1
|
Verma S, Sowdhamini R. Toll-like receptor 4 pathway evolutionary trajectory and functional emergence. Front Immunol 2025; 15:1494017. [PMID: 39902049 PMCID: PMC11788365 DOI: 10.3389/fimmu.2024.1494017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/27/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction Toll-like receptors 4 (TLR4) recognize lipopolysaccharides (LPS) from bacteria as their conventional ligands and undergo downstream signaling to produce cytokines. They mediate the signaling either by the TIRAP-MyD88 complex or by the TRAM-TRIF complex. The MyD88 pathway is common to all other TLRs, whereas the TRAM-TRIF complex is largely exclusive to TLR4. Here we study the TIR domain of TRAM and TRIF ortholog proteins that are crucial for downstream signaling. Our previous work on pan-genome-wide survey, indicates Callorhincus milli to be the ancestral organism with both TRAM and TRIF proteins. Methods To gain a deeper insight into the protein function and to compare them with Homo sapiens adaptor proteins, we modeled the docking of the TRAM-TRIF complex of representative organisms across various taxa. These modeling experiments provide insights to ascertain a possible interaction surface and calculate the energetics and electrostatic potential of the complex. Furthermore, this enables us to employ normal mode analysis (NMA) to examine fluctuating, interacting, and other specific residue clusters that could have a role in protein functioning in both C. milli and H. sapiens. We also performed molecular dynamics simulations of these complexes and cross-validated the functionally important residues using network parameters. Results We compared the stoichiometry of TRAM-TRIF complexes and found that the tetrameric models (TRAM and TRIF dimer) were more stable than the trimeric model (TRAM dimer and TRIF monomer). While the critical residues of TIRAP, TRIF, and MyD88 were preserved, we also found that the important residues of TRAM signaling were not conserved in C. milli. Discussion This suggests the presence of functional TIRAP-MyD88-mediated TLR4 signaling and TRIF-mediated TLR3 signaling in the ancestral species. The overall biological function of this signaling domain appears to be gradually acquired through the orchestration of several motifs through an evolutionary scale.
Collapse
Affiliation(s)
- Shailya Verma
- National Centre for Biological Sciences (TIFR), Bangalore, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (TIFR), Bangalore, India
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| |
Collapse
|
2
|
Manik MK, Pan M, Xiao L, Gu W, Kim H, Pospich S, Hedger A, Vajjhala PR, Lee MYL, Qian X, Landsberg MJ, Ve T, Nanson JD, Raunser S, Stacey KJ, Wu H, Kobe B. Structural basis for TIR domain-mediated innate immune signaling by Toll-like receptor adaptors TRIF and TRAM. Proc Natl Acad Sci U S A 2025; 122:e2418988122. [PMID: 39786929 PMCID: PMC11745336 DOI: 10.1073/pnas.2418988122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/10/2024] [Indexed: 01/30/2025] Open
Abstract
Innate immunity relies on Toll-like receptors (TLRs) to detect pathogen-associated molecular patterns. The TIR (Toll/interleukin-1 receptor) domain-containing TLR adaptors TRIF (TIR domain-containing adaptor-inducing interferon-β) and TRAM (TRIF-related adaptor molecule) are essential for MyD88-independent TLR signaling. However, the structural basis of TRIF and TRAM TIR domain-based signaling remains unclear. Here, we present cryo-EM structures of filaments formed by TRIF and TRAM TIR domains at resolutions of 3.3 Å and 5.6 Å, respectively. Both structures reveal two-stranded parallel helical arrangements. Functional studies underscore the importance of intrastrand interactions, mediated by the BB-loop, and interstrand interactions in TLR4-mediated signaling. We also report the crystal structure of the monomeric TRAM TIR domain bearing the BB loop mutation C117H, which reveals conformational differences consistent with its inactivity. Our findings suggest a unified signaling mechanism by the TIR domains of the four signaling TLR adaptors MyD88, MAL, TRIF, and TRAM and reveal potential therapeutic targets for immunity-related disorders.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/metabolism
- Adaptor Proteins, Vesicular Transport/chemistry
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/immunology
- Signal Transduction/immunology
- Immunity, Innate
- Humans
- Protein Domains
- Cryoelectron Microscopy
- Receptors, Interleukin-1/metabolism
- Receptors, Interleukin-1/chemistry
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/immunology
- Toll-Like Receptor 4/metabolism
- Toll-Like Receptor 4/chemistry
- Toll-Like Receptor 4/immunology
- Myeloid Differentiation Factor 88/metabolism
- Myeloid Differentiation Factor 88/chemistry
- Myeloid Differentiation Factor 88/genetics
- Toll-Like Receptors/metabolism
- Toll-Like Receptors/immunology
- HEK293 Cells
- Crystallography, X-Ray
- Models, Molecular
- Adaptor Proteins, Signal Transducing
Collapse
Affiliation(s)
- Mohammad K. Manik
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Mengqi Pan
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Le Xiao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Hyoyoung Kim
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
| | - Sabrina Pospich
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund44227, Germany
| | - Andrew Hedger
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Parimala R. Vajjhala
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
| | - Morris Y. L. Lee
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
| | - Xiaoqi Qian
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Michael J. Landsberg
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Thomas Ve
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, QLD4215, Australia
| | - Jeffrey D. Nanson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW2678, Australia
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund44227, Germany
| | - Katryn J. Stacey
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| |
Collapse
|
3
|
Landau LM, Chaudhary N, Tien YC, Rogozinska M, Joshi S, Yao C, Crowley J, Hullahalli K, Campbell IW, Waldor MK, Haigis M, Kagan JC. pLxIS-containing domains are biochemically flexible regulators of interferons and metabolism. Mol Cell 2024; 84:2436-2454.e10. [PMID: 38925114 PMCID: PMC11282577 DOI: 10.1016/j.molcel.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/28/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Signal transduction proteins containing a pLxIS motif induce interferon (IFN) responses central to antiviral immunity. Apart from their established roles in activating the IFN regulator factor (IRF) transcription factors, the existence of additional pathways and functions associated with the pLxIS motif is unknown. Using a synthetic biology-based platform, we identified two orphan pLxIS-containing proteins that stimulate IFN responses independent of all known pattern-recognition receptor pathways. We further uncovered a diversity of pLxIS signaling mechanisms, where the pLxIS motif represents one component of a multi-motif signaling entity, which has variable functions in activating IRF3, the TRAF6 ubiquitin ligase, IκB kinases, mitogen-activated protein kinases, and metabolic activities. The most diverse pLxIS signaling mechanisms were associated with the highest antiviral activities in human cells. The flexibility of domains that regulate IFN signaling may explain their prevalence in nature.
Collapse
Affiliation(s)
- Lauren M Landau
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Neha Chaudhary
- Cambridge Research Center, AbbVie, Inc., Cambridge, MA, USA
| | - Yun Chen Tien
- Cambridge Research Center, AbbVie, Inc., Cambridge, MA, USA
| | | | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Conghui Yao
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Joseph Crowley
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ian W Campbell
- Division of Infectious Diseases, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marcia Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Gauthier AE, Rotjan RD, Kagan JC. Lipopolysaccharide detection by the innate immune system may be an uncommon defence strategy used in nature. Open Biol 2022; 12:220146. [PMID: 36196535 PMCID: PMC9533005 DOI: 10.1098/rsob.220146] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/09/2022] [Indexed: 11/12/2022] Open
Abstract
Since the publication of the Janeway's Pattern Recognition hypothesis in 1989, study of pathogen-associated molecular patterns (PAMPs) and their immuno-stimulatory activities has accelerated. Most studies in this area have been conducted in model organisms, which leaves many open questions about the universality of PAMP biology across living systems. Mammals have evolved multiple proteins that operate as receptors for the PAMP lipopolysaccharide (LPS) from Gram-negative bacteria, but LPS is not immuno-stimulatory in all eukaryotes. In this review, we examine the history of LPS as a PAMP in mammals, recent data on LPS structure and its ability to activate mammalian innate immune receptors, and how these activities compare across commonly studied eukaryotes. We discuss why LPS may have evolved to be immuno-stimulatory in some eukaryotes but not others and propose two hypotheses about the evolution of PAMP structure based on the ecology and environmental context of the organism in question. Understanding PAMP structures and stimulatory mechanisms across multi-cellular life will provide insights into the evolutionary origins of innate immunity and may lead to the discovery of new PAMP variations of scientific and therapeutic interest.
Collapse
Affiliation(s)
- Anna E. Gauthier
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Randi D. Rotjan
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Jonathan C. Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, and Boston Children's Hospital, Division of Immunology, Division of Gastroenterology, USA
| |
Collapse
|
5
|
Miyashita Y, Kouwaki T, Tsukamoto H, Okamoto M, Nakamura K, Oshiumi H. TICAM-1/TRIF associates with Act1 and suppresses IL-17 receptor-mediated inflammatory responses. Life Sci Alliance 2021; 5:5/2/e202101181. [PMID: 34819358 PMCID: PMC8616538 DOI: 10.26508/lsa.202101181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 01/23/2023] Open
Abstract
TICAM-1 (also called TRIF) is the sole adaptor of TLR3 that recognizes double-stranded RNA. Here, we report that TICAM-1 is involved not only in TLR3 signaling but also in the cytokine receptor IL-17RA signaling. We found that TICAM-1 bound to IL-17R adaptor Act1 to inhibit the interaction between IL-17RA and Act1. Interestingly, TICAM-1 knockout promoted IL-17RA/Act1 interaction and increased IL-17A-mediated activation of NF-κB and MAP kinases, leading to enhanced expression of inflammatory cytokines and chemokines upon IL-17A stimulation. Moreover, Ticam-1 knockout augmented IL-17A-mediated CXCL1 and CXCL2 expression in vivo, resulting in accumulation of myeloid cells. Furthermore, Ticam-1 knockout enhanced delayed type hypersensitivity and exacerbated experimental autoimmune encephalomyelitis. Ticam-1 knockout promoted accumulation of myeloid and lymphoid cells in the spinal cord of EAE-induced mice. Collectively, these data indicate that TICAM-1 inhibits the interaction between IL-17RA and Act1 and functions as a negative regulator in IL-17A-mediated inflammatory responses.
Collapse
Affiliation(s)
- Yusuke Miyashita
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, Japan.,Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, Japan
| | - Takahisa Kouwaki
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, Japan
| | - Hirotake Tsukamoto
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, Japan .,Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaaki Okamoto
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, Japan
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, Japan
| |
Collapse
|
6
|
Stimulus-specific responses in innate immunity: Multilayered regulatory circuits. Immunity 2021; 54:1915-1932. [PMID: 34525335 DOI: 10.1016/j.immuni.2021.08.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/07/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
Immune sentinel cells initiate immune responses to pathogens and tissue injury and are capable of producing highly stimulus-specific responses. Insight into the mechanisms underlying such specificity has come from the identification of regulatory factors and biochemical pathways, as well as the definition of signaling circuits that enable combinatorial and temporal coding of information. Here, we review the multi-layered molecular mechanisms that underlie stimulus-specific gene expression in macrophages. We categorize components of inflammatory and anti-pathogenic signaling pathways into five layers of regulatory control and discuss unifying mechanisms determining signaling characteristics at each layer. In this context, we review mechanisms that enable combinatorial and temporal encoding of information, identify recurring regulatory motifs and principles, and present strategies for integrating experimental and computational approaches toward the understanding of signaling specificity in innate immunity.
Collapse
|
7
|
Chen Y, Lin J, Zhao Y, Ma X, Yi H. Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses. J Zhejiang Univ Sci B 2021; 22:609-632. [PMID: 34414698 PMCID: PMC8377577 DOI: 10.1631/jzus.b2000808] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 01/08/2023]
Abstract
Toll-like receptor 3 (TLR3) is a member of the TLR family, mediating the transcriptional induction of type I interferons (IFNs), proinflammatory cytokines, and chemokines, thereby collectively establishing an antiviral host response. Studies have shown that unlike other TLR family members, TLR3 is the only RNA sensor that is utterly dependent on the Toll-interleukin-1 receptor (TIR)-domain-containing adaptor-inducing IFN-β (TRIF). However, the details of how the TLR3-TRIF signaling pathway works in an antiviral response and how it is regulated are unclear. In this review, we focus on recent advances in understanding the antiviral mechanism of the TRIF pathway and describe the essential characteristics of TLR3 and its antiviral effects. Advancing our understanding of TLR3 may contribute to disease diagnosis and could foster the development of novel treatments for viral diseases.
Collapse
Affiliation(s)
- Yujuan Chen
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Junhong Lin
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Yao Zhao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Xianping Ma
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Huashan Yi
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China.
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China.
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China.
| |
Collapse
|
8
|
Zang R, Lian H, Zhong X, Yang Q, Shu HB. ZCCHC3 modulates TLR3-mediated signaling by promoting recruitment of TRIF to TLR3. J Mol Cell Biol 2021; 12:251-262. [PMID: 32133501 PMCID: PMC7232131 DOI: 10.1093/jmcb/mjaa004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/13/2020] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptor 3 (TLR3)-mediated signaling is important for host defense against RNA virus. Upon viral RNA stimulation, toll and interleukin-1 receptor domain-containing adaptor inducing IFN-β (TRIF) is recruited to TLR3 and then undergoes oligomerization, which is required for the recruitment of downstream molecules to transmit signals. Here, we identified zinc finger CCHC-type containing 3 (ZCCHC3) as a positive regulator of TLR3-mediated signaling. Overexpression of ZCCHC3 promoted transcription of downstream antiviral genes stimulated by the synthetic TLR3 ligand poly(I:C). ZCCHC3-deficiency markedly inhibited TLR3- but not TLR4-mediated induction of type I interferons (IFNs) and proinflammatory cytokines. Zcchc3−/− mice were more resistant to poly(I:C)- but not lipopolysaccharide-induced inflammatory death. Mechanistically, ZCCHC3 promoted recruitment of TRIF to TLR3 after poly(I:C) stimulation. Our findings reveal that ZCCHC3 plays an important role in TLR3-mediated innate immune response by promoting the recruitment of TRIF to TLR3 after ligand stimulation.
Collapse
Affiliation(s)
- Ru Zang
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Huan Lian
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xuan Zhong
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Qing Yang
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Correspondence to: Qing Yang, E-mail:
| | - Hong-Bing Shu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hong-Bing Shu, E-mail:
| |
Collapse
|
9
|
Abstract
ABSTRACT Host cells recognize molecules that signal danger using pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are the most studied class of PRRs and detect pathogen-associated molecular patterns and danger-associated molecular patterns. Cellular TLR activation and signal transduction can therefore contain, combat, and clear danger by enabling appropriate gene transcription. Here, we review the expression, regulation, and function of different TLRs, with an emphasis on TLR-4, and how TLR adaptor protein binding directs intracellular signaling resulting in activation or termination of an innate immune response. Finally, we highlight the recent progress of research on the involvement of S100 proteins as ligands for TLR-4 in inflammatory disease.
Collapse
|
10
|
Dong B, Borjabad A, Kelschenbach J, Chao W, Volsky DJ, Potash MJ. Prevention and treatment of HIV infection and cognitive disease in mice by innate immune responses. Brain Behav Immun Health 2020; 3:100054. [PMID: 32699842 PMCID: PMC7375446 DOI: 10.1016/j.bbih.2020.100054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
HIV associated neurocognitive impairment afflicts roughly half of infected individuals on antiretroviral therapy. This disease currently has no treatment. We have previously shown that type I interferon is induced by and partially controls infection and neuropathogenesis in mice infected by chimeric HIV, EcoHIV. Here we investigate the intentional ligation of the pattern recognition receptor Toll-like receptor 3 (TLR3) by polyinosinic-polycytidylic acid (poly I:C) for its ability to prevent or control infection and associated cognitive disease in EcoHIV infected mice. We tested topical, injection, and intranasal application of poly I:C in mice during primary infection through injection or sexual transmission or in established infection. We measured different forms of HIV DNA and RNA in tissues by real-time PCR and the development of HIV-associated cognitive disease by the radial arm water maze behavioral test. Our results indicate that poly I:C blocks primary EcoHIV infection of mice prior to reverse transcription and reduces established EcoHIV infection. Prevention or control of viral replication by poly I:C prevents or reverses HIV associated cognitive disease in mice. These findings indicate that poly I:C or other innate immune agonists may be useful in control of HIV cognitive disease.
Collapse
Affiliation(s)
- Baojun Dong
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alejandra Borjabad
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer Kelschenbach
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei Chao
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David J. Volsky
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Jane Potash
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
c-Jun N-terminal kinases differentially regulate TNF- and TLRs-mediated necroptosis through their kinase-dependent and -independent activities. Cell Death Dis 2018; 9:1140. [PMID: 30442927 PMCID: PMC6238001 DOI: 10.1038/s41419-018-1189-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/12/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022]
Abstract
Tumor necrosis factor (TNF) and Toll-like receptor (TLR)3/TLR4 activation trigger necroptotic cell death through downstream signaling complex containing receptor-interacting protein kinase 1 (RIPK1), RIPK3, and pseudokinase mixed lineage kinase-domain-like (MLKL). However, the regulation of necroptotic signaling pathway is far less investigated. Here we showed that c-Jun N-terminal kinases (JNK1 and JNK2) displayed kinase-dependent and -independent functions in regulating TNF- and TLRs-mediated necroptosis. We found that RIPK1 and RIPK3 promoted cell-death-independent JNK activation in macrophages, which contributed to pro-inflammatory cytokines production. Meanwhile, blocking the kinase activity of JNK dramatically reduced TNF and TLRs-induced necroptotic cell death. Consistently, inhibition of JNK activity protected mice from TNF-induced death and Staphylococcus aureus-mediated lung damage. However, depletion of JNK protein using siRNA sensitized macrophages to necroptosis that was triggered by LPS or poly I:C but still inhibited TNF-induced necroptosis. Mechanistic studies revealed that RIPK1 recruited JNK to the necrosome complex and their kinase activity was required for necrosome formation and the phosphorylation of MLKL in TNF- and TLRs-induced necroptosis. Loss of JNK protein consistently suppressed the phosphorylation of MLKL and necrosome formation in TNF-triggered necroptosis, but differentially promoted the phosphorylation of MLKL and necrosome formation in poly I:C-triggered necroptosis by promoting the oligomeration of TRIF. In conclusion, our findings define a differential role for JNK in regulating TNF- and TLRs-mediated necroptosis by their kinase or scaffolding activities.
Collapse
|
12
|
Nanson JD, Rahaman MH, Ve T, Kobe B. Regulation of signaling by cooperative assembly formation in mammalian innate immunity signalosomes by molecular mimics. Semin Cell Dev Biol 2018; 99:96-114. [PMID: 29738879 DOI: 10.1016/j.semcdb.2018.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/18/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
Innate immunity pathways constitute the first line of defense against infections and cellular damage. An emerging concept in these pathways is that signaling involves the formation of finite (e.g. rings in NLRs) or open-ended higher-order assemblies (e.g. filamentous assemblies by members of the death-fold family and TIR domains). This signaling by cooperative assembly formation (SCAF) mechanism allows rapid and strongly amplified responses to minute amounts of stimulus. While the characterization of the molecular mechanisms of SCAF has seen rapid progress, little is known about its regulation. One emerging theme involves proteins produced both in host cells and by pathogens that appear to mimic the signaling components. Recently characterized examples involve the capping of the filamentous assemblies formed by caspase-1 CARDs by the CARD-only protein INCA, and those formed by caspase-8 by the DED-containing protein MC159. By contrast, the CARD-only protein ICEBERG and the DED-containing protein cFLIP incorporate into signaling filaments and presumably interfere with proximity based activation of caspases. We review selected examples of SCAF in innate immunity pathways and focus on the current knowledge on signaling component mimics produced by mammalian and pathogen cells and what is known about their mechanisms of action.
Collapse
Affiliation(s)
- Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Md Habibur Rahaman
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Thomas Ve
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia; Institute for Glycomics, Griffith University, Southport, QLD, 4222, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
13
|
Samie M, Lim J, Verschueren E, Baughman JM, Peng I, Wong A, Kwon Y, Senbabaoglu Y, Hackney JA, Keir M, Mckenzie B, Kirkpatrick DS, van Lookeren Campagne M, Murthy A. Selective autophagy of the adaptor TRIF regulates innate inflammatory signaling. Nat Immunol 2018; 19:246-254. [PMID: 29358708 DOI: 10.1038/s41590-017-0042-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022]
Abstract
Defective autophagy is linked to diseases such as rheumatoid arthritis, lupus and inflammatory bowel disease (IBD). However, the mechanisms by which autophagy limits inflammation remain poorly understood. Here we found that loss of the autophagy-related gene Atg16l1 promoted accumulation of the adaptor TRIF and downstream signaling in macrophages. Multiplex proteomic profiling identified SQSTM1 and Tax1BP1 as selective autophagy-related receptors that mediated the turnover of TRIF. Knockdown of Tax1bp1 increased production of the cytokines IFN-β and IL-1β. Mice lacking Atg16l1 in myeloid cells succumbed to lipopolysaccharide-mediated sepsis but enhanced their clearance of intestinal Salmonella typhimurium in an interferon receptor-dependent manner. Human macrophages with the Crohn's disease-associated Atg16l1 variant T300A exhibited more production of IFN-β and IL-1β. An elevated interferon-response gene signature was observed in patients with IBD who were resistant to treatment with an antibody to the cytokine TNF. These findings identify selective autophagy as a key regulator of signaling via the innate immune system.
Collapse
Affiliation(s)
- Mohammad Samie
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Junghyun Lim
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Erik Verschueren
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, South San Francisco, CA, USA
| | - Joshua M Baughman
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, South San Francisco, CA, USA
| | - Ivan Peng
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Aaron Wong
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Youngsu Kwon
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Yasin Senbabaoglu
- Department of Bioinformatics & Computational Biology, Genentech, South San Francisco, CA, USA
| | - Jason A Hackney
- Department of Bioinformatics & Computational Biology, Genentech, South San Francisco, CA, USA
| | - Mary Keir
- Biomarker Discovery OMNI, Genentech, South San Francisco, CA, USA
| | - Brent Mckenzie
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Donald S Kirkpatrick
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, South San Francisco, CA, USA
| | | | - Aditya Murthy
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
14
|
TLR4 Signaling Pathway Modulators as Potential Therapeutics in Inflammation and Sepsis. Vaccines (Basel) 2017; 5:vaccines5040034. [PMID: 28976923 PMCID: PMC5748601 DOI: 10.3390/vaccines5040034] [Citation(s) in RCA: 414] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/29/2017] [Accepted: 10/01/2017] [Indexed: 02/06/2023] Open
Abstract
Toll-Like Receptor 4 (TLR4) signal pathway plays an important role in initiating the innate immune response and its activation by bacterial endotoxin is responsible for chronic and acute inflammatory disorders that are becoming more and more frequent in developed countries. Modulation of the TLR4 pathway is a potential strategy to specifically target these pathologies. Among the diseases caused by TLR4 abnormal activation by bacterial endotoxin, sepsis is the most dangerous one because it is a life-threatening acute system inflammatory condition that still lacks specific pharmacological treatment. Here, we review molecules at a preclinical or clinical phase of development, that are active in inhibiting the TLR4-MyD88 and TLR4-TRIF pathways in animal models. These are low-molecular weight compounds of natural and synthetic origin that can be considered leads for drug development. The results of in vivo studies in the sepsis model and the mechanisms of action of drug leads are presented and critically discussed, evidencing the differences in treatment results from rodents to humans.
Collapse
|
15
|
Abstract
Toll-like receptor 4 (TLR4) recognizes lipopolysaccharide (LPS), produces pro-inflammatory cytokines and type I interferons, and associates with a trigger of endotoxin shock. TLR4 is interacted with a TIR domain-containing adaptor molecule-2 (TICAM-2)/TRAM [TRIF (TIR domain-containing adaptor-inducing interferon-β)-related adaptor molecule] via its Toll–interleukin-1 receptor homology (TIR) domain. TICAM-2 acts as a scaffold protein and activates TIR domain-containing adaptor molecule-1 (TICAM-1)/TRIF. According to the structural analysis by NMR, TICAM-2 interacts with TICAM-1 by the acidic amino acids motif, E87/D88/D89. The TIR domain of TICAM-2 couples with the dimer of TIR domain of TLR4 beneath the membrane, and TICAM-2 itself also forms dimer and constitutes a binding site with TICAM-1. Endosomal localization of TICAM-2 is essential for TLR4-mediated type I interferon-inducing signal from the endosome. N-terminal myristoylation allows TICAM-2 to anchor to the endosomal membrane. Additionally, we have identified two acidic amino acids, D91/E92, as a functional motif that cooperatively determines endosomal localization of TICAM-2. This structural information of TICAM-2 suggests that the specific structure is indispensable for the endosomal localization and type I interferon production of TICAM-2. Taken together with the knowledge on cytoplasmic sensors for LPS, TICAM-2/TICAM-1 may conform to a signal network on TLR4 to facilitate induction of cytokine disorders.
Collapse
|
16
|
Vajjhala PR, Ve T, Bentham A, Stacey KJ, Kobe B. The molecular mechanisms of signaling by cooperative assembly formation in innate immunity pathways. Mol Immunol 2017; 86:23-37. [PMID: 28249680 DOI: 10.1016/j.molimm.2017.02.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/16/2017] [Accepted: 02/19/2017] [Indexed: 12/25/2022]
Abstract
The innate immune system is the first line of defense against infection and responses are initiated by pattern recognition receptors (PRRs) that detect pathogen-associated molecular patterns (PAMPs). PRRs also detect endogenous danger-associated molecular patterns (DAMPs) that are released by damaged or dying cells. The major PRRs include the Toll-like receptor (TLR) family members, the nucleotide binding and oligomerization domain, leucine-rich repeat containing (NLR) family, the PYHIN (ALR) family, the RIG-1-like receptors (RLRs), C-type lectin receptors (CLRs) and the oligoadenylate synthase (OAS)-like receptors and the related protein cyclic GMP-AMP synthase (cGAS). The different PRRs activate specific signaling pathways to collectively elicit responses including the induction of cytokine expression, processing of pro-inflammatory cytokines and cell-death responses. These responses control a pathogenic infection, initiate tissue repair and stimulate the adaptive immune system. A central theme of many innate immune signaling pathways is the clustering of activated PRRs followed by sequential recruitment and oligomerization of adaptors and downstream effector enzymes, to form higher-order arrangements that amplify the response and provide a scaffold for proximity-induced activation of the effector enzymes. Underlying the formation of these complexes are co-operative assembly mechanisms, whereby association of preceding components increases the affinity for downstream components. This ensures a rapid immune response to a low-level stimulus. Structural and biochemical studies have given key insights into the assembly of these complexes. Here we review the current understanding of assembly of immune signaling complexes, including inflammasomes initiated by NLR and PYHIN receptors, the myddosomes initiated by TLRs, and the MAVS CARD filament initiated by RIG-1. We highlight the co-operative assembly mechanisms during assembly of each of these complexes.
Collapse
Affiliation(s)
- Parimala R Vajjhala
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Ve
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Adam Bentham
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia
| | - Katryn J Stacey
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
17
|
Gentle IE, McHenry KT, Weber A, Metz A, Kretz O, Porter D, Häcker G. TIR-domain-containing adapter-inducing interferon-β (TRIF) forms filamentous structures, whose pro-apoptotic signalling is terminated by autophagy. FEBS J 2017; 284:1987-2003. [PMID: 28453927 DOI: 10.1111/febs.14091] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/14/2017] [Accepted: 04/25/2017] [Indexed: 12/15/2022]
Abstract
The formation of amyloid-like protein structures has recently emerged as a feature in signal transduction, particularly in innate immunity. These structures appear to depend on defined domains for their formation but likely also require dedicated ways to terminate signalling. We, here, define the innate immunity protein/Toll-like receptor adaptor TIR-domain-containing adapter-inducing interferon-β (TRIF) as a novel platform of fibril formation and probe signal initiation through TRIF as well as its termination in Toll-like receptor 3 (TLR3)-stimulated melanoma cells. A main signalling pathway triggered by TLR3 caused apoptosis, which was controlled by inhibitor of apoptosis proteins and was dependent on RIPK1 and independent of TNF. Using correlative electron/fluorescence microscopy, we visualised fibrillar structures formed through both Toll/interleukin-1 receptor and RIP homotypic interacting motif regions of TRIF. We provide evidence that these fibrillary structures are active signalling platforms whose activity is terminated by autophagy. TRIF-signalling enhanced autophagy, and fibrillary structures were partly contained within autophagosomes. Inhibition of autophagy increased levels of pro-apoptotic TRIF complexes, leading to the accumulation of active caspase-8 and enhanced apoptosis while stimulation of autophagy reduced TRIF-dependent death. We conclude that pro-death signals through TRIF are regulated by autophagy and propose that pro-apoptotic signalling through TRIF/RIPK1/caspase-8 occurs in fibrillary platforms.
Collapse
Affiliation(s)
- Ian E Gentle
- Faculty of Medicine, Institute for Medical Microbiology and Hygiene, Medical Center - University of Freiburg, University of Freiburg, Germany
| | - Kevin T McHenry
- Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - Arnim Weber
- Faculty of Medicine, Institute for Medical Microbiology and Hygiene, Medical Center - University of Freiburg, University of Freiburg, Germany
| | - Arlena Metz
- Faculty of Medicine, Institute for Medical Microbiology and Hygiene, Medical Center - University of Freiburg, University of Freiburg, Germany
| | - Oliver Kretz
- Renal Division, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Germany.,Department of Neuroanatomy, University Freiburg, Germany
| | - Dale Porter
- Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - Georg Häcker
- Faculty of Medicine, Institute for Medical Microbiology and Hygiene, Medical Center - University of Freiburg, University of Freiburg, Germany
| |
Collapse
|
18
|
Integrative modelling of TIR domain-containing adaptor molecule inducing interferon-β (TRIF) provides insights into its autoinhibited state. Biol Direct 2017; 12:9. [PMID: 28427457 PMCID: PMC5397763 DOI: 10.1186/s13062-017-0179-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 03/01/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND TRIF is a key protein in antiviral innate immunity, operating downstream of TLRs. TRIF activation leads to the production of interferon-β and pro-inflammatory cytokines. There is evidence from experiments to suggest that the N-terminal domain of TRIF binds to its TIR domain to avoid constitutive activation. However, no structure of a complex between the N-terminal domain and the TIR domain exists till date. The disordered nature of the region connecting the N-terminal domain and the TIR domain compounds the issue of elucidating the mechanism of autoinhibition of TRIF. In this study, we have employed an integrative approach consisting of mutual information analysis, docking, molecular dynamics simulations and residue network analysis, in combination with existing experimental data to provide a glimpse of TRIF in its autoinhibited state. RESULTS Our extensive docking approach reveals that the N-terminal domain binds to the BB loop-B helix region of the TIR domain, consistent with experimental observations. Long length molecular dynamics simulations of 1 microsecond performed on the docked model highlights residues participating in hydrogen bonding and hydrophobic interactions at the interface. A pair of residues present in the vicinity of the interface is also predicted by mutual information analysis, to co-evolve. Residues mediating long-range interactions within the TIR domain of TRIF were identified using residue network analysis. CONCLUSIONS Based on the results of the modelling and residue network analysis, we propose that the N-terminal domain binds to the BB loop region of the TIR domain, thereby preventing its homodimersation. The binding of TRIF to TLR3 or TRAM could induce a slight conformational change, causing the interactions between the N-terminal domain and TIR domain to disrupt, thereby exposing the BB loop and rendering it amenable for higher-order oligomerisation. REVIEWERS This article was reviewed by Michael Gromiha, Srikrishna Subramaniam and Peter Bond (nominated by Chandra Verma).
Collapse
|
19
|
Funami K, Matsumoto M, Oshiumi H, Obuse C, Seya T. The dataset of proteins specifically interacted with activated TICAM-1. Data Brief 2016; 8:697-9. [PMID: 27508220 PMCID: PMC4949732 DOI: 10.1016/j.dib.2016.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/13/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022] Open
Abstract
The presented data are related with our paper entitled "14-3-3-zeta participates in TLR3-mediated TICAM-1 signal-platform formation" (Funami et al., 2016) [1]. These data show the proteins which specifically bind to the activated (oligomerized) TICAM-1. Fifty-three proteins were identified as specifically interacted with oligomerized TICAM-1. Mutant TICAM-1 cannot form the active oligomer, so the proteins interacted with mutant TICAM-1 are dispensable for TICAM-1-signaling. Among 53 proteins, 14-3-3-zeta specifically interacts with oligomerized TICAM-1 to corroborate TICAM-1 signalosome.
Collapse
Affiliation(s)
- Kenji Funami
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Hiroyuki Oshiumi
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; Division of Molecular Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Chikashi Obuse
- Division of Molecular Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
20
|
Ullah MO, Sweet MJ, Mansell A, Kellie S, Kobe B. TRIF-dependent TLR signaling, its functions in host defense and inflammation, and its potential as a therapeutic target. J Leukoc Biol 2016; 100:27-45. [PMID: 27162325 DOI: 10.1189/jlb.2ri1115-531r] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 04/04/2016] [Indexed: 12/16/2022] Open
Abstract
Toll/IL-1R domain-containing adaptor-inducing IFN-β (TRIF)-dependent signaling is required for TLR-mediated production of type-I IFN and several other proinflammatory mediators. Various pathogens target the signaling molecules and transcriptional regulators acting in the TRIF pathway, thus demonstrating the importance of this pathway in host defense. Indeed, the TRIF pathway contributes to control of both viral and bacterial pathogens through promotion of inflammatory mediators and activation of antimicrobial responses. TRIF signaling also has both protective and pathologic roles in several chronic inflammatory disease conditions, as well as an essential function in wound-repair processes. Here, we review our current understanding of the regulatory mechanisms that control TRIF-dependent TLR signaling, the role of the TRIF pathway in different infectious and noninfectious pathologic states, and the potential for manipulating TRIF-dependent TLR signaling for therapeutic benefit.
Collapse
Affiliation(s)
- M Obayed Ullah
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia; Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia; Institute for Molecular Bioscience, Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Ashley Mansell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | - Stuart Kellie
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia; Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia; Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia;
| |
Collapse
|
21
|
14-3-3-zeta participates in TLR3-mediated TICAM-1 signal-platform formation. Mol Immunol 2016; 73:60-8. [DOI: 10.1016/j.molimm.2016.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 02/06/2023]
|
22
|
Funami K, Matsumoto M, Enokizono Y, Ishii N, Tatematsu M, Oshiumi H, Inagaki F, Seya T. Identification of a Regulatory Acidic Motif as the Determinant of Membrane Localization of TICAM-2. THE JOURNAL OF IMMUNOLOGY 2015; 195:4456-4465. [DOI: 10.4049/jimmunol.1402628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
TLR4 triggers LPS signaling through the adaptors Toll/IL-1R domain–containing adaptor molecule (TICAM)-2 (also called TRAM) and TICAM-1 (also called TRIF), together with Toll/IL-1R domain–containing adaptor protein (TIRAP) and MyD88. The MyD88 pathway mediates early phase responses to LPS on the plasma membrane, whereas the TICAM pathway mediates late-phase responses, which induce the production of type I IFN and activation of inflammasomes. TICAM-2 bridges TLR4 and TICAM-1 for LPS signaling in the endosome. Recently, we identified an acidic motif, E87/D88/D89 in TICAM-2, that provides the interaction surfaces between TICAM-2 and TICAM-1. In the present study, we found additional D91/E92 in TICAM-2, conserved across species, that is crucial for TICAM-1 activation. The D91A/E92A mutant protein was distributed largely to the cytosol, despite myristoylation, suggesting its importance for assistance of membrane localization of TICAM-2. An ectopically expressed D91A/E92A mutant per se failed to activate TICAM-1, unlike its wild-type counterpart that forms self-aggregation, but it still retained the ability to pass LPS-mediated IFN regulatory factor (IRF)3 activation. In a TICAM-2 knockout human cell line expressing TLR4/MD-2 with or without CD14, overexpression of the D91A/E92A mutant did not activate IRF3, but upon LPS stimulation, it induced sufficient TLR4-mediated IRF3 activation with high coefficient colocalization. Hence, the D91/E92 motif guides TICAM-2 membrane localization and self-activation for signaling. Our results suggest the presence of two distinct steps underlying endosomal LPS signaling on TICAM-2 for TICAM-1 activation: TICAM-2 assembling in TLR4 and/or TICAM-2 self-activation. D91A/E92A of TICAM-2 selectively associates the TLR4-dependent TICAM-2 assembling, but not cytosolic TICAM-2 self-aggregation, to activate TICAM-1.
Collapse
Affiliation(s)
- Kenji Funami
- *Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; and
| | - Misako Matsumoto
- *Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; and
| | - Yoshiaki Enokizono
- †Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Noriko Ishii
- *Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; and
| | - Megumi Tatematsu
- *Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; and
| | - Hiroyuki Oshiumi
- *Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; and
| | - Fuyuhiko Inagaki
- †Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Tsukasa Seya
- *Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; and
| |
Collapse
|
23
|
Bryant CE, Symmons M, Gay NJ. Toll-like receptor signalling through macromolecular protein complexes. Mol Immunol 2014; 63:162-5. [PMID: 25081091 DOI: 10.1016/j.molimm.2014.06.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 12/16/2022]
Abstract
The molecular mechanisms by which pattern recognition receptors (PRRs) signal are increasingly well understood. Toll-like receptor 4 (TLR4) signals through two separate pairs of adaptor proteins Mal/MyD88 and Tram/Trif. Structural studies have revealed a common theme for PRR signalling in that their signalling proteins form large macromolecular complexes which are thought to form the active signalling complex. The first of these to be characterised was the MyD88 signalling complex Myddosome. Many questions remain unanswered however. In particular it is unclear whether these signalling complexes form within the living cell, how many of each signalling protein is within the intracellular Myddosome and whether the stoichiometry can vary in a ligand-dependent manner. In this review we will discuss what is known about the macromolecular complexes thought to be important for TLR4 signalling.
Collapse
Affiliation(s)
- Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom.
| | - Martyn Symmons
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Nicholas J Gay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
24
|
Kumeta H, Sakakibara H, Enokizono Y, Ogura K, Horiuchi M, Matsumoto M, Seya T, Inagaki F. The N-terminal domain of TIR domain-containing adaptor molecule-1, TICAM-1. JOURNAL OF BIOMOLECULAR NMR 2014; 58:227-230. [PMID: 24500696 DOI: 10.1007/s10858-014-9819-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 01/31/2014] [Indexed: 06/03/2023]
Affiliation(s)
- Hiroyuki Kumeta
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, N-21, W-11, Kita-ku, Sapporo, 001-0021, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Nguyen VP, Chen J, Petrus MN, Goldman CK, Kruhlak MJ, Bamford RN, Waldmann TA. A new domain in the Toll/IL-1R domain-containing adaptor inducing interferon-β factor protein amino terminus is important for tumor necrosis factor-α receptor-associated factor 3 association, protein stabilization and interferon signaling. J Innate Immun 2014; 6:377-93. [PMID: 24577058 DOI: 10.1159/000356408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/01/2013] [Indexed: 01/16/2023] Open
Abstract
Toll/IL-1R domain-containing adaptor inducing interferon-β (IFN-β) factor (TRIF) is a key adaptor for Toll-like receptor (TLR) 3 and TLR4 signaling. Using a novel cDNA isolate encoding a TRIF protein with a 21-residue deletion (Δ160-181) from its amino-terminal half, we investigated the impact of this deletion on TRIF functions. Transfection studies consistently showed higher expression levels of the (Δ160-181) TRIF compared to wild-type (wt) TRIF, an effect unrelated to apoptosis, cell lines or plasmid amplification. Colocalization of wt and (Δ160-181) TRIF proteins led to a dramatic reduction of their respective expressions, suggesting that wt/(Δ160-181) TRIF heterocomplexes are targeted for degradation. We demonstrated that wt TRIF associates with tumor necrosis factor-α receptor-associated factor 3 (TRAF3) better than (Δ160-181) TRIF, culminating in its greater ubiquitination and proteolysis. This explains, in part, the differential expression levels of the two TRIF proteins. Despite higher expression levels in transfected cells, (Δ160-181) TRIF inefficiently transactivated the IFN pathway, whereas the nuclear factor-κB (NF-κB) pathway activation remained similar to that by wt TRIF. In coexpression studies, (Δ160-181) TRIF marginally contributed to the IFN pathway activation, but still enhanced NF-κB signaling with wt TRIF. Therefore, this 21 amino acid sequence is crucial for TRAF3 association, modulation of TRIF stability and activation of the IFN pathway.
Collapse
Affiliation(s)
- Vinh-Phuc Nguyen
- Metabolism Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Md., USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Structures and interface mapping of the TIR domain-containing adaptor molecules involved in interferon signaling. Proc Natl Acad Sci U S A 2013; 110:19908-13. [PMID: 24255114 DOI: 10.1073/pnas.1222811110] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Homotypic and heterotypic interactions between Toll/interleukin-1 receptor (TIR) domains in Toll-like receptors (TLRs) and downstream adaptors are essential to evoke innate immune responses. However, such oligomerization properties present intrinsic difficulties in structural studies of TIR domains. Here, using BB-loop mutations that disrupt homotypic interactions, we determined the structures of the monomeric TIR domain-containing adaptor molecule (TICAM)-1 and TICAM-2 TIR domains. Docking of the monomeric structures, together with yeast two hybrid-based mutagenesis assays, reveals that the homotypic interaction between TICAM-2 TIR is indispensable to present a scaffold for recruiting the monomeric moiety of the TICAM-1 TIR dimer. This result proposes a unique idea that oligomerization of upstream TIR domains is crucial for binding of downstream TIR domains. Furthermore, the bivalent nature of each TIR domain dimer can generate a large signaling complex under the activated TLRs, which would recruit downstream signaling molecules efficiently. This model is consistent with previous reports that BB-loop mutants completely abrogate downstream signaling.
Collapse
|
27
|
Ullah MO, Ve T, Mangan M, Alaidarous M, Sweet MJ, Mansell A, Kobe B. The TLR signalling adaptor TRIF/TICAM-1 has an N-terminal helical domain with structural similarity to IFIT proteins. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2420-30. [PMID: 24311583 DOI: 10.1107/s0907444913022385] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/09/2013] [Indexed: 02/06/2023]
Abstract
TRIF/TICAM-1 (TIR domain-containing adaptor inducing interferon-β/TIR domain-containing adaptor molecule 1) is the adaptor protein in the Toll-like receptor (TLR) 3 and 4 signalling pathway that leads to the production of type 1 interferons and cytokines. The signalling involves TIR (Toll/interleukin-1 receptor) domain-dependent TRIF oligomerization. A protease-resistant N-terminal region is believed to be involved in self-regulation of TRIF by interacting with its TIR domain. Here, the structural and functional characterization of the N-terminal domain of TRIF (TRIF-NTD) comprising residues 1-153 is reported. The 2.22 Å resolution crystal structure was solved by single-wavelength anomalous diffraction (SAD) using selenomethionine-labelled crystals of TRIF-NTD containing two additional introduced Met residues (TRIF-NTDA66M/L113M). The structure consists of eight antiparallel helices that can be divided into two subdomains, and the overall fold shares similarity to the interferon-induced protein with tetratricopeptide repeats (IFIT) family of proteins, which are involved in both the recognition of viral RNA and modulation of innate immune signalling. Analysis of TRIF-NTD surface features and the mapping of sequence conservation onto the structure suggest several possible binding sites involved in either TRIF auto-regulation or interaction with other signalling molecules or ligands. TRIF-NTD suppresses TRIF-mediated activation of the interferon-β promoter, as well as NF-κB-dependent reporter-gene activity. These findings thus identify opportunities for the selective targeting of TLR3- and TLR4-mediated inflammation.
Collapse
Affiliation(s)
- M Obayed Ullah
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Fekonja O, Avbelj M, Jerala R. Suppression of TLR signaling by targeting TIR domain-containing proteins. Curr Protein Pept Sci 2013; 13:776-88. [PMID: 23305364 PMCID: PMC3594740 DOI: 10.2174/138920312804871148] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/20/2012] [Accepted: 08/03/2012] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) recognize molecules specific to pathogens and endogenous danger signals. Binding of agonists to the ectodomain of the receptor initiates TLR activation and is followed by the association of receptor cytosolic Toll/Interleukin-1 receptor (TIR) domains with TIR domains of adapter proteins leading to the assembly of signaling cascade of protein kinases that ultimately trigger the activation of transcription factors and expression of genes involved in the immune response. Excessive activation of TIR-domain mediated signaling has been implicated in inflammatory diseases (e.g. rheumatoid arthritis, systemic lupus erythematosus, colitis) as well as in the development of cancer. Targeting receptor-adapter interactions represents a potential strategy for the therapeutic TLR/IL-1R-specific inhibition due to the unique interacting domains involved. Peptide and protein-domain binding TLR inhibitors originating from the interacting surfaces of TIR-domain containing proteins can bind to the site on their target interacting protein thereby preventing the assembly of the functional signaling complex. Here we review protein-domain, peptide and peptidomimetic inhibitors targeting TIR-domain mediated interactions and their application demonstrated on in vitro and in vivo models. Recent structural data and elucidation of the molecular mechanisms of TIR-domain mediated signaling enabled the development of peptide inhibitors from TIR domains of TLRs and adapters, MyD88 intermediary domain as well as improved protein inhibitors based on TIR domain dimerization, mimicking bacterial TIR-domain containing immunosuppressors (TCPs) which we discuss with challenges concerning the delivery and specificity of inhibitors targeting TLR adapters.
Collapse
Affiliation(s)
- Ota Fekonja
- Laboratory of Biotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
29
|
Primary immunodeficiencies: a rapidly evolving story. J Allergy Clin Immunol 2013; 131:314-23. [PMID: 23374262 DOI: 10.1016/j.jaci.2012.11.051] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/06/2012] [Accepted: 11/29/2012] [Indexed: 12/28/2022]
Abstract
The characterization of primary immunodeficiencies (PIDs) in human subjects is crucial for a better understanding of the biology of the immune response. New achievements in this field have been possible in light of collaborative studies; attention paid to new phenotypes, infectious and otherwise; improved immunologic techniques; and use of exome sequencing technology. The International Union of Immunological Societies Expert Committee on PIDs recently reported on the updated classification of PIDs. However, new PIDs are being discovered at an ever-increasing rate. A series of 19 novel primary defects of immunity that have been discovered after release of the International Union of Immunological Societies report are discussed here. These new findings highlight the molecular pathways that are associated with clinical phenotypes and suggest potential therapies for affected patients.
Collapse
|
30
|
Seya T, Azuma M, Matsumoto M. Targeting TLR3 with no RIG-I/MDA5 activation is effective in immunotherapy for cancer. Expert Opin Ther Targets 2013; 17:533-44. [PMID: 23414438 DOI: 10.1517/14728222.2013.765407] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Many forms of RNA duplexes with agonistic activity for pattern-recognition receptors have been reported, some of which are candidates for adjuvant immunotherapy for cancer. These RNA duplexes induce cytokines, interferons (IFNs) and cellular effectors mainly via two distinct pathways, TLR3/TICAM-1 and MDA5/MAVS. AREAS COVERED We determined which pathway of innate immunity predominantly participates in evoking tumor immunity in response to RNA adjuvants. EXPERT OPINION In knockout (KO) mouse studies, robust cytokine or IFN production is dependent on systemic activation of the MAVS pathway, whereas maturation of dendritic cells (DCs) to drive cellular effectors (i.e., NK and CTL) depends on the TICAM-1 pathway in DCs. MAVS activation often causes endotoxin-like cytokinemia, while the TICAM-1 activation does not. Unlike the TLR/MyD88 pathway, this TICAM-1 pathway barely accelerates tumor progression. Although the therapeutic effect in human patients of MAVS-activating or TICAM-1-activating RNA duplexes remains undetermined, the design of a TLR3 agonist with optimized toxicity and dose is an important goal for human immunotherapy. Here we summarize current knowledge on available RNA duplex formulations, and offer a possible approach to developing a promising RNA duplex for clinical tests.
Collapse
Affiliation(s)
- Tsukasa Seya
- Hokkaido University, Graduate School of Medicine, Department of Microbiology and Immunology, Sapporo, 060-8638 , Japan.
| | | | | |
Collapse
|
31
|
Bovijn C, Desmet AS, Uyttendaele I, Van Acker T, Tavernier J, Peelman F. Identification of binding sites for myeloid differentiation primary response gene 88 (MyD88) and Toll-like receptor 4 in MyD88 adapter-like (Mal). J Biol Chem 2013; 288:12054-66. [PMID: 23460645 DOI: 10.1074/jbc.m112.415810] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Upon activation, Toll-like receptor 4 (TLR4) binds adapter proteins, including MyD88 (myeloid differentiation primary response gene 88) and Mal (MyD88 adapter-like) for its signal transduction. TLR4 and the adapter proteins each contain a Toll/Il-1 receptor domain (TIR domain). In this study we used random mutagenesis and the mammalian two-hybrid method MAPPIT (mammalian protein-protein interaction trap) to identify mutations in Mal that disrupt its interaction with TLR4 and/or MyD88. Our study shows that four potential binding sites and the AB-loop in the Mal TIR domain all contribute to formation of the TLR4-Mal-MyD88 complex. Mutations in the symmetrical back-to-back Mal homodimer interface affect Mal homodimerization and interaction with MyD88 and TLR4. Our data suggest that Mal dimerization may lead to formation of potential binding platforms on the top and the side of the Mal dimer that bind MyD88 or TLR4. Mutations that affect the interaction of Mal with MyD88 also affect NF-κB activation induced by Mal overexpression. In MAPPIT, co-expression of the MyD88 TIR domain enhances Mal dimerization and Mal binding to TLR4. Similarly, co-expression of Mal and the MyD88 TIR domain strongly promotes dimerization of the TLR4 intracellular domain in MAPPIT. The different types of TIR-TIR interactions in the TLR4-Mal-MyD88 complex thus show cooperative binding in MAPPIT. We present plausible models for the TIR-TIR interactions in the TLR4-Mal-MyD88 complex.
Collapse
Affiliation(s)
- Celia Bovijn
- Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology, VIB and Ghent University, B-9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
32
|
Ahmed S, Maratha A, Butt AQ, Shevlin E, Miggin SM. TRIF-mediated TLR3 and TLR4 signaling is negatively regulated by ADAM15. THE JOURNAL OF IMMUNOLOGY 2013; 190:2217-28. [PMID: 23365087 DOI: 10.4049/jimmunol.1201630] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TLRs are a group of pattern-recognition receptors that play a crucial role in danger recognition and induction of the innate immune response against bacterial and viral infections. The TLR adaptor molecule, Toll/IL-1R domain-containing adaptor inducing IFN (TRIF), facilitates TLR3 and TLR4 signaling and concomitant activation of the transcription factors, NF-κB and IFN regulatory factor 3, leading to proinflammatory cytokine production. Whereas numerous studies have been undertaken toward understanding the role of TRIF in TLR signaling, little is known about the signaling components that regulate TRIF-dependent TLR signaling. To this end, TRIF-interacting partners were identified by immunoprecipitation of the TRIF signaling complex, followed by protein identification using liquid chromatography mass spectrometry. Following stimulation of cells with a TLR3 or TLR4 ligand, we identified a disintegrin and metalloprotease (ADAM)15 as a novel TRIF-interacting partner. Toward the functional characterization of the TRIF:ADAM15 interaction, we show that ADAM15 acts as a negative regulator of TRIF-mediated NF-κB and IFN-β reporter gene activity. Also, suppression of ADAM15 expression enhanced polyriboinosinic polyribocytidylic acid and LPS-mediated proinflammatory cytokine production via TRIF. In addition, suppression of ADAM15 expression enhanced rhinovirus 16 and vesicular stomatitis virus-mediated proinflammatory cytokine production. Interestingly, ADAM15 mediated the proteolytic cleavage of TRIF. Thus, ADAM15 serves to curtail TRIF-dependent TLR3 and TLR4 signaling and, in doing so, protects the host from excessive production of proinflammatory cytokines and matrix metalloproteinases. In conclusion, to our knowledge, our study clearly shows for the first time that ADAM15 plays an unexpected role in TLR signaling, acting as an anti-inflammatory molecule through impairment of TRIF-mediated TLR signaling.
Collapse
Affiliation(s)
- Suaad Ahmed
- Department of Biology, Institute of Immunology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | | | | | | | | |
Collapse
|
33
|
Matsumoto M, Funami K, Oshiumi H, Seya T. Toll-IL-1-receptor-containing adaptor molecule-1: a signaling adaptor linking innate immunity to adaptive immunity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:487-510. [PMID: 23663980 DOI: 10.1016/b978-0-12-386931-9.00018-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The innate immune system senses microbial infections using pattern-recognition receptors and signals to activate adaptive immunity. Type I transmembrane protein Toll-like receptors (TLRs) play important roles in antimicrobial immune responses. Upon the recognition of pathogen-associated molecular patterns, TLRs homo- or heterodimerize and recruit distinct adaptor molecules to the intracellular TIR domains. Toll-IL-1-receptor-containing adaptor molecule-1 (TICAM-1) is a signaling adaptor downstream of TLRs 3 and 4 that recognizes virus-derived double-stranded RNA and lipopolysaccharide, respectively. TLR3 is expressed on the endosomal membrane in myeloid DCs, where TLR3-mediated signaling is initiated. Once TICAM-1 is activated, transcription factors, IRF-3, NF-κB, and AP-1, are activated, leading to production of IFN-β and proinflammatory cytokines and maturation of dendritic cells, which are capable of activating NK cells and cytotoxic T cells. Hence, TICAM-1 signaling appears to link innate immunity to adaptive immunity. In this review, we summarize the current knowledge on TICAM-1 and discuss its role in virus infection and antitumor immunity.
Collapse
Affiliation(s)
- Misako Matsumoto
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | |
Collapse
|
34
|
Sancho-Shimizu V, Perez de Diego R, Jouanguy E, Zhang SY, Casanova JL. Inborn errors of anti-viral interferon immunity in humans. Curr Opin Virol 2012; 1:487-96. [PMID: 22347990 DOI: 10.1016/j.coviro.2011.10.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The three types of interferon (IFNs) are essential for immunity against at least some viruses in the mouse model of experimental infections, type I IFNs displaying the broadest and strongest anti-viral activity. Consistently, human genetic studies have shown that type II IFN is largely redundant for immunity against viruses in the course of natural infections. The precise contributions of human type I and III IFNs remain undefined. However, various inborn errors of anti-viral IFN immunity have been described, which can result in either broad or narrow immunological and viral phenotypes. The broad disorders impair the response to (STAT1, TYK2) or the production of at least type I and type III IFNs following multiple stimuli (NEMO), resulting in multiple viral infections at various sites, including herpes simplex encephalitis (HSE). The narrow disorders impair exclusively (TLR3) or mostly (UNC-93B, TRIF, TRAF3) the TLR3-dependent induction of type I and III IFNs, leading to HSE in apparently otherwise healthy individuals. These recent discoveries highlight the importance of human type I and III IFNs in protective immunity against viruses, including the TLR3-IFN pathway in protection against HSE.
Collapse
Affiliation(s)
- Vanessa Sancho-Shimizu
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, U980, Necker Medical School, Paris 75015, France
| | | | | | | | | |
Collapse
|
35
|
Luo J, Obmolova G, Malia TJ, Wu SJ, Duffy KE, Marion JD, Bell JK, Ge P, Zhou ZH, Teplyakov A, Zhao Y, Lamb RJ, Jordan JL, San Mateo LR, Sweet RW, Gilliland GL. Lateral clustering of TLR3:dsRNA signaling units revealed by TLR3ecd:3Fabs quaternary structure. J Mol Biol 2012; 421:112-24. [PMID: 22579623 PMCID: PMC3920545 DOI: 10.1016/j.jmb.2012.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/27/2012] [Accepted: 05/03/2012] [Indexed: 12/19/2022]
Abstract
Toll-like receptor 3 (TLR3) recognizes dsRNA and initiates an innate immune response through the formation of a signaling unit (SU) composed of one double-stranded RNA (dsRNA) and two TLR3 molecules. We report the crystal structure of human TLR3 ectodomain (TLR3ecd) in a quaternary complex with three neutralizing Fab fragments. Fab15 binds an epitope that overlaps the C-terminal dsRNA binding site and, in biochemical assays, blocks the interaction of TLR3ecd with dsRNA, thus directly antagonizing TLR3 signaling through inhibition of SU formation. In contrast, Fab12 and Fab1068 bind TLR3ecd at sites distinct from the N- and C-terminal regions that interact with dsRNA and do not inhibit minimal SU formation with short dsRNA. Molecular modeling based on the co-structure rationalizes these observations by showing that both Fab12 and Fab1068 prevent lateral clustering of SUs along the length of the dsRNA ligand. This model is further supported by cell-based assay results using dsRNA ligands of lengths that support single and multiple SUs. Thus, their antagonism of TLR3 signaling indicates that lateral clustering of SUs is required for TLR3 signal transduction.
Collapse
Affiliation(s)
- Jinquan Luo
- Biologics Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Galina Obmolova
- Biologics Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Thomas J. Malia
- Biologics Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Sheng-Jiun Wu
- Biologics Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Karen E. Duffy
- Immunology Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - James D. Marion
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jessica K. Bell
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Peng Ge
- Electron Imaging Center for Nanomachines (EICN), UCLA, Los Angeles, CA 90095, USA
| | - Z. Hong Zhou
- Electron Imaging Center for Nanomachines (EICN), UCLA, Los Angeles, CA 90095, USA
| | - Alexey Teplyakov
- Biologics Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Yonghong Zhao
- Biologics Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Roberta J. Lamb
- Immunology Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Jarrat L. Jordan
- Immunology Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Lani R. San Mateo
- Immunology Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Raymond W. Sweet
- Biologics Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Gary L. Gilliland
- Biologics Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| |
Collapse
|
36
|
Abstract
Pellino-1 has recently been identified as a regulator of interleukin-1 (IL-1) signaling, but its roles in regulation of responses of human cells to human pathogens are unknown. We investigated the potential roles of Pellino-1 in the airways. We show for the first time that Pellino-1 regulates responses to a human pathogen, rhinovirus minor group serotype 1B (RV-1B). Knockdown of Pellino-1 by small interfering RNA (siRNA) was associated with impaired production of innate immune cytokines such as CXCL8 from human primary bronchial epithelial cells in response to RV-1B, without impairment in production of antiviral interferons (IFN), and without loss of control of viral replication. Pellino-1 actions were likely to be independent of interleukin-1 receptor-associated kinase-1 (IRAK-1) regulation, since Pellino-1 knockdown in primary epithelial cells did not alter responses to IL-1 but did inhibit responses to poly(I·C), a Toll-like receptor 3 (TLR3) activator that does not signal via IRAK-1 to engender a response. These data indicate that Pellino-1 represents a novel target that regulates responses of human airways to human viral pathogens, independently of IRAK signaling. Neutralization of Pellino-1 may therefore provide opportunities to inhibit potentially harmful neutrophilic inflammation of the airways induced by respiratory viruses, without loss of control of the underlying viral infection.
Collapse
|
37
|
Into T, Inomata M, Takayama E, Takigawa T. Autophagy in regulation of Toll-like receptor signaling. Cell Signal 2012; 24:1150-62. [PMID: 22333395 DOI: 10.1016/j.cellsig.2012.01.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 01/27/2012] [Indexed: 12/16/2022]
Abstract
Toll-like receptors (TLRs) serve as the major innate immune sensors for detection of specific molecular patterns on various pathogens. TLRs activate signaling events mainly by utilizing ubiquitin-dependent mechanisms. Recent research advances have provided evidence that TLR signaling is linked to induction of autophagy. Autophagy is currently known to affect both of the immune defense and suppression of inflammatory responses. In TLR-associated immune responses, autophagic lysis of intracellular microbes (called xenophagy) contributes to the former mechanism, while the latter seems to be mediated by the control of the mitochondrial integrity or selective autophagic clearance of aggregated signaling proteins (called aggrephagy). Several autophagy-related ubiquitin-binding proteins, such as SQSTM1/p62 and NDP52, mediate xenophagy and aggrephagy. In this review, we summarize the expanded knowledge regarding TLR signaling and autophagy signaling. After that, we will focus on autophagy-associated signaling downstream of TLRs and the effect of autophagy on TLR signaling, thus highlighting the signaling crosstalk between the TLR-associated innate immune responses and the regulation of innate immunity by xenophagy and aggrephagy.
Collapse
Affiliation(s)
- Takeshi Into
- Department of Oral Microbiology, Division of Oral Infections and Health Sciences, Asahi University School of Dentistry, Hozumi, Japan.
| | | | | | | |
Collapse
|
38
|
Characterization of antioxidant and anti-inflammatory activities of bioactive fractions recovered from a glucose−lysine Maillard reaction model system. Mol Cell Biochem 2012; 364:147-57. [DOI: 10.1007/s11010-011-1213-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/21/2011] [Indexed: 12/19/2022]
|
39
|
Sancho-Shimizu V, Pérez de Diego R, Lorenzo L, Halwani R, Alangari A, Israelsson E, Fabrega S, Cardon A, Maluenda J, Tatematsu M, Mahvelati F, Herman M, Ciancanelli M, Guo Y, AlSum Z, Alkhamis N, Al-Makadma AS, Ghadiri A, Boucherit S, Plancoulaine S, Picard C, Rozenberg F, Tardieu M, Lebon P, Jouanguy E, Rezaei N, Seya T, Matsumoto M, Chaussabel D, Puel A, Zhang SY, Abel L, Al-Muhsen S, Casanova JL. Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J Clin Invest 2011; 121:4889-902. [PMID: 22105173 DOI: 10.1172/jci59259] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 10/06/2011] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex encephalitis (HSE) is the most common sporadic viral encephalitis of childhood. Autosomal recessive (AR) UNC-93B and TLR3 deficiencies and autosomal dominant (AD) TLR3 and TRAF3 deficiencies underlie HSE in some children. We report here unrelated HSE children with AR or AD TRIF deficiency. The AR form of the disease was found to be due to a homozygous nonsense mutation that resulted in a complete absence of the TRIF protein. Both the TLR3- and the TRIF-dependent TLR4 signaling pathways were abolished. The AD form of disease was found to be due to a heterozygous missense mutation, resulting in a dysfunctional protein. In this form of the disease, the TLR3 signaling pathway was impaired, whereas the TRIF-dependent TLR4 pathway was unaffected. Both patients, however, showed reduced capacity to respond to stimulation of the DExD/H-box helicases pathway. To date, the TRIF-deficient patients with HSE described herein have suffered from no other infections. Moreover, as observed in patients with other genetic etiologies of HSE, clinical penetrance was found to be incomplete, as some HSV-1-infected TRIF-deficient relatives have not developed HSE. Our results provide what we believe to be the first description of human TRIF deficiency and a new genetic etiology for HSE. They suggest that the TRIF-dependent TLR4 and DExD/H-box helicase pathways are largely redundant in host defense. They further demonstrate the importance of TRIF for the TLR3-dependent production of antiviral IFNs in the CNS during primary infection with HSV-1 in childhood.
Collapse
Affiliation(s)
- Vanessa Sancho-Shimizu
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Necker Medical School, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Oshiumi H, Okamoto M, Fujii K, Kawanishi T, Matsumoto M, Koike S, Seya T. The TLR3/TICAM-1 Pathway Is Mandatory for Innate Immune Responses to Poliovirus Infection. THE JOURNAL OF IMMUNOLOGY 2011; 187:5320-7. [DOI: 10.4049/jimmunol.1101503] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Inomata M, Niida S, Shibata KI, Into T. Regulation of Toll-like receptor signaling by NDP52-mediated selective autophagy is normally inactivated by A20. Cell Mol Life Sci 2011; 69:963-79. [PMID: 21964925 PMCID: PMC3285758 DOI: 10.1007/s00018-011-0819-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/21/2011] [Accepted: 09/06/2011] [Indexed: 12/22/2022]
Abstract
Toll-like receptor (TLR) signaling is linked to autophagy that facilitates elimination of intracellular pathogens. However, it is largely unknown whether autophagy controls TLR signaling. Here, we report that poly(I:C) stimulation induces selective autophagic degradation of the TLR adaptor molecule TRIF and the signaling molecule TRAF6, which is revealed by gene silencing of the ubiquitin-editing enzyme A20. This type of autophagy induced formation of autophagosomes and could be suppressed by an autophagy inhibitor and lysosomal inhibitors. However, this autophagy was not associated with canonical autophagic processes, including involvement of Beclin-1 and conversion of LC3-I to LC3-II. Through screening of TRIF-interacting ‘autophagy receptors’ in human cells, we identified that NDP52 mediated the selective autophagic degradation of TRIF and TRAF6 but not TRAF3. NDP52 was polyubiquitinated by TRAF6 and was involved in aggregation of TRAF6, which may result in the selective degradation. Intriguingly, only under the condition of A20 silencing, NDP52 could effectively suppress poly(I:C)-induced proinflammatory gene expression. Thus, this study clarifies a selective autophagic mechanism mediated by NDP52 that works downstream of TRIF–TRAF6. Furthermore, although A20 is known as a signaling fine-tuner to prevent excess TLR signaling, it paradoxically downregulates the fine-tuning effect of NDP52 on TLR signaling.
Collapse
Affiliation(s)
- Megumi Inomata
- Department of Oral Microbiology, Division of Oral Infections and Health Sciences, Asahi University School of Dentistry, Hozumi 1851, Mizuho, Gifu 501-0296, Japan
| | | | | | | |
Collapse
|
42
|
Yang M, Yuan S, Huang S, Li J, Xu L, Huang H, Tao X, Peng J, Xu A. Characterization of bbtTICAM from amphioxus suggests the emergence of a MyD88-independent pathway in basal chordates. Cell Res 2011; 21:1410-23. [PMID: 21931360 DOI: 10.1038/cr.2011.156] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The MyD88-independent pathway, one of the two crucial TLR signaling routes, is thought to be a vertebrate innovation. However, a novel Toll/interleukin-1 receptor (TIR) adaptor, designated bbtTICAM, which was identified in the basal chordate amphioxus, links this pathway to invertebrates. The protein architecture of bbtTICAM is similar to that of vertebrate TICAM1 (TIR-containing adaptor molecule-1, also known as TRIF), while phylogenetic analysis based on the TIR domain indicated that bbtTICAM is the oldest ortholog of vertebrate TICAM1 and TICAM2 (TIR-containing adaptor molecule-2, also known as TRAM). Similar to human TICAM1, bbtTICAM activates NF-κB in a MyD88-independent manner by interacting with receptor interacting protein (RIP) via its RHIM motif. Such activation requires bbtTICAM to form homodimers in endosomes, and it may be negatively regulated by amphioxus SARM (sterile α and armadillo motif-containing protein) and TRAF2. However, bbtTICAM did not induce the production of type I interferon. Thus, our study not only presents the ancestral features of vertebrate TICAM1 and TICAM2, but also reveals the evolutionary origin of the MyD88-independent pathway from basal chordates, which will aid in understanding the development of the vertebrate TLR network.
Collapse
Affiliation(s)
- Manyi Yang
- State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-Sen University, 135 W Xingang Rd, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
The ubiquitin-like protein PLIC-1 or ubiquilin 1 inhibits TLR3-Trif signaling. PLoS One 2011; 6:e21153. [PMID: 21695056 PMCID: PMC3117881 DOI: 10.1371/journal.pone.0021153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 05/21/2011] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The innate immune responses to virus infection are initiated by either Toll-like receptors (TLR3/7/8/9) or cytoplasmic double-stranded RNA (dsRNA)-recognizing RNA helicases RIG-I and MDA5. To avoid causing injury to the host, these signaling pathways must be switched off in time by negative regulators. METHODOLOGY/PRINCIPAL FINDINGS Through yeast-two hybrid screening, we found that an ubiquitin-like protein named protein linking integrin-associated protein to cytoskeleton 1(PLIC-1 or Ubiquilin 1) interacted with the Toll/interleukin-1 receptor (TIR) domain of TLR4. Interestingly, PLIC-1 had modest effect on TLR4-mediated signaling, but strongly suppressed the transcriptional activation of IFN-β promoter through the TLR3-Trif-dependent pathway. Concomitantly, reduction of endogenous PLIC-1 by short-hairpin interfering RNA (shRNA) enhanced TLR3 activation both in luciferase reporter assays as well as in new castle disease virus (NDV) infected cells. An interaction between PLIC-1 and Trif was confirmed in co-immunoprecipitation (Co-IP) and GST-pull-down assays. Subsequent confocal microscopic analysis revealed that PLIC-1 and Trif colocalized with the autophagosome marker LC3 in punctate subcellular structures. Finally, overexpression of PLIC-1 decreased Trif protein abundance in a Nocodazole-sensitive manner. CONCLUSIONS Our results suggest that PLIC-1 is a novel inhibitor of the TLR3-Trif antiviral pathway by reducing the abundance of Trif.
Collapse
|
44
|
Mukherjee A, Morosky SA, Delorme-Axford E, Dybdahl-Sissoko N, Oberste MS, Wang T, Coyne CB. The coxsackievirus B 3C protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling. PLoS Pathog 2011; 7:e1001311. [PMID: 21436888 PMCID: PMC3059221 DOI: 10.1371/journal.ppat.1001311] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 02/02/2011] [Indexed: 02/06/2023] Open
Abstract
The host innate immune response to viral infections often involves the activation of parallel pattern recognition receptor (PRR) pathways that converge on the induction of type I interferons (IFNs). Several viruses have evolved sophisticated mechanisms to attenuate antiviral host signaling by directly interfering with the activation and/or downstream signaling events associated with PRR signal propagation. Here we show that the 3C(pro) cysteine protease of coxsackievirus B3 (CVB3) cleaves the innate immune adaptor molecules mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1 receptor domain-containing adaptor inducing interferon-beta (TRIF) as a mechanism to escape host immunity. We found that MAVS and TRIF were cleaved in CVB3-infected cells in culture. CVB3-induced cleavage of MAVS and TRIF required the cysteine protease activity of 3C(pro), occurred at specific sites and within specialized domains of each molecule, and inhibited both the type I IFN and apoptotic signaling downstream of these adaptors. 3C(pro)-mediated MAVS cleavage occurred within its proline-rich region, led to its relocalization from the mitochondrial membrane, and ablated its downstream signaling. We further show that 3C(pro) cleaves both the N- and C-terminal domains of TRIF and localizes with TRIF to signalosome complexes within the cytoplasm. Taken together, these data show that CVB3 has evolved a mechanism to suppress host antiviral signal propagation by directly cleaving two key adaptor molecules associated with innate immune recognition.
Collapse
Affiliation(s)
- Amitava Mukherjee
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stefanie A. Morosky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Elizabeth Delorme-Axford
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Naomi Dybdahl-Sissoko
- Picornavirus Laboratory, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - M. Steven Oberste
- Picornavirus Laboratory, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Tianyi Wang
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carolyn B. Coyne
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
45
|
Matsumoto M, Oshiumi H, Seya T. Antiviral responses induced by the TLR3 pathway. Rev Med Virol 2011; 21:67-77. [PMID: 21312311 DOI: 10.1002/rmv.680] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 12/21/2010] [Accepted: 12/21/2010] [Indexed: 12/24/2022]
Abstract
Antiviral responses are successively induced in virus-infected animals, and include primary innate immune responses such as type I interferon (IFN) and cytokine production, secondary natural killer (NK) cell responses, and final cytotoxic T lymphocyte (CTL) responses and antibody production. The endosomal Toll-like receptors (TLRs) and cytoplasmic RIG-I-like receptors (RLRs), which recognize viral nucleic acids, are responsible for virus-induced type I IFN production. RLRs are expressed in most tissues and cells and are primarily implicated in innate immune responses against various viruses through type I IFN production, whereas nucleic acid-sensing TLRs, TLRs 3, 7, 8 and 9, are expressed on the endosomal membrane of dendritic cells (DCs) and play distinct roles in antiviral immunity. TLR3 recognizes viral double-stranded RNA taken up into the endosome and serves to protect the host against viral infection by the induction of a range of responses including type I IFN production and DC-mediated activation of NK cells and CTLs, although the deteriorative role of TLR3 has also been reported in some virus infections. Here, we review the current knowledge on the role of TLR3 during viral infection, and the current understanding of the TLR3-signalling cascade that operates via the adaptor protein TICAM-1 (also called TRIF).
Collapse
Affiliation(s)
- Misako Matsumoto
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan.
| | | | | |
Collapse
|
46
|
Takaki H, Watanabe Y, Shingai M, Oshiumi H, Matsumoto M, Seya T. Strain-to-strain difference of V protein of measles virus affects MDA5-mediated IFN-β-inducing potential. Mol Immunol 2010; 48:497-504. [PMID: 21071089 DOI: 10.1016/j.molimm.2010.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 10/07/2010] [Accepted: 10/12/2010] [Indexed: 12/23/2022]
Abstract
Laboratory-adapted and vaccine strains of measles virus (MV) induce type I interferon (IFN) in infected cells to a far greater extent than wild-type strains. We investigated the mechanisms for this differential type I IFN production in cells infected with representative MV strains. The overexpression of the wild-type V protein suppressed melanoma differentiation-associated gene 5 (MDA5)-induced IFN-β promoter activity, while this was not seen in A549 cells expressing CD150 transfected with the V protein of the vaccine strain. The V proteins of the wild-type also suppressed poly I:C-induced IFN regulatory factor 3 (IRF-3) dimerization. The V proteins of the wild-type and vaccine strain did not affect retinoic acid-inducible gene 1 (RIG-I)- or toll-IL-1R homology domain-containing adaptor molecule 1 (TICAM-1)-induced IFN-β promoter activation. We identified an amino acid substitution of the cysteine residue at position 272 (which is conserved among paramyxoviruses) to an arginine residue in the V protein of the vaccine strain. Only the V protein possessing the 272C residue binds to MDA5. The mutation introduced into the wild-type V protein (C272R) was unable to suppress MDA5-induced IRF-3 nuclear translocation and IFN-β promoter activation as seen in the V proteins of the vaccine strain, whereas the mutation introduced in the vaccine strain V protein (R272C) was able to inhibit MDA5-induced IRF-3 and IFN-β promoter activation. The other 6 residues of the vaccine strain V sequence inconsistent with the authentic sequence of the wild-type V protein barely affected the IRF-3 nuclear translocation. These data suggested that the structural difference of laboratory-adapted [corrected] MV V protein hampers MDA5 blockade and acts as a nidus for the spread/amplification of type I IFN induction. Ultimately, measles vaccine strains have two modes of IFN-β-induction for their attenuation: V protein mutation and production of defective interference (DI) RNA.
Collapse
Affiliation(s)
- Hiromi Takaki
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Choi YJ, Im E, Pothoulakis C, Rhee SH. TRIF modulates TLR5-dependent responses by inducing proteolytic degradation of TLR5. J Biol Chem 2010; 285:21382-90. [PMID: 20452988 DOI: 10.1074/jbc.m110.115022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Proteolytic modification of pattern recognition receptors and their signaling adaptor molecules has recently emerged as an essential cellular event to regulate immune and inflammatory responses. Here we show that the TIR domain containing adaptor-inducing interferon-beta (TRIF), an adaptor molecule mediating TLR3 signaling and MyD88-independent signaling of TLR4, plays an inhibitory role in TLR5-elicited responses by inducing proteolytic degradation of TLR5. TRIF overexpression in human embryonic kidney (HEK293) and human colonic epithelial (NCM460) cells abolishes the cellular protein level of TLR5, whereas it does not alter TLR5 mRNA level. Thus, TRIF overexpression dramatically suppresses flagellin/TLR5-deriven NFkappaB activation in NCM460 cells. TRIF-induced TLR5 protein degradation is completely inhibited in the presence of pan-caspase inhibitor (benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone), whereas several specific inhibitors against cathepsin B, reactive oxygen species, or ubiquitin-mediated proteasome activity fail to suppress this degradation. These results indicate that TRIF-induced caspase activity causes TLR5 protein degradation. In addition, we identify that the C terminus of TRIF and extracellular domain of TLR5 are required for TRIF-induced TLR5 degradation. Furthermore, TRIF-induced proteolytic degradation is extended to TLR3, TLR6, TLR7, TLR8, TLR9, and TLR10, whereas the cellular level of TLR1, TLR2, and TLR4 is not affected by TRIF overexpression. These results suggest that, in addition to mediating TLR3- or TLR4-induced signaling as an adaptor molecule, TRIF can participate in proteolytic modification of certain members of TLRs to modulate the functionality of TLRs at post-translational level. Collectively, our findings propose a potential inhibitory role of TRIF at least in regulating host-microbial communication via TLR5 in colonic epithelial cells.
Collapse
Affiliation(s)
- Yoon Jeong Choi
- Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
48
|
Tatematsu M, Ishii A, Oshiumi H, Horiuchi M, Inagaki F, Seya T, Matsumoto M. A molecular mechanism for Toll-IL-1 receptor domain-containing adaptor molecule-1-mediated IRF-3 activation. J Biol Chem 2010; 285:20128-36. [PMID: 20418377 DOI: 10.1074/jbc.m109.099101] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Toll-IL-1 receptor (TIR) domain-containing adaptor molecule-1 (TICAM-1, also called TRIF) is a signaling adaptor for TLR3 and TLR4 that activates the transcription factors IRF-3, NF-kappaB, and AP-1, leading to induction of type I interferon and cytokines. The N-terminal region of TICAM-1 participates in IRF-3 activation, although the C-terminal region is involved in NF-kappaB activation. However, the mechanism by which TICAM-1 is activated and transmits signals is largely unknown. In this study, we identified Leu(194) as a critical amino acid for TICAM-1-mediated IRF-3 activation. When Leu(194) was substituted with Ala, the mutant TICAM-1 failed to recruit the IRF-3 kinase TBK1, resulting in lack of IRF-3 phosphorylation, although TRAF3 and NAP1 appeared to be recruited. The N-terminal 176 amino acids of TICAM-1 (N-terminal domain (NTD)) form a protease-resistant structural domain. A TICAM-1 mutant lacking the N-terminal 180 amino acids showed greater interferon-beta promoter activation than wild-type TICAM-1. Furthermore, immunoprecipitation and protein-protein interaction analysis revealed that the NTD interacted with the N terminus of TICAM-1-TIR. These results suggest that the NTD folds into the TIR domain structure to maintain the naive conformation of TICAM-1. Upon stimulation of TLR3/4, TICAM-1 oligomerizes through the TIR domain and the C-terminal region, which may break the intramolecular association and induce a conformational change that allows TBK1 access to TICAM-1.
Collapse
Affiliation(s)
- Megumi Tatematsu
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Han KJ, Yang Y, Xu LG, Shu HB. Analysis of a TIR-less splice variant of TRIF reveals an unexpected mechanism of TLR3-mediated signaling. J Biol Chem 2010; 285:12543-50. [PMID: 20200155 DOI: 10.1074/jbc.m109.072231] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recognition of viral RNA by Toll-like receptor 3 (TLR3) triggers activation of the transcription factors NF-kappaB and IRF3 and induction of type I interferons. TRIF is a Toll-interleukin 1 receptor (TIR) domain-containing adapter protein critically involved in TLR3-mediated signaling. It has been shown that TRIF interacts with TLR3 through their respective TIR domains. In this study, we identified a splice variant of TRIF lacking the TIR domain, which is designated as TRIS. Overexpression of TRIS activates NF-kappaB, interferon-stimulated response element (ISRE), and the interferon-beta promoter, whereas knockdown of TRIS inhibited TLR3-mediated signaling, suggesting that TRIS is involved in TLR3-mediated signaling. Furthermore, we identified an N-terminal TBK1-binding motif of TRIS or TRIF that was important for its interaction with TBK1 and ability to activate ISRE. Activation of ISRE by TRIS also needs its dimerization or oligomerization mediated by its C-terminal RIP homotypic interaction motif. Finally, we demonstrated that TRIS was associated with TRIF upon TLR3 activation by poly(I-C). These findings reveal an unexpected mechanism of TLR3-mediated signaling.
Collapse
Affiliation(s)
- Ke-Jun Han
- National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | |
Collapse
|
50
|
Takaki H, Oshiumi H, Sasai M, Kawanishi T, Matsumoto M, Seya T. Oligomerized TICAM-1 (TRIF) in the cytoplasm recruits nuclear BS69 to enhance NF-kappaB activation and type I IFN induction. Eur J Immunol 2010; 39:3469-76. [PMID: 19795416 DOI: 10.1002/eji.200939878] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although adenovirus 5 E1A-binding protein (BS69) is a nuclear protein acting as a transcriptional repressor, we found by an yeast two-hybrid and human cell immunoprecipitation another cytoplasmic function for this protein. BS69 bound Toll-interleukin 1 receptor domain (TIR)-containing adaptor molecule-1 (TICAM-1) (also named TRIF), an adaptor protein that couples with TLR3 around the endosome. BS69 translocated from the nucleus to the cytoplasm when cells were stimulated with dsRNA or transfected with TICAM-1. Confocal analysis of cells with over-expressed TICAM-1 or those stimulated with dsRNA revealed the characteristic "TICAM-1 speckle", which reflects signalosome formation necessary for the activation of NF-kappaB and IFN-regulatory factor (IRF)-3. BS69 was involved in the TICAM-1 complex, and the activation of NF-kappaB/IRF-3 followed by cytokine production was augmented in the presence of BS69 overexpression. Knockdown of endogenous BS69 resulted in a decrease of IFN-beta induction, suggesting that BS69 is a positive regulator for the TLR3-TICAM-1 pathway. These results, together with a recent report showing the negative regulatory properties of BS69 in NF-kappaB activation by EBV-derived latent membrane protein 1, suggest that BS69 harbors dual modes of cytoplasmic NF-kappaB regulation, positively in the TICAM-1 pathway and negatively in the latent membrane protein 1 pathway.
Collapse
Affiliation(s)
- Hiromi Takaki
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|