1
|
Sharo C, Zhai T, Huang Z. Investigation of Potential Drug Targets Involved in Inflammation Contributing to Alzheimer's Disease Progression. Pharmaceuticals (Basel) 2024; 17:137. [PMID: 38276010 PMCID: PMC10819325 DOI: 10.3390/ph17010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Alzheimer's disease has become a major public health issue. While extensive research has been conducted in the last few decades, few drugs have been approved by the FDA to treat Alzheimer's disease. There is still an urgent need for understanding the disease pathogenesis, as well as identifying new drug targets for further drug discovery. Alzheimer's disease is known to arise from a build-up of amyloid beta (Aβ) plaques as well as tangles of tau proteins. Along similar lines to Alzheimer's disease, inflammation in the brain is known to stem from the degeneration of tissue and build-up of insoluble materials. A minireview was conducted in this work assessing the genes, proteins, reactions, and pathways that link brain inflammation and Alzheimer's disease. Existing tools in Systems Biology were implemented to build protein interaction networks, mainly for the classical complement pathway and G protein-coupled receptors (GPCRs), to rank the protein targets according to their interactions. The top 10 protein targets were mainly from the classical complement pathway. With the consideration of existing clinical trials and crystal structures, proteins C5AR1 and GARBG1 were identified as the best targets for further drug discovery, through computational approaches like ligand-protein docking techniques.
Collapse
Affiliation(s)
| | | | - Zuyi Huang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19085, USA
| |
Collapse
|
2
|
Jiménez E, Fornés A, Felipe R, Núñez E, Aragón C, López-Corcuera B. Calcium-Dependent Regulation of the Neuronal Glycine Transporter GlyT2 by M2 Muscarinic Acetylcholine Receptors. Neurochem Res 2021; 47:190-203. [PMID: 33765249 DOI: 10.1007/s11064-021-03298-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
The neuronal glycine transporter GlyT2 modulates inhibitory glycinergic neurotransmission and plays a key role in regulating nociceptive signal progression. The cholinergic system acting through muscarinic acetylcholine receptors (mAChRs) also mediates important regulations of nociceptive transmission being the M2 subtype the most abundantly expressed in the spinal cord. Here we studied the effect of M2 mAChRs stimulation on GlyT2 function co-expressed in a heterologous system with negligible levels of muscarinic receptor activity. We found GlyT2 is down-regulated by carbachol in a calcium-dependent manner. Different components involved in cell calcium homeostasis were analysed to establish a role in the mechanism of GlyT2 inhibition. GlyT2 down-regulation by carbachol was increased by thapsigargin and reduced by internal store depletion, although calcium release from endoplasmic reticulum or mitochondria had a minor role on GlyT2 inhibition. Our results are consistent with a GlyT2 sensitivity to intracellular calcium mobilized by M2 mAChRs in the subcortical area of the plasma membrane. A crucial role of the plasma membrane sodium calcium exchanger NCX is proposed.
Collapse
Affiliation(s)
- Esperanza Jiménez
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Amparo Fornés
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Novartis Farmacéutica S.A., Basel, Switzerland
| | - Raquel Felipe
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Enrique Núñez
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049, Madrid, Spain.,IdiPAZ-Hospital Universitario La Paz, Madrid, Spain
| | - Carmen Aragón
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049, Madrid, Spain.,IdiPAZ-Hospital Universitario La Paz, Madrid, Spain
| | - Beatriz López-Corcuera
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049, Madrid, Spain. .,IdiPAZ-Hospital Universitario La Paz, Madrid, Spain.
| |
Collapse
|
3
|
Noda S, Suzuki Y, Yamamura H, Giles WR, Imaizumi Y. Roles of LRRC26 as an auxiliary γ1-subunit of large-conductance Ca 2+-activated K + channels in bronchial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2020; 318:L366-L375. [PMID: 31800260 DOI: 10.1152/ajplung.00331.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In visceral smooth muscle cells (SMCs), the large-conductance Ca2+-activated K+ (BK) channel is one of the key elements underlying a negative feedback mechanism that is essential for the regulation of intracellular Ca2+ concentration. Although leucine-rich repeat-containing (LRRC) proteins have been identified as novel auxiliary γ-subunits of the BK channel (BKγ) in several cell types, its physiological roles in SMCs are unclear. The BKγ expression patterns in selected SM tissues were examined using real-time PCR analyses and Western blotting. The functional contribution of BKγ1 to BK channel activity was examined by whole cell patch-clamp in SMCs and heterologous expression systems. BKγ1 expression in mouse bronchial SMCs (mBSMCs) was higher than in other several SMC types. Coimmunoprecipitation and total internal reflection fluorescence imaging analyses revealed molecular interaction between BKα and BKγ1 in mBSMCs. Under voltage-clamp, steady-state activation of BK channel currents at pCa 8.0 in mBSMCs occurred in a voltage range comparable to that of reconstituted BKα/BKγ1 complex. However, this range was much more negative than in mouse aortic SMCs (mASMCs) or in HEK293 cells expressing BKα alone and β-subunit (BKβ1). Mallotoxin, a selective activator of BK channel that lacks BKγ1, dose-dependently activated BK currents in mASMCs but not in mBSMCs. The abundant expression of BKγ1 in mBSMCs extensively facilitates BK channel activity to keep the resting membrane potential at negative values and prevents contraction under physiological conditions.
Collapse
Affiliation(s)
- Sayuri Noda
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Wayne R Giles
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
4
|
Chen C, Yang Y, Yu MF, Shi S, Han S, Liu QH, Cai C, Shen J. Relaxant Action of Diclofenac Sodium on Mouse Airway Smooth Muscle. Front Pharmacol 2019; 10:608. [PMID: 31275141 PMCID: PMC6591797 DOI: 10.3389/fphar.2019.00608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023] Open
Abstract
Diclofenac sodium (DCF) is a nonsteroidal anti-inflammatory drug (NSAID) and is widely used as an analgesic and anti-inflammatory agent. Herein, we found that DCF could relax high K+ (80 mM K+)-/ACh-precontracted tracheal rings (TRs) in mice. This study aimed to elucidate the underlying mechanisms of DCF-induced relaxations. The effects of DCF on airway smooth muscle (ASM) cells were explored using multiple biophysiological techniques, such as isometric tension measurement and patch-clamping experiments. Both high K+- and ACh-evoked contraction of TRs in mice were relaxed by DCF in a dose-dependent manner. The results of isometric tension and patch-clamping experiments demonstrated that DCF-induced relaxation in ASM cells was mediated by cytosolic free Ca2+, which was decreased via inhibition of voltage-dependent L-type Ca2+ channels (VDLCCs), nonselective cation channels (NSCCs), and Na+/Ca2+ exchange. Meanwhile, DCF also enhanced large conductance Ca2+ activated K+ (BK) channels, which led to the relaxation of ASMs. Our data demonstrated that DCF relaxed ASMs by decreasing the intracellular Ca2+ concentration via inhibition of Ca2+ influx and Na+/Ca2+ exchange. Meanwhile, the enhanced BK channels also played a role in DCF-induced relaxation in ASMs. These results suggest that DCF is a potential candidate for antibronchospasmic drugs used in treating respiratory diseases such as asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Chunfa Chen
- Institute for Medical Biology, Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yongle Yang
- Institute for Medical Biology, Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Meng-Fei Yu
- Institute for Medical Biology, Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Shunbo Shi
- Institute for Medical Biology, Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Shuhui Han
- Institute for Medical Biology, Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qing-hua Liu
- Institute for Medical Biology, Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Congli Cai
- Department of Molecular Biology, Wuhan Youzhiyou Biopharmaceutical Co. Ltd., Wuhan, China
| | - Jinhua Shen
- Institute for Medical Biology, Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
5
|
Aktories K, Gierschik P, Heringdorf DMZ, Schmidt M, Schultz G, Wieland T. cAMP guided his way: a life for G protein-mediated signal transduction and molecular pharmacology-tribute to Karl H. Jakobs. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:887-911. [PMID: 31101932 DOI: 10.1007/s00210-019-01650-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Karl H. Jakobs, former editor-in-chief of Naunyn-Schmiedeberg's Archives of Pharmacology and renowned molecular pharmacologist, passed away in April 2018. In this article, his scientific achievements regarding G protein-mediated signal transduction and regulation of canonical pathways are summarized. Particularly, the discovery of inhibitory G proteins for adenylyl cyclase, methods for the analysis of receptor-G protein interactions, GTP supply by nucleoside diphosphate kinases, mechanisms in phospholipase C and phospholipase D activity regulation, as well as the development of the concept of sphingosine-1-phosphate as extra- and intracellular messenger will presented. His seminal scientific and methodological contributions are put in a general and timely perspective to display and honor his outstanding input to the current knowledge in molecular pharmacology.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert Ludwigs University, 79104, Freiburg, Germany
| | - Peter Gierschik
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89070, Ulm, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe University, 60590, Frankfurt am Main, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, 9713AV, Groningen, The Netherlands
| | - Günter Schultz
- Department of Pharmacology, Charité University Medical Center Berlin, Campus Benjamin Franklin, 14195, Berlin, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13 - 17, 68167, Mannheim, Germany.
| |
Collapse
|
6
|
Tóth AD, Schell R, Lévay M, Vettel C, Theis P, Haslinger C, Alban F, Werhahn S, Frischbier L, Krebs-Haupenthal J, Thomas D, Gröne HJ, Avkiran M, Katus HA, Wieland T, Backs J. Inflammation leads through PGE/EP 3 signaling to HDAC5/MEF2-dependent transcription in cardiac myocytes. EMBO Mol Med 2019; 10:emmm.201708536. [PMID: 29907596 PMCID: PMC6034133 DOI: 10.15252/emmm.201708536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The myocyte enhancer factor 2 (MEF2) regulates transcription in cardiac myocytes and adverse remodeling of adult hearts. Activators of G protein-coupled receptors (GPCRs) have been reported to activate MEF2, but a comprehensive analysis of GPCR activators that regulate MEF2 has to our knowledge not been performed. Here, we tested several GPCR agonists regarding their ability to activate a MEF2 reporter in neonatal rat ventricular myocytes. The inflammatory mediator prostaglandin E2 (PGE2) strongly activated MEF2. Using pharmacological and protein-based inhibitors, we demonstrated that PGE2 regulates MEF2 via the EP3 receptor, the βγ subunit of Gi/o protein and two concomitantly activated downstream pathways. The first consists of Tiam1, Rac1, and its effector p21-activated kinase 2, the second of protein kinase D. Both pathways converge on and inactivate histone deacetylase 5 (HDAC5) and thereby de-repress MEF2. In vivo, endotoxemia in MEF2-reporter mice induced upregulation of PGE2 and MEF2 activation. Our findings provide an unexpected new link between inflammation and cardiac remodeling by de-repression of MEF2 through HDAC5 inactivation, which has potential implications for new strategies to treat inflammatory cardiomyopathies.
Collapse
Affiliation(s)
- András D Tóth
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany.,Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Richard Schell
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany.,Department of Cardiology, Heidelberg University, Heidelberg, Germany
| | - Magdolna Lévay
- DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany.,Experimental Pharmacology, European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christiane Vettel
- DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany.,Experimental Pharmacology, European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp Theis
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Clemens Haslinger
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Felix Alban
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Stefanie Werhahn
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Lina Frischbier
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Jutta Krebs-Haupenthal
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Metin Avkiran
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, The Rayne Institute, St Thomas' Hospital, London, UK
| | - Hugo A Katus
- Department of Cardiology, Heidelberg University, Heidelberg, Germany
| | - Thomas Wieland
- DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany.,Experimental Pharmacology, European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johannes Backs
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany .,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| |
Collapse
|
7
|
Bradley E, Large RJ, Bihun VV, Mullins ND, Hollywood MA, Sergeant GP, Thornbury KD. Inhibitory effects of openers of large-conductance Ca 2+-activated K + channels on agonist-induced phasic contractions in rabbit and mouse bronchial smooth muscle. Am J Physiol Cell Physiol 2018; 315:C818-C829. [PMID: 30257105 DOI: 10.1152/ajpcell.00068.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Airway smooth muscle expresses abundant BKCa channels, but their role in regulating contractions remains controversial. This study examines the effects of two potent BKCa channel openers on agonist-induced phasic contractions in rabbit and mouse bronchi. First, we demonstrated the ability of 10 μM GoSlo-SR5-130 to activate BKCa channels in inside-out patches from rabbit bronchial myocytes, where it shifted the activation V1/2 by -88 ± 11 mV (100 nM Ca2+, n = 7). In mouse airway smooth muscle cells, GoSlo-SR5-130 dose dependently shifted V1/2 by 12-83 mV over a concentration range of 1-30 μM. Compound X, a racemic mixture of two enantiomers, reported to be potent BKCa channel openers, shifted V1/2 by 20-79 mV over a concentration range of 0.3-3 μM. In rabbit bronchial rings, exposure to histamine (1 μM) induced phasic contractions after a delay of ~35 min. These were abolished by GoSlo-SR5-130 (30 μM). Nifedipine (100 nM) and CaCCinhA01 (10 μM), a TMEM16A blocker, also abolished histamine-induced phasic contractions. In mouse bronchi, similar phasic contractions were evoked by exposure to U46619 (100 nM) and carbachol (100 nM). In each case, these were inhibited by concentrations of GoSlo-SR5-130 and compound X that shifted the activation V1/2 of BKCa channels in the order of -80 mV. In conclusion, membrane potential-dependent regulation of L-type Ca2+ channels appears to be important for histamine-, U46619-, and carbachol-induced phasic contractions in airway smooth muscle. Contractions can be abolished by BKCa channel openers, suggesting that these channels are potential targets for treating some causes of airway obstruction.
Collapse
Affiliation(s)
- Eamonn Bradley
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Roddy J Large
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | | | - Nicolas D Mullins
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| |
Collapse
|
8
|
Chloroform Extract of Artemisia annua L. Relaxes Mouse Airway Smooth Muscle. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9870414. [PMID: 29259649 PMCID: PMC5702405 DOI: 10.1155/2017/9870414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/06/2017] [Accepted: 10/10/2017] [Indexed: 11/18/2022]
Abstract
Artemisia annua L. belongs to the Asteraceae family, which is indigenous to China. It has valuable pharmacological properties, such as antimalarial, anti-inflammatory, and anticancer properties. However, whether it possesses antiasthma properties is unknown. In the current study, chloroform extract of Artemisia annua L. (CEAA) was prepared, and we found that CEAA completely eliminated acetylcholine (ACh) or high K+-elicited (80 mM) contractions of mouse tracheal rings (TRs). Patch-clamp technique and ion channel blockers were employed to explore the underlying mechanisms of the relaxant effect of CEAA. In whole-cell current recording, CEAA almost fully abolished voltage-dependent Ca2+ channel (VDCC) currents and markedly enhanced large conductance Ca2+-activated K+ (BK) channel currents on airway smooth muscle cells (ASMCs). In single channel current recording, CEAA increased the opening probability but had no effect on the single channel conductance of BK channels. However, under paxilline-preincubated (a selective BK channel blocker) conditions, CEAA only slightly increased BK channel currents. These results indicate that CEAA may contain active components with potent antiasthma activity. The abolished VDCCs by CEAA may mainly contribute to the underlying mechanism through which it acts as an effective antiasthmatic compound, but the enhanced BK currents might play a less important role in the antiasthmatic effects.
Collapse
|
9
|
Zhao J, Deng Y, Jiang Z, Qing H. G Protein-Coupled Receptors (GPCRs) in Alzheimer's Disease: A Focus on BACE1 Related GPCRs. Front Aging Neurosci 2016; 8:58. [PMID: 27047374 PMCID: PMC4805599 DOI: 10.3389/fnagi.2016.00058] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/08/2016] [Indexed: 12/22/2022] Open
Abstract
The G protein coupled receptors (GPCRs) have been considered as one of the largest families of validated drug targets, which involve in almost overall physiological functions and pathological processes. Meanwhile, Alzheimer’s disease (AD), the most common type of dementia, affects thinking, learning, memory and behavior of elderly people, that has become the hotspot nowadays for its increasing risks and incurability. The above fields have been intensively studied, and the link between the two has been demonstrated, whereas the way how GPCRs perturb AD progress are yet to be further explored given their complexities. In this review, we summarized recent progress regarding the GPCRs interacted with β-site APP cleaving enzyme 1 (BACE1), a key secretase in AD pathogenesis. Then we discussed the current findings on the regulatory roles of GPCRs on BACE1, and the possibility for pharmaceutical treatment of AD patients by the allosteric modulators and biased ligands of GPCRs. We hope this review can provide new insights into the understanding of mechanistic link between GPCRs and BACE1, and highlight the potential of GPCRs as therapeutic target for AD.
Collapse
Affiliation(s)
- Juan Zhao
- School of Life Science, Beijing Institute of Technology Beijing, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology Beijing, China
| | - Zhaotan Jiang
- School of Physics, Beijing Institute of Technology Beijing, China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology Beijing, China
| |
Collapse
|
10
|
Karlin A. Membrane potential and Ca2+ concentration dependence on pressure and vasoactive agents in arterial smooth muscle: A model. ACTA ACUST UNITED AC 2016; 146:79-96. [PMID: 26123196 PMCID: PMC4485026 DOI: 10.1085/jgp.201511380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A mathematical model incorporating junctional and stretch-activated microdomains and 37 protein components describes the myogenic response in arterial smooth muscle cells. Arterial smooth muscle (SM) cells respond autonomously to changes in intravascular pressure, adjusting tension to maintain vessel diameter. The values of membrane potential (Vm) and sarcoplasmic Ca2+ concentration (Cain) within minutes of a change in pressure are the results of two opposing pathways, both of which use Ca2+ as a signal. This works because the two Ca2+-signaling pathways are confined to distinct microdomains in which the Ca2+ concentrations needed to activate key channels are transiently higher than Cain. A mathematical model of an isolated arterial SM cell is presented that incorporates the two types of microdomains. The first type consists of junctions between cisternae of the peripheral sarcoplasmic reticulum (SR), containing ryanodine receptors (RyRs), and the sarcolemma, containing voltage- and Ca2+-activated K+ (BK) channels. These junctional microdomains promote hyperpolarization, reduced Cain, and relaxation. The second type is postulated to form around stretch-activated nonspecific cation channels and neighboring Ca2+-activated Cl− channels, and promotes the opposite (depolarization, increased Cain, and contraction). The model includes three additional compartments: the sarcoplasm, the central SR lumen, and the peripheral SR lumen. It incorporates 37 protein components. In addition to pressure, the model accommodates inputs of α- and β-adrenergic agonists, ATP, 11,12-epoxyeicosatrienoic acid, and nitric oxide (NO). The parameters of the equations were adjusted to obtain a close fit to reported Vm and Cain as functions of pressure, which have been determined in cerebral arteries. The simulations were insensitive to ±10% changes in most of the parameters. The model also simulated the effects of inhibiting RyR, BK, or voltage-activated Ca2+ channels on Vm and Cain. Deletion of BK β1 subunits is known to increase arterial–SM tension. In the model, deletion of β1 raised Cain at all pressures, and these increases were reversed by NO.
Collapse
Affiliation(s)
- Arthur Karlin
- Department of Biochemistry and Molecular Biophysics, Department of Physiology and Cellular Biophysics, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
11
|
Mastromatteo-Alberga P, Placeres-Uray F, Alfonzo-González MA, Alfonzo RGD, Becemberg ILD, Alfonzo MJ. A novel PDE1A coupled to M2AChR at plasma membranes from bovine tracheal smooth muscle. J Recept Signal Transduct Res 2015; 36:278-87. [PMID: 26513204 DOI: 10.3109/10799893.2015.1101136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Muscarinic antagonists, via muscarinic receptors increase the cAMP/cGMP levels at bovine tracheal smooth muscle (BTSM) through the inhibition of phosphodiesterases (PDEs), displaying a similar behavior of vinpocetine (a specific-PDE1 inhibitor). The presence of PDE1 hydrolyzing both cyclic nucleotides in BTSM strips was revealed. Moreover, a vinpocetine and muscarinic antagonists inhibited PDE1 located at plasma membranes (PM) fractions from BTSM showing such inhibition, an M(2)AChR pharmacological profile. Therefore, a novel Ca(2+)/CaM dependent and vinpocetine inhibited PDE1 was purified and characterized at PM fractions from BTSM. This PDE1 activity was removed from PM fractions using a hypotonic buffer and purified some 38 fold using two columns (Q-Sepharose and CaM-agarose). This PDE1 was stimulated by CaM and inhibited by vinpocetine showing two bands in PAGE-SDS (56, 58 kDa) being the 58 kDa identified as PDE1A by Western blotts. This PDE1A activity was assayed with [(3)H]cGMP and [(3)H]cAMP exhibiting a higher affinity as Km (μM) for cGMP than cAMP but being close values with V(max) cAMP/cGMP ratio of 1.5. The co-factor Mg(2+) showed similar K(A) (mM) for both cyclic nucleotides. Vinpocetine showed similar inhibition concentration 50% (IC(50) of 4.9 and 4.6 μM) for cAMP and cGMP, respectively. CaM stimulated the cyclic nucleotides hydrolysis by PDE1A exhibiting similar activation constant as K(CaM), in nM range. The original finding was the identification and purification of a vinpocetine and muscarinic antagonist-inhibited and CaM-activated PM-bound PDE1A, linked to M(2)AChR. A model of this novel signal transducing cascade for the regulation of cyclic nucleotides levels at BTSM is proposed.
Collapse
Affiliation(s)
- Patrizzia Mastromatteo-Alberga
- a Sección de Biomembranas, Facultad de Medicina, Universidad Central de Venezuela, Instituto de Medicina Experimental , Caracas , Venezuela
| | - Fabiola Placeres-Uray
- a Sección de Biomembranas, Facultad de Medicina, Universidad Central de Venezuela, Instituto de Medicina Experimental , Caracas , Venezuela
| | - Marcelo A Alfonzo-González
- a Sección de Biomembranas, Facultad de Medicina, Universidad Central de Venezuela, Instituto de Medicina Experimental , Caracas , Venezuela
| | - Ramona Gonzalez de Alfonzo
- a Sección de Biomembranas, Facultad de Medicina, Universidad Central de Venezuela, Instituto de Medicina Experimental , Caracas , Venezuela
| | - Itala Lippo de Becemberg
- a Sección de Biomembranas, Facultad de Medicina, Universidad Central de Venezuela, Instituto de Medicina Experimental , Caracas , Venezuela
| | - Marcelo J Alfonzo
- a Sección de Biomembranas, Facultad de Medicina, Universidad Central de Venezuela, Instituto de Medicina Experimental , Caracas , Venezuela
| |
Collapse
|
12
|
Kume H, Fukunaga K, Oguma T. Research and development of bronchodilators for asthma and COPD with a focus on G protein/KCa channel linkage and β2-adrenergic intrinsic efficacy. Pharmacol Ther 2015; 156:75-89. [PMID: 26432616 DOI: 10.1016/j.pharmthera.2015.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bronchodilators are used to improve symptoms and lung function in asthma and COPD. Airway smooth muscle tone is regulated by both muscarinic and β2-adrenergic receptor activity. Large-conductance Ca(2+)-activated K(+) (KCa) channels are activated by β2-adrenergic receptor agonists, via Gs, and suppressed by muscarinic receptor antagonists via Gi. This functional antagonism converges on the G protein/KCa channel linkages. Membrane potential regulated by KCa channels contributes to airway smooth muscle tension via Ca(2+) influx passing through voltage-dependent Ca(2+) (VDC) channels. The Gs/KCa/VDC channel linkage is a key process in not only physiological effects, but also in dysfunction of β2-adrenergic receptors and airway remodeling. Moreover, this pathway is involved in the synergistic effects between β2-adrenergic receptor agonists and muscarinic receptor antagonists. Intrinsic efficacy is also an important characteristic for both maintenance and loss of β2-adrenergic action. Allosteric modulators of G protein-coupled receptors contribute not only to this synergistic effect between β2-adrenergic and muscarinic M2 receptors, but also to intrinsic efficacy. The effects of weak partial agonists are suppressed by lowering receptor number, disordering receptor function, and enhancing functional antagonism; in contrast, those of full or strong partial agonists are not suppressed. Excessive exposure to full agonists causes β2-adrenergic desensitization; in contrast, exposure to partial agonists does not cause desensitization. Intrinsic efficacy may provide the rationale for the clinical use of β2-adrenergic receptor agonists in asthma and COPD. In conclusion, the G protein/KCa linkage and intrinsic efficacy (allosteric effects) may be therapeutic targets for research and development of novel agents against both airway obstruction and airway remodeling.
Collapse
Affiliation(s)
- Hiroaki Kume
- Department of Respiratory Medicine and Allergology, Kinki University Faculty of Medicine, Japan.
| | - Kentaro Fukunaga
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Japan
| | - Tetsuya Oguma
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Japan
| |
Collapse
|
13
|
Wei MY, Xue L, Tan L, Sai WB, Liu XC, Jiang QJ, Shen J, Peng YB, Zhao P, Yu MF, Chen W, Ma LQ, Zhai K, Zou C, Guo D, Qin G, Zheng YM, Wang YX, Ji G, Liu QH. Involvement of large-conductance Ca2+-activated K+ channels in chloroquine-induced force alterations in pre-contracted airway smooth muscle. PLoS One 2015; 10:e0121566. [PMID: 25822280 PMCID: PMC4378962 DOI: 10.1371/journal.pone.0121566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 02/13/2015] [Indexed: 02/06/2023] Open
Abstract
The participation of large-conductance Ca2+ activated K+ channels (BKs) in chloroquine (chloro)-induced relaxation of precontracted airway smooth muscle (ASM) is currently undefined. In this study we found that iberiotoxin (IbTx, a selective inhibitor of BKs) and chloro both completely blocked spontaneous transient outward currents (STOCs) in single mouse tracheal smooth muscle cells, which suggests that chloro might block BKs. We further found that chloro inhibited Ca2+ sparks and caffeine-induced global Ca2+ increases. Moreover, chloro can directly block single BK currents completely from the intracellular side and partially from the extracellular side. All these data indicate that the chloro-induced inhibition of STOCs is due to the blockade of chloro on both BKs and ryanodine receptors (RyRs). We also found that low concentrations of chloro resulted in additional contractions in tracheal rings that were precontracted by acetylcholine (ACH). Increases in chloro concentration reversed the contractile actions to relaxations. In the presence of IbTx or paxilline (pax), BK blockers, chloro-induced contractions were inhibited, although the high concentrations of chloro-induced relaxations were not affected. Taken together, our results indicate that chloro blocks BKs and RyRs, resulting in abolishment of STOCs and occurrence of contraction, the latter will counteract the relaxations induced by high concentrations of chloro.
Collapse
Affiliation(s)
- Ming-Yu Wei
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Lu Xue
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Li Tan
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Wen-Bo Sai
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiao-Cao Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Qiu-Ju Jiang
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jinhua Shen
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yong-Bo Peng
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ping Zhao
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Meng-Fei Yu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Weiwei Chen
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Li-Qun Ma
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Kui Zhai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunbin Zou
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Donglin Guo
- Lankenau Institute for Medical Research & Main Line Health Heart Center, 100 Lancaster Avenue, Wynnewood, PA 19096, United States of America
| | - Gangjian Qin
- Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America
| | - Yun-Min Zheng
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, United States of America
| | - Yong-Xiao Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, United States of America
| | - Guangju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- * E-mail: (QHL); (GJ)
| | - Qing-Hua Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
- * E-mail: (QHL); (GJ)
| |
Collapse
|
14
|
Fernández-Mariño AI, Cidad P, Zafra D, Nocito L, Domínguez J, Oliván-Viguera A, Köhler R, López-López JR, Pérez-García MT, Valverde MÁ, Guinovart JJ, Fernández-Fernández JM. Tungstate-targeting of BKαβ1 channels tunes ERK phosphorylation and cell proliferation in human vascular smooth muscle. PLoS One 2015; 10:e0118148. [PMID: 25659150 PMCID: PMC4320054 DOI: 10.1371/journal.pone.0118148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/05/2015] [Indexed: 02/07/2023] Open
Abstract
Despite the substantial knowledge on the antidiabetic, antiobesity and antihypertensive actions of tungstate, information on its primary target/s is scarce. Tungstate activates both the ERK1/2 pathway and the vascular voltage- and Ca2+-dependent large-conductance BKαβ1 potassium channel, which modulates vascular smooth muscle cell (VSMC) proliferation and function, respectively. Here, we have assessed the possible involvement of BKαβ1 channels in the tungstate-induced ERK phosphorylation and its relevance for VSMC proliferation. Western blot analysis in HEK cell lines showed that expression of vascular BKαβ1 channels potentiates the tungstate-induced ERK1/2 phosphorylation in a Gi/o protein-dependent manner. Tungstate activated BKαβ1 channels upstream of G proteins as channel activation was not altered by the inhibition of G proteins with GDPβS or pertussis toxin. Moreover, analysis of Gi/o protein activation measuring the FRET among heterologously expressed Gi protein subunits suggested that tungstate-targeting of BKαβ1 channels promotes G protein activation. Single channel recordings on VSMCs from wild-type and β1-knockout mice indicated that the presence of the regulatory β1 subunit was essential for the tungstate-mediated activation of BK channels in VSMCs. Moreover, the specific BK channel blocker iberiotoxin lowered tungstate-induced ERK phosphorylation by 55% and partially reverted (by 51%) the tungstate-produced reduction of platelet-derived growth factor (PDGF)-induced proliferation in human VSMCs. Our observations indicate that tungstate-targeting of BKαβ1 channels promotes activation of PTX-sensitive Gi proteins to enhance the tungstate-induced phosphorylation of ERK, and inhibits PDGF-stimulated cell proliferation in human vascular smooth muscle.
Collapse
Affiliation(s)
- Ana Isabel Fernández-Mariño
- Laboratori de Fisiologia Molecular i Canalopaties, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Pilar Cidad
- Departamento de Bioquímica y Biología Molecular y Fisiología and Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Delia Zafra
- Institute for Research in Biomedicine (IRB Barcelona) and Department of Biochemistry and Molecular Biology, University of Barcelona, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Barcelona, Spain
| | - Laura Nocito
- Institute for Research in Biomedicine (IRB Barcelona) and Department of Biochemistry and Molecular Biology, University of Barcelona, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Barcelona, Spain
| | - Jorge Domínguez
- Institute for Research in Biomedicine (IRB Barcelona) and Department of Biochemistry and Molecular Biology, University of Barcelona, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Barcelona, Spain
| | - Aida Oliván-Viguera
- Aragon Institute of Health Sciences I+CS/IIS and Fundación Agencia Aragonesa para la Investigación y Desarrollo (ARAID), Zaragoza, Spain
| | - Ralf Köhler
- Aragon Institute of Health Sciences I+CS/IIS and Fundación Agencia Aragonesa para la Investigación y Desarrollo (ARAID), Zaragoza, Spain
| | - José R. López-López
- Departamento de Bioquímica y Biología Molecular y Fisiología and Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - María Teresa Pérez-García
- Departamento de Bioquímica y Biología Molecular y Fisiología and Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Miguel Ángel Valverde
- Laboratori de Fisiologia Molecular i Canalopaties, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Joan J. Guinovart
- Institute for Research in Biomedicine (IRB Barcelona) and Department of Biochemistry and Molecular Biology, University of Barcelona, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Barcelona, Spain
| | - José M. Fernández-Fernández
- Laboratori de Fisiologia Molecular i Canalopaties, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail:
| |
Collapse
|
15
|
Toro L, Li M, Zhang Z, Singh H, Wu Y, Stefani E. MaxiK channel and cell signalling. Pflugers Arch 2014; 466:875-86. [PMID: 24077696 DOI: 10.1007/s00424-013-1359-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 01/23/2023]
Abstract
The large-conductance Ca2+- and voltage-activated K+ (MaxiK, BK, BKCa, Slo1, KCa1.1) channel role in cell signalling is becoming apparent as we learn how the channel interacts with a multiplicity of proteins not only at the plasma membrane but also in intracellular organelles including the endoplasmic reticulum, nucleus, and mitochondria. In this review, we focus on the interactions of MaxiK channels with seven-transmembrane G protein-coupled receptors and discuss information suggesting that, the channel big C-terminus may act as the nucleus of signalling molecules including kinases relevant for cell death and survival. Increasing evidence indicates that the channel is able to associate with a variety of receptors including β-adrenergic receptors, G protein-coupled estrogen receptors, acetylcholine receptors, thromboxane A2 receptors, and angiotensin II receptors, which highlights the varied functions that the channel has (or may have) not only in regulating contraction/relaxation of muscle cells or neurotransmission in the brain but also in cell metabolism, proliferation, migration, and gene expression. In line with this view, MaxiK channels have been implicated in obesity and in brain, prostate, and mammary cancers. A better understanding on the molecular mechanisms underlying or triggered by MaxiK channel abnormalities like overexpression in certain cancers may lead to new therapeutics to prevent devastating diseases.
Collapse
|
16
|
Lorca RA, Prabagaran M, England SK. Functional insights into modulation of BKCa channel activity to alter myometrial contractility. Front Physiol 2014; 5:289. [PMID: 25132821 PMCID: PMC4116789 DOI: 10.3389/fphys.2014.00289] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/14/2014] [Indexed: 12/15/2022] Open
Abstract
The large-conductance voltage- and Ca(2+)-activated K(+) channel (BKCa) is an important regulator of membrane excitability in a wide variety of cells and tissues. In myometrial smooth muscle, activation of BKCa plays essential roles in buffering contractility to maintain uterine quiescence during pregnancy and in the transition to a more contractile state at the onset of labor. Multiple mechanisms of modulation have been described to alter BKCa channel activity, expression, and cellular localization. In the myometrium, BKCa is regulated by alternative splicing, protein targeting to the plasma membrane, compartmentation in membrane microdomains, and posttranslational modifications. In addition, interaction with auxiliary proteins (i.e., β1- and β2-subunits), association with G-protein coupled receptor signaling pathways, such as those activated by adrenergic and oxytocin receptors, and hormonal regulation provide further mechanisms of variable modulation of BKCa channel function in myometrial smooth muscle. Here, we provide an overview of these mechanisms of BKCa channel modulation and provide a context for them in relation to myometrial function.
Collapse
Affiliation(s)
- Ramón A Lorca
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine St. Louis, MO, USA
| | - Monali Prabagaran
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine St. Louis, MO, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine St. Louis, MO, USA
| |
Collapse
|
17
|
Zhang Z, Li M, Lu R, Alioua A, Stefani E, Toro L. The angiotensin II type 1 receptor (AT1R) closely interacts with large conductance voltage- and Ca2+-activated K+ (BK) channels and inhibits their activity independent of G-protein activation. J Biol Chem 2014; 289:25678-89. [PMID: 25070892 DOI: 10.1074/jbc.m114.595603] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiotensin II (ANG-II) and BK channels play important roles in the regulation of blood pressure. In arterial smooth muscle, ANG-II inhibits BK channels, but the underlying molecular mechanisms are unknown. Here, we first investigated whether ANG-II utilizes its type 1 receptor (AT1R) to modulate BK activity. Pharmacological, biochemical, and molecular evidence supports a role for AT1R. In renal arterial myocytes, the AT1R antagonist losartan (10 μM) abolished the ANG-II (1 μM)-induced reduction of whole cell BK currents, and BK channels and ANG-II receptors were found to co-localize at the cell periphery. We also found that BK inhibition via ANG-II-activated AT1R was independent of G-protein activation (assessed with 500 μM GDPβS). In BK-expressing HEK293T cells, ANG-II (1 μM) also induced a reduction of BK currents, which was contingent on AT1R expression. The molecular mechanisms of AT1R and BK channel coupling were investigated in co-transfected cells. Co-immunoprecipitation showed formation of a macromolecular complex, and live immunolabeling demonstrated that both proteins co-localized at the plasma membrane with high proximity indexes as in arterial myocytes. Consistent with a close association, we discovered that the sole AT1R expression could decrease BK channel voltage sensitivity. Truncated BK proteins revealed that the voltage-sensing conduction cassette is sufficient for BK-AT1R association. Finally, C-terminal yellow and cyan fluorescent fusion proteins, AT1R-YFP and BK-CFP, displayed robust co-localized Förster resonance energy transfer, demonstrating intermolecular interactions at their C termini. Overall, our results strongly suggest that AT1R regulates BK channels through a close protein-protein interaction involving multiple BK regions and independent of G-protein activation.
Collapse
Affiliation(s)
- Zhu Zhang
- From the Departments of Anesthesiology
| | - Min Li
- From the Departments of Anesthesiology
| | - Rong Lu
- From the Departments of Anesthesiology
| | | | - Enrico Stefani
- From the Departments of Anesthesiology, Physiology, the Brain Research Institute, and the Cardiovascular Research Laboratory, University of California, Los Angeles, California 90095
| | - Ligia Toro
- From the Departments of Anesthesiology, the Brain Research Institute, and the Cardiovascular Research Laboratory, University of California, Los Angeles, California 90095 Molecular and Medical Pharmacology, and
| |
Collapse
|
18
|
Parajuli SP, Hristov KL, Cheng Q, Malysz J, Rovner ES, Petkov GV. Functional link between muscarinic receptors and large-conductance Ca2+ -activated K+ channels in freshly isolated human detrusor smooth muscle cells. Pflugers Arch 2014; 467:665-75. [PMID: 24867682 DOI: 10.1007/s00424-014-1537-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/25/2014] [Accepted: 05/13/2014] [Indexed: 01/25/2023]
Abstract
Activation of muscarinic acetylcholine receptors (mAChRs) constitutes the primary mechanism for enhancing excitability and contractility of human detrusor smooth muscle (DSM). Since the large-conductance Ca(2+)-activated K(+) (KCa1.1) channels are key regulators of human DSM function, we investigated whether mAChR activation increases human DSM excitability by inhibiting KCa1.1 channels. We used the mAChR agonist, carbachol, to determine the changes in KCa1.1 channel activity upon mAChR activation in freshly isolated human DSM cells obtained from open bladder surgeries using the perforated whole cell and single KCa1.1 channel patch-clamp recordings. Human DSM cells were collected from 29 patients (23 males and 6 females, average age of 65.9 ± 1.5 years). Carbachol inhibited the amplitude and frequency of KCa1.1 channel-mediated spontaneous transient outward currents and spontaneous transient hyperpolarizations, which are triggered by the release of Ca(2+) from ryanodine receptors. Carbachol also caused membrane potential depolarization, which was not observed in the presence of iberiotoxin, a KCa1.1 channel inhibitor, indicating the critical role of the KCa1.1 channels. The potential direct carbachol effects on KCa1.1 channels were examined under conditions of removing the major cellular Ca(2+) sources for KCa1.1 channel activation with pharmacological inhibitors (thapsigargin, ryanodine, and nifedipine). In the presence of these inhibitors, carbachol did not affect the single KCa1.1 channel open probability and mean KCa1.1 channel conductance (cell-attached configuration) or depolarization-induced whole cell steady-state KCa1.1 currents. The data support the concept that mAChR activation triggers indirect functional KCa1.1 channel inhibition mediated by intracellular Ca(2+), thus increasing the excitability in human DSM cells.
Collapse
Affiliation(s)
- Shankar P Parajuli
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Coker Life Sciences Building, Room 609D, 715 Sumter St, Columbia, SC, 29208, USA
| | | | | | | | | | | |
Collapse
|
19
|
Goldklang MP, Perez-Zoghbi JF, Trischler J, Nkyimbeng T, Zakharov SI, Shiomi T, Zelonina T, Marks AR, D'Armiento JM, Marx SO. Treatment of experimental asthma using a single small molecule with anti-inflammatory and BK channel-activating properties. FASEB J 2013; 27:4975-86. [PMID: 23995289 DOI: 10.1096/fj.13-235176] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Large conductance voltage- and calcium-activated potassium (BK) channels are highly expressed in airway smooth muscle (ASM). Utilizing the ovalbumin (OVA) and house dust mite (HDM) models of asthma in C57BL/6 mice, we demonstrate that systemic administration of the BK channel agonist rottlerin (5 μg/g) during the challenge period reduced methacholine-induced airway hyperreactivity (AHR) in OVA- and HDM-sensitized mice (47% decrease in peak airway resistance in OVA-asthma animals, P<0.01; 54% decrease in HDM-asthma animals, P<0.01) with a 35-40% reduction in inflammatory cells and 20-35% reduction in Th2 cytokines in bronchoalveolar lavage fluid. Intravenous rottlerin (5 μg/g) reduced AHR within 5 min in the OVA-asthma mice by 45% (P<0.01). With the use of an ex vivo lung slice technique, rottlerin relaxed acetylcholine-stimulated murine airway lumen area to 87 ± 4% of the precontracted area (P<0.01 vs. DMSO control). Rottlerin increased BK channel activity in human ASM cells (V50 shifted by 73.5±13.5 and 71.8±14.6 mV in control and asthmatic cells, respectively, both P<0.05 as compared with pretreatment) and reduced the frequency of acetylcholine-induced Ca(2+) oscillations in murine ex vivo lung slices. These findings suggest that rottlerin, with both anti-inflammatory and ASM relaxation properties, may have benefit in treating asthma.
Collapse
Affiliation(s)
- Monica P Goldklang
- 1S.O.M., Columbia University, 630 West 168th St., P&S 9-420, New York, NY 10032, USA. ; A.R.M., Columbia University, Russ Berrie Medical Science Pavilion, 1150 St. Nicholas Avenue, Room 520, New York, NY 10032, USA. E-mail:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kodama D, Togari A. Noradrenaline stimulates cell proliferation by suppressing potassium channels via G(i/o) -protein-coupled α(1B) -adrenoceptors in human osteoblasts. Br J Pharmacol 2013; 168:1230-9. [PMID: 23061915 DOI: 10.1111/bph.12000] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent studies demonstrated that the sympathetic nervous system regulates bone metabolism via β(2) -adrenoceptors. Although α-adrenoceptors are also expressed in osteogenic cells, their functions in bone metabolism have been less studied. We previously demonstrated that noradrenaline suppressed potassium currents via α(1B) -adrenoceptors in the human osteoblast SaM-1 cell line. The aim of this study was to investigate the signal transduction pathway and the physiological role of noradrenaline in human osteoblasts in more detail. EXPERIMENTAL APPROACH To investigate signal transduction through α(1B) -adrenoceptors, we used whole-cell patch clamp recording and Ca fluorescence imaging. Potassium channels regulate membrane potential and cell proliferation activity in non-excitable cells, so we evaluated cell proliferation activity by BrdU incorporation and WST assay. KEY RESULTS In SaM-1 cells, bath-applied noradrenaline elevated intracellular Ca(2+) concentration and this effect was abolished by both chloroethylclonidine, an α(1B) -adrenoceptor antagonist, and U73122, a PLC inhibitor. However, the inhibitory effect of noradrenaline on whole-cell current was unaffected by U73122. In contrast, in cells pretreated with either Pertussis toxin, a G(i/o) -protein-coupled receptor inhibitor, or gallein, a Gβγ-protein inhibitor, the inhibitory effect of noradrenaline on whole-cell current was significantly suppressed. Noradrenaline-induced enhancement of cell proliferation was inhibited by CsCl, a non-selective potassium channel blocker, gallein and H89, a PKA inhibitor, but not by U73122. CONCLUSIONS AND IMPLICATIONS Noradrenaline facilitated cell proliferation by regulation of potassium currents in human osteoblasts via G(i/o) -protein-coupled α(1B) -adrenoceptors, not via coupling to Gq-proteins.
Collapse
Affiliation(s)
- D Kodama
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | | |
Collapse
|
21
|
Parajuli SP, Petkov GV. Activation of muscarinic M3 receptors inhibits large-conductance voltage- and Ca2+-activated K+ channels in rat urinary bladder smooth muscle cells. Am J Physiol Cell Physiol 2013; 305:C207-14. [PMID: 23703523 DOI: 10.1152/ajpcell.00113.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Large conductance voltage- and Ca(2+)-activated K(+) (BK) channels are key regulators of detrusor smooth muscle (DSM) contraction and relaxation during urine voiding and storage. Here, we explored whether BK channels are regulated by muscarinic receptors (M-Rs) in native freshly isolated rat DSM cells under physiological conditions using the perforated whole cell patch-clamp technique and pharmacological inhibitors. M-R activation with carbachol (1 μM) initially evoked large transient outward BK currents, followed by inhibition of the spontaneous transient outward BK currents (STBKCs) in DSM cells. Carbachol (1 μM) also inhibited the amplitude and frequency of spontaneous transient hyperpolarizations (STHs) and depolarized the DSM cell membrane potential. Selective inhibition of the muscarinic M3 receptors (M3-Rs) with 4-diphenylacetoxy-N-methylpiperidine (4-DAMP; 0.1 μM), but not muscarinic M2 receptors with methoctramine (1 μM), blocked the carbachol inhibitory effects on STBKCs. Furthermore, blocking the inositol 1,4,5-triphosphate (IP3) receptors with xestospongin-C (1 μM) inhibited the carbachol-induced large transient outward BK currents without affecting carbachol inhibitory effects on STBKCs. Upon pharmacological inhibition of all known cellular sources of Ca(2+) for BK channel activation, carbachol (1 μM) did not affect the voltage-step-induced steady-state BK currents, suggesting that the muscarinic effects in DSM cells are mediated by mobilization of intracellular Ca(2+). In conclusion, our findings provide strong evidence that activation of M3-Rs leads to inhibition of the STBKCs, STHs, and depolarization of DSM cells. Collectively, the data suggest the existence of functional interactions between BK channels and M3-Rs at a cellular level in DSM.
Collapse
Affiliation(s)
- Shankar P Parajuli
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, USA
| | | |
Collapse
|
22
|
Meurs H, Dekkers BGJ, Maarsingh H, Halayko AJ, Zaagsma J, Gosens R. Muscarinic receptors on airway mesenchymal cells: novel findings for an ancient target. Pulm Pharmacol Ther 2012; 26:145-55. [PMID: 22842340 DOI: 10.1016/j.pupt.2012.07.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/15/2012] [Accepted: 07/17/2012] [Indexed: 01/25/2023]
Abstract
Since ancient times, anticholinergics have been used as a bronchodilator therapy for obstructive lung diseases. Targets of these drugs are G-protein-coupled muscarinic M(1), M(2) and M(3) receptors in the airways, which have long been recognized to regulate vagally-induced airway smooth muscle contraction and mucus secretion. However, recent studies have revealed that acetylcholine also exerts pro-inflammatory, pro-proliferative and pro-fibrotic actions in the airways, which may involve muscarinic receptor stimulation on mesenchymal, epithelial and inflammatory cells. Moreover, acetylcholine in the airways may not only be derived from vagal nerves, but also from non-neuronal cells, including epithelial and inflammatory cells. Airway smooth muscle cells seem to play a major role in the effects of acetylcholine on airway function. It has become apparent that these cells are multipotent cells that may reversibly adopt (hyper)contractile, proliferative and synthetic phenotypes, which are all under control of muscarinic receptors and differentially involved in bronchoconstriction, airway remodeling and inflammation. Cholinergic contractile tone is increased by airway inflammation associated with asthma and COPD, resulting from exaggerated acetylcholine release as well as increased expression of contraction related proteins in airway smooth muscle. Moreover, muscarinic receptor stimulation promotes proliferation of airway smooth muscle cells as well as fibroblasts, and regulates cytokine, chemokine and extracellular matrix production by these cells, which may contribute to airway smooth muscle growth, airway fibrosis and inflammation. In line, animal models of chronic allergic asthma and COPD have recently demonstrated that tiotropium may potently inhibit airway inflammation and remodeling. These observations indicate that muscarinic receptors have a much larger role in the pathophysiology of obstructive airway diseases than previously thought, which may have important therapeutic implications.
Collapse
Affiliation(s)
- Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
23
|
Carbajo-Lozoya J, Lutz S, Feng Y, Kroll J, Hammes HP, Wieland T. Angiotensin II modulates VEGF-driven angiogenesis by opposing effects of type 1 and type 2 receptor stimulation in the microvascular endothelium. Cell Signal 2012; 24:1261-9. [PMID: 22374305 DOI: 10.1016/j.cellsig.2012.02.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/14/2012] [Accepted: 02/14/2012] [Indexed: 11/19/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a main stimulator of pathological vessel formation. Nevertheless, increasing evidence suggests that Angiotensin II (Ang II) can play an augmentory role in this process. We thus analyzed the contribution of the two Ang II receptor types, AT(1)R and AT(2)R, in a mouse model of VEGF-driven angiogenesis, i.e. oxygen-induced proliferative retinopathy. Application of the AT(1)R antagonist telmisartan but not the AT(2)R antagonist PD123,319 largely attenuated the pathological response. A direct effect of Ang II on endothelial cells (EC) was analyzed by assessing angiogenic responses in primary bovine retinal and immortalized rat microvascular EC. Selective stimulation of the AT(1)R by Ang II in the presence of PD123,319 revealed a pro-angiogenic activity which further increased VEGF-driven EC sprouting and migration. In contrast, selective stimulation of the AT(2)R by either CGP42112A or Ang II in the presence of telmisartan inhibited the VEGF-driven angiogenic response. Using specific inhibitors (pertussis toxin, RGS proteins, kinase inhibitors) we identified G(12/13) and G(i) dependent signaling pathways as the mediators of the AT(1)R-induced angiogenesis and the AT(2)R-induced inhibition, respectively. As AT(1)R and AT(2)R stimulation displays opposing effects on the activity of the monomeric GTPase RhoA and pro-angiogenic responses to Ang II and VEGF requires activation of Rho-dependent kinase (ROCK), we conclude that the opposing effects of the Ang II receptors on VEGF-driven angiogenesis converge on the regulation of activity of RhoA-ROCK-dependent EC migration.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Angiotensin Receptor Antagonists/pharmacology
- Animals
- Cattle
- Cell Movement
- Cells, Cultured
- Endothelial Cells/cytology
- Endothelial Cells/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/growth & development
- Endothelium, Vascular/metabolism
- GTP-Binding Protein alpha Subunits, G12-G13/metabolism
- Mice
- Mice, Inbred C57BL
- Microvessels/cytology
- Microvessels/growth & development
- Microvessels/metabolism
- Neovascularization, Pathologic
- Neovascularization, Physiologic
- Rats
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/metabolism
- Retina/pathology
- Retina/ultrastructure
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Javier Carbajo-Lozoya
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Maybachstrasse 14, D-68169 Mannheim, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Guo CK, Wang Y, Zhou T, Yu H, Zhang WJ, Kong WJ. M2 muscarinic ACh receptors sensitive BK channels mediate cholinergic inhibition of type II vestibular hair cells. Hear Res 2012; 285:13-9. [PMID: 22366501 DOI: 10.1016/j.heares.2012.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/26/2012] [Accepted: 02/05/2012] [Indexed: 10/28/2022]
Abstract
There are two types of hair cells in the sensory epithelium of vestibular end organ. Type II vestibular hair cell (VHC II) is innervated by the efferent nerve endings, which employ a cholinergic inhibition mediated by SK channels through the activation of α9-containing nAChR. Our previous studies demonstrated that a BK-type cholinergic inhibition was present in guinea pig VHCs II, which may be mediated by an unknown mAChR. In this study, BK channel activities triggered by ACh were studied to determine the mAChR subtype and function. We found the BK channel was insensitive to α9-containing nAChR antagonists and m1, m3, m4 muscarinic antagonists, but potently inhibited by the m2 muscarinic antagonist. Muscarinic agonists could mimic the effect of ACh and be blocked by m2 antagonist. cAMP analog activated the BK current and adenyl cyclase (AC) inhibitor inhibited the ACh response. Inhibitor of Giα subunit failed to affect the BK current, but inhibitor of Giα and Giβγ subunits showed a potent inhibition to these currents. Our findings provide the physiological evidence that mAChRs may locate in guinea pig VHCs II, and m2 mAChRs may play a dominant role in BK-type cholinergic inhibition. The activation of m2 mAChRs may stimulate Giβγ-mediated excitation of AC/cAMP activities and lead to the phosphorylation of Ca(2+) channels, resulting in the influx of Ca(2+) and opening of the BK channel.
Collapse
Affiliation(s)
- Chang-Kai Guo
- Department of Otolaryngology, Union Hospital of Tongji Medical College, Hua-Zhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Pre-junctional muscarinic autoreceptors in bovine airways. Respir Physiol Neurobiol 2012; 180:45-51. [DOI: 10.1016/j.resp.2011.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 11/20/2022]
|
26
|
Lelliott A, Nikkar-Esfahani A, Offer J, Orchard P, Roberts RE. The role of extracellular-signal regulate kinase (ERK) in the regulation of airway tone in porcine isolated peripheral bronchioles. Eur J Pharmacol 2011; 674:407-14. [PMID: 22094061 DOI: 10.1016/j.ejphar.2011.10.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 10/25/2011] [Accepted: 10/29/2011] [Indexed: 11/28/2022]
Abstract
Extracellular signal regulated kinase (ERK) is known to regulate vascular smooth muscle contraction. However, a role for ERK in airway smooth muscle contraction has yet to be demonstrated conclusively, although contractile agents increase ERK activity in airway smooth muscle. Rather than initiating contraction, ERK could regulate airway tone by interfering with relaxation. Therefore, the aim of this study was to determine whether ERK regulates contraction or relaxation of airway smooth muscle. Segments of porcine peripheral bronchioles were mounted in an isolated tissue bath in Krebs-Henseleit buffer and maintained at 37°C. Cumulative concentration-response curves to histamine, endothelin-1, or the muscarinic agonist carbachol were then carried out in the absence or presence of the MEK inhibitor PD98059. In separate experiments, cumulative concentration response curves to the β-adrenoceptor agonist isoprenaline or the adenylyl cyclase activator forskolin were carried out in the absence or presence of the MEK inhibitors PD98059 or U0126. ERK activity was measured by Western blotting. All three contractile agents increased ERK activity, but the contractile responses were unaffected by PD98059. On the other hand, both PD98059 and U0126 enhanced the relaxations to isoprenaline but not relaxations to the adenylyl cyclase activator forskolin. The enhancement of isoprenaline-induced relaxations with PD98059 was prevented by the K(+) channel blocker tetraethylammonium. These data suggest that ERK regulates airway smooth muscle tone by inhibiting β-adrenoceptor-mediated relaxations, rather than an initiation of contraction. The effect on β-adrenoceptor-mediated responses appears to be through a cAMP-independent mechanism, possibly through an interaction with K(+) channels.
Collapse
Affiliation(s)
- Alice Lelliott
- Cardiovascular Pharmacology Research Group, School of Biomedical Sciences, University of Nottingham, Medical School, Nottingham, NG7 2UH, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Abstract
Current therapy for asthma is highly effective. β(2)-Adrenergic receptor (β(2)AR) agonists are the most effective bronchodilators and relax airway smooth muscle cells through increased cAMP concentrations and directly opening large conductance Ca(2+) channels. β(2)AR may also activate alternative signaling pathways that may have detrimental effects in asthma. Glucocorticoids are the most effective anti-inflammatory treatments and switch off multiple activated inflammatory genes through recruitment of histone deacetylase-2, activating anti-inflammatory genes, and through increasing mRNA stability of inflammatory genes. There are beneficial molecular interactions between β(2)AR and glucocorticoid-activated pathways. Understanding these signaling pathways may lead to even more effective therapies in the future.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London SW3 6LY, United Kingdom.
| |
Collapse
|
28
|
Ricci G, Astolfi A, Remondini D, Cipriani F, Formica S, Dondi A, Pession A. Pooled genome-wide analysis to identify novel risk loci for pediatric allergic asthma. PLoS One 2011; 6:e16912. [PMID: 21359210 PMCID: PMC3040188 DOI: 10.1371/journal.pone.0016912] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/03/2011] [Indexed: 11/22/2022] Open
Abstract
Background Genome-wide association studies of pooled DNA samples were shown to be a valuable tool to identify candidate SNPs associated to a phenotype. No such study was up to now applied to childhood allergic asthma, even if the very high complexity of asthma genetics is an appropriate field to explore the potential of pooled GWAS approach. Methodology/Principal Findings We performed a pooled GWAS and individual genotyping in 269 children with allergic respiratory diseases comparing allergic children with and without asthma. We used a modular approach to identify the most significant loci associated with asthma by combining silhouette statistics and physical distance method with cluster-adapted thresholding. We found 97% concordance between pooled GWAS and individual genotyping, with 36 out of 37 top-scoring SNPs significant at individual genotyping level. The most significant SNP is located inside the coding sequence of C5, an already identified asthma susceptibility gene, while the other loci regulate functions that are relevant to bronchial physiopathology, as immune- or inflammation-mediated mechanisms and airway smooth muscle contraction. Integration with gene expression data showed that almost half of the putative susceptibility genes are differentially expressed in experimental asthma mouse models. Conclusion/Significance Combined silhouette statistics and cluster-adapted physical distance threshold analysis of pooled GWAS data is an efficient method to identify candidate SNP associated to asthma development in an allergic pediatric population.
Collapse
Affiliation(s)
- Giampaolo Ricci
- Pediatric Unit, Department of Gynecologic, Obstetric and Pediatric Sciences, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
29
|
Semenov I, Wang B, Herlihy JT, Brenner R. BK channel β1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization. J Physiol 2011; 589:1803-17. [PMID: 21300746 DOI: 10.1113/jphysiol.2010.204347] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The large conductance calcium- and voltage-activated potassium channel (BK channel) and its smooth muscle-specific β1 subunit regulate excitation–contraction coupling in many types of smooth muscle cells. However, the relative contribution of BK channels to control of M2- or M3-muscarinic acetylcholine receptor mediated airway smooth muscle contraction is poorly understood. Previously, we showed that knockout of the BK channel β1 subunit enhances cholinergic-evoked trachea contractions. Here, we demonstrate that the enhanced contraction of the BK β1 knockout can be ascribed to a defect in BK channel opposition of M2 receptor-mediated contractions. Indeed, the enhanced contraction of β1 knockout is eliminated by specific M2 receptor antagonism. The role of BK β1 to oppose M2 signalling is evidenced by a greater than fourfold increase in the contribution of L-type voltage-dependent calcium channels to contraction that otherwise does not occur with M2 antagonist or with β1 containing BK channels. The mechanism through which BK channels oppose M2-mediated recruitment of calcium channels is through a negative shift in resting voltage that offsets, rather than directly opposes, M2-mediated depolarization. The negative shift in resting voltage is reduced to similar extents by BK β1 knockout or by paxilline block of BK channels. Normalization of β1 knockout baseline voltage with low external potassium eliminated the enhanced M2-receptor mediated contraction. In summary, these findings indicate that an important function of BK/β1 channels is to oppose cholinergic M2 receptor-mediated depolarization and activation of calcium channels by restricting excitation–contraction coupling to more negative voltage ranges.
Collapse
Affiliation(s)
- Iurii Semenov
- Department of Physiology, UT Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
30
|
Thromboxane A2 receptor and MaxiK-channel intimate interaction supports channel trans-inhibition independent of G-protein activation. Proc Natl Acad Sci U S A 2010; 107:19096-101. [PMID: 20959415 DOI: 10.1073/pnas.1002685107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Large conductance voltage- and calcium-activated potassium channels (MaxiK, BK(Ca)) are well known for sustaining cerebral and coronary arterial tone and for their linkage to vasodilator β-adrenergic receptors. However, how MaxiK channels are linked to counterbalancing vasoconstrictor receptors is unknown. Here, we show that vasopressive thromboxane A2 receptors (TP) can intimately couple with and inhibit MaxiK channels. Activation of the receptor with its agonist trans-inhibits MaxiK independently of G-protein activation. This unconventional mechanism is supported by independent lines of evidence: (i) inhibition of MaxiK current by thromboxane A2 mimetic, U46619, occurs even when G-protein activity is suppressed; (ii) MaxiK and TP physically associate and display a high degree of proximity; and (iii) Förster resonance energy transfer occurs between fluorescently labeled MaxiK and TP, supporting a direct interaction. The molecular mechanism of MaxiK-TP intimate interaction involves the receptor's first intracellular loop and C terminus, and it entails the voltage-sensing conduction cassette of MaxiK channel. Further, physiological evidence of MaxiK-TP physical interaction is given in human coronaries and rat aorta, and by confirming TP role (with antagonist SQ29,548) in the U46619-induced MaxiK inhibition in human coronaries. We propose that vasoconstrictor TP receptor and MaxiK-channel direct interaction facilitates G-protein-independent TP to MaxiK trans-inhibition, which would promote vasoconstriction.
Collapse
|
31
|
Abstract
Large conductance voltage- and Ca(2+)-activated potassium channels (BK channels) are important feedback regulators in excitable cells and are potently regulated by protein kinases. The present study reveals a dual role of protein kinase C (PKC) on BK channel regulation. Phosphorylation of S(695) by PKC, located between the two regulators of K(+) conductance (RCK1/2) domains, inhibits BK channel open-state probability. This PKC-dependent inhibition depends on a preceding phosphorylation of S(1151) in the C terminus of the channel alpha-subunit. Phosphorylation of only one alpha-subunit at S(1151) and S(695) within the tetrameric pore is sufficient to inhibit BK channel activity. We further detected that protein phosphatase 1 is associated with the channel, constantly counteracting phosphorylation of S(695). PKC phosphorylation at S(1151) also influences stimulation of BK channel activity by protein kinase G (PKG) and protein kinase A (PKA). Though the S(1151)A mutant channel is activated by PKA only, the phosphorylation of S(1151) by PKC renders the channel responsive to activation by PKG but prevents activation by PKA. Phosphorylation of S(695) by PKC or introducing a phosphomimetic aspartate at this position (S(695)D) renders BK channels insensitive to the stimulatory effect of PKG or PKA. Therefore, our findings suggest a very dynamic regulation of the channel by the local PKC activity. It is shown that this complex regulation is not only effective in recombinant channels but also in native BK channels from tracheal smooth muscle.
Collapse
|
32
|
Nardi A, Demnitz J, Garcia ML, Polosa R. Potassium channels as drug targets for therapeutic intervention in respiratory diseases. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543770802553798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|