1
|
Naidu P, Holford M. Microscopic marvels: Decoding the role of micropeptides in innate immunity. Immunology 2024; 173:605-621. [PMID: 39188052 DOI: 10.1111/imm.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
The innate immune response is under selection pressures from changing environments and pathogens. While sequence evolution can be studied by comparing rates of amino acid mutations within and between species, how a gene's birth and death contribute to the evolution of immunity is less known. Short open reading frames, once regarded as untranslated or transcriptional noise, can often produce micropeptides of <100 amino acids with a wide array of biological functions. Some micropeptide sequences are well conserved, whereas others have no evolutionary conservation, potentially representing new functional compounds that arise from species-specific adaptations. To date, few reports have described the discovery of novel micropeptides of the innate immune system. The diversity of immune-related micropeptides is a blind spot for gene and functional annotation. Immune-related micropeptides represent a potential reservoir of untapped compounds for understanding and treating disease. This review consolidates what is currently known about the evolution and function of innate immune-related micropeptides to facilitate their investigation.
Collapse
Affiliation(s)
- Praveena Naidu
- Graduate Center, Programs in Biology, Biochemistry, Chemistry, City University of New York, New York, New York, USA
- Department of Chemistry and Biochemistry, City University of New York, Hunter College, Belfer Research Building, New York, New York, USA
| | - Mandë Holford
- Graduate Center, Programs in Biology, Biochemistry, Chemistry, City University of New York, New York, New York, USA
- Department of Chemistry and Biochemistry, City University of New York, Hunter College, Belfer Research Building, New York, New York, USA
- American Museum of Natural History, Invertebrate Zoology, Sackler Institute for Comparative Genomics, New York, New York, USA
- Weill Cornell Medicine, Department of Biochemistry, New York, New York, USA
| |
Collapse
|
2
|
Mester P, Keller D, Kunst C, Räth U, Rusch S, Schmid S, Krautbauer S, Müller M, Buechler C, Pavel V. High Serum S100A12 as a Diagnostic and Prognostic Biomarker for Severity, Multidrug-Resistant Bacteria Superinfection and Herpes Simplex Virus Reactivation in COVID-19. Viruses 2024; 16:1084. [PMID: 39066246 PMCID: PMC11281500 DOI: 10.3390/v16071084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Neutrophils are critical immune cells in severe coronavirus disease 2019 (COVID-19). S100 calcium-binding protein A12 (S100A12) is highly expressed in neutrophils during acute inflammation. The aim of this study was to evaluate serum S100A12 levels as a diagnostic and prognostic tool in COVID-19. Serum samples of patients with moderate and severe COVID-19 were collected during 2020 to 2024. Enzyme-linked immunosorbent assay was used to measure serum S100A12 levels in 63 patients with moderate COVID-19, 60 patients with severe disease and 33 healthy controls. Serum S100A12 levels were elevated in moderate COVID-19 compared to controls and were even higher in severe cases. In moderate disease, serum S100A12 levels positively correlated with immune cell counts. While C-reactive protein and procalcitonin are established inflammation markers, they did not correlate with serum S100A12 levels in either patient cohort. Patients with severe COVID-19 and vancomycin-resistant enterococcus (VRE) infection had increased S100A12 levels. Elevated S100A12 levels were also observed in patients with herpes simplex reactivation. Fungal superinfections did not alter S100A12 levels. These data show that serum S100A12 increases in moderate and severe COVID-19 and is further elevated by VRE bloodstream infection and herpes simplex reactivation. Therefore, S100A12 may serve as a novel biomarker for severe COVID-19 and an early diagnostic indicator for bacterial and viral infections.
Collapse
Affiliation(s)
- Patricia Mester
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (P.M.); (D.K.); (C.K.); (U.R.); (S.R.); (S.S.); (M.M.); (V.P.)
| | - Dennis Keller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (P.M.); (D.K.); (C.K.); (U.R.); (S.R.); (S.S.); (M.M.); (V.P.)
| | - Claudia Kunst
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (P.M.); (D.K.); (C.K.); (U.R.); (S.R.); (S.S.); (M.M.); (V.P.)
| | - Ulrich Räth
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (P.M.); (D.K.); (C.K.); (U.R.); (S.R.); (S.S.); (M.M.); (V.P.)
| | - Sophia Rusch
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (P.M.); (D.K.); (C.K.); (U.R.); (S.R.); (S.S.); (M.M.); (V.P.)
| | - Stephan Schmid
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (P.M.); (D.K.); (C.K.); (U.R.); (S.R.); (S.S.); (M.M.); (V.P.)
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (P.M.); (D.K.); (C.K.); (U.R.); (S.R.); (S.S.); (M.M.); (V.P.)
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (P.M.); (D.K.); (C.K.); (U.R.); (S.R.); (S.S.); (M.M.); (V.P.)
| | - Vlad Pavel
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (P.M.); (D.K.); (C.K.); (U.R.); (S.R.); (S.S.); (M.M.); (V.P.)
| |
Collapse
|
3
|
Boucher J, Gilbert C, Bose S, Tessier PA. S100A9: The Unusual Suspect Connecting Viral Infection and Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1523-1529. [PMID: 38709994 PMCID: PMC11076006 DOI: 10.4049/jimmunol.2300640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/20/2024] [Indexed: 05/08/2024]
Abstract
The study of S100A9 in viral infections has seen increased interest since the COVID-19 pandemic. S100A8/A9 levels were found to be correlated with the severity of COVID-19 disease, cytokine storm, and changes in myeloid cell subsets. These data led to the hypothesis that S100A8/A9 proteins might play an active role in COVID-19 pathogenesis. This review explores the structures and functions of S100A8/9 and the current knowledge on the involvement of S100A8/A9 and its constituents in viral infections. The potential roles of S100A9 in SARS-CoV-2 infections are also discussed.
Collapse
Affiliation(s)
- Julien Boucher
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, and Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Caroline Gilbert
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, and Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Philippe A. Tessier
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, and Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
4
|
Cabău G, Gaal O, Badii M, Nica V, Mirea AM, Hotea I, Pamfil C, Popp RA, Netea MG, Rednic S, Crișan TO, Joosten LA. Hyperuricemia remodels the serum proteome toward a higher inflammatory state. iScience 2023; 26:107909. [PMID: 37810213 PMCID: PMC10550725 DOI: 10.1016/j.isci.2023.107909] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Gout is an autoinflammatory disease triggered by a complex innate immune response to MSU crystals and inflammatory triggers. While hyperuricemia is an obligatory risk factor for the development of gout, the majority of individuals with hyperuricemia never develop gout but have an increased risk of developing cardiometabolic disorders. Current management of gout aims at MSU crystal dissolution by lowering serum urate. We apply a targeted proteomic analysis, using Olink inflammation panel, to a large group of individuals with gout, asymptomatic hyperuricemia, and normouricemic controls, and we show a urate-driven inflammatory signature. We add in vivo evidence of persistent immune activation linked to urate exposure and describe immune pathways involved in the pathogenesis of gout. Our results support a pro-inflammatory effect of asymptomatic hyperuricemia and pave the way for new research into targetable mechanisms in gout and cardiometabolic complications of asymptomatic hyperuricemia.
Collapse
Affiliation(s)
- Georgiana Cabău
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Orsolya Gaal
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Medeea Badii
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Valentin Nica
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Ioana Hotea
- Department of Rheumatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - HINT-consortium
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
- Department of Rheumatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Cristina Pamfil
- Department of Rheumatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu A. Popp
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G. Netea
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Simona Rednic
- Department of Rheumatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Tania O. Crișan
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Leo A.B. Joosten
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
5
|
Ngo D, Pratte KA, Flexeder C, Petersen H, Dang H, Ma Y, Keyes MJ, Gao Y, Deng S, Peterson BD, Farrell LA, Bhambhani VM, Palacios C, Quadir J, Gillenwater L, Xu H, Emson C, Gieger C, Suhre K, Graumann J, Jain D, Conomos MP, Tracy RP, Guo X, Liu Y, Johnson WC, Cornell E, Durda P, Taylor KD, Papanicolaou GJ, Rich SS, Rotter JI, Rennard SI, Curtis JL, Woodruff PG, Comellas AP, Silverman EK, Crapo JD, Larson MG, Vasan RS, Wang TJ, Correa A, Sims M, Wilson JG, Gerszten RE, O’Connor GT, Barr RG, Couper D, Dupuis J, Manichaikul A, O’Neal WK, Tesfaigzi Y, Schulz H, Bowler RP. Systemic Markers of Lung Function and Forced Expiratory Volume in 1 Second Decline across Diverse Cohorts. Ann Am Thorac Soc 2023; 20:1124-1135. [PMID: 37351609 PMCID: PMC10405603 DOI: 10.1513/annalsats.202210-857oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) is a complex disease characterized by airway obstruction and accelerated lung function decline. Our understanding of systemic protein biomarkers associated with COPD remains incomplete. Objectives: To determine what proteins and pathways are associated with impaired pulmonary function in a diverse population. Methods: We studied 6,722 participants across six cohort studies with both aptamer-based proteomic and spirometry data (4,566 predominantly White participants in a discovery analysis and 2,156 African American cohort participants in a validation). In linear regression models, we examined protein associations with baseline forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity (FVC). In linear mixed effects models, we investigated the associations of baseline protein levels with rate of FEV1 decline (ml/yr) in 2,777 participants with up to 7 years of follow-up spirometry. Results: We identified 254 proteins associated with FEV1 in our discovery analyses, with 80 proteins validated in the Jackson Heart Study. Novel validated protein associations include kallistatin serine protease inhibitor, growth differentiation factor 2, and tumor necrosis factor-like weak inducer of apoptosis (discovery β = 0.0561, Q = 4.05 × 10-10; β = 0.0421, Q = 1.12 × 10-3; and β = 0.0358, Q = 1.67 × 10-3, respectively). In longitudinal analyses within cohorts with follow-up spirometry, we identified 15 proteins associated with FEV1 decline (Q < 0.05), including elafin leukocyte elastase inhibitor and mucin-associated TFF2 (trefoil factor 2; β = -4.3 ml/yr, Q = 0.049; β = -6.1 ml/yr, Q = 0.032, respectively). Pathways and processes highlighted by our study include aberrant extracellular matrix remodeling, enhanced innate immune response, dysregulation of angiogenesis, and coagulation. Conclusions: In this study, we identify and validate novel biomarkers and pathways associated with lung function traits in a racially diverse population. In addition, we identify novel protein markers associated with FEV1 decline. Several protein findings are supported by previously reported genetic signals, highlighting the plausibility of certain biologic pathways. These novel proteins might represent markers for risk stratification, as well as novel molecular targets for treatment of COPD.
Collapse
Affiliation(s)
- Debby Ngo
- Cardiovascular Research Institute
- Division of Pulmonary, Critical Care, and Sleep Medicine, and
| | | | - Claudia Flexeder
- Institute of Epidemiology and
- Comprehensive Pneumology Center Munich (CPC-M) as member of the German Center for Lung Research (DZL), Munich, Germany
- Institute and Clinic for Occupational, Social, and Environmental Medicine, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Hans Petersen
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Hong Dang
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yanlin Ma
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | | | - Yan Gao
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; and
- Institute and Clinic for Occupational, Social, and Environmental Medicine, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | | - Hanfei Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Claire Emson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Christian Gieger
- Institute of Epidemiology and
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Doha, Qatar
| | | | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Matthew P. Conomos
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA (University of California, Los Angeles) Medical Center, Torrance, California
| | - Yongmei Liu
- Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina
| | - W. Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Elaine Cornell
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Peter Durda
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA (University of California, Los Angeles) Medical Center, Torrance, California
| | - George J. Papanicolaou
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA (University of California, Los Angeles) Medical Center, Torrance, California
| | - Steven I. Rennard
- Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | - Prescott G. Woodruff
- Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | | | | | - Martin G. Larson
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts
| | - Ramachandran S. Vasan
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts
- Division of Preventive Medicine and
- Division of Cardiology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Thomas J. Wang
- Department of Medicine, UT (University of Texas) Southwestern Medical Center, Dallas, Texas
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adolfo Correa
- Jackson Heart Study, Department of Medicine, and
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Mario Sims
- Jackson Heart Study, Department of Medicine, and
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - James G. Wilson
- Cardiovascular Research Institute
- Jackson Heart Study, Department of Medicine, and
| | - Robert E. Gerszten
- Cardiovascular Research Institute
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - George T. O’Connor
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts
- Pulmonary Center, Department of Medicine, Boston University, Boston, Massachusetts
| | - R. Graham Barr
- Department of Medicine and
- Department of Epidemiology, Columbia University, New York, New York
| | - David Couper
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Wanda K. O’Neal
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yohannes Tesfaigzi
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Holger Schulz
- Institute of Epidemiology and
- Comprehensive Pneumology Center Munich (CPC-M) as member of the German Center for Lung Research (DZL), Munich, Germany
| | | |
Collapse
|
6
|
Liang H, Li J, Zhang K. Pathogenic role of S100 proteins in psoriasis. Front Immunol 2023; 14:1191645. [PMID: 37346040 PMCID: PMC10279876 DOI: 10.3389/fimmu.2023.1191645] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease. The histopathological features of psoriasis include excessive proliferation of keratinocytes and infiltration of immune cells. The S100 proteins are a group of EF-hand Ca2+-binding proteins, including S100A2, -A7, -A8/A9, -A12, -A15, which expression levels are markedly upregulated in psoriatic skin. These proteins exert numerous functions such as serving as intracellular Ca2+ sensors, transduction of Ca2+ signaling, response to extracellular stimuli, energy metabolism, and regulating cell proliferation and apoptosis. Evidence shows a crucial role of S100 proteins in the development and progress of inflammatory diseases, including psoriasis. S100 proteins can possibly be used as potential therapeutic target and diagnostic biomarkers. This review focuses on the pathogenic role of S100 proteins in psoriasis.
Collapse
Affiliation(s)
- Huifang Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| | - Junqin Li
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| |
Collapse
|
7
|
Dumur S, Adrovic A, Barut K, Kasapcopur O, Kucur M. The role of S100A12 and Toll-like receptor 4 in assessment of disease activity in familial Mediterranean fever and juvenile idiopathic arthritis. Int J Rheum Dis 2023; 26:250-258. [PMID: 36302511 DOI: 10.1111/1756-185x.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/06/2022] [Accepted: 10/05/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Our aim was to investigate the possible relationship between the serum S100A12 and Toll-like receptor 4 (TLR4) levels, and the activity of familial Mediterranean fever (FMF) and juvenile idiopathic arthritis (JIA) in accordance with the routine biochemical parameters. Furthermore, the effectiveness of these 2 biomarkers in distinguishing FMF from JIA has been evaluated. METHOD Sixty-nine children with FMF, 68 children with JIA, and 35 healthy children were included in this study. S100A12 and TLR4 levels were measured by the sandwich enzyme-linked immunosorbent assay technique. RESULTS In the FMF patient group, serum S100A12 level was found to be significantly higher than in both the JIA and control groups (P = .000 and P = .000, respectively). Although S100A12 levels were higher in the attack period compared to the attack-free period, this increase was not statistically significant (P > .05). TLR4 levels were statistically significantly higher in the attack period compared to the attack-free period in children with FMF (P < .05). Although there was no relationship between S100A12 levels and disease activity, there is a clear correlation between S100A12 and the Auto-Inflammatory Disease Activity Index in attack-free FMF patients (r = 0.612 P = .000). CONCLUSION Serum S100A12 levels were not found to be a potentially valuable biomarker for assessing disease activity in either FMF or JIA. However, TLR4 levels were found to be a valuable biomarker for assessing disease activity in children with FMF. Further research which includes serial monitoring of S100A12 and TLR4 levels in a large cohort will provide detailed information about accuracy of these 2 potential biomarkers in both patients group.
Collapse
Affiliation(s)
- Seyma Dumur
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.,Department of Medical Biochemistry, Faculty of Medicine, Istanbul Atlas University, Istanbul, Turkey
| | - Amra Adrovic
- Department of Pediatric Rheumatology, Koc University Hospital, Istanbul, Turkey
| | - Kenan Barut
- Department of Pediatric Rheumatology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ozgur Kasapcopur
- Department of Pediatric Rheumatology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mine Kucur
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
8
|
Chen J, Huang Y, Wang B, Lu Y, Jian J, Tang J, Cai J. Characterization of S100A12 from nile tilapia (Oreochromis niloticus) and its roles on inflammatory responses. FISH & SHELLFISH IMMUNOLOGY 2022; 131:401-407. [PMID: 36243273 DOI: 10.1016/j.fsi.2022.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
S100A12 is a member of S100 proteins family that induces pro-inflammatory response via ligating with the receptor for advanced glycation end products (RAGE) and subsequent activation of intracellular signal transduction pathways. But information about fish S100A12 remain largely unclear. In this study, the S100A12 homolog (On-S100A12) was identified from Nile tilapia (Oreochromis niloticus). On-S100A12 was mainly expressed in liver and intestine. After Streptococcus agalactiae infection in vivo, S100A12 significantly increased in brain, intestine, liver and head kidney, suggesting S100A12 might played roles in immune response. The further in vitro experiments found that recombinant protein of S100A12 (rOn-S100A12) upregulated the expression of IL1-β, TLR2, TNF-α and inhibited the expression of IL-10, indicating On-S100A12 promoted inflammatory response and activation of M1 macrophages. The present data lay a foundation to further explore the roles of fish S100 during immune defense and will also be beneficial for better understanding of fish immune-regulatory network.
Collapse
Affiliation(s)
- Junxi Chen
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524002, PR China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524002, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bei Wang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524002, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524002, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524002, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jufen Tang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China
| | - Jia Cai
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524002, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangxi Key Lab for Marine Natural Products and Combinational Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Centre, Guangxi Academy of Sciences, Nanning, 530007, PR China.
| |
Collapse
|
9
|
Weinekötter J, Gurtner C, Protschka M, von Bomhard W, Böttcher D, Schlinke A, Alber G, Rösch S, Steiner JM, Seeger J, Oechtering GU, Heilmann RM. Tissue S100/calgranulin expression and blood neutrophil-to-lymphocyte ratio (NLR) in dogs with lower urinary tract urothelial carcinoma. BMC Vet Res 2022; 18:412. [PMID: 36411489 PMCID: PMC9680134 DOI: 10.1186/s12917-022-03513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Urothelial carcinoma (UC) is the most common neoplasm of the canine lower urinary tract, affecting approximately 2% of dogs. Elderly female patients of certain breeds are predisposed, and clinical signs of UC can easily be confused with urinary tract infection or urolithiasis. Diagnosis and treatment are challenging given the lack of disease-specific markers and treatments. The S100A8/A9 complex and S100A12 protein are Ca2+-binding proteins expressed by cells of the innate immune system and have shown promise as urinary screening markers for UC. The neutrophil-to-lymphocyte ratio (NLR) can also aid in distinguishing certain neoplastic from inflammatory conditions. Our study aimed to evaluate the tissue expression of S100/calgranulins and the blood NLR in dogs with UC. Urinary bladder and/or urethral tissue samples from dogs with UC (n = 10), non-neoplastic inflammatory lesions (NNUTD; n = 6), and no histologic changes (n = 11) were evaluated using immunohistochemistry. Blood NLRs were analyzed in dogs with UC (n = 22) or NNUTD (n = 26). RESULTS Tissue S100A12-positive cell counts were significantly higher in dogs with lower urinary tract disease than healthy controls (P = 0.0267 for UC, P = 0.0049 for NNUTD), with no significant difference between UC and NNUTD patients. Tissue S100A8/A9-positivity appeared to be higher with NNUTD than UC, but this difference did not reach statistical significance. The S100A8/A9+-to-S100A12+ ratio was significantly decreased in neoplastic and inflamed lower urinary tract tissue compared to histologically normal specimens (P = 0.0062 for UC, P = 0.0030 for NNUTD). NLRs were significantly higher in dogs with UC than in dogs with NNUTD, and a cut-off NLR of ≤ 2.83 distinguished UC from NNUTD with 41% sensitivity and 100% specificity. Higher NLRs were also associated with a poor overall survival time (P = 0.0417). CONCLUSIONS These results confirm that the S100/calgranulins play a role in the immune response to inflammatory and neoplastic lower urinary tract diseases in dogs, but the tissue expression of these proteins appears to differ from their concentrations reported in urine samples. Further investigations of the S100/calgranulin pathways in UC and their potential as diagnostic or prognostic tools and potential therapeutic targets are warranted. The NLR as a routinely available marker might be a useful surrogate to distinguish UC from inflammatory conditions.
Collapse
Affiliation(s)
- Jana Weinekötter
- grid.9647.c0000 0004 7669 9786Department for Small Animals, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 23, 04103 Leipzig, SN Germany
| | - Corinne Gurtner
- grid.5734.50000 0001 0726 5157Institute of Animal Pathology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, CH-3001 Bern, BE Switzerland
| | - Martina Protschka
- grid.9647.c0000 0004 7669 9786Institute of Immunology, College of Veterinary Medicine, Biotechnological-Biomedical Center, Leipzig University, Deutscher Platz 5, 04103 Leipzig, SN Germany
| | - Wolf von Bomhard
- Specialty Center for Veterinary Pathology, Hartelstrasse 30, E80689 Munich, BY Germany
| | - Denny Böttcher
- grid.9647.c0000 0004 7669 9786Institute for Veterinary Pathology, College of Veterinary Medicine, Leipzig University, An Den Tierkliniken 33, E04103 Leipzig, SN Germany
| | - Annika Schlinke
- grid.9647.c0000 0004 7669 9786Department for Small Animals, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 23, 04103 Leipzig, SN Germany
| | - Gottfried Alber
- grid.9647.c0000 0004 7669 9786Institute of Immunology, College of Veterinary Medicine, Biotechnological-Biomedical Center, Leipzig University, Deutscher Platz 5, 04103 Leipzig, SN Germany
| | - Sarah Rösch
- grid.9647.c0000 0004 7669 9786Department for Small Animals, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 23, 04103 Leipzig, SN Germany ,grid.412970.90000 0001 0126 6191Small Animal Clinic, University of Veterinary Medicine Hannover Foundation, Bünteweg 9, 30559 Hannover, NI Germany
| | - Joerg M. Steiner
- grid.264756.40000 0004 4687 2082Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TAMU 4474, College Station, TX 77843-4474 USA
| | - Johannes Seeger
- grid.9647.c0000 0004 7669 9786Institute of Anatomy, Histology and Embryology, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, SN Germany
| | - Gerhard U. Oechtering
- grid.9647.c0000 0004 7669 9786Department for Small Animals, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 23, 04103 Leipzig, SN Germany
| | - Romy M. Heilmann
- grid.9647.c0000 0004 7669 9786Department for Small Animals, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 23, 04103 Leipzig, SN Germany
| |
Collapse
|
10
|
Mast Cells Differentiated in Synovial Fluid and Resident in Osteophytes Exalt the Inflammatory Pathology of Osteoarthritis. Int J Mol Sci 2022; 23:ijms23010541. [PMID: 35008966 PMCID: PMC8745477 DOI: 10.3390/ijms23010541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023] Open
Abstract
Introduction: Osteophytes are a prominent feature of osteoarthritis (OA) joints and one of the clinical hallmarks of the disease progression. Research on osteophytes is fragmentary and modes of its contribution to OA pathology are obscure. Aim: To elucidate the role of osteophytes in OA pathology from a perspective of molecular and cellular events. Methods: RNA-seq of fully grown osteophytes, collected from tibial plateau of six OA patients revealed patterns corresponding to active extracellular matrix re-modulation and prominent participation of mast cells. Presence of mast cells was further confirmed by immunohistochemistry, performed on the sections of the osteophytes using anti-tryptase alpha/beta-1 and anti-FC epsilon RI antibodies and the related key up-regulated genes were validated by qRT-PCR. To test the role of OA synovial fluid (SF) in mast cell maturation as proposed by the authors, hematopoietic stem cells (HSCs) and ThP1 cells were cultured in a media supplemented with 10% SF samples, obtained from various grades of OA patients and were monitored using specific cell surface markers by flow cytometry. Proteomics analysis of SF samples was performed to detect additional markers specific to mast cells and inflammation that drive the cell differentiation and maturation. Results: Transcriptomics of osteophytes revealed a significant upregulation of mast cells specific genes such as chymase 1 (CMA1; 5-fold) carboxypeptidase A3 (CPA3; 4-fold), MS4A2/FCERI (FCERI; 4.2-fold) and interleukin 1 receptor-like 1 (IL1RL1; 2.5-fold) indicating their prominent involvement. (In IHC, anti-tryptase alpha/beta-1 and anti- FC epsilon RI-stained active mast cells were seen populated in cartilage, subchondral bone, and trabecular bone.) Based on these outcomes and previous learnings, the authors claim a possibility of mast cells invasion into osteophytes is mediated by SF and present in vitro cell differentiation assay results, wherein ThP1 and HSCs showed differentiation into HLA-DR+/CD206+ and FCERI+ phenotype, respectively, after exposing them to medium containing 10% SF for 9 days. Proteomics analysis of these SF samples showed an accumulation of mast cell-specific inflammatory proteins. Conclusions: RNA-seq analysis followed by IHC study on osteophyte samples showed a population of mast cells resident in them and may further accentuate inflammatory pathology of OA. Besides subchondral bone, the authors propose an alternative passage of mast cells invasion in osteophytes, wherein OA SF was found to be necessary and sufficient for maturation of mast cell precursor into effector cells.
Collapse
|
11
|
Wu T, Ma L, Jin X, He J, Chen K, Zhang D, Yuan R, Yang J, Zhong Q, Zhou H, Xiang Z, Fang Y. S100A4 Is Critical for a Mouse Model of Allergic Asthma by Impacting Mast Cell Activation. Front Immunol 2021; 12:692733. [PMID: 34367151 PMCID: PMC8341765 DOI: 10.3389/fimmu.2021.692733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/07/2021] [Indexed: 01/12/2023] Open
Abstract
Background The calcium-binding protein S100A4 demonstrates important regulatory roles in many biological processes including tumorigenesis and inflammatory disorders such as allergy. However, the specific mechanism of the contribution of S100A4 to allergic diseases awaits further clarification. Objective To address the effect of S100A4 on the regulation of mast cell activation and its impact on allergy. Methods Bone marrow-derived cultured mast cells (BMMCs) were derived from wild-type (WT) or S100A4-/- mice for in vitro investigation. WT and S100A4-/- mice were induced to develop a passive cutaneous anaphylaxis (PCA) model, a passive systemic anaphylaxis (PSA) model, and an ovalbumin (OVA)-mediated mouse asthma model. Results Following OVA/alum-based sensitization and provocation, S100A4-/- mice demonstrated overall suppressed levels of serum anti-OVA IgE and IgG antibodies and proinflammatory cytokines in serum, bronchoalveolar lavage fluid (BALF), and lung exudates. S100A4-/- mice exhibited less severe asthma signs which included inflammatory cell infiltration in the lung tissue and BALF, and suppressed mast cell recruitment in the lungs. Reduced levels of antigen reencounter-induced splenocyte proliferation in vitro were recorded in splenocytes from OVA-sensitized and challenged mice that lacked S100A4-/-. Furthermore, deficiency in the S100A4 gene could dampen mast cell activation both in vitro and in vivo, evidenced by reduced β-hexosaminidase release and compromised PCA and PSA reaction. We also provided evidence supporting the expression of S100A4 by mast cells. Conclusion S100A4 is required for mast cell functional activation, and S100A4 may participate in the regulation of allergic responses at least partly through regulating the activation of mast cells.
Collapse
Affiliation(s)
- Tongqian Wu
- Center for Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, China
| | - Lan Ma
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, China
| | - Xiaoqian Jin
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, China
| | - Jingjing He
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, China
| | - Ke Chen
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, China
| | - Dingshan Zhang
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, China
| | - Rui Yuan
- Center for Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, China
| | - Jun Yang
- Center for Pediatric Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qin Zhong
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, China
| | - Haiyan Zhou
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yu Fang
- Center for Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, China
| |
Collapse
|
12
|
Differential expression and role of S100 proteins in chronic rhinosinusitis. Curr Opin Allergy Clin Immunol 2021; 20:14-22. [PMID: 31644435 DOI: 10.1097/aci.0000000000000595] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Immune system modulators have been under investigation to help elucidate the underlying pathophysiologies of chronic rhinosinusitis (CRS). Psoriasin (S100A7) and calgranulins (S100A8, S100A9, and S100A12) are S100 proteins that have been studied for their immune-mediating responses to pathogens within the context of CRS. This review highlights the expression patterns and proposed roles of S100 proteins in CRS with (CRSwNP) and without (CRSsNP) nasal polyps. RECENT FINDINGS Elevated levels of S100A7 and S100A12 were measured in the sinonasal tissues of patients with CRSsNP compared with CRSwNP and controls. S100A12 expression in CRSsNP was significantly correlated to disease severity. Contrastingly, increased S100A8, S100A9, and S100A8/A9 levels were demonstrated in the nasal polyp tissues of patients with CRSwNP compared with those in inferior turbinate and uncinate tissues of patients with CRSsNP and controls. SUMMARY The reported differential expression patterns and activities of psoriasin and calgranulins suggest that S100 proteins exert unique and concerted roles in mediating immunity in different subtypes of CRS. These studies will enable further investigations focused on understanding the immune-modulating mechanisms of S100 proteins in different inflammatory signaling pathways and disease phenotypes of CRS toward the pursuit of identifying new biomarkers and targets for improved outcomes.
Collapse
|
13
|
Liu F, Lee SA, Riordan SM, Zhang L, Zhu L. Global Studies of Using Fecal Biomarkers in Predicting Relapse in Inflammatory Bowel Disease. Front Med (Lausanne) 2020; 7:580803. [PMID: 33392214 PMCID: PMC7773777 DOI: 10.3389/fmed.2020.580803] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract mainly comprising two forms including Crohn's disease (CD) and ulcerative colitis (UC). IBD is a lifelong relapsing remitting disease and relapses occur at random patterns which are unpredictable. Fecal biomarkers have been increasingly used to assess disease activity in IBD due to their positive correlations with intestinal inflammation. Recent studies have also assessed the use of fecal biomarkers in predicting relapse and post-operative recurrence. This review provides information from global studies of using fecal calprotectin, lactoferrin and S100A12 to predict relapse in IBD. Strategies for further studies and the use of these fecal biomarkers for personalized management in IBD are also discussed.
Collapse
Affiliation(s)
- Fang Liu
- Department of General Surgery and Central Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Seul A. Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Lixin Zhu
- Department of General Surgery and Central Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Wang Z, Xu Q, Zhang N, Du X, Xu G, Yan X. CD146, from a melanoma cell adhesion molecule to a signaling receptor. Signal Transduct Target Ther 2020; 5:148. [PMID: 32782280 PMCID: PMC7421905 DOI: 10.1038/s41392-020-00259-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
CD146 was originally identified as a melanoma cell adhesion molecule (MCAM) and highly expressed in many tumors and endothelial cells. However, the evidence that CD146 acts as an adhesion molecule to mediate a homophilic adhesion through the direct interactions between CD146 and itself is still lacking. Recent evidence revealed that CD146 is not merely an adhesion molecule, but also a cellular surface receptor of miscellaneous ligands, including some growth factors and extracellular matrixes. Through the bidirectional interactions with its ligands, CD146 is actively involved in numerous physiological and pathological processes of cells. Overexpression of CD146 can be observed in most of malignancies and is implicated in nearly every step of the development and progression of cancers, especially vascular and lymphatic metastasis. Thus, immunotherapy against CD146 would provide a promising strategy to inhibit metastasis, which accounts for the majority of cancer-associated deaths. Therefore, to deepen the understanding of CD146, we review the reports describing the newly identified ligands of CD146 and discuss the implications of these findings in establishing novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Qingji Xu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nengwei Zhang
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xuemei Du
- Departments of Pathology, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Guangzhong Xu
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
15
|
Liang H, Cui Y, Bu H, Liu H, Yan P, Cui L, Chen L. Value of S100A12 in predicting in-stent restenosis in patients with coronary drug-eluting stent implantation. Exp Ther Med 2020; 20:211-218. [PMID: 32536993 PMCID: PMC7282035 DOI: 10.3892/etm.2020.8721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 11/21/2019] [Indexed: 01/08/2023] Open
Abstract
In-stent restenosis (ISR) after drug-eluting stent (DES) placement has recently emerged as a major concern for cardiologists. Identification of biomarkers to predict ISR may be invaluable for tailored management strategies. The present study aimed to evaluate the prognostic utility of circulating S100 calcium-binding protein A12 (S100A12) for ISR. Out of 2,443 patients with DES-based percutaneous coronary intervention (PCI) and follow-up angiography at ~1 year after DES-based PCI, 258 patients were diagnosed with ISR and 258 patients without ISR were randomly selected as controls. Serum S100A12 levels were determined in the two subsets on admission. The association between ISR and the circulating levels of S100A12 was determined by constructing two multivariate stepwise logistic regression models. In addition, S100A12 was assessed for its ability to predict ISR using receiver operating characteristic (ROC) curve analysis. The serum levels of S100A12 at baseline were significantly elevated in patients in the ISR group compared with those in the non-ISR group (P<0.001). In the multivariate logistic regression analysis, after adjusting for conventional cardiovascular risk factors, laboratory parameters and medication after the procedure, the S100A12 level was revealed to be independently associated with ISR. When a cut-off for serum S100A12 levels of 34.75 ng/ml was used, the ROC curve was able to predict ISR with 72.8% sensitivity and 79.1% specificity, and the area under the ROC curve was 0.796 (95% CI: 0.757 to 0.834, P<0.001). Furthermore, addition of S100A12 to established risk factors significantly improved the predictive power of reference models for ISR. S100A12 may serve as an independent marker to predict ISR in patients undergoing coronary DES implantation.
Collapse
Affiliation(s)
- Hengyi Liang
- Department of Cardiology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yuqi Cui
- Department of Cardiology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, P.R. China.,Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Haoran Bu
- Department of Cardiology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hang Liu
- Deparment of Cardiology, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Pengcheng Yan
- Department of Cardiology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Lianqun Cui
- Department of Cardiology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Liming Chen
- Department of Cardiology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
16
|
S100 proteins in atherosclerosis. Clin Chim Acta 2020; 502:293-304. [DOI: 10.1016/j.cca.2019.11.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
|
17
|
S100A12 in Digestive Diseases and Health: A Scoping Review. Gastroenterol Res Pract 2020; 2020:2868373. [PMID: 32184815 PMCID: PMC7061133 DOI: 10.1155/2020/2868373] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/05/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Calgranulin proteins are an important class of molecules involved in innate immunity. These members of the S100 class of the EF-hand family of calcium-binding proteins have numerous cellular and antimicrobial functions. One protein in particular, S100A12 (also called EN-RAGE or calgranulin C), is highly abundant in neutrophils during acute inflammation and has been implicated in immune regulation. Structure-function analyses reveal that S100A12 has the capacity to bind calcium, zinc, and copper, processes that contribute to nutritional immunity against invading microbial pathogens. S100A12 is a ligand for the receptor for advanced glycation end products (RAGE), toll-like receptor 4 (TLR4), and CD36, which promote cellular and immunological pathways to alter inflammation. We conducted a scoping review of the existing literature to define what is known about the association of S100A12 with digestive disease and health. Results suggest that S100A12 is implicated in gastroenteritis, necrotizing enterocolitis, gastritis, gastric cancer, Crohn's disease, irritable bowel syndrome, inflammatory bowel disease, and digestive tract cancers. Together, these results reveal S100A12 is an important molecule broadly associated with the pathogenesis of digestive diseases.
Collapse
|
18
|
Interleukin-17A and Keratinocytes in Psoriasis. Int J Mol Sci 2020; 21:ijms21041275. [PMID: 32070069 PMCID: PMC7072868 DOI: 10.3390/ijms21041275] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
The excellent clinical efficacy of anti-interleukin 17A (IL-17A) biologics on psoriasis indicates a crucial pathogenic role of IL-17A in this autoinflammatory skin disease. IL-17A accelerates the proliferation of epidermal keratinocytes. Keratinocytes produce a myriad of antimicrobial peptides and chemokines, such as CXCL1, CXCL2, CXCL8, and CCL20. Antimicrobial peptides enhance skin inflammation. IL-17A is capable of upregulating the production of these chemokines and antimicrobial peptides in keratinocytes. CXCL1, CXCL2, and CXCL8 recruit neutrophils and CCL20 chemoattracts IL-17A-producing CCR6+ immune cells, which further contributes to forming an IL-17A-rich milieu. This feed-forward pathogenic process results in characteristic histopathological features, such as epidermal hyperproliferation, intraepidermal neutrophilic microabscess, and dermal CCR6+ cell infiltration. In this review, we focus on IL-17A and keratinocyte interaction regarding psoriasis pathogenesis.
Collapse
|
19
|
Riuzzi F, Chiappalupi S, Arcuri C, Giambanco I, Sorci G, Donato R. S100 proteins in obesity: liaisons dangereuses. Cell Mol Life Sci 2020; 77:129-147. [PMID: 31363816 PMCID: PMC11104817 DOI: 10.1007/s00018-019-03257-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Obesity is an endemic pathophysiological condition and a comorbidity associated with hypercholesterolemia, hypertension, cardiovascular disease, type 2 diabetes mellitus, and cancer. The adipose tissue of obese subjects shows hypertrophic adipocytes, adipocyte hyperplasia, and chronic low-grade inflammation. S100 proteins are Ca2+-binding proteins exclusively expressed in vertebrates in a cell-specific manner. They have been implicated in the regulation of a variety of functions acting as intracellular Ca2+ sensors transducing the Ca2+ signal and extracellular factors affecting cellular activity via ligation of a battery of membrane receptors. Certain S100 proteins, namely S100A4, the S100A8/S100A9 heterodimer and S100B, have been implicated in the pathophysiology of obesity-promoting macrophage-based inflammation via toll-like receptor 4 and/or receptor for advanced glycation end-products ligation. Also, serum levels of S100A4, S100A8/S100A9, S100A12, and S100B correlate with insulin resistance/type 2 diabetes, metabolic risk score, and fat cell size. Yet, secreted S100B appears to exert neurotrophic effects on sympathetic fibers in brown adipose tissue contributing to the larger sympathetic innervation of this latter relative to white adipose tissue. In the present review we first briefly introduce S100 proteins and then critically examine their role(s) in adipose tissue and obesity.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
| | - Sara Chiappalupi
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
| | - Cataldo Arcuri
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
- Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, 06132, Perugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy.
| |
Collapse
|
20
|
Sinha D, Kumar A, Kumar H, Bandyopadhyay S, Sengupta D. dropClust: efficient clustering of ultra-large scRNA-seq data. Nucleic Acids Res 2019; 46:e36. [PMID: 29361178 PMCID: PMC5888655 DOI: 10.1093/nar/gky007] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/07/2018] [Indexed: 11/18/2022] Open
Abstract
Droplet based single cell transcriptomics has recently enabled parallel screening of tens of thousands of single cells. Clustering methods that scale for such high dimensional data without compromising accuracy are scarce. We exploit Locality Sensitive Hashing, an approximate nearest neighbour search technique to develop a de novo clustering algorithm for large-scale single cell data. On a number of real datasets, dropClust outperformed the existing best practice methods in terms of execution time, clustering accuracy and detectability of minor cell sub-types.
Collapse
Affiliation(s)
- Debajyoti Sinha
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India.,Department of Computer Science and Engineering, University of Calcutta, Kolkata 700098, West Bengal, India
| | - Akhilesh Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, Madhya Pradesh, India
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, Madhya Pradesh, India
| | | | - Debarka Sengupta
- Center for Computational Biology and Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, Delhi 110020, India
| |
Collapse
|
21
|
Wang Q, Aleshintsev A, Bolton D, Zhuang J, Brenowitz M, Gupta R. Ca(II) and Zn(II) Cooperate To Modulate the Structure and Self-Assembly of S100A12. Biochemistry 2019; 58:2269-2281. [PMID: 30957488 DOI: 10.1021/acs.biochem.9b00123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
S100A12 is a member of the Ca2+ binding S100 family of proteins that functions within the human innate immune system. Zinc sequestration by S100A12 confers antimicrobial activity when the protein is secreted by neutrophils. Here, we demonstrate that Ca2+ binding to S100A12's EF-hand motifs and Zn2+ binding to its dimeric interface cooperate to induce reversible self-assembly of the protein. Solution and magic angle spinning nuclear magnetic resonance spectroscopy on apo-, Ca2+-, Zn2+-, and Ca2+,Zn2+-S100A12 shows that significant metal binding-induced chemical shift perturbations, indicative of conformational changes, occur throughout the polypeptide chain. These perturbations do not originate from changes in the secondary structure of the protein, which remains largely preserved. While the overall structure of S100A12 is dominated by Ca2+ binding, Zn2+ binding to Ca2+-S100A12 introduces additional structural changes to helix II and the hinge domain (residues 38-53). The hinge domain of S100A12 is involved in the molecular interactions that promote chemotaxis for human monocyte, acute inflammatory responses and generates edema. In Ca2+-S100A12, helix II and the hinge domain participate in binding with the C-type immunoglobulin domain of the receptor for advanced glycation products (RAGE). We discuss how the additional conformational changes introduced to these domains upon Zn2+ binding may also impact the interaction of S100A12 and target proteins such as RAGE.
Collapse
Affiliation(s)
- Qian Wang
- Department of Chemistry, College of Staten Island , City University of New York , 2800 Victory Boulevard , Staten Island , New York 10314 , United States
| | - Aleksey Aleshintsev
- Department of Chemistry, College of Staten Island , City University of New York , 2800 Victory Boulevard , Staten Island , New York 10314 , United States.,Ph.D. Programs in Biochemistry and Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - David Bolton
- Laboratory of Molecular Structure and Function/Mass Spectrometry Facility, Department of Molecular Biology , New York State Institute for Basic Research in Developmental Disabilities , Staten Island , New York 10314-6399 , United States
| | - Jianqin Zhuang
- Department of Chemistry, College of Staten Island , City University of New York , 2800 Victory Boulevard , Staten Island , New York 10314 , United States
| | - Michael Brenowitz
- Departments of Biochemistry and Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , New York 10461 , United States
| | - Rupal Gupta
- Department of Chemistry, College of Staten Island , City University of New York , 2800 Victory Boulevard , Staten Island , New York 10314 , United States.,Ph.D. Programs in Biochemistry and Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| |
Collapse
|
22
|
Zhou QY, Lin W, Zhu XX, Xu SL, Ying MX, Shi L, Lin BJ. Increased Plasma Levels of S100A8, S100A9, and S100A12 in Chronic Spontaneous Urticaria. Indian J Dermatol 2019; 64:441-446. [PMID: 31896840 PMCID: PMC6862366 DOI: 10.4103/ijd.ijd_375_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: Chronic spontaneous urticaria (CSU) is a skin disorder with an important immunologic profile. S100A8, S100A9, and S100A12 are the members of S100 family that have been reported to play important role in autoimmune diseases, but the characteristics of these three S100 members have not been defined in CSU. Aims: This study was performed to investigate the levels of these three S100s in patients with CSU and to study whether they were associated with the severity and clinical characteristics of CSU. Materials and Methods: The levels of plasma S100A8, S100A9, and S100A12 were measured in 51 CSU patients and 20 healthy controls using enzyme linked immunosorbent assay kits. The values in the patient group and that of the healthy controls were statistically compared. The relationships between the different markers were evaluated by correlation analysis. Results: The plasma levels of S100A8, S100A9, and S100A12 were significantly higher in CSU patients than those in controls. Interestingly, the level of S100A12 was significantly correlated with S100A8 and S100A9 in CSU patients (P < 0.05 and P < 0.001, respectively). In addition, S100A8, S100A9, and S100A12 were all significantly inversely correlated with blood basophil percentage. Conclusions: Plasma S100A8, S100A9, and S100A12 levels were elevated in CSU patients. They might be useful biomarkers of CSU, with the potential role in the pathogenesis of CSU.
Collapse
Affiliation(s)
- Qiong-Yan Zhou
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Wei Lin
- Department of Pharmacy, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Xiao-Xia Zhu
- Department of Dermatology, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Su-Ling Xu
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Meng-Xia Ying
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Lei Shi
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Bing-Jiang Lin
- Department of Dermatology, Ningbo First Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
23
|
Bresnick AR. S100 proteins as therapeutic targets. Biophys Rev 2018; 10:1617-1629. [PMID: 30382555 PMCID: PMC6297089 DOI: 10.1007/s12551-018-0471-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022] Open
Abstract
The human genome codes for 21 S100 protein family members, which exhibit cell- and tissue-specific expression patterns. Despite sharing a high degree of sequence and structural similarity, the S100 proteins bind a diverse range of protein targets and contribute to a broad array of intracellular and extracellular functions. Consequently, the S100 proteins regulate multiple cellular processes such as proliferation, migration and/or invasion, and differentiation, and play important roles in a variety of cancers, autoimmune diseases, and chronic inflammatory disorders. This review focuses on the development of S100 neutralizing antibodies and small molecule inhibitors and their potential therapeutic use in controlling disease progression and severity.
Collapse
Affiliation(s)
- Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
24
|
Pulsipher A, Davis BM, Smith KA, Ashby S, Qin X, Firpo M, Orlandi RR, Alt JA. Calgranulin C (S100A12) Is Differentially Expressed in Subtypes of Chronic Rhinosinusitis. Am J Rhinol Allergy 2018; 32:380-387. [PMID: 29943619 PMCID: PMC6340112 DOI: 10.1177/1945892418782238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Calgranulin C (S100A12) is an innate immune peptide at the air-mucosal interface associated with neutrophil involvement, which when overexpressed has been implicated as a biomarker of inflammatory diseases. Decreased epithelial expression of certain innate immune peptides has been reported in chronic rhinosinusitis (CRS). We hypothesized that S100A12 is differentially expressed in the sinonasal mucosa of patients with CRS compared to controls and that S100A12 is a potential biomarker of CRS-specific quality of life (QOL) and disease severity. Methods A prospective observational study was conducted which included 70 patients: 17 controls, 28 having CRS without (CRSsNP), and 25 with (CRSwNP) nasal polyps. The expression of S100A12 and human neutrophil elastase (HNE) was assessed in the anterior ethmoid tissues from all patients using enzyme-linked immunosorbent assay (ELISA) and immunohistochemical (IHC) analyses. Disease-specific QOL (Rhinosinusitis Disability Index) and disease severity (computed tomography [CT] and endoscopy) were evaluated and correlated to the expression levels of S100A12. Results S100A12 and HNE were significantly elevated in patients with CRSsNP compared to normal controls ( P < .05 and P < .001, respectively) and patients with CRSwNP ( P < .05 and P < .001, respectively), as measured by ELISA and IHC analyses. Patients with CRS exhibited worse CRS-specific disease severity compared to normal controls ( P < .05), and the increased protein levels of S100A12 were significantly correlated to disease severity, represented by CT scores ( P < .05). Conclusions S100A12 is differentially expressed in CRS subtypes and is significantly elevated in patients with CRSsNP and associated with CRS-specific disease severity.
Collapse
Affiliation(s)
- Abigail Pulsipher
- 1 Division of Otolaryngology - Head & Neck Surgery, Rhinology-Sinus and Skull Base Surgery Program, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Brock M Davis
- 1 Division of Otolaryngology - Head & Neck Surgery, Rhinology-Sinus and Skull Base Surgery Program, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Kristine A Smith
- 1 Division of Otolaryngology - Head & Neck Surgery, Rhinology-Sinus and Skull Base Surgery Program, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Shaelene Ashby
- 1 Division of Otolaryngology - Head & Neck Surgery, Rhinology-Sinus and Skull Base Surgery Program, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Xuan Qin
- 1 Division of Otolaryngology - Head & Neck Surgery, Rhinology-Sinus and Skull Base Surgery Program, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Matt Firpo
- 1 Division of Otolaryngology - Head & Neck Surgery, Rhinology-Sinus and Skull Base Surgery Program, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Richard R Orlandi
- 1 Division of Otolaryngology - Head & Neck Surgery, Rhinology-Sinus and Skull Base Surgery Program, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Jeremiah A Alt
- 1 Division of Otolaryngology - Head & Neck Surgery, Rhinology-Sinus and Skull Base Surgery Program, Department of Surgery, University of Utah, Salt Lake City, Utah
| |
Collapse
|
25
|
Abstract
More than a decade has passed since the conceptualization of the "alarmin" hypothesis. The alarmin family has been expanding in terms of both number and the concept. It has recently become clear that alarmins play important roles as initiators and participants in a diverse range of physiological and pathophysiological processes such as host defense, regulation of gene expression, cellular homeostasis, wound healing, inflammation, allergy, autoimmunity, and oncogenesis. Here, we provide a general view on the participation of alarmins in the induction of innate and adaptive immune responses, as well as their contribution to tumor immunity.
Collapse
Affiliation(s)
- De Yang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| | - Zhen Han
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| | - Joost J Oppenheim
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
26
|
The Host Antimicrobial Protein Calgranulin C Participates in the Control of Campylobacter jejuni Growth via Zinc Sequestration. Infect Immun 2018; 86:IAI.00234-18. [PMID: 29610259 DOI: 10.1128/iai.00234-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 12/31/2022] Open
Abstract
Campylobacter jejuni is a leading cause of bacterially derived gastroenteritis worldwide. Campylobacter is most commonly acquired through the consumption of undercooked poultry meat or through drinking contaminated water. Following ingestion, Campylobacter adheres to the intestinal epithelium and mucus layer, causing toxin-mediated inflammation and inhibition of fluid reabsorption. Currently, the human response to infection is relatively unknown, and animal hosts that model these responses are rare. As such, we examined patient fecal samples for the accumulation of the neutrophil protein calgranulin C during infection with Campylobacter jejuni In response to infection, calgranulin C was significantly increased in the feces of humans. To determine whether calgranulin C accumulation occurs in an animal model, we examined disease in ferrets. Ferrets were effectively infected by C. jejuni, with peak fecal loads observed at day 3 postinfection and full resolution by day 12. Serum levels of interleukin-10 (IL-10) and tumor necrosis factor alpha (TNF-α) significantly increased in response to infection, which resulted in leukocyte trafficking to the colon. As a result, calgranulin C increased in the feces of ferrets at the time when C. jejuni loads decreased. Further, the addition of purified calgranulin C to C. jejuni cultures was found to inhibit growth in a zinc-dependent manner. These results suggest that upon infection with C. jejuni, leukocytes trafficked to the intestine release calgranulin C as a mechanism for inhibiting C. jejuni growth.
Collapse
|
27
|
Peng S, Sun X, Wang X, Wang H, Shan Z, Teng W, Li C. Myeloid related proteins are up-regulated in autoimmune thyroid diseases and activate toll-like receptor 4 and pro-inflammatory cytokines in vitro. Int Immunopharmacol 2018; 59:217-226. [PMID: 29656212 DOI: 10.1016/j.intimp.2018.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/12/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Myeloid-related protein (MRP) family plays an important role in the promotion of cell proliferation and the production of inflammatory cytokines. We investigated the expression of MRP6, MRP8 and MRP14 in thyroid tissues, serum, and peripheral blood monocular cells (PBMCs) in patients with autoimmune thyroid diseases (AITD). METHOD The expression of MRP6, MRP8, and MRP14 was investigated using immunohistochemical staining and quantitative real-time polymerase chain reaction in the thyroid glands of 7 patients with Graves' disease (GD), 8 with Hashimoto's thyroiditis (HT), and 7 healthy controls (HC). The serum levels of MRP8/MRP14 complex and MRP6 were investigated in 30 patients with GD, 36 with HT, and 30 with HC. The mRNA expression of MRP proteins in PBMCs was also explored. PBMCs from each group were incubated with MPRs and their effect on Toll-like receptor 4(TLR4) expression and their effect on the levels of the pro-inflammatory cytokines in supernatant were analyzed upon incubating with TLR4 and signaling pathways inhibitors. RESULTS Serum levels of MRP8/MRP14 and MRP6 were up-regulated in patients with AITD. In addition, mRNA expression of MRP proteins in PBMCs and the thyroid gland was markedly elevated in AITD patients. MRP6 and MPR8 promoted the secretion of TNF-α and IL-6 in cultured PBMCs, and this elevation was more pronounced in AITD patients; we also found that this up-regulation was regulated by TLR4/phosphoinositide 3-kinase/nuclear factor-κB signaling pathway. CONCLUSION The expression of MRP proteins was elevated in AITD patients. Therefore, an MRP-TLR4 dependent signaling may play an important role in the pathogenesis of AITD.
Collapse
Affiliation(s)
- Shiqiao Peng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Xuren Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Xinyi Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Haoyu Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| | - Chenyan Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| |
Collapse
|
28
|
Donato R, Sorci G, Giambanco I. S100A6 protein: functional roles. Cell Mol Life Sci 2017; 74:2749-2760. [PMID: 28417162 PMCID: PMC11107720 DOI: 10.1007/s00018-017-2526-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Abstract
S100A6 protein belongs to the A group of the S100 protein family of Ca2+-binding proteins. It is expressed in a limited number of cell types in adult normal tissues and in several tumor cell types. As an intracellular protein, S100A6 has been implicated in the regulation of several cellular functions, such as proliferation, apoptosis, the cytoskeleton dynamics, and the cellular response to different stress factors. S100A6 can be secreted/released by certain cell types which points to extracellular effects of the protein. RAGE (receptor for advanced glycation endproducts) and integrin β1 transduce some extracellular S100A6's effects. Dosage of serum S100A6 might aid in diagnosis in oncology.
Collapse
Affiliation(s)
- Rosario Donato
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy.
- Department of Experimental Medicine, Istituto Interuniversitario di Miologia (Interuniversity Institute for Myology), Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy.
| | - Guglielmo Sorci
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Department of Experimental Medicine, Istituto Interuniversitario di Miologia (Interuniversity Institute for Myology), Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| |
Collapse
|
29
|
Farokhzadian J, Mangolian Shahrbabaki P, Bagheri V. S100A12-CD36 axis: A novel player in the pathogenesis of atherosclerosis? Cytokine 2017; 122:154104. [PMID: 28756107 DOI: 10.1016/j.cyto.2017.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/16/2017] [Accepted: 07/14/2017] [Indexed: 12/15/2022]
Abstract
S100A12 is a member of the S100 family of EF-hand calcium-binding proteins and have a variety of intracellular and extracellular activities. It exerts its proinflammatory effects by binding to the receptor for advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4). CD36 is a class B scavenger receptor that acts as a fatty acid transporter. Both S100A12 and CD36 are implicated in vascular inflammation and atherosclerosis. It has recently been demonstrated that S100A12 binds with high affinity to CD36. On the other hand, RAGE and TLR4 play a key role in the regulation of CD36 expression. These observations point to the fact that S100A12 is an interesting molecular target for the development of therapeutics. This Cytokine stimulus will focus on the possible mechanisms of S100A12-CD36 axis in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Jamileh Farokhzadian
- Nursing Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Community Health Nursing, School of Nursing and Midwifery, Kerman University of Medical Sciences, Kerman, Iran
| | - Parvin Mangolian Shahrbabaki
- Nursing Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Medical Surgical Nursing, School of Nursing and Midwifery, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Bagheri
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
30
|
Bagheri V, Geczy CL. Comment on “Potential Effects of Calcium Binding Protein S100A12 on Severity Evaluation and Curative Effect of Severe Acute Pancreatitis”. Inflammation 2017; 40:1811-1812. [DOI: 10.1007/s10753-017-0529-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Maddison JW, Rickard JP, Bernecic NC, Tsikis G, Soleilhavoup C, Labas V, Combes-Soia L, Harichaux G, Druart X, Leahy T, de Graaf SP. Oestrus synchronisation and superovulation alter the cervicovaginal mucus proteome of the ewe. J Proteomics 2017; 155:1-10. [DOI: 10.1016/j.jprot.2017.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/02/2017] [Accepted: 01/05/2017] [Indexed: 01/06/2023]
|
32
|
Bastos P, Trindade F, da Costa J, Ferreira R, Vitorino R. Human Antimicrobial Peptides in Bodily Fluids: Current Knowledge and Therapeutic Perspectives in the Postantibiotic Era. Med Res Rev 2017; 38:101-146. [PMID: 28094448 PMCID: PMC7168463 DOI: 10.1002/med.21435] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) are an integral part of the innate immune defense mechanism of many organisms. Due to the alarming increase of resistance to antimicrobial therapeutics, a growing interest in alternative antimicrobial agents has led to the exploitation of AMPs, both synthetic and isolated from natural sources. Thus, many peptide-based drugs have been the focus of increasing attention by many researchers not only in identifying novel AMPs, but in defining mechanisms of antimicrobial peptide activity as well. Herein, we review the available strategies for the identification of AMPs in human body fluids and their mechanism(s) of action. In addition, an overview of the distribution of AMPs across different human body fluids is provided, as well as its relation with microorganisms and infectious conditions.
Collapse
Affiliation(s)
- Paulo Bastos
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal.,Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - João da Costa
- Department of Chemistry, CESAM, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal.,Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
33
|
Mukhin NA, Bogdanova MV, Rameev VV, Kozlovskaya LV. Autoinflammatory diseases and kidney involvement. TERAPEVT ARKH 2017; 89:4-20. [DOI: 10.17116/terarkh20178964-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Tondera C, Laube M, Pietzsch J. Insights into binding of S100 proteins to scavenger receptors: class B scavenger receptor CD36 binds S100A12 with high affinity. Amino Acids 2016; 49:183-191. [PMID: 27734162 PMCID: PMC5241339 DOI: 10.1007/s00726-016-2349-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/06/2016] [Indexed: 11/29/2022]
Abstract
The EF-hand type calcium-binding protein S100A12 exerts numerous intra- and extracellular functions of (patho)physiological relevance. Therefore, receptors of S100A12 are of high interest for research and clinical applications. Beside the extensively studied receptor for advanced glycation endproducts (RAGE), G-protein coupled receptors and more recently, scavenger receptors are suggested to be putative S100A12 receptors. Own findings and further information from the literature predestined CD36, a class B scavenger receptor, as promising candidate. To substantiate or prove against this hypothesis, this study aimed at investigation of interaction of S100A12 and CD36 on molecular and cellular level by the use of surface plasmon resonance (SPR), radio- and fluorescence-tracer-based cell binding, and cell activation experiments. S100A12 revealed binding affinity to CD36 in the low nanomolar range, essentially, at the CD36 thrombospondin-1 binding site. Additionally, S100A12-mediated translocation of CD36 to the membrane and elevation of both CD36 and peroxisome proliferator-activated receptor γ (PPARγ) expression was observed, which suggest a potential regulatory function of S100A12–CD36 interaction.
Collapse
Affiliation(s)
- Christoph Tondera
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany. .,Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
35
|
HMGB1, IL-1α, IL-33 and S100 proteins: dual-function alarmins. Cell Mol Immunol 2016; 14:43-64. [PMID: 27569562 PMCID: PMC5214941 DOI: 10.1038/cmi.2016.34] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 02/08/2023] Open
Abstract
Our immune system is based on the close collaboration of the innate and adaptive immune systems for the rapid detection of any threats to the host. Recognition of pathogen-derived molecules is entrusted to specific germline-encoded signaling receptors. The same receptors have now also emerged as efficient detectors of misplaced or altered self-molecules that signal tissue damage and cell death following, for example, disruption of the blood supply and subsequent hypoxia. Many types of endogenous molecules have been shown to provoke such sterile inflammatory states when released from dying cells. However, a group of proteins referred to as alarmins have both intracellular and extracellular functions which have been the subject of intense research. Indeed, alarmins can either exert beneficial cell housekeeping functions, leading to tissue repair, or provoke deleterious uncontrolled inflammation. This group of proteins includes the high-mobility group box 1 protein (HMGB1), interleukin (IL)-1α, IL-33 and the Ca2+-binding S100 proteins. These dual-function proteins share conserved regulatory mechanisms, such as secretory routes, post-translational modifications and enzymatic processing, that govern their extracellular functions in time and space. Release of alarmins from mesenchymal cells is a highly relevant mechanism by which immune cells can be alerted of tissue damage, and alarmins play a key role in the development of acute or chronic inflammatory diseases and in cancer development.
Collapse
|
36
|
Sanna M, Firinu D, Manconi PE, Pisanu M, Murgia G, Piras V, Castagnola M, Messana I, del Giacco SR, Cabras T. The salivary proteome profile in patients affected by SAPHO syndrome characterized by a top-down RP-HPLC-ESI-MS platform. MOLECULAR BIOSYSTEMS 2016; 11:1552-62. [PMID: 25671558 DOI: 10.1039/c4mb00719k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SAPHO syndrome is a rare and often unrecognized disease with prominent inflammatory cutaneous and articular symptoms characterized by musculoskeletal manifestations (synovitis, hyperostosis, osteomyelitis) associated with dermatological conditions (severe acne and pustulosis). The acidic soluble fraction of whole saliva from 10 adult women affected by SAPHO syndrome and from a group of 28 healthy women was analysed by RP-HPLC-ESI-MS with the aim of discovering salivary biomarkers of the disorder. The levels of the oral proteins and peptides were correlated with clinical data. The following proteins showed a significant decreased concentration in saliva of SAPHO subjects with respect to controls: cystatin S1 and SN, histatins, the major acidic PRPs, P-C and P-B peptides. The cystatin SN abundance lowered according to the disease duration and histatins showed positive correlations with the C reactive protein. Statistical analysis performed excluding one patient with a different pattern of salivary proteins/peptides highlighted a positive relationship between cystatin S1, histatins 3, histatin 5, and the neutrophil count. Moreover, histatin 3 correlated positively with the total white cell count and negatively with the erythrocyte sedimentation rate. Levels and frequency of S100A12 protein showed a trend to increase in SAPHO patients. The high expression of this pro-inflammatory protein is probably related to the inflammatory response and to the altered neutrophil responses to functional stimuli that characterize SAPHO syndrome suggesting a possible application as a salivary biomarker.
Collapse
Affiliation(s)
- Monica Sanna
- Department of Life and Environmental Sciences, Biomedical section, University of Cagliari, Monserrato Campus, 09042 Monserrato, CA, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lippitz K, Waldkirch J, Kessel C, Varga G, Foell D. [Translational research in pediatric rheumatology. Current research approaches to the innate immune system]. Z Rheumatol 2016; 75:276-83. [PMID: 26800663 DOI: 10.1007/s00393-015-0040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Translational research aims at closely linking basic research and clinical observations so that important mechanistic insights identified in one field should trigger progress in the other. Particularly in the field of pediatric rheumatology this approach has significantly improved the understanding and therapy of several diseases in recent years. One focus of our research in this respect is on the structure, release mechanisms and function of damage associated molecular patterns (DAMP), particularly S100 proteins. Due to their huge potential as inflammation biomarkers for more specific diagnostics these proteins are of particular clinical interest. Overactivated cells of the innate immune system play a crucial role in the development of rheumatic diseases. Innate mechanisms, such as the generation of neutrophil extracellular traps (NETosis) were linked to the pathogenesis of inflammatory diseases, such as systemic lupus erythematosus and rheumatoid arthritis. Furthermore, it became increasingly more evident that various excessive sterile inflammatory mechanisms and reactions significantly contribute to an activation of adaptive immune responses and thus to the development of autoimmunity. Studying such potentially DAMP-dependent pathways at the interface between innate and adaptive immunity can provide a better understanding of autoinflammatory conditions in pediatric rheumatology and to identify novel targets for optimization of therapy.
Collapse
Affiliation(s)
- K Lippitz
- Klinik für Pädiatrische Rheumatologie und Immunologie, Universitätsklinikum Münster, Domagkstraße 3, 48149, Münster, Deutschland
| | - J Waldkirch
- Klinik für Pädiatrische Rheumatologie und Immunologie, Universitätsklinikum Münster, Domagkstraße 3, 48149, Münster, Deutschland
| | - C Kessel
- Klinik für Pädiatrische Rheumatologie und Immunologie, Universitätsklinikum Münster, Domagkstraße 3, 48149, Münster, Deutschland
| | - G Varga
- Klinik für Pädiatrische Rheumatologie und Immunologie, Universitätsklinikum Münster, Domagkstraße 3, 48149, Münster, Deutschland
| | - D Foell
- Klinik für Pädiatrische Rheumatologie und Immunologie, Universitätsklinikum Münster, Domagkstraße 3, 48149, Münster, Deutschland.
| |
Collapse
|
38
|
Tardif MR, Chapeton-Montes JA, Posvandzic A, Pagé N, Gilbert C, Tessier PA. Secretion of S100A8, S100A9, and S100A12 by Neutrophils Involves Reactive Oxygen Species and Potassium Efflux. J Immunol Res 2015; 2015:296149. [PMID: 27057553 PMCID: PMC4736198 DOI: 10.1155/2015/296149] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/06/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022] Open
Abstract
S100A8/A9 (calprotectin) and S100A12 proinflammatory mediators are found at inflammatory sites and in the serum of patients with inflammatory or autoimmune diseases. These cytoplasmic proteins are secreted by neutrophils at sites of inflammation via alternative secretion pathways of which little is known. This study examined the nature of the stimuli leading to S100A8/A9 and S100A12 secretion as well as the mechanism involved in this alternative secretion pathway. Chemotactic agents, cytokines, and particulate molecules were used to stimulate human neutrophils. MSU crystals, PMA, and H2O2 induced the release of S100A8, S100A9, and S100A12 homodimers, as well as S100A8/A9 heterodimer. High concentrations of S100A8/A9 and S100A12 were secreted in response to nanoparticles like MSU, silica, TiO2, fullerene, and single-wall carbon nanotubes as well as in response to microbe-derived molecules, such as zymosan or HKCA. However, neutrophils exposed to the chemotactic factors fMLP failed to secrete S100A8/A9 or S100A12. Secretion of S100A8/A9 was dependent on the production of reactive oxygen species and required K(+) exchanges through the ATP-sensitive K(+) channel. Altogether, these findings suggest that S100A12 and S100A8/A9 are secreted independently either via distinct mechanisms of secretion or following the activation of different signal transduction pathways.
Collapse
Affiliation(s)
- Mélanie R. Tardif
- Axe de Recherche sur les Maladies Infectieuses et L'immunologie, Centre de Recherche du CHU de Québec-Université Laval, and Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada G1V 0A6
| | - Julie Andrea Chapeton-Montes
- Axe de Recherche sur les Maladies Infectieuses et L'immunologie, Centre de Recherche du CHU de Québec-Université Laval, and Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada G1V 0A6
| | - Alma Posvandzic
- Axe de Recherche sur les Maladies Infectieuses et L'immunologie, Centre de Recherche du CHU de Québec-Université Laval, and Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada G1V 0A6
| | - Nathalie Pagé
- Axe de Recherche sur les Maladies Infectieuses et L'immunologie, Centre de Recherche du CHU de Québec-Université Laval, and Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada G1V 0A6
| | - Caroline Gilbert
- Axe de Recherche sur les Maladies Infectieuses et L'immunologie, Centre de Recherche du CHU de Québec-Université Laval, and Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada G1V 0A6
| | - Philippe A. Tessier
- Axe de Recherche sur les Maladies Infectieuses et L'immunologie, Centre de Recherche du CHU de Québec-Université Laval, and Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada G1V 0A6
| |
Collapse
|
39
|
Abstract
Influenza A virus (IAV) is a serious global health problem worldwide due to frequent and severe outbreaks. IAV causes significant morbidity and mortality in the elderly population, due to the ineffectiveness of the vaccine and the alteration of T cell immunity with ageing. The cellular and molecular link between ageing and virus infection is unclear and it is possible that damage associated molecular patterns (DAMPs) may play a role in the raised severity and susceptibility of virus infections in the elderly. DAMPs which are released from damaged cells following activation, injury or cell death can activate the immune response through the stimulation of the inflammasome through several types of receptors found on the plasma membrane, inside endosomes after endocytosis as well as in the cytosol. In this review, the detriment in the immune system during ageing and the links between influenza virus infection and ageing will be discussed. In addition, the role of DAMPs such as HMGB1 and S100/Annexin in ageing, and the enhanced morbidity and mortality to severe influenza infection in ageing will be highlighted.
Collapse
|
40
|
Oesterle A, Bowman MAH. S100A12 and the S100/Calgranulins: Emerging Biomarkers for Atherosclerosis and Possibly Therapeutic Targets. Arterioscler Thromb Vasc Biol 2015; 35:2496-507. [PMID: 26515415 DOI: 10.1161/atvbaha.115.302072] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/14/2015] [Indexed: 11/16/2022]
Abstract
Atherosclerosis is mediated by local and systematic inflammation. The multiligand receptor for advanced glycation end products (RAGE) has been studied in animals and humans and is an important mediator of inflammation and atherosclerosis. This review focuses on S100/calgranulin proteins (S100A8, S100A9, and S100A12) and their receptor RAGE in mediating vascular inflammation. Mice lack the gene for S100A12, which in humans is located on chromosome 3 between S100A8 and S100A9. Transgenic mice with smooth muscle cell-targeted expression of S100A12 demonstrate increased coronary and aortic calcification, as well as increased plaque vulnerability. Serum S100A12 has recently been shown to predict future cardiovascular events in a longitudinal population study, underscoring a role for S100A12 as a potential biomarker for coronary artery disease. Genetic ablation of S100A9 or RAGE in atherosclerosis-susceptible apolipoprotein E null mice results in reduced atherosclerosis. Importantly, S100A12 and the RAGE axis can be modified pharmacologically. For example, soluble RAGE reduces murine atherosclerosis and vascular inflammation. Additionally, a class of compounds currently in phase III clinical trials for multiple sclerosis and rheumatologic conditions, the quinoline-3-carboxamides, reduce atherosclerotic plaque burden and complexity in transgenic S100A12 apolipoprotein E null mice, but have not been tested with regards to human atherosclerosis. The RAGE axis is an important mediator for inflammation-induced atherosclerosis, and S100A12 has emerged as biomarker for human atherosclerosis. Decreasing inflammation by inhibiting S100/calgranulin-mediated activation of RAGE attenuates murine atherosclerosis, and future studies in patients with coronary artery disease are warranted to confirm S100/RAGE as therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Adam Oesterle
- From the Department of Medicine, The University of Chicago, IL
| | | |
Collapse
|
41
|
Colafrancesco S, Priori R, Valesini G. Presentation and diagnosis of adult-onset Still’s disease: the implications of current and emerging markers in overcoming the diagnostic challenge. Expert Rev Clin Immunol 2015; 11:749-61. [DOI: 10.1586/1744666x.2015.1037287] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Role of Extracellular Damage-Associated Molecular Pattern Molecules (DAMPs) as Mediators of Persistent Pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:251-79. [DOI: 10.1016/bs.pmbts.2014.11.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Reis RAG, Bortot LO, Caliri A. In silico assessment of S100A12 monomer and dimer structural dynamics: implications for the understanding of its metal-induced conformational changes. J Biol Inorg Chem 2014; 19:1113-20. [PMID: 24944024 DOI: 10.1007/s00775-014-1149-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/25/2014] [Indexed: 01/01/2023]
Abstract
Changes in the concentration of different ions modulate several cellular processes, such as Ca(2+) and Zn(2+) in inflammation. Upon activation of immune system effector cells, the intracellular Ca(2+) concentration rises propagating the activation signal, leading to degranulation and generation of reactive oxygen species, which increases the Zn(2+) intracellular concentration as a consequence of the cellular antioxidant machinery. In this context, S100A12 is of special interest because it is a pro-inflammatory protein expressed in neutrophils whose structure and function are modulated by both Ca(2+) and Zn(2+). The current hypothesis about its mechanism of action was built based on biochemical and crystallographic data. However, there are missing connections between molecular structure and the way in which many events are concatenated at the triggering and along the inflammatory process. In this work we use molecular dynamics simulations to describe how variations in Zn(2+) and Ca(2+) concentrations modulate the structural dynamics of the calcium-free S100A12 dimer and monomer, which was not considered a part of the mechanism of action before. Our results suggest that (i) Zn(2+) have a determinant role in the dimerization step, as well as in the unbinding of the Na(+) complexed to the N-terminal EF-hand; (ii) the N-terminal EF-hand domain is the first to bind Ca(2+), and not the C-terminal, as usually accepted; and that (iii) Ca(2+) modulates the structural dynamics of H-III.
Collapse
Affiliation(s)
- Renata Almeida Garcia Reis
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil,
| | | | | |
Collapse
|
44
|
Gross SR, Sin CGT, Barraclough R, Rudland PS. Joining S100 proteins and migration: for better or for worse, in sickness and in health. Cell Mol Life Sci 2014; 71:1551-79. [PMID: 23811936 PMCID: PMC11113901 DOI: 10.1007/s00018-013-1400-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 12/12/2022]
Abstract
The vast diversity of S100 proteins has demonstrated a multitude of biological correlations with cell growth, cell differentiation and cell survival in numerous physiological and pathological conditions in all cells of the body. This review summarises some of the reported regulatory functions of S100 proteins (namely S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/S100A9, S100A10, S100A11, S100A12, S100B and S100P) on cellular migration and invasion, established in both culture and animal model systems and the possible mechanisms that have been proposed to be responsible. These mechanisms involve intracellular events and components of the cytoskeletal organisation (actin/myosin filaments, intermediate filaments and microtubules) as well as extracellular signalling at different cell surface receptors (RAGE and integrins). Finally, we shall attempt to demonstrate how aberrant expression of the S100 proteins may lead to pathological events and human disorders and furthermore provide a rationale to possibly explain why the expression of some of the S100 proteins (mainly S100A4 and S100P) has led to conflicting results on motility, depending on the cells used.
Collapse
Affiliation(s)
- Stephane R. Gross
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET UK
| | - Connie Goh Then Sin
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET UK
| | - Roger Barraclough
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| | - Philip S. Rudland
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| |
Collapse
|
45
|
Abstract
S100A8, S100A9 and S100A12 are considered proinflammatory mediators of atherosclerosis. Known as calgranulins, they are major components of neutrophils and are upregulated in macrophages and foam cells. They influence leukocyte recruitment, and may propagate inflammation by binding TLR4 and/or receptor for advanced glycation endproducts (RAGE). However, the receptors for calgranulins remain an enigma; we have no evidence for TLR4 or RAGE activation by S100A8 or S100A12. Moreover, gene regulation studies suggest antiinflammatory functions for S100A8 and emerging reports indicate pleiotropic roles. Unlike S100A9, S100A8 effectively scavenges oxidants generated by the myeloperoxidase system in vivo, forming novel thiol modifications. S100A8 is also readily S-nitrosylated, stabilizing nitric oxide and transporting it to hemoglobin. S100A8-SNO reduces leukocyte transmigration in the vasculature. S-glutathionylation of S100A9 modifies its effects on leukocyte adhesion. Both S100A8 forms inhibit mast cell activation, at least partially by scavenging reactive oxygen species required for signaling. Conversely, S100A12 activates and sequesters mast cells. However S100A12 suppresses proinflammatory cytokine induction by SAA-activated monocytes and macrophages, and inhibits matrix metalloprotease activity. We propose that the abundance and types of cells expressing calgranulins in particular microenvironments, their relative concentrations and post-translational modifications may have distinct functional outcomes, including those that are protective, at different stages of atherogenesis.
Collapse
Affiliation(s)
- Carolyn L Geczy
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales
| | | | | |
Collapse
|
46
|
Abstract
The S100 protein family consists of 24 members functionally distributed into three main subgroups: those that only exert intracellular regulatory effects, those with intracellular and extracellular functions and those which mainly exert extracellular regulatory effects. S100 proteins are only expressed in vertebrates and show cell-specific expression patterns. In some instances, a particular S100 protein can be induced in pathological circumstances in a cell type that does not express it in normal physiological conditions. Within cells, S100 proteins are involved in aspects of regulation of proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation and migration/invasion through interactions with a variety of target proteins including enzymes, cytoskeletal subunits, receptors, transcription factors and nucleic acids. Some S100 proteins are secreted or released and regulate cell functions in an autocrine and paracrine manner via activation of surface receptors (e.g. the receptor for advanced glycation end-products and toll-like receptor 4), G-protein-coupled receptors, scavenger receptors, or heparan sulfate proteoglycans and N-glycans. Extracellular S100A4 and S100B also interact with epidermal growth factor and basic fibroblast growth factor, respectively, thereby enhancing the activity of the corresponding receptors. Thus, extracellular S100 proteins exert regulatory activities on monocytes/macrophages/microglia, neutrophils, lymphocytes, mast cells, articular chondrocytes, endothelial and vascular smooth muscle cells, neurons, astrocytes, Schwann cells, epithelial cells, myoblasts and cardiomyocytes, thereby participating in innate and adaptive immune responses, cell migration and chemotaxis, tissue development and repair, and leukocyte and tumor cell invasion.
Collapse
Affiliation(s)
- R Donato
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
47
|
Yang D, Wei F, Tewary P, Howard OMZ, Oppenheim JJ. Alarmin-induced cell migration. Eur J Immunol 2013; 43:1412-8. [PMID: 23619968 PMCID: PMC6331004 DOI: 10.1002/eji.201243138] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/13/2013] [Accepted: 04/22/2013] [Indexed: 12/30/2022]
Abstract
Alarmins are endogenous, constitutively available, damage-associated molecular patterns that upon release can mobilize and activate various leukocytes for the induction of innate and adaptive immune responses. For our immune system to function appropriately, it relies on navigating various leukocytes to distinct places at the right time. The direction of cell migration is determined by chemotactic factors that include classical chemoattractants, chemokines, certain growth factors, and alarmins. This viewpoint provides an overview of alarmin-induced cell migration. Alarmins are capable of inducing the migration of diverse types of leukocytes and nonleukocytes either directly by triggering specific receptors or indirectly by inducing production of chemokines through the activation of various leukocytes via pattern recognition receptors. The receptors used by alarmins to directly induce cell migration can either be Gαi protein-coupled receptors or receptors such as the receptor for advanced glycation end products; however, the intracellular signaling events responsible for the direct chemotactic activities of alarmins are, to date, only partially elucidated. Given that alarmins act in concert with chemokines to regulate the recruitment and trafficking of leukocytes, these damage-associated molecular patterns are potentially involved in diverse biological processes as discussed in this viewpoint.
Collapse
Affiliation(s)
- De Yang
- Basic Research Program, Scientific Application and International Corporation–Frederick, Inc., Frederick, MD, USA
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, National Cancer Institute, Frederick National Laboratories for Cancer Research, Frederick, MD, USA
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Feng Wei
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, National Cancer Institute, Frederick National Laboratories for Cancer Research, Frederick, MD, USA
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Poonam Tewary
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, National Cancer Institute, Frederick National Laboratories for Cancer Research, Frederick, MD, USA
| | - O. M. Zack Howard
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, National Cancer Institute, Frederick National Laboratories for Cancer Research, Frederick, MD, USA
| | - Joost J. Oppenheim
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, National Cancer Institute, Frederick National Laboratories for Cancer Research, Frederick, MD, USA
| |
Collapse
|
48
|
Chung YM, Goyette J, Tedla N, Hsu K, Geczy CL. S100A12 suppresses pro-inflammatory, but not pro-thrombotic functions of serum amyloid A. PLoS One 2013; 8:e62372. [PMID: 23638054 PMCID: PMC3634854 DOI: 10.1371/journal.pone.0062372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/20/2013] [Indexed: 12/15/2022] Open
Abstract
S100A12 is elevated in the circulation in patients with chronic inflammatory diseases and recent studies indicate pleiotropic functions. Serum amyloid A induces monocyte cytokines and tissue factor. S100A12 did not stimulate IL-6, IL-8, IL-1β or TNF-α production by human peripheral blood mononuclear cells but low amounts consistently reduced cytokine mRNA and protein levels induced by serum amyloid A, by ∼49% and ∼46%, respectively. However, S100A12 did not affect serum amyloid A-induced monocyte tissue factor. In marked contrast, LPS-induced cytokines or tissue factor were not suppressed by S100A12. S100A12 did not alter cytokine mRNA stability or the cytokine secretory pathway. S100A12 and serum amyloid A did not appear to form complexes and although they may have common receptors, suppression was unlikely via receptor competition. Serum amyloid A induces cytokines via activation of NF-κB and the MAPK pathways. S100A12 reduced serum amyloid A-, but not LPS-induced ERK1/2 phosphorylation to baseline. It did not affect JNK or p38 phosphorylation or the NF-κB pathway. Reduction in ERK1/2 phosphorylation by S100A12 was unlikely due to changes in intracellular reactive oxygen species, Ca2+ flux or to recruitment of phosphatases. We suggest that S100A12 may modulate sterile inflammation by blunting pro-inflammatory properties of lipid-poor serum amyloid A deposited in chronic lesions where both proteins are elevated as a consequence of macrophage activation.
Collapse
Affiliation(s)
- Yuen Ming Chung
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Jesse Goyette
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicodemus Tedla
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Kenneth Hsu
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Carolyn L. Geczy
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
49
|
Kessel C, Holzinger D, Foell D. Phagocyte-derived S100 proteins in autoinflammation: putative role in pathogenesis and usefulness as biomarkers. Clin Immunol 2012; 147:229-41. [PMID: 23269200 DOI: 10.1016/j.clim.2012.11.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/20/2012] [Accepted: 11/22/2012] [Indexed: 11/29/2022]
Abstract
The cytoplasmic S100 proteins derived from cells of myeloid origin are promising new markers of (auto-)inflammation. S100A8/A9 and S100A12 are released from monocytes and granulocytes during activation of the innate immune system. Tissue and serum concentrations correlate to disease activity, both during local and systemic inflammation. In autoinflammatory diseases such as Familial Mediterranean Fever (FMF) and Systemic onset Juvenile Idiopathic Arthritis (SJIA), a dysregulation of alternative secretory pathways may be involved in pathogenesis and lead to hypersecretion of S100 proteins. Since autoinflammatory diseases can be difficult to diagnose, phagocyte-derived S100 proteins are valid tools in the diagnosis of autoinflammatory diseases. In addition, they may help achieve a better understanding of the pathophysiology of autoinflammatory disorders including SJIA and FMF, and even provide novel therapeutic targets in the future.
Collapse
Affiliation(s)
- Christoph Kessel
- Department of Pediatric Rheumatology and Immunology, University Children's Hospital, University of Muenster, Germany
| | | | | |
Collapse
|
50
|
Kennedy Crispin M, Fuentes-Duculan J, Gulati N, Johnson-Huang LM, Lentini T, Sullivan-Whalen M, Gilleaudeau P, Cueto I, Suárez-Fariñas M, Lowes MA, Krueger JG. Gene profiling of narrowband UVB-induced skin injury defines cellular and molecular innate immune responses. J Invest Dermatol 2012; 133:692-701. [PMID: 23151847 DOI: 10.1038/jid.2012.359] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The acute response of human skin to UVB radiation has not been fully characterized. We sought to define the cutaneous response at 24 hours following narrowband UVB (NB-UVB, 312-nm peak), a therapeutically relevant source of UVB, using transcriptional profiling, immunohistochemistry, and immunofluorescence. There were 1,522 unique differentially regulated genes, including upregulated genes encoding antimicrobial peptides (AMPs) (S100A7, S100A12, human beta-defensin 2, and elafin), as well as neutrophil and monocyte/dendritic cell (DC) chemoattractants (IL-8, CXCL1, CCL20, CCL2). Ingenuity pathway analysis demonstrated activation of innate defense and early adaptive immune pathways. Immunohistochemistry confirmed increased epidermal staining for AMPs (S100A7, S100A12, human beta-defensin 2, and elafin). Inflammatory myeloid CD11c(+)BDCA1(-) DCs were increased in irradiated skin, which were immature as shown by minimal colocalization with DC-LAMP, and coexpressed inflammatory markers tumor necrosis factor (TNF) and TNF-related apoptosis-inducing ligand in irradiated skin. There were increased BDCA3(+) DCs, a cross-presenting DC subtype with immunosuppressive functions, and these cells have not been previously characterized as part of the response to UVB. These results show that the acute response of human skin to erythemogenic doses of NB-UVB includes activation of innate defense mechanisms, as well as early infiltration of multiple subtypes of inflammatory DCs, which could serve as a link between innate and adaptive immunity.
Collapse
Affiliation(s)
- Milène Kennedy Crispin
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Judilyn Fuentes-Duculan
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Nicholas Gulati
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Leanne M Johnson-Huang
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Tim Lentini
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Mary Sullivan-Whalen
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Patricia Gilleaudeau
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Inna Cueto
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Mayte Suárez-Fariñas
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA; The Center for Clinical and Translational Science, Rockefeller University, New York, New York, USA
| | - Michelle A Lowes
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA.
| |
Collapse
|