carcinoma by facilitating the deNEDDylation of cullin1 and stabilizing YAP/TAZ. Hepatology 2022. [PMID: 35713976 DOI: 10.1002/hep.32621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Succinate dehydrogenase enzyme (SDH) is frequently diminished in samples from patients with hepatocellular carcinoma (HCC), and SDH reduction is associated with elevated succinate level and poor prognosis in patients with HCC. However, the underlying mechanisms of how impaired SDH activity promotes HCC remain unclear. APPROACH AND RESULTS In this study, we observed remarkable downregulations of SDH subunits A and B (SDHA/B) in chronic liver injury-induced murine HCC models and patient samples. Subsequent RNA sequencing, hematoxylin and eosin staining, and immunohistochemistry analyses of HCC samples revealed that Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) were significantly upregulated in HCC, with their levels inversely correlating with that of SDHA/B. YAP/TAZ stability was greatly enhanced in SDHA/B-depleted HCC cells along with accumulation of succinate. Further mechanistic analyses demonstrated that impaired activity of SDHA/B resulted in succinate accumulation, which facilitated the deNEDDylation of cullin1 and therefore disrupted the E3 ubiquitin ligase SCFβ-TrCP complex, consequently leading to YAP/TAZ stabilization and activation in HCC cells. The accelerated in vitro cell proliferation and in vivo tumor growth caused by SDHA/B reduction or succinate exposure were largely dependent on the aberrant activation of YAP/TAZ. CONCLUSIONS Our study demonstrated that SDHA/B reduction promotes HCC proliferation by preventing the proteasomal degradation of YAP/TAZ through modulating cullin1 NEDDylation, thus binding SDH-deficient HCC cells to YAP/TAZ pathway and rendering these cells vulnerable to YAP/TAZ inhibition. Our findings warrant further investigation on the therapeutic effects of targeting YAP/TAZ in patients with HCC displaying reduced SDHA/B or elevated succinate levels.
Collapse
Affiliation(s)
- Tao Yuan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tianyi Zhou
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meijia Qian
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiamin Du
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yue Liu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jia'er Wang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yonghao Li
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Guanghan Fan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fangjie Yan
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyang Dai
- Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
| | - Xiawei Li
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yulian Wu
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China
| | - Xin Dong
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China.,Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Wang X, Chen G, Wan B, Dong Z, Xue Y, Luo Q, Wang D, Lu Y, Zhu L. NRF1-mediated microglial activation triggers high-altitude cerebral edema. J Mol Cell Biol 2022; 14:6608944. [PMID: 35704676 PMCID: PMC9486928 DOI: 10.1093/jmcb/mjac036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/24/2022] [Accepted: 06/13/2022] [Indexed: 12/05/2022] Open
Abstract
High-altitude cerebral edema (HACE) is a potentially fatal encephalopathy associated with a time-dependent exposure to the hypobaric hypoxia of altitude. The formation of HACE is affected by both vasogenic and cytotoxic edema. The over-activated microglia potentiate the damage of blood-brain barrier (BBB) and exacerbate cytotoxic edema. In light with the activation of microglia in HACE, we aimed to investigate whether the over-activated microglia were the key turning point of acute mountain sickness to HACE. In in vivo experiments, by exposing mice to hypobaric hypoxia (7000 m above sea level) to induce HACE model, we found that microglia were activated and migrated to blood vessels. Microglia depletion by PLX5622 obviously relieved brain edema. In in vitro experiments, we found that hypoxia induced cultured microglial activation, leading to the destruction of endothelial tight junction and astrocyte swelling. Up-regulated nuclear respiratory factor 1 (NRF1) accelerated pro-inflammatory factors through transcriptional regulation on nuclear factor kappa B p65 (NF-κB p65) and mitochondrial transcription factor A (TFAM) in activated microglia under hypoxia. NRF1 also up-regulated phagocytosis by transcriptional regulation on caveolin-1 (CAV-1) and adaptor-related protein complex 2 subunit beta (AP2B1). The present study reveals a new mechanism in HACE: hypoxia over-activates microglia through up-regulation of NRF1, which both induces inflammatory response through transcriptionally activating NF-κB p65 and TFAM, and enhances phagocytic function through up-regulation of CAV-1 and AP2B1; hypoxia-activated microglia destroy the integrity of BBB and release pro-inflammatory factors that eventually induce HACE.
Collapse
Affiliation(s)
| | - Guijuan Chen
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China,Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Baolan Wan
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China,Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Zhangji Dong
- Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, China,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong 226019, China
| | - Yan Xue
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China,Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Qianqian Luo
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China,Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Dan Wang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China,Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Yapeng Lu
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China,Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Li Zhu
- Correspondence to: Li Zhu, E-mail:
| |
Collapse
|
10
|
Papatheodorou I, Makrecka-Kuka M, Kuka J, Liepinsh E, Dambrova M, Lazou A. Pharmacological activation of PPARβ/δ preserves mitochondrial respiratory function in ischemia/reperfusion via stimulation of fatty acid oxidation-linked respiration and PGC-1α/NRF-1 signaling. Front Endocrinol (Lausanne) 2022; 13:941822. [PMID: 36046786 PMCID: PMC9420994 DOI: 10.3389/fendo.2022.941822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury leads to significant impairment of cardiac function and remains the leading cause of morbidity and mortality worldwide. Activation of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) confers cardioprotection via pleiotropic effects including antioxidant and anti-inflammatory actions; however, the underlying mechanisms are not yet fully elucidated. The aim of this study was to investigate the effect of PPARβ/δ activation on myocardial mitochondrial respiratory function and link this effect with cardioprotection after ischemia/reperfusion (I/R). For this purpose, rats were treated with the PPARβ/δ agonist GW0742 and/or antagonist GSK0660 in vivo. Mitochondrial respiration and ROS production rates were determined using high-resolution fluororespirometry. Activation of PPARβ/δ did not alter mitochondrial respiratory function in the healthy heart, however, inhibition of PPARβ/δ reduced fatty acid oxidation (FAO) and complex II-linked mitochondrial respiration and shifted the substrate dependence away from succinate-related energy production and towards NADH. Activation of PPARβ/δ reduced mitochondrial stress during in vitro anoxia/reoxygenation. Furthermore, it preserved FAO-dependent mitochondrial respiration and lowered ROS production at oxidative phosphorylation (OXPHOS)-dependent state during ex vivo I/R. PPARβ/δ activation was also followed by increased mRNA expression of components of FAO -linked respiration and of transcription factors governing mitochondrial homeostasis (carnitine palmitoyl transferase 1b and 2-CPT-1b and CPT-2, electron transfer flavoprotein dehydrogenase -ETFDH, peroxisome proliferator-activated receptor gamma co-activator 1 alpha- PGC-1α and nuclear respiratory factor 1-NRF-1). In conclusion, activation of PPARβ/δ stimulated both FAO-linked respiration and PGC-1α/NRF -1 signaling and preserved mitochondrial respiratory function during I/R. These effects are associated with reduced infarct size.
Collapse
Affiliation(s)
- Ioanna Papatheodorou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Janis Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Antigone Lazou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- *Correspondence: Antigone Lazou,
| |
Collapse
|
11
|
Yin Z, Geng X, Zhang Z, Wang Y, Gao X. Rhein Relieves Oxidative Stress in an Aβ 1-42 Oligomer-Burdened Neuron Model by Activating the SIRT1/PGC-1α-Regulated Mitochondrial Biogenesis. Front Pharmacol 2021; 12:746711. [PMID: 34566664 PMCID: PMC8461019 DOI: 10.3389/fphar.2021.746711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/31/2021] [Indexed: 01/19/2023] Open
Abstract
Neuronal mitochondrial oxidative stress induced by β-amyloid (Aβ) is an early event of Alzheimer’s disease (AD). Emerging evidence has shown that antioxidant therapy represents a promising therapeutic strategy for the treatment of AD. In this study, we investigated the antioxidant activity of rhein against Aβ1-42 oligomer-induced mitochondrial oxidative stress in primary neurons and proposed a potential antioxidant pathway involved. The results suggested that rhein significantly reduced reactive oxygen species (ROS) level, reversed the depletion of mitochondrial membrane potential, and protected neurons from oxidative stress-associated apoptosis. Moreover, further study indicated that rhein activated mitochondrial biogenesis accompanied by increased cytochrome C oxidase (CytOx) and superoxide dismutase (SOD) activities. CytOx on the respiratory chain inhibited the production of ROS from electron leakage and SOD helped to eliminate excess ROS. Finally, western blot analysis confirmed that rhein remarkedly increased the protein expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) together with its upstream deacetylase sirtuin 1 (SIRT1), and activated downstream transcription factor nuclear respiratory factor 1, promoting mitochondrial biogenesis. In conclusion, our results demonstrate that rhein activates mitochondrial biogenesis regulated by the SIRT1/PGC-1α pathway as an antioxidant defense system against Aβ1-42 oligomer-induced oxidative stress. These findings broaden our knowledge of improving mitochondrial biogenesis as an approach for relieving neuronal oxidative stress in AD.
Collapse
Affiliation(s)
- Zhihui Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyue Geng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhengyi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Wang X, Huang L, Jiang S, Cheng K, Wang D, Luo Q, Wu X, Zhu L. Testosterone attenuates pulmonary epithelial inflammation in male rats of COPD model through preventing NRF1-derived NF-κB signaling. J Mol Cell Biol 2021; 13:128-140. [PMID: 33475136 PMCID: PMC8104951 DOI: 10.1093/jmcb/mjaa079] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
Testosterone deficiency is common in male patients with chronic obstructive pulmonary disease (COPD) and may correlate with the deterioration of COPD. Clinical research suggests that testosterone replacement therapy may slow the COPD progression, but the specific biological pathway remains unclear. In this study, we explored the effect of testosterone on pulmonary inflammation in male COPD rats. The animals were co-treated with lipopolysaccharide (LPS) and cigarette to induce COPD. In COPD rats, nuclear respiratory factor 1 (NRF1) and NF-κB p65 were upregulated. In cigarette smoke extract (CSE)-, LPS-, or the combination of CSE and LPS-treated L132 cells, NRF1 and p65 were also upregulated. Silencing NRF1 resulted in the downregulation of p65. ChIP‒seq, ChIP‒qPCR, and luciferase results showed that NRF1 transcriptionally regulated p65. Both male and female COPD rats showed an upregulated NRF1 level and similar pulmonary morphology. But NRF1 was further upregulated in male castrated rats. Further supplementing testosterone in castrated male rats significantly reduced NRF1, pulmonary lesions, and inflammation. Supplementation of testosterone also reduced the phosphorylation of p65 and IKKβ induced by LPS or CSE in L132 cells. Our results suggest that testosterone plays a protective role in pulmonary epithelial inflammation of COPD through inhibition of NRF1-derived NF-κB signaling and the phosphorylation of p65.
Collapse
Affiliation(s)
- Xueting Wang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Linlin Huang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Shan Jiang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Kang Cheng
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Dan Wang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Qianqian Luo
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Xiaomei Wu
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| |
Collapse
|
13
|
Moreno C, Santos RM, Burns R, Zhang WC. Succinate Dehydrogenase and Ribonucleic Acid Networks in Cancer and Other Diseases. Cancers (Basel) 2020; 12:cancers12113237. [PMID: 33153035 PMCID: PMC7693138 DOI: 10.3390/cancers12113237] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Although the dysfunction of the succinate dehydrogenase complex in mitochondria leads to cancer and other diseases due to aberrant metabolic reactions and signaling pathways, it is not well known how the succinate dehydrogenase complex is regulated. Our review highlights that non-coding ribonucleic acids (RNAs), RNA editing enzymes, and RNA modifying enzymes regulate expressions and functions of the succinate dehydrogenase complex. This research will provide new strategies for treating succinate dehydrogenase-relevant diseases in a clinic. Abstract Succinate dehydrogenase (SDH) complex connects both the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC) in the mitochondria. However, SDH mutation or dysfunction-induced succinate accumulation results in multiple cancers and non-cancer diseases. The mechanistic studies show that succinate activates hypoxia response and other signal pathways via binding to 2-oxoglutarate-dependent oxygenases and succinate receptors. Recently, the increasing knowledge of ribonucleic acid (RNA) networks, including non-coding RNAs, RNA editors, and RNA modifiers has expanded our understanding of the interplay between SDH and RNA networks in cancer and other diseases. Here, we summarize recent discoveries in the RNA networks and their connections to SDH. Additionally, we discuss current therapeutics targeting SDH in both pre-clinical and clinical trials. Thus, we propose a new model of SDH–RNA network interaction and bring promising RNA therapeutics against SDH-relevant cancer and other diseases.
Collapse
|
14
|
Li J, Li Y, Chen L, Yu B, Xue Y, Guo R, Su J, Liu Y, Sun L. p53/PGC‑1α‑mediated mitochondrial dysfunction promotes PC3 prostate cancer cell apoptosis. Mol Med Rep 2020; 22:155-164. [PMID: 32377739 PMCID: PMC7248533 DOI: 10.3892/mmr.2020.11121] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 03/05/2020] [Indexed: 12/24/2022] Open
Abstract
Data for p53 mutation in prostate cancer in The Cancer Genome Atlas database revealed that >85% of p53 mutations occurred in the p53 DNA binding domain. These mutations not only severely damage the function of the p53 protein, but also reduce the disease-free survival of patients. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is involved in the regulation of mitochondrial function and is highly expressed in prostate cancer PC3 and DU145 cells with p53 deletion or mutation. However, whether p53 negatively regulates PGC-1α in prostate cancer cells remains to be elucidated. In the present study, p53 overexpression was induced in prostate cancer PC3 cells. Subsequently, the expression levels of PGC-1α and alterations to mitochondrial function were assessed. Moreover, PGC-1α was activated in prostate cancer PC3 cells using ZLN005 to investigate alterations to mitochondrial function and cell apoptosis. The present study revealed that p53 decreased the expression and nuclear localization of the PGC-1α protein and induced mitochondrial dysfunction. Activation of PGC-1α partially reversed p53-mediated mitochondrial dysfunction. Inhibition of the p53/PGC-1α pathway on mitochondrial biogenesis and fission-/fusion-associated gene and protein expression were associated with mitochondrial dysfunction. p53/PGC-1α-mediated mitochondrial dysfunction promoted apoptosis of PC3 prostate cancer cells. The results indicated that PGC-1α is an essential target of p53-induced apoptosis in prostate cancer cells and indicated that targeting PGC-1α may provide a new therapeutic strategy for prostate cancer.
Collapse
Affiliation(s)
- Jiuling Li
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yany Li
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lanlan Chen
- School of Clinical Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bingbing Yu
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanan Xue
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Rui Guo
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing Su
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanan Liu
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liankun Sun
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
15
|
Guo Y, Cho SW, Saxena D, Li X. Multifaceted Actions of Succinate as a Signaling Transmitter Vary with Its Cellular Locations. Endocrinol Metab (Seoul) 2020; 35:36-43. [PMID: 32207262 PMCID: PMC7090288 DOI: 10.3803/enm.2020.35.1.36] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 01/05/2023] Open
Abstract
Since the identification of succinate's receptor in 2004, studies supporting the involvement of succinate signaling through its receptor in various diseases have accumulated and most of these investigations have highlighted succinate's pro-inflammatory role. Taken with the fact that succinate is an intermediate metabolite in the center of mitochondrial activity, and considering its potential regulation of protein succinylation through succinyl-coenzyme A, a review on the overall multifaceted actions of succinate to discuss whether and how these actions relate to the cellular locations of succinate is much warranted. Mechanistically, it is important to consider the sources of succinate, which include somatic cellular released succinate and those produced by the microbiome, especially the gut microbiota, which is an equivalent, if not greater contributor of succinate levels in the body. Continue learning the critical roles of succinate signaling, known and unknown, in many pathophysiological conditions is important. Furthermore, studies to delineate the regulation of succinate levels and to determine how succinate elicits various types of signaling in a temporal and spatial manner are also required.
Collapse
Affiliation(s)
- Yuqi Guo
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Deepak Saxena
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
- Perlmutter Cancer Institute, New York, NY, USA
| | - Xin Li
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
- Perlmutter Cancer Institute, New York, NY, USA
- Department of Urology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
16
|
Moosavi B, Zhu XL, Yang WC, Yang GF. Genetic, epigenetic and biochemical regulation of succinate dehydrogenase function. Biol Chem 2020; 401:319-330. [DOI: 10.1515/hsz-2019-0264] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022]
Abstract
AbstractSuccinate dehydrogenase (SDH), complex II or succinate:quinone oxidoreductase (SQR) is a crucial enzyme involved in both the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS), the two primary metabolic pathways for generating ATP. Impaired function of SDH results in deleterious disorders from cancer to neurodegeneration. SDH function is tailored to meet the energy demands in different cell types. Thus, understanding how SDH function is regulated and how it operates in distinct cell types can support the development of therapeutic approaches against the diseases. In this article we discuss the molecular pathways which regulate SDH function and describe extra roles played by SDH in specific cell types.
Collapse
Affiliation(s)
- Behrooz Moosavi
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xiao-lei Zhu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
17
|
Wang X, Jin L, Jiang S, Wang D, Lu Y, Zhu L. Transcription regulation of NRF1 on StAR reduces testosterone synthesis in hypoxemic murine. J Steroid Biochem Mol Biol 2019; 191:105370. [PMID: 31028793 DOI: 10.1016/j.jsbmb.2019.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 12/14/2022]
Abstract
Male chronic obstructive pulmonary disease (COPD) and sleep apnea patients are associated with serum testosterone level decline because of hypoxemia, resulting in male sexual dysfunction and lower reproductive capacity. Although testosterone replacement therapy used in clinic achieves good results, the side effects indicates that understanding the mechanism followed with targeted treatments are more meaningful. The known mechanism of Hypoxia-inducible factor-1 (HIF-1) mediated steroidogenic acute regulatory protein (StAR) repression did not well explain the reason of hypoxia induced testosterone decline. Our primary results indicated Nuclear respiratory factor 1(NRF1) might be participate in StAR transcription regulation. The study aims to identify the mechanism of the regulation of StAR by NRF1, providing an explanation for the decrease of testosterone induced by hypoxemia. Testosterone level and StAR were determined in COPD model rats, sleep apnea model mice and hypoxia rats (10%O2). Results indicated NRF1, StAR and testosterone decreased in testis and ovary and increased in adrenal. Regulation of NRF1 expression under normoxia or hypoxia induced synchronous changes of both StAR and testosterone, indicating the decrease of NRF1 induced StAR repression in hypoxemia were the main cause of serum testosterone decline. The results were confirmed by dual-luciferase reporter assays, regulation of NRF1 synchronously altered the transcriptional activity of StAR. By ChIP, EMSA supershift, NRF1 was found to bind to the Star promoter region. Mutation assays identified two NRF1-binding sites on mouse Star promoter. These findings indicated that NRF1 positivly regulated Star transcription through directly binding to the Star promoter at -1445/-1422 and -44/-19.
Collapse
Affiliation(s)
- Xueting Wang
- Institute of Special Environmental Medicine, Nantong University, China; Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Liuhan Jin
- Institute of Special Environmental Medicine, Nantong University, China; Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Shan Jiang
- Institute of Special Environmental Medicine, Nantong University, China; Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Dan Wang
- Institute of Special Environmental Medicine, Nantong University, China; Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Yapeng Lu
- Institute of Special Environmental Medicine, Nantong University, China; Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Nantong University, China; Co-innovation Center of Neuroregeneration, Nantong University, China.
| |
Collapse
|
18
|
Chicherin IV, Dashinimaev E, Baleva M, Krasheninnikov I, Levitskii S, Kamenski P. Cytochrome c Oxidase on the Crossroads of Transcriptional Regulation and Bioenergetics. Front Physiol 2019; 10:644. [PMID: 31231235 PMCID: PMC6558401 DOI: 10.3389/fphys.2019.00644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are the organelles of eukaryotic cells responsible for the ATP production by means of the electron transfer chain (ETC). Its work is under strict genetic control providing the correct assembly of the enzyme complexes and the interface to adapt the energetic demands of the cell to the environment. These mechanisms are particularly developed in the cells with high energy consumption, like neurons and myocytes. This review summarizes several aspects of the involvement of the ETC complexes in the transcriptional control mechanisms of the neurons and other cells. Their influence on the differentiation of neurons is also discussed.
Collapse
Affiliation(s)
- Ivan Vladimirovich Chicherin
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, Russia
| | - Erdem Dashinimaev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Mariia Baleva
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Igor Krasheninnikov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey Levitskii
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Piotr Kamenski
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
19
|
Niu N, Li Z, Zhu M, Sun H, Yang J, Xu S, Zhao W, Song R. Effects of nuclear respiratory factor‑1 on apoptosis and mitochondrial dysfunction induced by cobalt chloride in H9C2 cells. Mol Med Rep 2019; 19:2153-2163. [PMID: 30628711 PMCID: PMC6390059 DOI: 10.3892/mmr.2019.9839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 09/28/2018] [Indexed: 01/31/2023] Open
Abstract
Hypoxia-induced apoptosis occurs in various diseases. Cobalt chloride (CoCl2) is a hypoxia mimic agent that is frequently used in studies investigating the mechanisms of hypoxia. Nuclear respiratory factor-1 (NRF-1) is a transcription factor with an important role in the expression of mitochondrial respiratory and mitochondria-associated genes. However, few studies have evaluated the effects of NRF-1 on apoptosis, particularly with regard to damage caused by CoCl2. In the present study, the role of NRF-1 in mediating CoCl2-induced apoptosis was investigated using cell viability analysis, flow cytometry, fluorescence imaging, western blotting analysis, energy metabolism analysis and reverse transcription-quantitative polymerase chain reaction. The present results revealed that the apoptosis caused by CoCl2 could be alleviated by NRF-1. Furthermore, overexpression of NRF-1 increased the expression of B-cell lymphoma-2, hypoxia inducible factor-1α and NRF-2. Also, cell damage induced by CoCl2 may be associated with depolarization of mitochondrial membrane potential, and NRF-1 suppressed this effect. Notably, the oxygen consumption rate (OCR) was reduced in CoCl2-treated cells, whereas overexpression of NRF-1 enhanced the OCR, suggesting that NRF-1 had protective effects. In summary, the present study demonstrated that NRF-1 protected against CoCl2-induced apoptosis, potentially by strengthening mitochondrial function to resist CoCl2-induced damage to H9C2 cells. The results of the present study provide a possible way for the investigation of myocardial diseases.
Collapse
Affiliation(s)
- Nan Niu
- College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Zihua Li
- School of Pharmacy, Tsinghua University, Beijing 100084, P.R. China
| | - Mingxing Zhu
- College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Hongli Sun
- College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Jihui Yang
- College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Shimei Xu
- College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Wei Zhao
- College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Rong Song
- Department of Critical Care Medicine, The Fifth Hospital of the Chinese People's Liberation Army, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| |
Collapse
|
20
|
Wang X, Pan L, Zou Z, Wang D, Lu Y, Dong Z, Zhu L. Hypoxia reduces testosterone synthesis in mouse Leydig cells by inhibiting NRF1-activated StAR expression. Oncotarget 2017; 8:16401-16413. [PMID: 28146428 PMCID: PMC5369971 DOI: 10.18632/oncotarget.14842] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/11/2017] [Indexed: 02/02/2023] Open
Abstract
Male fertility disorders play a key role in half of all infertility cases. Reduction in testosterone induced by hypoxia might cause diseases in reproductive system and other organs. Hypoxic exposure caused a significant decrease of NRF1. Software analysis reported that the promoter region of steroidogenic acute regulatory protein (StAR) contained NRF1 binding sites, indicating NRF1 promoted testicular steroidogenesis. The purpose of this study is to determine NRF1 is involved in testosterone synthesis; and under hypoxia, the decrease of testosterone synthesis is caused by lower expression of NRF1. We designed both in vivo and in vitro experiments. Under hypoxia, the expressions of NRF1 in Leydig cells and testosterone level were significantly decreased both in vivo and in vitro. Overexpression and interference NRF1 could induced StAR and testosterone increased and decreased respectively. ChIP results confirmed the binding of NRF1 to StAR promoter region. In conclusion, decline of NRF1 expression downregulated the level of StAR, which ultimately resulted in a reduction in testosterone synthesis.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, China
| | - Longlu Pan
- Department of Rehabilitation of the Six People's Hospital of Nantong, Jiangsu, China
| | - Zhiran Zou
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, China
| | - Dan Wang
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, China
| | - Yapeng Lu
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, China
| | - Zhangji Dong
- Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Li Zhu
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, China
| |
Collapse
|
21
|
Mori MP, Costa RAP, Soltys DT, Freire TDS, Rossato FA, Amigo I, Kowaltowski AJ, Vercesi AE, de Souza-Pinto NC. Lack of XPC leads to a shift between respiratory complexes I and II but sensitizes cells to mitochondrial stress. Sci Rep 2017; 7:155. [PMID: 28273955 PMCID: PMC5427820 DOI: 10.1038/s41598-017-00130-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 02/08/2017] [Indexed: 12/13/2022] Open
Abstract
Genomic instability drives tumorigenesis and DNA repair defects are associated with elevated cancer. Metabolic alterations are also observed during tumorigenesis, although a causal relationship between these has not been clearly established. Xeroderma pigmentosum (XP) is a DNA repair disease characterized by early cancer. Cells with reduced expression of the XPC protein display a metabolic shift from OXPHOS to glycolysis, which was linked to accumulation of nuclear DNA damage and oxidants generation via NOX-1. Using XP-C cells, we show that mitochondrial respiratory complex I (CI) is impaired in the absence of XPC, while complex II (CII) is upregulated in XP-C cells. The CI/CII metabolic shift was dependent on XPC, as XPC complementation reverted the phenotype. We demonstrate that mitochondria are the primary source of H2O2 and glutathione peroxidase activity is compromised. Moreover, mtDNA is irreversibly damaged and accumulates deletions. XP-C cells were more sensitive to the mitochondrial inhibitor antimycin A, an effect also prevented in XPC-corrected cells. Our results show that XPC deficiency leads to alterations in mitochondrial redox balance with a CI/CII shift as a possible adaptation to lower CI activity, but at the cost of sensitizing XP-C cells to mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Mateus P Mori
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Rute A P Costa
- Department of Clinical Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Daniela T Soltys
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Thiago de S Freire
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Franco A Rossato
- Department of Clinical Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ignácio Amigo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Aníbal E Vercesi
- Department of Clinical Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Nadja C de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil.
| |
Collapse
|
22
|
Bonafiglia JT, Edgett BA, Baechler BL, Nelms MW, Simpson CA, Quadrilatero J, Gurd BJ. Acute upregulation of PGC-1α mRNA correlates with training-induced increases in SDH activity in human skeletal muscle. Appl Physiol Nutr Metab 2017; 42:656-666. [PMID: 28177701 DOI: 10.1139/apnm-2016-0463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The purpose of the present study was to determine if acute responses in PGC-1α, VEGFA, SDHA, and GPD1-2 mRNA expression predict their associated chronic skeletal muscle molecular (SDH-GPD activity and substrate storage) and morphological (fibre-type composition and capillary density) adaptations following training. Skeletal muscle biopsies were collected from 14 recreationally active men (age: 22.0 ± 2.4 years) before (PRE) and 3 h after (3HR) the completion of an acute bout of sprint interval training (SIT) (eight 20-s intervals at ∼170% peak oxygen uptake work rate separated by 10 s of recovery). Participants then completed 6 weeks of SIT 4 times per week with additional biopsies after 2 (MID) and 6 (POST) weeks of training. Acute increases in PGC-1α mRNA strongly predicted increases in SDH activity (a marker of oxidative capacity) from PRE and MID to POST (PRE-POST: r = 0.81, r2 = 0.65, p < 0.01; MID-POST: r = 0.79, r2 = 0.62, p < 0.01) and glycogen content from MID to POST (r = 0.60, r2 = 0.36, p < 0.05). No other significant relationships were found between acute responses in PGC-1α, VEGFA, SDHA, and GPD1-2 mRNA expression and chronic adaptations to training. These results suggest that acute upregulation of PGC-1α mRNA relates to the magnitude of subsequent training-induced increases in oxidative capacity, but not other molecular and morphological chronic skeletal muscle adaptations. Additionally, acute mRNA responses in PGC-1α correlated with VEGFA, but not SDHA, suggesting a coordinated upregulation between PGC-1α and only some of its proposed targets in human skeletal muscle.
Collapse
Affiliation(s)
- Jacob T Bonafiglia
- a School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6 Canada
| | - Brittany A Edgett
- a School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6 Canada
| | - Brittany L Baechler
- c Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Matthew W Nelms
- a School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6 Canada
| | - Craig A Simpson
- b Department of Emergency Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Joe Quadrilatero
- c Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Brendon J Gurd
- a School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6 Canada
| |
Collapse
|
23
|
Wang D, Zhang J, Lu Y, Luo Q, Zhu L. Nuclear respiratory factor-1 (NRF-1) regulated hypoxia-inducible factor-1α (HIF-1α) under hypoxia in HEK293T. IUBMB Life 2016; 68:748-55. [PMID: 27491637 DOI: 10.1002/iub.1537] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/05/2016] [Indexed: 12/26/2022]
Abstract
Hypoxia-inducible factor 1α (HIF-1α) is a master regulator of oxygen homeostasis. Under hypoxia, the active HIF1-α subunits are mainly regulated through increased protein stabilization. Little is known concerning HIF-1α transcriptional regulation. Nuclear respiratory factor 1 (NRF-1) is a DNA-binding transcription factor that regulates mitochondrial biogenesis. In this study, we showed that NRF-1was a repressor of HIF-1α. The cellular depletion of NRF-1 by siRNA targeting leads to increased HIF-1αtranscriptional activity. EMSA, ChIP and luciferase activity allowed the identification of two functional NRF-1 binding sites within HIF-1α promoter. This study therefore identifies NRF-1 as a novel regulator of HIF-1α. © 2016 IUBMB Life, 68(9):748-755, 2016.
Collapse
Affiliation(s)
- Dan Wang
- Department of Biochemistry, 9 Se Yuan Road, Nantong, Jiangsu, 226019, China
| | - Jie Zhang
- Department of Biochemistry, 9 Se Yuan Road, Nantong, Jiangsu, 226019, China
| | - Yapeng Lu
- Department of Biochemistry, 9 Se Yuan Road, Nantong, Jiangsu, 226019, China
| | - Qianqian Luo
- Department of Biochemistry, 9 Se Yuan Road, Nantong, Jiangsu, 226019, China
| | - Li Zhu
- Department of Biochemistry, 9 Se Yuan Road, Nantong, Jiangsu, 226019, China
| |
Collapse
|
24
|
Hull TD, Boddu R, Guo L, Tisher CC, Traylor AM, Patel B, Joseph R, Prabhu SD, Suliman HB, Piantadosi CA, Agarwal A, George JF. Heme oxygenase-1 regulates mitochondrial quality control in the heart. JCI Insight 2016; 1:e85817. [PMID: 27110594 DOI: 10.1172/jci.insight.85817] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The cardioprotective inducible enzyme heme oxygenase-1 (HO-1) degrades prooxidant heme into equimolar quantities of carbon monoxide, biliverdin, and iron. We hypothesized that HO-1 mediates cardiac protection, at least in part, by regulating mitochondrial quality control. We treated WT and HO-1 transgenic mice with the known mitochondrial toxin, doxorubicin (DOX). Relative to WT mice, mice globally overexpressing human HO-1 were protected from DOX-induced dilated cardiomyopathy, cardiac cytoarchitectural derangement, and infiltration of CD11b+ mononuclear phagocytes. Cardiac-specific overexpression of HO-1 ameliorated DOX-mediated dilation of the sarcoplasmic reticulum as well as mitochondrial disorganization in the form of mitochondrial fragmentation and increased numbers of damaged mitochondria in autophagic vacuoles. HO-1 overexpression promotes mitochondrial biogenesis by upregulating protein expression of NRF1, PGC1α, and TFAM, which was inhibited in WT animals treated with DOX. Concomitantly, HO-1 overexpression inhibited the upregulation of the mitochondrial fission mediator Fis1 and resulted in increased expression of the fusion mediators, Mfn1 and Mfn2. It also prevented dynamic changes in the levels of key mediators of the mitophagy pathway, PINK1 and parkin. Therefore, these findings suggest that HO-1 has a novel role in protecting the heart from oxidative injury by regulating mitochondrial quality control.
Collapse
Affiliation(s)
- Travis D Hull
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ravindra Boddu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lingling Guo
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cornelia C Tisher
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amie M Traylor
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bindiya Patel
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Reny Joseph
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sumanth D Prabhu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Veterans Affairs, Birmingham, Alabama, USA
| | - Hagir B Suliman
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Claude A Piantadosi
- Department of Pulmonary, Allergy and Critical Care, Duke University School of Medicine, Durham, North Carolina, USA
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Veterans Affairs, Birmingham, Alabama, USA
| | - James F George
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
25
|
Garcia-Diaz B, Barca E, Balreira A, Lopez LC, Tadesse S, Krishna S, Naini A, Mariotti C, Castellotti B, Quinzii CM. Lack of aprataxin impairs mitochondrial functions via downregulation of the APE1/NRF1/NRF2 pathway. Hum Mol Genet 2015; 24:4516-29. [PMID: 25976310 DOI: 10.1093/hmg/ddv183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/12/2015] [Indexed: 11/13/2022] Open
Abstract
Ataxia oculomotor apraxia type 1 (AOA1) is an autosomal recessive disease caused by mutations in APTX, which encodes the DNA strand-break repair protein aprataxin (APTX). CoQ10 deficiency has been identified in fibroblasts and muscle of AOA1 patients carrying the common W279X mutation, and aprataxin has been localized to mitochondria in neuroblastoma cells, where it enhances preservation of mitochondrial function. In this study, we show that aprataxin deficiency impairs mitochondrial function, independent of its role in mitochondrial DNA repair. The bioenergetics defect in AOA1-mutant fibroblasts and APTX-depleted Hela cells is caused by decreased expression of SDHA and genes encoding CoQ biosynthetic enzymes, in association with reductions of APE1, NRF1 and NRF2. The biochemical and molecular abnormalities in APTX-depleted cells are recapitulated by knockdown of APE1 in Hela cells and are rescued by overexpression of NRF1/2. Importantly, pharmacological upregulation of NRF1 alone by 5-aminoimidazone-4-carboxamide ribonucleotide does not rescue the phenotype, which, in contrast, is reversed by the upregulation of NRF2 by rosiglitazone. Accordingly, we propose that the lack of aprataxin causes reduction of the pathway APE1/NRF1/NRF2 and their target genes. Our findings demonstrate a critical role of APTX in transcription regulation of mitochondrial function and the pathogenesis of AOA1 via a novel pathomechanistic pathway, which may be relevant to other neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Emanuele Barca
- Department of Neurology, UOC of Neurology and Neuromuscular Disorders, Department of Neuroscience, University of Messina, Messina 98100, Italy
| | | | - Luis C Lopez
- Department of Neurology, Institute of Biotechnology, Biomedical Research Center (CIBM), Health Science Technological Park (PTS), University of Granada, Armilla, Granada 18100, Spain and
| | | | - Sindhu Krishna
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ali Naini
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Caterina Mariotti
- Unitâ di Genetica delle Malattie Neurodegenerative e Metaboliche, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan 20126, Italy
| | - Barbara Castellotti
- Unitâ di Genetica delle Malattie Neurodegenerative e Metaboliche, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan 20126, Italy
| | | |
Collapse
|
26
|
Zhang J, Gu JY, Chen ZS, Xing KC, Sun B. Astragalus polysaccharide suppresses palmitate-induced apoptosis in human cardiac myocytes: the role of Nrf1 and antioxidant response. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:2515-2524. [PMID: 26045757 PMCID: PMC4440066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE Previous studies have shown that Astragalus polysaccharides (APS) can be used to ameliorate cardiotoxicity due to chemotherapy and improve the cardiac function. However, the mechanism by which APS mediate this effect is unclear. In the present study, the effects of APS, which suppressed ROS-mediated apoptosis through Nrf1 accumulation in human cardiac myocytes (HCMs), was investigated. METHODS The cell viability was detected by the CCK8 assay. The cell apoptosis was assessed by annexin V-PI double-labeling staining. Expression of genes and proteins were analyzed by real-time PCR and western blotting respectively. Nrf1 gene was overexpressed using a lentiviral expression vector in HCMs in vitro, in order to explore the mechanism by which the Nrf1 promoted cell growth. RESULTS CCK8 and Annexin V-PI double-labeling showed that PAL induced cell death in a concentration-dependent manner, and suppressed HCMs proliferation. The combination PAL with APS was significantly decreased the percentage of the early phase of apoptosis cells. ROS levels were increased in HCMs by exposure to PAL. APS treatment significantly inhibited generation of ROS in response to palmitate. Moreover, PAL administration significantly decreased the mRNA and proteins expression of Bcl-2 as well as increased the mRNA expression of BAX and the protein expression of caspase-3 and caspase-8 as compare to those of control group, but APS treatment could reverse PA-induced HCMs apoptosis. The levels of reactive oxygen species (ROS), which was an oxidative stress marker, was significantly increased in cardiomyocytes by exposure to PAL, but overexpressing Nrf1 could ameliorate ROS-induced cardiomyocyte toxicity and increase the expression of SOD1 and SOD2 in HCMs by overexpressing Nrf1. CONCLUSIONS This study demonstrated that the PAL could induce HCMs apoptosis. However, APS could reverse PAL-induced cardiomyocyte toxicity, at least partially, through suppression ROS and Nrf1 accumulation in HCMs.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Cardiology, Shanghai Tenth People’s Hospital of Tongji UniversityShanghai 200072, China
| | - Jian-Yun Gu
- Department of Cardiology, Tongji Hospital of Tongji UniversityShanghai 200072, China
| | - Zhi-Song Chen
- Department of Cardiology, Tongji Hospital of Tongji UniversityShanghai 200072, China
| | | | - Bing Sun
- Department of Cardiology, Tongji Hospital of Tongji UniversityShanghai 200072, China
| |
Collapse
|
27
|
Gatsi R, Schulze B, Rodríguez-Palero MJ, Hernando-Rodríguez B, Baumeister R, Artal-Sanz M. Prohibitin-mediated lifespan and mitochondrial stress implicate SGK-1, insulin/IGF and mTORC2 in C. elegans. PLoS One 2014; 9:e107671. [PMID: 25265021 PMCID: PMC4180437 DOI: 10.1371/journal.pone.0107671] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/13/2014] [Indexed: 12/29/2022] Open
Abstract
Lifespan regulation by mitochondrial proteins has been well described, however, the mechanism of this regulation is not fully understood. Amongst the mitochondrial proteins profoundly affecting ageing are prohibitins (PHB-1 and PHB-2). Paradoxically, in C. elegans prohibitin depletion shortens the lifespan of wild type animals while dramatically extending that of metabolically compromised animals, such as daf-2-insulin-receptor mutants. Here we show that amongst the three kinases known to act downstream of daf-2, only loss of function of sgk-1 recapitulates the ageing phenotype observed in daf-2 mutants upon prohibitin depletion. Interestingly, signalling through SGK-1 receives input from an additional pathway, parallel to DAF-2, for the prohibitin-mediated lifespan phenotype. We investigated the effect of prohibitin depletion on the mitochondrial unfolded protein response (UPRmt). Remarkably, the lifespan extension upon prohibitin elimination, of both daf-2 and sgk-1 mutants, is accompanied by suppression of the UPRmt induced by lack of prohibitin. On the contrary, gain of function of SGK-1 results in further shortening of lifespan and a further increase of the UPRmt in prohibitin depleted animals. Moreover, SGK-1 interacts with RICT-1 for the regulation of the UPRmt in a parallel pathway to DAF-2. Interestingly, prohibitin depletion in rict-1 loss of function mutant animals also causes lifespan extension. Finally, we reveal an unprecedented role for mTORC2-SGK-1 in the regulation of mitochodrial homeostasis. Together, these results give further insight into the mechanism of lifespan regulation by mitochondrial function and reveal a cross-talk of mitochondria with two key pathways, Insulin/IGF and mTORC2, for the regulation of ageing and stress response.
Collapse
Affiliation(s)
- Roxani Gatsi
- CABD, Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Bettina Schulze
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Laboratory for Bioinformatics and Molecular Genetics, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - María Jesús Rodríguez-Palero
- CABD, Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Blanca Hernando-Rodríguez
- CABD, Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Ralf Baumeister
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Laboratory for Bioinformatics and Molecular Genetics, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Center for Biochemistry and Molecular Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Marta Artal-Sanz
- CABD, Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Laboratory for Bioinformatics and Molecular Genetics, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
28
|
Zecchini V, Madhu B, Russell R, Pértega-Gomes N, Warren A, Gaude E, Borlido J, Stark R, Ireland-Zecchini H, Rao R, Scott H, Boren J, Massie C, Asim M, Brindle K, Griffiths J, Frezza C, Neal DE, Mills IG. Nuclear ARRB1 induces pseudohypoxia and cellular metabolism reprogramming in prostate cancer. EMBO J 2014; 33:1365-82. [PMID: 24837709 PMCID: PMC4194125 DOI: 10.15252/embj.201386874] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 04/13/2014] [Accepted: 04/17/2014] [Indexed: 12/23/2022] Open
Abstract
Tumour cells sustain their high proliferation rate through metabolic reprogramming, whereby cellular metabolism shifts from oxidative phosphorylation to aerobic glycolysis, even under normal oxygen levels. Hypoxia-inducible factor 1A (HIF1A) is a major regulator of this process, but its activation under normoxic conditions, termed pseudohypoxia, is not well documented. Here, using an integrative approach combining the first genome-wide mapping of chromatin binding for an endocytic adaptor, ARRB1, both in vitro and in vivo with gene expression profiling, we demonstrate that nuclear ARRB1 contributes to this metabolic shift in prostate cancer cells via regulation of HIF1A transcriptional activity under normoxic conditions through regulation of succinate dehydrogenase A (SDHA) and fumarate hydratase (FH) expression. ARRB1-induced pseudohypoxia may facilitate adaptation of cancer cells to growth in the harsh conditions that are frequently encountered within solid tumours. Our study is the first example of an endocytic adaptor protein regulating metabolic pathways. It implicates ARRB1 as a potential tumour promoter in prostate cancer and highlights the importance of metabolic alterations in prostate cancer.
Collapse
Affiliation(s)
- Vincent Zecchini
- Department of CRUK, CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Basetti Madhu
- Department of CRUK, CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Roslin Russell
- Department of CRUK, CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Nelma Pértega-Gomes
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
| | - Anne Warren
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Edoardo Gaude
- Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Joana Borlido
- Department of CRUK, CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Rory Stark
- Department of CRUK, CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Roheet Rao
- Department of CRUK, CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Helen Scott
- Department of CRUK, CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joan Boren
- Department of CRUK, CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Charlie Massie
- Department of CRUK, CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Mohammad Asim
- Department of CRUK, CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kevin Brindle
- Department of CRUK, CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - John Griffiths
- Department of CRUK, CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Christian Frezza
- Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - David E Neal
- Department of CRUK, CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ian G Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership University of Oslo and Oslo University Hospital, Oslo, Norway Department of Cancer Prevention and Urology, Institute of Cancer Research and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
29
|
Fliedner SMJ, Kaludercic N, Jiang XS, Hansikova H, Hajkova Z, Sladkova J, Limpuangthip A, Backlund PS, Wesley R, Martiniova L, Jochmanova I, Lendvai NK, Breza J, Yergey AL, Paolocci N, Tischler AS, Zeman J, Porter FD, Lehnert H, Pacak K. Warburg effect's manifestation in aggressive pheochromocytomas and paragangliomas: insights from a mouse cell model applied to human tumor tissue. PLoS One 2012; 7:e40949. [PMID: 22859959 PMCID: PMC3409208 DOI: 10.1371/journal.pone.0040949] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 06/19/2012] [Indexed: 12/17/2022] Open
Abstract
A glycolytic profile unifies a group of pheochromocytomas and paragangliomas (PHEOs/PGLs) with distinct underlying gene defects, including von Hippel-Lindau (VHL) and succinate dehydrogenase B (SDHB) mutations. Nevertheless, their tumor aggressiveness is distinct: PHEOs/PGLs metastasize rarely in VHL-, but frequently in SDHB-patients. To date, the molecular mechanisms causing the more aggressive phenotype in SDHB-PHEOs/PGLs remain largely unknown. Recently, however, an excellent model to study aggressive PHEOs (mouse tumor tissue (MTT) cells) has been developed from mouse PHEO cells (MPC). We employed this model for a proteomics based approach to identify changes characteristic for tumor aggressiveness, which we then explored in a homogeneous set of human SDHB- and VHL-PHEOs/PGLs. The increase of glucose transporter 1 in VHL, and of hexokinase 2 in VHL and SDHB, confirmed their glycolytic profile. In agreement with the cell model and in support of decoupling of glycolysis, the Krebs cycle and oxidative phosphorylation (OXPHOS), SDHB tumors showed increased lactate dehydrogenase levels. In SDHB-PGLs OXPHOS complex activity was increased at complex III and, as expected, decreased at complex II. Moreover, protein and mRNA expression of all tested OXPHOS-related genes were higher in SDHB- than in VHL-derived tumors. Although there was no direct evidence for increased reactive oxygen species production, elevated superoxide dismutase 2 expression may reflect elevated oxidative stress in SDHB-derived PHEOs/PGLs. For the first time, we show that despite dysfunction in complex II and evidence for a glycolytic phenotype, the Warburg effect does not seem to fully apply to SDHB-PHEOs/PGLs with respect to decreased OXPHOS. In addition, we present evidence for increased LDHA and SOD2 expression in SDHB-PHEOs/PGLs, proteins that have been proposed as promising therapeutic targets in other cancers. This study provides new insight into pathogenic mechanisms in aggressive human PHEOs/PGLs, which may lead to identifying new diagnostic and prognostic markers in the near future.
Collapse
Affiliation(s)
- Stephanie M. J. Fliedner
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- 1 Department of Medicine, University Hospitals of Schleswig-Holstein, Lübeck, Germany
| | - Nina Kaludercic
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Xiao-Sheng Jiang
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hana Hansikova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zuzana Hajkova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Sladkova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Andrea Limpuangthip
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter S. Backlund
- Section on Mass Spectrometry and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert Wesley
- Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lucia Martiniova
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ivana Jochmanova
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- 1st Department of Internal Medicine Medical Faculty, P.J.Šafárik University, Košice, Slovakia
| | - Nikoletta K. Lendvai
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jan Breza
- Department of Urology, School of Medicine, Comenius University, Bratislava, Slovakia
| | - Alfred L. Yergey
- Section on Mass Spectrometry and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of Clinical Medicine, Section of Pathology, University of Perugia, Perugia, Italy
| | - Arthur S. Tischler
- Department of Pathology, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Jiri Zeman
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Forbes D. Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hendrik Lehnert
- 1 Department of Medicine, University Hospitals of Schleswig-Holstein, Lübeck, Germany
| | - Karel Pacak
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
30
|
Abstract
We propose that the well-documented therapeutic actions of repeated physical activities over human lifespan are mediated by the rapidly turning over proto-oncogenic Myc (myelocytomatosis) network of transcription factors. This transcription factor network is unique in utilizing promoter and epigenomic (acetylation/deacetylation, methylation/demethylation) mechanisms for controlling genes that include those encoding intermediary metabolism (the primary source of acetyl groups), mitochondrial functions and biogenesis, and coupling their expression with regulation of cell growth and proliferation. We further propose that remote functioning of the network occurs because there are two arms of this network, which consists of driver cells (e.g., working myocytes) that metabolize carbohydrates, fats, proteins, and oxygen and produce redox-modulating metabolites such as H₂O₂, NAD⁺, and lactate. The exercise-induced products represent autocrine, paracrine, or endocrine signals for target recipient cells (e.g., aortic endothelium, hepatocytes, and pancreatic β-cells) in which the metabolic signals are coupled with genomic networks and interorgan signaling is activated. And finally, we propose that lactate, the major metabolite released from working muscles and transported into recipient cells, links the two arms of the signaling pathway. Recently discovered contributions of the Myc network in stem cell development and maintenance further suggest that regular physical activity may prevent age-related diseases such as cardiovascular pathologies, cancers, diabetes, and neurological functions through prevention of stem cell dysfunctions and depletion with aging. Hence, regular physical activities may attenuate the various deleterious effects of the Myc network on health, the wild side of the Myc-network, through modulating transcription of genes associated with glucose and energy metabolism and maintain a healthy human status.
Collapse
Affiliation(s)
- Kishorchandra Gohil
- Exercise Physiology Laboratory, Dept. of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
31
|
Gaster M, Nehlin JO, Minet AD. Impaired TCA cycle flux in mitochondria in skeletal muscle from type 2 diabetic subjects: marker or maker of the diabetic phenotype? Arch Physiol Biochem 2012; 118:156-89. [PMID: 22385297 DOI: 10.3109/13813455.2012.656653] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The diabetic phenotype is complex, requiring elucidation of key initiating defects. Recent research has shown that diabetic myotubes express a primary reduced tricarboxylic acid (TCA) cycle flux. A reduced TCA cycle flux has also been shown both in insulin resistant offspring of T2D patients and exercising T2D patients in vivo. This review will discuss the latest advances in the understanding of the molecular mechanisms regulating the TCA cycle with focus on possible underlying mechanism which could explain the impaired TCA flux in insulin resistant human skeletal muscle in type 2 diabetes. A reduced TCA is both a marker and a maker of the diabetic phenotype.
Collapse
Affiliation(s)
- Michael Gaster
- Laboratory of Molecular Physiology, Department of Pathology, Odense University Hospital, Denmark.
| | | | | |
Collapse
|
32
|
Mueller EE, Mayr JA, Zimmermann FA, Feichtinger RG, Stanger O, Sperl W, Kofler B. Reduction of nuclear encoded enzymes of mitochondrial energy metabolism in cells devoid of mitochondrial DNA. Biochem Biophys Res Commun 2011; 417:1052-7. [PMID: 22222373 DOI: 10.1016/j.bbrc.2011.12.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 12/19/2011] [Indexed: 11/29/2022]
Abstract
Mitochondrial DNA (mtDNA) depletion syndromes are generally associated with reduced activities of oxidative phosphorylation (OXPHOS) enzymes that contain subunits encoded by mtDNA. Conversely, entirely nuclear encoded mitochondrial enzymes in these syndromes, such as the tricarboxylic acid cycle enzyme citrate synthase (CS) and OXPHOS complex II, usually exhibit normal or compensatory enhanced activities. Here we report that a human cell line devoid of mtDNA (HEK293 ρ(0) cells) has diminished activities of both complex II and CS. This finding indicates the existence of a feedback mechanism in ρ(0) cells that downregulates the expression of entirely nuclear encoded components of mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Edith E Mueller
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Salzburg, Austria.
| | | | | | | | | | | | | |
Collapse
|
33
|
Shi Q, Gibson GE. Up-regulation of the mitochondrial malate dehydrogenase by oxidative stress is mediated by miR-743a. J Neurochem 2011; 118:440-8. [PMID: 21623795 DOI: 10.1111/j.1471-4159.2011.07333.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
These experiments reveal for the first time that microRNAs (miRNAs) mediate oxidant regulated expression of a mitochondrial tricarboxylic acid cycle gene (mdh2). mdh2 encoded malate dehydrogenase (MDH) is elevated by an unknown mechanism in brains of patients that died with Alzheimer's disease. Oxidative stress, an early and pervasive event in Alzheimer's disease, increased MDH activity and mRNA level of mdh2 by 19% and 22%, respectively, in a mouse hippocampal cell line (HT22). Post-transcriptional events underlie the change in mRNA because actinomycin D did not block the elevated mdh2 mRNA. Since miRNAs regulate gene expression post-transcriptionally, the expression of miR-743a, a miRNA predicted to target mdh2, was determined and showed a 52% reduction after oxidant treatment. Direct interaction of miR-743a with mdh2 was demonstrated with a luciferase based assay. Over-expression or inhibition of miR-743a led to a respective reduction or increase in endogenous mRNA and MDH activity. The results demonstrate that miR-743a negatively regulates mdh2 at post-transcriptional level by directly targeting the mdh2 3'UTR. The findings are consistent with the suggestion that oxidative stress can elevate the activity of MDH through miR-743a, and provide new insights into possible roles of miRNA in oxidative stress and neurodegeneration.
Collapse
Affiliation(s)
- Qingli Shi
- Department of Neurology & Neuroscience, Weill Cornell Medical College/Burke Medical Research Institute, White Plains, New York, USA.
| | | |
Collapse
|
34
|
Abstract
Mutations in cancer cells affecting subunits of the respiratory chain (RC) indicate a central role of oxidative phosphorylation for tumourigenesis. Recent studies have suggested that such mutations of RC complexes impact apoptosis induction. We review here the evidence for this hypothesis, which in particular emerged from work on how complex I and II mediate signals for apoptosis. Both protein aggregates are specifically inhibited for apoptosis induction through different means by exploiting with protease activation and pH change, two widespread but independent features of dying cells. Nevertheless, both converge on forming reactive oxygen species for the demise of the cell. Investigations into these mitochondrial processes will remain a rewarding area for unravelling the causes of tumourigenesis and for discovering interference options.
Collapse
|
35
|
Dong LF, Jameson VJA, Tilly D, Cerny J, Mahdavian E, Marín-Hernández A, Hernández-Esquivel L, Rodríguez-Enríquez S, Stursa J, Witting PK, Stantic B, Rohlena J, Truksa J, Kluckova K, Dyason JC, Ledvina M, Salvatore BA, Moreno-Sánchez R, Coster MJ, Ralph SJ, Smith RAJ, Neuzil J. Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J Biol Chem 2011; 286:3717-28. [PMID: 21059645 PMCID: PMC3030374 DOI: 10.1074/jbc.m110.186643] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/28/2010] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial complex II (CII) has been recently identified as a novel target for anti-cancer drugs. Mitochondrially targeted vitamin E succinate (MitoVES) is modified so that it is preferentially localized to mitochondria, greatly enhancing its pro-apoptotic and anti-cancer activity. Using genetically manipulated cells, MitoVES caused apoptosis and generation of reactive oxygen species (ROS) in CII-proficient malignant cells but not their CII-dysfunctional counterparts. MitoVES inhibited the succinate dehydrogenase (SDH) activity of CII with IC(50) of 80 μM, whereas the electron transfer from CII to CIII was inhibited with IC(50) of 1.5 μM. The agent had no effect either on the enzymatic activity of CI or on electron transfer from CI to CIII. Over 24 h, MitoVES caused stabilization of the oxygen-dependent destruction domain of HIF1α fused to GFP, indicating promotion of the state of pseudohypoxia. Molecular modeling predicted the succinyl group anchored into the proximal CII ubiquinone (UbQ)-binding site and successively reduced interaction energies for serially shorter phytyl chain homologs of MitoVES correlated with their lower effects on apoptosis induction, ROS generation, and SDH activity. Mutation of the UbQ-binding Ser(68) within the proximal site of the CII SDHC subunit (S68A or S68L) suppressed both ROS generation and apoptosis induction by MitoVES. In vivo studies indicated that MitoVES also acts by causing pseudohypoxia in the context of tumor suppression. We propose that mitochondrial targeting of VES with an 11-carbon chain localizes the agent into an ideal position across the interface of the mitochondrial inner membrane and matrix, optimizing its biological effects as an anti-cancer drug.
Collapse
Affiliation(s)
| | | | - David Tilly
- the Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan 4111, Queensland, Australia
| | | | - Elahe Mahdavian
- the Department of Chemistry and Physics, Louisiana State University, Shreveport, Louisiana 71115
| | - Alvaro Marín-Hernández
- the Department of Biochemistry, National Institute of Cardiology, Mexico City 14080, Mexico, and
| | - Luz Hernández-Esquivel
- the Department of Biochemistry, National Institute of Cardiology, Mexico City 14080, Mexico, and
| | - Sara Rodríguez-Enríquez
- the Department of Biochemistry, National Institute of Cardiology, Mexico City 14080, Mexico, and
| | - Jan Stursa
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Paul K. Witting
- the Discipline of Pathology, Bosch Research Institute, Sydney Medical School, University of Sydney, Sydney 2006, New South Wales, Australia
| | - Bela Stantic
- Institute for Integrated and Intelligent Systems, and
| | | | | | | | - Jeffrey C. Dyason
- Institute for Glycomics, Griffith University, Southport 4222, Queensland, Australia
| | - Miroslav Ledvina
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Brian A. Salvatore
- the Department of Chemistry and Physics, Louisiana State University, Shreveport, Louisiana 71115
| | - Rafael Moreno-Sánchez
- the Department of Biochemistry, National Institute of Cardiology, Mexico City 14080, Mexico, and
| | - Mark J. Coster
- the Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan 4111, Queensland, Australia
| | | | - Robin A. J. Smith
- the Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Jiri Neuzil
- From the School of Medical Science
- Institute for Glycomics, Griffith University, Southport 4222, Queensland, Australia
| |
Collapse
|
36
|
Bartz RR, Suliman HB, Fu P, Welty-Wolf K, Carraway MS, MacGarvey NC, Withers CM, Sweeney TE, Piantadosi CA. Staphylococcus aureus sepsis and mitochondrial accrual of the 8-oxoguanine DNA glycosylase DNA repair enzyme in mice. Am J Respir Crit Care Med 2010; 183:226-33. [PMID: 20732986 DOI: 10.1164/rccm.200911-1709oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Damage to mitochondrial DNA (mtDNA) by the production of reactive oxygen species during inflammatory states, such as sepsis, is repaired by poorly understood mechanisms. OBJECTIVES To test the hypothesis that the DNA repair enzyme, 8-oxoguanine DNA glycosylase (OGG1), contributes to mtDNA repair in sepsis. METHODS Using a well-characterized mouse model of Staphylococcus aureus sepsis, we analyzed molecular markers for mitochondrial biogenesis and OGG1 translocation into liver mitochondria as well as OGG1 mRNA expression at 0, 24, 48, and 72 hours after infection. The effects of OGG1 RNA silencing on mtDNA content were determined in control, tumor necrosis factor-α, and peptidoglycan-exposed rat hepatoma cells. Based on in situ analysis of the OGG1 promoter region, chromatin immunoprecipitation assays were performed for nuclear respiratory factor (NRF)-1 and NRF-2α GA-binding protein (GABP) binding to the promoter of OGG1. MEASUREMENTS AND MAIN RESULTS Mice infected with 10(7) cfu S. aureus intraperitoneally demonstrated hepatic oxidative mtDNA damage and significantly lower hepatic mtDNA content as well as increased mitochondrial OGG1 protein and enzyme activity compared with control mice. The infection also caused increases in hepatic OGG1 transcript levels and NRF-1 and NRF-2α transcript and protein levels. A bioinformatics analysis of the Ogg1 gene locus identified several promoter sites containing NRF-1 and NRF-2α DNA binding motifs, and chromatin immunoprecipitation assays confirmed in situ binding of both transcription factors to the Ogg1 promoter within 24 hours of infection. CONCLUSIONS These studies identify OGG1 as an early mitochondrial response protein during sepsis under regulation by the NRF-1 and NRF-2α transcription factors that regulate mitochondrial biogenesis.
Collapse
Affiliation(s)
- Raquel R Bartz
- Department of Anesthesiology, DUMC Box 3094, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hawkins BJ, Levin MD, Doonan PJ, Petrenko NB, Davis CW, Patel VV, Madesh M. Mitochondrial complex II prevents hypoxic but not calcium- and proapoptotic Bcl-2 protein-induced mitochondrial membrane potential loss. J Biol Chem 2010; 285:26494-505. [PMID: 20566649 DOI: 10.1074/jbc.m110.143164] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mitochondrial membrane potential loss has severe bioenergetic consequences and contributes to many human diseases including myocardial infarction, stroke, cancer, and neurodegeneration. However, despite its prominence and importance in cellular energy production, the basic mechanism whereby the mitochondrial membrane potential is established remains unclear. Our studies elucidate that complex II-driven electron flow is the primary means by which the mitochondrial membrane is polarized under hypoxic conditions and that lack of the complex II substrate succinate resulted in reversible membrane potential loss that could be restored rapidly by succinate supplementation. Inhibition of mitochondrial complex I and F(0)F(1)-ATP synthase induced mitochondrial depolarization that was independent of the mitochondrial permeability transition pore, Bcl-2 (B-cell lymphoma 2) family proteins, or high amplitude swelling and could not be reversed by succinate. Importantly, succinate metabolism under hypoxic conditions restores membrane potential and ATP levels. Furthermore, a reliance on complex II-mediated electron flow allows cells from mitochondrial disease patients devoid of a functional complex I to maintain a mitochondrial membrane potential that conveys both a mitochondrial structure and the ability to sequester agonist-induced calcium similar to that of normal cells. This finding is important as it sets the stage for complex II functional preservation as an attractive therapy to maintain mitochondrial function during hypoxia.
Collapse
Affiliation(s)
- Brian J Hawkins
- Department of Biochemistry, Temple University, Philadelphia, Pennsylvania 19140, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Fu J, Zhang J, Jin F, Patchefsky J, Braunewell KH, Klein-Szanto AJ. Promoter regulation of the visinin-like subfamily of neuronal calcium sensor proteins by nuclear respiratory factor-1. J Biol Chem 2009; 284:27577-86. [PMID: 19674972 DOI: 10.1074/jbc.m109.049361] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
VILIP-1 (gene name VSNL1), a member of the neuronal Ca(2+) sensor protein family, acts as a tumor suppressor gene by inhibiting cell proliferation, adhesion, and invasiveness. VILIP-1 expression is down-regulated in several types of human cancer. In human non-small cell lung cancer, we found that down-regulation was due to epigenetic changes. Consequently, in this study we analyzed the VSNL1 promoter and its regulation. Serial truncation of the proximal 2-kb VSNL1 promoter (VP-1998) from its 5' terminus disclosed that the last 3' terminal 100-bp promoter fragment maintained similar promoter activity as compared with VP-1998 and therefore was referred to as VSNL1 minimal promoter. When the 5' terminal 50 bp were deleted from the minimal promoter, the activity was dramatically decreased, suggesting that the deleted 50 bp contained a potential cis-acting element crucial for promoter activity. Deletion and site-directed mutagenesis combined with in silico transcription factor binding analysis of VSNL1 promoter identified nuclear respiratory factor (NRF)-1/alpha-PAL as a major player in regulating VSNL1 minimal promoter activity. The function of NRF-1 was further confirmed using dominant-negative NRF-1 overexpression and NRF-1 small interfering RNA knockdown. Electrophoretic mobility shift assay and chromatin immunoprecipitation provided evidence for direct NRF-1 binding to the VSNL1 promoter. Methylation of the NRF-1-binding site was found to be able to regulate VSNL1 promoter activity. Our results further indicated that NRF-1 could be a regulatory factor for gene expression of the other visinin-like subfamily members including HPCAL4, HPCAL1, HPCA, and NCALD.
Collapse
Affiliation(s)
- Jian Fu
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | |
Collapse
|
39
|
Chen JQ, Cammarata PR, Baines CP, Yager JD. Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1540-70. [PMID: 19559056 DOI: 10.1016/j.bbamcr.2009.06.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 12/21/2022]
Abstract
There has been increasing evidence pointing to the mitochondrial respiratory chain (MRC) as a novel and important target for the actions of 17beta-estradiol (E(2)) and estrogen receptors (ER) in a number of cell types and tissues that have high demands for mitochondrial energy metabolism. This novel E(2)-mediated mitochondrial pathway involves the cooperation of both nuclear and mitochondrial ERalpha and ERbeta and their co-activators on the coordinate regulation of both nuclear DNA- and mitochondrial DNA-encoded genes for MRC proteins. In this paper, we have: 1) comprehensively reviewed studies that reveal a novel role of estrogens and ERs in the regulation of MRC biogenesis; 2) discussed their physiological, pathological and pharmacological implications in the control of cell proliferation and apoptosis in relation to estrogen-mediated carcinogenesis, anti-cancer drug resistance in human breast cancer cells, neuroprotection for Alzheimer's disease and Parkinson's disease in brain, cardiovascular protection in human heart and their beneficial effects in lens physiology related to cataract in the eye; and 3) pointed out new research directions to address the key questions in this important and newly emerging area. We also suggest a novel conceptual approach that will contribute to innovative regimens for the prevention or treatment of a wide variety of medical complications based on E(2)/ER-mediated MRC biogenesis pathway.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | |
Collapse
|
40
|
Prevalence of transcription promoters within archaeal operons and coding sequences. Mol Syst Biol 2009; 5:285. [PMID: 19536208 PMCID: PMC2710873 DOI: 10.1038/msb.2009.42] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 05/13/2009] [Indexed: 01/21/2023] Open
Abstract
Despite the knowledge of complex prokaryotic-transcription mechanisms, generalized rules, such as the simplified organization of genes into operons with well-defined promoters and terminators, have had a significant role in systems analysis of regulatory logic in both bacteria and archaea. Here, we have investigated the prevalence of alternate regulatory mechanisms through genome-wide characterization of transcript structures of approximately 64% of all genes, including putative non-coding RNAs in Halobacterium salinarum NRC-1. Our integrative analysis of transcriptome dynamics and protein-DNA interaction data sets showed widespread environment-dependent modulation of operon architectures, transcription initiation and termination inside coding sequences, and extensive overlap in 3' ends of transcripts for many convergently transcribed genes. A significant fraction of these alternate transcriptional events correlate to binding locations of 11 transcription factors and regulators (TFs) inside operons and annotated genes-events usually considered spurious or non-functional. Using experimental validation, we illustrate the prevalence of overlapping genomic signals in archaeal transcription, casting doubt on the general perception of rigid boundaries between coding sequences and regulatory elements.
Collapse
|
41
|
Piantadosi CA, Carraway MS, Babiker A, Suliman HB. Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res 2008; 103:1232-40. [PMID: 18845810 DOI: 10.1161/01.res.0000338597.71702.ad] [Citation(s) in RCA: 454] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heme oxygenase (HO)-1 is a protective antioxidant enzyme that prevents cardiomyocyte apoptosis, for instance, during progressive cardiomyopathy. Here we identify a fundamental aspect of the HO-1 protection mechanism by demonstrating that HO-1 activity in mouse heart stimulates the bigenomic mitochondrial biogenesis program via induction of NF-E2-related factor (Nrf)2 gene expression and nuclear translocation. Nrf2 upregulates the mRNA, protein, and activity for HO-1 as well as mRNA and protein for nuclear respiratory factor (NRF)-1. Mechanistically, in cardiomyocytes, endogenous carbon monoxide (CO) generated by HO-1 overexpression stimulates superoxide dismutase-2 upregulation and mitochondrial H(2)O(2) production, which activates Akt/PKB. Akt deactivates glycogen synthase kinase-3beta, which permits Nrf2 nuclear translocation and occupancy of 4 antioxidant response elements (AREs) in the NRF-1 promoter. The ensuing accumulation of nuclear NRF-1 protein leads to gene activation for mitochondrial biogenesis, which opposes apoptosis and necrosis caused by the cardio-toxic anthracycline chemotherapeutic agent, doxorubicin. In cardiac cells, Akt silencing exacerbates doxorubicin-induced apoptosis, and in vivo CO rescues wild-type but not Akt1(-/-) mice from doxorubicin cardiomyopathy. These findings consign HO-1/CO signaling through Nrf2 and Akt to the myocardial transcriptional program for mitochondrial biogenesis, provide a rationale for targeted mitochondrial CO therapy, and connect cardiac mitochondrial volume expansion with the inducible network of xenobiotic and antioxidant cellular defenses.
Collapse
|