1
|
Margaritelis NV, Cobley JN, Nastos GG, Papanikolaou K, Bailey SJ, Kritsiligkou P, Nikolaidis MG. Evidence-based sports supplements: A redox analysis. Free Radic Biol Med 2024; 224:62-77. [PMID: 39147071 DOI: 10.1016/j.freeradbiomed.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Despite the overwhelming number of sports supplements on the market, only seven are currently recognized as effective. Biological functions are largely regulated through redox reactions, yet no comprehensive analysis of the redox properties of these supplements has been compiled. Here, we analyze the redox characteristics of these seven supplements: bicarbonates, beta-alanine, caffeine, creatine, nitrates, carbohydrates, and proteins. Our findings suggest that all sports supplements exhibit some degree of redox activity. However, the precise physiological implications of these redox properties remain unclear. Future research, employing unconventional perspectives and methodologies, will reveal new redox pixels of the exercise physiology and sports nutrition picture.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| | - James N Cobley
- School of Life Sciences, The University of Dundee, Dundee, Scotland, UK
| | - George G Nastos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | | | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Paraskevi Kritsiligkou
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
2
|
Pavan AR, Terroni B, Dos Santos JL. Endothelial dysfunction in Sickle Cell Disease: Strategies for the treatment. Nitric Oxide 2024; 149:7-17. [PMID: 38806107 DOI: 10.1016/j.niox.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/15/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Sickle Cell Anemia (SCA), is an inherited hemoglobinopathy characterized by the presence of an abnormal hemoglobin (HbS), being the most prevalent sickle cell disease (SCD). SCA is characterized by vascular endothelial dysfunction, which contributes significantly to various clinical conditions, including but not limited to pulmonary hypertension, priapism, cutaneous leg ulceration, and stroke. The pathophysiology of endothelial dysfunction (ED) in SCA is a multifaceted process involving a chronic inflammatory and hypercoagulable state. Key factors include hemolysis-associated elements like reduced arginine and nitric oxide (NO) availability, elevated levels of vascular adhesion molecules, the uncoupling effect of NO synthase, heightened arginase activity, an environment characterized by oxidative stress with the production of reactive oxygen and nitrogen species, and occurrences of ischemia-reperfusion injury, along with apolipoprotein A-1 depletion. The urgency for novel interventions addressing ED is evident. Presently, there is a focus on investigating small molecules that disrupt the arginine-nitric oxide pathway, exhibiting anti-inflammatory and antioxidant properties while diminishing levels of cellular and vascular adhesion molecules. In this mini-review article, we delve into the progress made in strategies for treating ED in SCD with the aim of cultivating insights for drug design.
Collapse
Affiliation(s)
- Aline Renata Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil.
| | - Barbara Terroni
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | | |
Collapse
|
3
|
Majerczak J, Drzymala‐Celichowska H, Grandys M, Kij A, Kus K, Celichowski J, Krysciak K, Molik WA, Szkutnik Z, Zoladz JA. Exercise Training Decreases Nitrite Concentration in the Heart and Locomotory Muscles of Rats Without Changing the Muscle Nitrate Content. J Am Heart Assoc 2024; 13:e031085. [PMID: 38214271 PMCID: PMC10926815 DOI: 10.1161/jaha.123.031085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Skeletal muscles are postulated to be a potent regulator of systemic nitric oxide homeostasis. In this study, we aimed to evaluate the impact of physical training on the heart and skeletal muscle nitric oxide bioavailability (judged on the basis of intramuscular nitrite and nitrate) in rats. METHODS AND RESULTS Rats were trained on a treadmill for 8 weeks, performing mainly endurance running sessions with some sprinting runs. Muscle nitrite (NO2-) and nitrate (NO3-) concentrations were measured using a high-performance liquid chromatography-based method, while amino acids, pyruvate, lactate, and reduced and oxidized glutathione were determined using a liquid chromatography coupled with tandem mass spectrometry technique. The content of muscle nitrite reductases (electron transport chain proteins, myoglobin, and xanthine oxidase) was assessed by western immunoblotting. We found that 8 weeks of endurance training decreased basal NO2- in the locomotory muscles and in the heart, without changes in the basal NO3-. In the slow-twitch oxidative soleus muscle, the decrease in NO2- was already present after the first week of training, and the content of nitrite reductases remained unchanged throughout the entire period of training, except for the electron transport chain protein content, which increased no sooner than after 8 weeks of training. CONCLUSIONS Muscle NO2- level, opposed to NO3-, decreases in the time course of training. This effect is rapid and already visible in the slow-oxidative soleus after the first week of training. The underlying mechanisms of training-induced muscle NO2- decrease may involve an increase in the oxidative stress, as well as metabolite changes related to an increased muscle anaerobic glycolytic activity contributing to (1) direct chemical reduction of NO2- or (2) activation of muscle nitrite reductases.
Collapse
Affiliation(s)
- Joanna Majerczak
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health SciencesJagiellonian University Medical CollegeKrakowPoland
| | - Hanna Drzymala‐Celichowska
- Department of Neurobiology, Faculty of Health SciencesPoznan University of Physical EducationPoznanPoland
- Department of Physiology and Biochemistry, Faculty of Health SciencesPoznan University of Physical EducationPoznanPoland
| | - Marcin Grandys
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health SciencesJagiellonian University Medical CollegeKrakowPoland
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityKrakowPoland
| | - Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityKrakowPoland
| | - Jan Celichowski
- Department of Neurobiology, Faculty of Health SciencesPoznan University of Physical EducationPoznanPoland
| | - Katarzyna Krysciak
- Department of Neurobiology, Faculty of Health SciencesPoznan University of Physical EducationPoznanPoland
| | - Weronika A. Molik
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health SciencesJagiellonian University Medical CollegeKrakowPoland
- University of FloridaGainesvilleFLUSA
| | | | - Jerzy A. Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health SciencesJagiellonian University Medical CollegeKrakowPoland
| |
Collapse
|
4
|
Maia LB. Bringing Nitric Oxide to the Molybdenum World-A Personal Perspective. Molecules 2023; 28:5819. [PMID: 37570788 PMCID: PMC10420851 DOI: 10.3390/molecules28155819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Molybdenum-containing enzymes of the xanthine oxidase (XO) family are well known to catalyse oxygen atom transfer reactions, with the great majority of the characterised enzymes catalysing the insertion of an oxygen atom into the substrate. Although some family members are known to catalyse the "reverse" reaction, the capability to abstract an oxygen atom from the substrate molecule is not generally recognised for these enzymes. Hence, it was with surprise and scepticism that the "molybdenum community" noticed the reports on the mammalian XO capability to catalyse the oxygen atom abstraction of nitrite to form nitric oxide (NO). The lack of precedent for a molybdenum- (or tungsten) containing nitrite reductase on the nitrogen biogeochemical cycle contributed also to the scepticism. It took several kinetic, spectroscopic and mechanistic studies on enzymes of the XO family and also of sulfite oxidase and DMSO reductase families to finally have wide recognition of the molybdoenzymes' ability to form NO from nitrite. Herein, integrated in a collection of "personal views" edited by Professor Ralf Mendel, is an overview of my personal journey on the XO and aldehyde oxidase-catalysed nitrite reduction to NO. The main research findings and the path followed to establish XO and AO as competent nitrite reductases are reviewed. The evidence suggesting that these enzymes are probable players of the mammalian NO metabolism is also discussed.
Collapse
Affiliation(s)
- Luisa B Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal
| |
Collapse
|
5
|
Alsharif NS, Clifford T, Alhebshi A, Rowland SN, Bailey SJ. Effects of Dietary Nitrate Supplementation on Performance during Single and Repeated Bouts of Short-Duration High-Intensity Exercise: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Antioxidants (Basel) 2023; 12:1194. [PMID: 37371924 DOI: 10.3390/antiox12061194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Inorganic nitrate (NO3-) has emerged as a potential ergogenic aid over the last couple of decades. While recent systematic reviews and meta-analyses have suggested some small positive effects of NO3- supplementation on performance across a range of exercise tasks, the effect of NO3- supplementation on performance during single and repeated bouts of short-duration, high-intensity exercise is unclear. This review was conducted following PRISMA guidelines. MEDLINE and SPORTDiscus were searched from inception to January 2023. A paired analysis model for cross-over trials was incorporated to perform a random effects meta-analysis for each performance outcome and to generate standardized mean differences (SMD) between the NO3- and placebo supplementation conditions. The systematic review and meta-analysis included 27 and 23 studies, respectively. Time to reach peak power (SMD: 0.75, p = 0.02), mean power output (SMD: 0.20, p = 0.02), and total distance covered in the Yo-Yo intermittent recovery level 1 test (SMD: 0.17, p < 0.0001) were all improved after NO3- supplementation. Dietary NO3- supplementation had small positive effects on some performance outcomes during single and repeated bouts of high-intensity exercise. Therefore, athletes competing in sports requiring single or repeated bouts of high-intensity exercise may benefit from NO3- supplementation.
Collapse
Affiliation(s)
- Nehal S Alsharif
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Abrar Alhebshi
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Samantha N Rowland
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
6
|
Navale GR, Singh S, Ghosh K. NO donors as the wonder molecules with therapeutic potential: Recent trends and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Azargoonjahromi A. Dual role of nitric oxide in Alzheimer's Disease. Nitric Oxide 2023; 134-135:23-37. [PMID: 37019299 DOI: 10.1016/j.niox.2023.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Nitric oxide (NO), an enzymatic product of nitric oxide synthase (NOS), has been associated with a variety of neurological diseases such as Alzheimer's disease (AD). NO has long been thought to contribute to neurotoxic insults caused by neuroinflammation in AD. This perception shifts as more attention is paid to the early stages before cognitive problems manifest. However, it has revealed a compensatory neuroprotective role for NO that protects synapses by increasing neuronal excitability. NO can positively affect neurons by inducing neuroplasticity, neuroprotection, and myelination, as well as having cytolytic activity to reduce inflammation. NO can also induce long-term potentiation (LTP), a process by which synaptic connections among neurons become more potent. Not to mention that such functions give rise to AD protection. Notably, it is unquestionably necessary to conduct more research to clarify NO pathways in neurodegenerative dementias because doing so could help us better understand their pathophysiology and develop more effective treatment options. All these findings bring us to the prevailing notion that NO can be used either as a therapeutic agent in patients afflicted with AD and other memory impairment disorders or as a contributor to the neurotoxic and aggressive factor in AD. In this review, after presenting a general background on AD and NO, various factors that have a pivotal role in both protecting and exacerbating AD and their correlation with NO will be elucidated. Following this, both the neuroprotective and neurotoxic effects of NO on neurons and glial cells among AD cases will be discussed in detail.
Collapse
|
8
|
Amelio D, Garofalo F. Morpho-functional changes of lungfish Protopterus dolloi skin in the shift from freshwater to aestivating conditions. Comp Biochem Physiol B Biochem Mol Biol 2023; 266:110846. [PMID: 36894022 DOI: 10.1016/j.cbpb.2023.110846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
African dipnoi (Protopterus sp.) are obligate air-breathing fish that, during dry season, may experience a period of dormancy named aestivation. Aestivation is characterized by complete reliance on pulmonary breathing, general decrease of metabolism and down-regulation of respiratory and cardiovascular functions. To date, little is known about morpho-functional rearrangements induced by aestivation in the skin of African lungfishes. Our study aims to identify, in the skin of P. dolloi, structural modifications and stress-induced molecules in response to short-term (6 days) and long-term (40 days) aestivation. Light microscopy showed that short-term aestivation induces major reorganization, with narrowing of epidermal layers and decrease of mucous cells; prolonged aestivation is characterized by regenerative processes and re-thickening of epidermal layers. Immunofluorescence reveals that aestivation correlates with an increased oxidative stress and changes of Heat Shock Proteins expression, suggesting a protective role for these chaperons. Our findings revealed that lungfish skin undergoes remarkable morphological and biochemical readjustments in response to stressful conditions associated with aestivation.
Collapse
Affiliation(s)
- Daniela Amelio
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Arcavacata di Rende, CS, Italy.
| | - Filippo Garofalo
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Arcavacata di Rende, CS, Italy.
| |
Collapse
|
9
|
Miah R, Fariha KA, Sony SA, Ahmed S, Hasan M, Mou AD, Barman Z, Hasan A, Mohanto NC, Ali N. Association of serum xanthine oxidase levels with hypertension: a study on Bangladeshi adults. Sci Rep 2022; 12:21727. [PMID: 36526797 PMCID: PMC9758161 DOI: 10.1038/s41598-022-26341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Xanthine oxidase (XO) is a metalloflavoenzyme associated with the uric acid formation in purine metabolism. Serum XO has been suggested to be associated with liver and kidney dysfunction, diabetes and cardiovascular diseases. However, there is limited information on the relationship between serum XO levels and hypertension. This study aimed to assess the relationship between serum XO levels and hypertension in Bangladeshi adults. In this study, fasting blood samples were collected from 312 participants (225 males and 87 females), aged ≥ 20 years. Serum levels of XO were determined by ELISA and other biochemical parameters including serum uric acid (SUA) were measured by colorimetric methods. Hypertension was defined as SBP ≥ 140 mmHg and/or DBP ≥ 90 mmHg or self-reported recent use of anti-hypertensive medications. Association between serum XO levels and hypertension was evaluated by multinomial logistic regression analysis. The mean level of XO was significantly higher (p < 0.001) in females (5.8 ± 3.2 U/L) than in males (3.9 ± 2.5 U/L). When the participants were divided by blood pressure levels, the mean level of serum XO was significantly higher (p < 0.01) in the hypertensive group (5.0 ± 2.7 U/L) compared to the normotensive control group (4.0 ± 2.7 U/L). An increasing trend for SBP and DBP levels was observed across the XO quartiles (at least p < 0.01 for both cases). A significant positive correlation was found for XO with SBP and DBP (p < 0.01). In regression analysis, the serum levels of XO showed a significant and independent association with hypertension prevalence. In conclusion, the mean level of serum XO was significantly higher in hypertensive individuals and XO was independently associated with the prevalence of hypertension. Our results indicate that XO may have a potential role in the pathophysiology of elevated blood pressure through generating of reactive oxygen species. Further large-scale longitudinal studies are needed to determine the underlying mechanisms between XO and hypertension.
Collapse
Affiliation(s)
- Rakib Miah
- grid.412506.40000 0001 0689 2212Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Khandaker Atkia Fariha
- grid.412506.40000 0001 0689 2212Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Sabrina Amita Sony
- grid.412506.40000 0001 0689 2212Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Shamim Ahmed
- grid.412506.40000 0001 0689 2212Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Mahmudul Hasan
- grid.412506.40000 0001 0689 2212Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Ananya Dutta Mou
- grid.412506.40000 0001 0689 2212Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Zitu Barman
- grid.412506.40000 0001 0689 2212Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Akibul Hasan
- grid.412506.40000 0001 0689 2212Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Nayan Chandra Mohanto
- grid.412506.40000 0001 0689 2212Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Nurshad Ali
- grid.412506.40000 0001 0689 2212Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| |
Collapse
|
10
|
Öeren M, Walton PJ, Suri J, Ponting DJ, Hunt PA, Segall MD. Predicting Regioselectivity of AO, CYP, FMO, and UGT Metabolism Using Quantum Mechanical Simulations and Machine Learning. J Med Chem 2022; 65:14066-14081. [PMID: 36239985 DOI: 10.1021/acs.jmedchem.2c01303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unexpected metabolism in modification and conjugation phases can lead to the failure of many late-stage drug candidates or even withdrawal of approved drugs. Thus, it is critical to predict the sites of metabolism (SoM) for enzymes, which interact with drug-like molecules, in the early stages of the research. This study presents methods for predicting the isoform-specific metabolism for human AOs, FMOs, and UGTs and general CYP metabolism for preclinical species. The models use semi-empirical quantum mechanical simulations, validated using experimentally obtained data and DFT calculations, to estimate the reactivity of each SoM in the context of the whole molecule. Ligand-based models, trained and tested using high-quality regioselectivity data, combine the reactivity of the potential SoM with the orientation and steric effects of the binding pockets of the different enzyme isoforms. The resulting models achieve κ values of up to 0.94 and AUC of up to 0.92.
Collapse
Affiliation(s)
- Mario Öeren
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K
| | - Peter J Walton
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K.,School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - James Suri
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K.,School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K
| | - David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, U.K
| | - Peter A Hunt
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K
| | - Matthew D Segall
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K
| |
Collapse
|
11
|
Quantitative aspects of nitric oxide production in the heart. Mol Biol Rep 2022; 49:11113-11122. [DOI: 10.1007/s11033-022-07889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
|
12
|
Circulating nitrate-nitrite reduces oxygen uptake for improving resistance exercise performance after rest time in well-trained CrossFit athletes. Sci Rep 2022; 12:9671. [PMID: 35690665 PMCID: PMC9188609 DOI: 10.1038/s41598-022-13786-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/27/2022] [Indexed: 12/21/2022] Open
Abstract
This study aimed to determine the effects of circulating nitrate plus nitrite (NOx) concentrations on resistance exercise performance, VO2 and biomarkers of muscle damage. Eleven well-trained male CrossFit athletes (29.2 ± 3.7 years, 78.9 ± 5.4 kg, 175.1 ± 6.3 cm) carried out a resistance exercise test after drinking 140 mL of beetroot juice (BJ) or placebo. The test consisted of repeating the same resistance exercise routine twice: wall ball shots plus full back squat with 3-min rest (1st routine) or without rest (2nd routine) between the two exercises. Higher NOx plasma levels were verified after BJ than placebo in the pretest and post-test (p < 0.001). A higher number of repetitions was observed after BJ intake compared to placebo in the full back squat exercise during the first routine (p = 0.004). A significantly reduced VO2 was detected after BJ intake compared to placebo during rest and full back squat execution in the first routine (p < 0.05). Plasma myoglobin concentrations were significantly increased with BJ compared to placebo (p = 0.036). These results showed that plasma NOx levels reduced VO2 after BJ intake during rest time. These reduced VO2 was a key factor for improving full back squat performance during the first routine.
Collapse
|
13
|
Peter MCS, Gayathry R, Peter VS. Inducible Nitric Oxide Synthase/Nitric Oxide System as a Biomarker for Stress and Ease Response in Fish: Implication on Na+ Homeostasis During Hypoxia. Front Physiol 2022; 13:821300. [PMID: 35655956 PMCID: PMC9152262 DOI: 10.3389/fphys.2022.821300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
The cellular and organismal response to stressor-driven stimuli evokes stress response in vertebrates including fishes. Fishes have evolved varied patterns of stress response, including ionosmotic stress response, due to their sensitivity to both intrinsic and extrinsic stimuli. Fishes that experience hypoxia, a detrimental stressor that imposes systemic and cellular stress response, can evoke disturbed ion homeostasis. In addition, like other vertebrates, fishes have also developed mechanisms to recover from the impact of stress by way of shifting stress response into ease response that could reduce the magnitude of stress response with the aid of certain neuroendocrine signals. Nitric oxide (NO) has been identified as a potent molecule that attenuates the impact of ionosmotic stress response in fish, particularly during hypoxia stress. Limited information is, however, available on this important aspect of ion transport physiology that contributes to the mechanistic understanding of survival during environmental challenges. The present review, thus, discusses the role of NO in Na+ homeostasis in fish particularly in stressed conditions. Isoforms of nitric oxide synthase (NOS) are essential for the synthesis and availability of NO at the cellular level. The NOS/NO system, thus, appears as a unique molecular drive that performs both regulatory and integrative mechanisms of control within and across varied fish ionocytes. The activation of the inducible NOS (iNOS)/NO system during hypoxia stress and its action on the dynamics of Na+/K+-ATPase, an active Na+ transporter in fish ionocytes, reveal that the iNOS/NO system controls cellular and systemic Na+ transport in stressed fish. In addition, the higher sensitivity of iNOS to varied physical stressors in fishes and the ability of NO to lower the magnitude of ionosmotic stress in hypoxemic fish clearly put forth NO as an ease-promoting signal molecule in fishes. This further points to the signature role of the iNOS/NO system as a biomarker for stress and ease response in the cycle of adaptive response in fish.
Collapse
Affiliation(s)
- M. C. Subhash Peter
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
- Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram, India
- *Correspondence: M. C. Subhash Peter,
| | - R. Gayathry
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
| | - Valsa S. Peter
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
| |
Collapse
|
14
|
Liu T, Schroeder H, Power GG, Blood AB. A physiologically relevant role for NO stored in vascular smooth muscle cells: A novel theory of vascular NO signaling. Redox Biol 2022; 53:102327. [PMID: 35605454 PMCID: PMC9126848 DOI: 10.1016/j.redox.2022.102327] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/16/2022] [Accepted: 04/29/2022] [Indexed: 01/16/2023] Open
Abstract
S-nitrosothiols (SNO), dinitrosyl iron complexes (DNIC), and nitroglycerine (NTG) dilate vessels via activation of soluble guanylyl cyclase (sGC) in vascular smooth muscle cells. Although these compounds are often considered to be nitric oxide (NO) donors, attempts to ascribe their vasodilatory activity to NO-donating properties have failed. Even more puzzling, many of these compounds have vasodilatory potency comparable to or even greater than that of NO itself, despite low membrane permeability. This raises the question: How do these NO adducts activate cytosolic sGC when their NO moiety is still outside the cell? In this review, we classify these compounds as ‘nitrodilators’, defined by their potent NO-mimetic vasoactivities despite not releasing requisite amounts of free NO. We propose that nitrodilators activate sGC via a preformed nitrodilator-activated NO store (NANOS) found within the vascular smooth muscle cell. We reinterpret vascular NO handling in the framework of this NANOS paradigm, and describe the knowledge gaps and perspectives of this novel model.
Collapse
|
15
|
Li J, Chen C, Xia T. Understanding Nanomaterial-Liver Interactions to Facilitate the Development of Safer Nanoapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106456. [PMID: 35029313 PMCID: PMC9040585 DOI: 10.1002/adma.202106456] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Nanomaterials (NMs) are widely used in commercial and medical products, such as cosmetics, vaccines, and drug carriers. Exposure to NMs via various routes such as dermal, inhalation, and ingestion has been shown to gain access to the systemic circulation, resulting in the accumulation of NMs in the liver. The unique organ structures and blood flow features facilitate the liver sequestration of NMs, which may cause adverse effects in the liver. Currently, most in vivo studies are focused on NMs accumulation at the organ level and evaluation of the gross changes in liver structure and functions, however, cell-type-specific uptake and responses, as well as the molecular mechanisms at cellular levels leading to effects at organ levels are lagging. Herein, the authors systematically review diverse interactions of NMs with the liver, specifically on major liver cell types including Kupffer cells (KCs), liver sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs), and hepatocytes as well as the detailed molecular mechanisms involved. In addition, the knowledge gained on nano-liver interactions that can facilitate the development of safer nanoproducts and nanomedicine is also reviewed.
Collapse
Affiliation(s)
- Jiulong Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
16
|
Ghasemi A. Quantitative aspects of nitric oxide production from nitrate and nitrite. EXCLI JOURNAL 2022; 21:470-486. [PMID: 35391922 PMCID: PMC8983853 DOI: 10.17179/excli2022-4727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 11/05/2022]
Abstract
Nitric oxide (NO) is involved in many physiological and pathological processes in the human body. At least two major pathways produce NO: (1) the L-arginine-NO-oxidative pathway in which NO synthase (NOS) enzymes convert L-arginine to NO; (2) the nitrate-nitrite-NO reductive pathway in which NO is produced from the serial reduction of nitrate and nitrite. The deficiency of NO is involved in the pathophysiology of cardiometabolic disorders. Intervention with foods containing nitrate and nitrite can potentially prevent or treat some chronic diseases, including cardiovascular diseases and diabetes. A better understanding of the NO cycle would help develop effective strategies for preventing or treating the disorders in which NO homeostasis is disturbed. This review summarizes quantitative aspects of NO production, emphasizing the nitrate-nitrite-NO pathway. Available data indicates that total NO production by NOS-dependent L-arginine-NO pathway is about 1000 μmol.day-1. Of about 1700 μmol.day-1 ingested nitrate, ~25 % is extracted by the salivary glands and of which ~20 % is converted nitrite. It means that about 5 % of ingested nitrate is converted to nitrite in the oral cavity; assuming that all produced nitrite is reduced to NO in the stomach, it can be calculated that contribution of the nitrate-nitrite-NO pathway to the whole-body NO production is about 85 μmol.day-1 (1700 ×0.05=85) or approximately 100 μmol.day-1. The lower contribution of the nitrate-nitrite-NO pathway does not mean that this pathway has lower importance in the whole-body NO homeostasis. Even in the adequate L-arginine supply, NOS-dependent NO production is insufficient to meet all NO functions, and the nitrate-nitrite-NO pathway must provide the rest. In conclusion, the contribution of the nitrate-nitrite-NO pathway in the whole human body NO production is <10 %, and the nitrate-nitrite-NO pathway is complementary to the NOS-dependent NO production.
Collapse
Affiliation(s)
- Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Maiti BK, Maia LB, Moura JJG. Sulfide and transition metals - A partnership for life. J Inorg Biochem 2021; 227:111687. [PMID: 34953313 DOI: 10.1016/j.jinorgbio.2021.111687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022]
Abstract
Sulfide and transition metals often came together in Biology. The variety of possible structural combinations enabled living organisms to evolve an array of highly versatile metal-sulfide centers to fulfill different physiological roles. The ubiquitous iron‑sulfur centers, with their structural, redox, and functional diversity, are certainly the best-known partners, but other metal-sulfide centers, involving copper, nickel, molybdenum or tungsten, are equally crucial for Life. This review provides a concise overview of the exclusive sulfide properties as a metal ligand, with emphasis on the structural aspects and biosynthesis. Sulfide as catalyst and as a substrate is discussed. Different enzymes are considered, including xanthine oxidase, formate dehydrogenases, nitrogenases and carbon monoxide dehydrogenases. The sulfide effect on the activity and function of iron‑sulfur, heme and zinc proteins is also addressed.
Collapse
Affiliation(s)
- Biplab K Maiti
- National Institute of Technology Sikkim, Department of Chemistry, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India.
| | - Luisa B Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus de Caparica, Portugal.
| | - José J G Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus de Caparica, Portugal.
| |
Collapse
|
18
|
Sparacino-Watkins CE, Lancaster JR. Direct measurement of nitric oxide (NO) production rates from enzymes using ozone-based gas-phase chemiluminescence (CL). Nitric Oxide 2021; 117:60-71. [PMID: 34653611 DOI: 10.1016/j.niox.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 01/18/2023]
Abstract
Nitric oxide (NO) chemiluminescence detectors (CLDs) are specialized and sensitive spectroscopic instruments capable of directly measuring NO flux rates. NO CLDs have been instrumental in the characterization of mammalian nitrite-dependent NO synthases. However, no detailed description of NO flux analysis using NO CLD is available. Herein, a detailed review of the NO CL methodology is provided with guidelines for measuring NO-production rates from aqueous samples, such as isolated enzymes or protein homogenates. Detailed description of the types of signals one can encounter, data processing, and potential pitfalls related to NO flux measurements will also be covered.
Collapse
Affiliation(s)
- Courtney E Sparacino-Watkins
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Jack R Lancaster
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
19
|
Dent MR, DeMartino AW, Tejero J, Gladwin MT. Endogenous Hemoprotein-Dependent Signaling Pathways of Nitric Oxide and Nitrite. Inorg Chem 2021; 60:15918-15940. [PMID: 34313417 PMCID: PMC9167621 DOI: 10.1021/acs.inorgchem.1c01048] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interdisciplinary research at the interface of chemistry, physiology, and biomedicine have uncovered pivotal roles of nitric oxide (NO) as a signaling molecule that regulates vascular tone, platelet aggregation, and other pathways relevant to human health and disease. Heme is central to physiological NO signaling, serving as the active site for canonical NO biosynthesis in nitric oxide synthase (NOS) enzymes and as the highly selective NO binding site in the soluble guanylyl cyclase receptor. Outside of the primary NOS-dependent biosynthetic pathway, other hemoproteins, including hemoglobin and myoglobin, generate NO via the reduction of nitrite. This auxiliary hemoprotein reaction unlocks a "second axis" of NO signaling in which nitrite serves as a stable NO reservoir. In this Forum Article, we highlight these NO-dependent physiological pathways and examine complex chemical and biochemical reactions that govern NO and nitrite signaling in vivo. We focus on hemoprotein-dependent reaction pathways that generate and consume NO in the presence of nitrite and consider intermediate nitrogen oxides, including NO2, N2O3, and S-nitrosothiols, that may facilitate nitrite-based signaling in blood vessels and tissues. We also discuss emergent therapeutic strategies that leverage our understanding of these key reaction pathways to target NO signaling and treat a wide range of diseases.
Collapse
Affiliation(s)
- Matthew R Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
20
|
Antioxidant tempol modulates the increases in tissue nitric oxide metabolites concentrations after oral nitrite administration. Chem Biol Interact 2021; 349:109658. [PMID: 34543659 DOI: 10.1016/j.cbi.2021.109658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) metabolites have physiological and pharmacological importance and increasing their tissue concentrations may result in beneficial effects. Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) has antioxidant properties that may improve NO bioavailability. Moreover, tempol increases oral nitrite-derived gastric formation of S-nitrosothiols (RSNO). We hypothesized that pretreatment with tempol may further increase tissue concentrations of NO-related species after oral nitrite administration and therefore we carried out a time-dependent analysis of how tempol affects the concentrations of NO metabolites in different tissues after oral nitrite administration to rats. NO metabolites (nitrate, nitrite and RSNO) were assessed by ozone-based reductive chemiluminescence assays in plasma, stomach, aorta, heart and liver samples obtained from anesthetized rats at baseline conditions and 15 min, 30 min, 2 h or 24 h after oral nitrite (15 mg/kg) was administered to rats pretreated with tempol (18 mg/kg) or vehicle 15 min prior to nitrite administration. Aortic protein nitrosation was assessed by resin-assited capture (SNO-RAC) method. We found that pretreatment with tempol transiently enhanced nitrite-induced increases in nitrite, RSNO and nitrate concentrations in the stomach and in the plasma (all P < 0.05), particularly for 15-30 min, without affecting aortic protein nitrosation. Pretreatment with tempol enhanced nitrite-induced increases in nitrite (but not RSNO or nitrate) concentrations in the heart (P < 0.05). In contrast, tempol attenuated nitrite-induced increases in nitrite, RSNO or nitrate concentrations in the liver. These findings show that pretreatment with tempol affects oral nitrite-induced changes in tissue concentrations of NO metabolites depending on tissue type and does not increase nitrite-induced vascular nitrosation. These results may indicate that oral nitrite therapy aiming at achieving increased nitrosation of cardiovascular targets requires appropriate doses of nitrite and is not optimized by tempol.
Collapse
|
21
|
Pearson R, Butler A. Glyceryl Trinitrate: History, Mystery, and Alcohol Intolerance. Molecules 2021; 26:6581. [PMID: 34770988 PMCID: PMC8587134 DOI: 10.3390/molecules26216581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 11/23/2022] Open
Abstract
Glyceryl trinitrate (GTN) is one of the earliest known treatments for angina with a fascinating history that bridges three centuries. However, despite its central role in the nitric oxide (NO) story as a NO-donating compound, establishing the precise mechanism of how GTN exerts its medicinal benefit has proven to be far more difficult. This review brings together the explosive and vasodilatory nature of this three-carbon molecule while providing an update on the likely in vivo pathways through which GTN, and the rest of the organic nitrate family, release NO, nitrite, or a combination of both, while also trying to explain nitrate tolerance. Over the last 20 years the alcohol detoxification enzyme, aldehyde dehydrogenase (ALDH), has undoubtedly emerged as the front runner to explaining GTN's bioactivation. This is best illustrated by reduced GTN efficacy in subjects carrying the single point mutation (Glu504Lys) in ALDH, which is also responsible for alcohol intolerance, as characterized by flushing. While these findings are significant for anyone following the GTN story, they appear particularly relevant for healthcare professionals, and especially so, if administering GTN to patients as an emergency treatment. In short, although the GTN puzzle has not been fully solved, clinical study data continue to cement the importance of ALDH, as uncovered in 2002, as a key GTN activator.
Collapse
Affiliation(s)
- Russell Pearson
- School of Pharmacy & Bioengineering, Keele University, Newcastle-under-Lyme ST5 5BG, Staffordshire, UK
| | - Anthony Butler
- School of Psychology & Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK;
| |
Collapse
|
22
|
Piknova B, Schechter AN, Park JW, Vanhatalo A, Jones AM. Skeletal Muscle Nitrate as a Regulator of Systemic Nitric Oxide Homeostasis. Exerc Sport Sci Rev 2021; 50:2-13. [PMID: 34669624 DOI: 10.1249/jes.0000000000000272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Non-enzymatic nitric oxide (NO) generation via the reduction of nitrate and nitrite ions, along with remarkably high levels of nitrate ions in skeletal muscle, have been recently described. Skeletal muscle nitrate storage may be critical for maintenance of NO homeostasis in healthy ageing and nitrate supplementation may be useful for treatment of specific pathophysiologies as well as enhancing normal functions.
Collapse
Affiliation(s)
- Barbora Piknova
- Molecular Medicine Branch, NIDDK, National Institutes of Health,Bethesda, MD 20892, U.S. Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | | | | | | |
Collapse
|
23
|
da Silva GM, da Silva MC, Nascimento DVG, Lima Silva EM, Gouvêa FFF, de França Lopes LG, Araújo AV, Ferraz Pereira KN, de Queiroz TM. Nitric Oxide as a Central Molecule in Hypertension: Focus on the Vasorelaxant Activity of New Nitric Oxide Donors. BIOLOGY 2021; 10:1041. [PMID: 34681140 PMCID: PMC8533285 DOI: 10.3390/biology10101041] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022]
Abstract
Cardiovascular diseases include all types of disorders related to the heart or blood vessels. High blood pressure is an important risk factor for cardiac complications and pathological disorders. An increase in circulating angiotensin-II is a potent stimulus for the expression of reactive oxygen species and pro-inflammatory cytokines that activate oxidative stress, perpetuating a deleterious effect in hypertension. Studies demonstrate the capacity of NO to prevent platelet or leukocyte activation and adhesion and inhibition of proliferation, as well as to modulate inflammatory or anti-inflammatory reactions and migration of vascular smooth muscle cells. However, in conditions of low availability of NO, such as during hypertension, these processes are impaired. Currently, there is great interest in the development of compounds capable of releasing NO in a modulated and stable way. Accordingly, compounds containing metal ions coupled to NO are being investigated and are widely recognized as having great relevance in the treatment of different diseases. Therefore, the exogenous administration of NO is an attractive and pharmacological alternative in the study and treatment of hypertension. The present review summarizes the role of nitric oxide in hypertension, focusing on the role of new NO donors, particularly the metal-based drugs and their protagonist activity in vascular function.
Collapse
Affiliation(s)
- Gabriela Maria da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Mirelly Cunha da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Déborah Victória Gomes Nascimento
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Ellen Mayara Lima Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Fabíola Furtado Fialho Gouvêa
- School of Technical Health, Health Sciences Center, Federal University of Paraíba, João Pessoa 58.051-900, PB, Brazil;
| | - Luiz Gonzaga de França Lopes
- Laboratory of Bioinorganic Chemistry, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza 60.020-181, CE, Brazil;
| | - Alice Valença Araújo
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Kelli Nogueira Ferraz Pereira
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Thyago Moreira de Queiroz
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| |
Collapse
|
24
|
Lewis SE, Rosencrance CB, De Vallance E, Giromini A, Williams XM, Oh JY, Schmidt H, Straub AC, Chantler PD, Patel RP, Kelley EE. Human and rodent red blood cells do not demonstrate xanthine oxidase activity or XO-catalyzed nitrite reduction to NO. Free Radic Biol Med 2021; 174:84-88. [PMID: 34273539 PMCID: PMC9257433 DOI: 10.1016/j.freeradbiomed.2021.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022]
Abstract
A number of molybdopterin enzymes, including xanthine oxidoreductase (XOR), aldehyde oxidase (AO), sulfite oxidase (SO), and mitochondrial amidoxime reducing component (mARC), have been identified as nitrate and nitrite reductases. Of these enzymes, XOR has been the most extensively studied and reported to be a substantive source of nitric oxide (NO) under inflammatory/hypoxic conditions that limit the catalytic activity of the canonical NOS pathway. It has also been postulated that XOR nitrite reductase activity extends to red blood cell (RBCs) membranes where it has been immunohistochemically identified. These findings, when combined with countervailing reports of XOR activity in RBCs, incentivized our current study to critically evaluate XOR protein abundance/enzymatic activity in/on RBCs from human, mouse, and rat sources. Using various protein concentrations of RBC homogenates for both human and rodent samples, neither XOR protein nor enzymatic activity (xanthine → uric acid) was detectable. In addition, potential loading of RBC-associated glycosaminoglycans (GAGs) by exposing RBC preparations to purified XO before washing did not solicit detectable enzymatic activity (xanthine → uric acid) or alter NO generation profiles. To ensure these observations extended to absence of XOR-mediated contributions to overall RBC-associated nitrite reduction, we examined the nitrite reductase activity of washed and lysed RBC preparations via enhanced chemiluminescence in the presence or absence of the XOR-specific inhibitor febuxostat (Uloric®). Neither addition of inhibitor nor the presence of the XOR substrate xanthine significantly altered the rates of nitrite reduction to NO by RBC preparations from either human or rodent sources confirming the absence of XO enzymatic activity. Furthermore, examination of the influence of the age (young cells vs. old cells) of human RBCs on XO activity also failed to demonstrate detectable XO protein. Combined, these data suggest: 1) that XO does not contribute to nitrite reduction in/on human and rodent erythrocytes, 2) care should be taken to validate immuno-detectable XO by demonstrating enzymatic activity, and 3) XO does not associate with human erythrocytic glycosaminoglycans or participate in nonspecific binding.
Collapse
Affiliation(s)
- Sara E Lewis
- West Virginia University Departments of Physiology and Pharmacology, USA
| | | | - Evan De Vallance
- West Virginia University Departments of Physiology and Pharmacology, USA
| | - Andrew Giromini
- West Virginia University Departments of Physiology and Pharmacology, USA
| | - Xena M Williams
- West Virginia University Departments of Physiology and Pharmacology, USA
| | - Joo-Yeun Oh
- University of Alabama at Birmingham Center for Free Radical Biology, USA
| | - Heidi Schmidt
- University of Pittsburgh Vascular Medicine Institute, USA
| | - Adam C Straub
- University of Pittsburgh Vascular Medicine Institute, USA
| | | | - Rakesh P Patel
- University of Alabama at Birmingham Center for Free Radical Biology, USA
| | - Eric E Kelley
- West Virginia University Departments of Physiology and Pharmacology, USA.
| |
Collapse
|
25
|
Cao M, Cai R, Zhao L, Guo M, Wang L, Wang Y, Zhang L, Wang X, Yao H, Xie C, Cong Y, Guan Y, Tao X, Wang Y, Xu S, Liu Y, Zhao Y, Chen C. Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo. NATURE NANOTECHNOLOGY 2021; 16:708-716. [PMID: 33603238 DOI: 10.1038/s41565-021-00856-w] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/19/2021] [Indexed: 05/11/2023]
Abstract
Many nanoscale biomaterials fail to reach the clinical trial stage due to a poor understanding of the fundamental principles of their in vivo behaviour. Here we describe the transport, transformation and bioavailability of MoS2 nanomaterials through a combination of in vivo experiments and molecular dynamics simulations. We show that after intravenous injection molybdenum is significantly enriched in liver sinusoid and splenic red pulp. This biodistribution is mediated by protein coronas that spontaneously form in the blood, principally with apolipoprotein E. The biotransformation of MoS2 leads to incorporation of molybdenum into molybdenum enzymes, which increases their specific activities in the liver, affecting its metabolism. Our findings reveal that nanomaterials undergo a protein corona-bridged transport-transformation-bioavailability chain in vivo, and suggest that nanomaterials consisting of essential trace elements may be converted into active biological molecules that organisms can exploit. Our results also indicate that the long-term biotransformation of nanomaterials may have an impact on liver metabolism.
Collapse
Affiliation(s)
- Mingjing Cao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Lina Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yucai Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Biomedical Engineering, Faculty of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lili Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Xiaofeng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Haodong Yao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Chunyu Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Yalin Cong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Xiayu Tao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Shaoxin Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- The GBA National Institute for Nanotechnology Innovation, Guangdong, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- The GBA National Institute for Nanotechnology Innovation, Guangdong, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- The GBA National Institute for Nanotechnology Innovation, Guangdong, China.
| |
Collapse
|
26
|
Park JW, Thomas SM, Schechter AN, Piknova B. Control of rat muscle nitrate levels after perturbation of steady state dietary nitrate intake. Nitric Oxide 2021; 109-110:42-49. [PMID: 33713800 PMCID: PMC8020733 DOI: 10.1016/j.niox.2021.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022]
Abstract
The roles of nitrate and nitrite ions as nitric oxide (NO) sources in mammals, complementing NOS enzymes, have recently been the focus of much research. We previously reported that rat skeletal muscle serves as a nitrate reservoir, with the amount of stored nitrate being highly dependent on dietary nitrate availability, as well as its synthesis by NOS1 enzymes and its subsequent utilization. We showed that at conditions of increased NO need, this nitrate reservoir is used in situ to generate nitrite and NO, at least in part via the nitrate reductase activity of xanthine oxidoreductase (XOR). We now further investigate the dynamics of nitrate/nitrite fluxes in rat skeletal muscle after first increasing nitrate levels in drinking water and then returning to the original intake level. Nitrate/nitrite levels were analyzed in liver, blood and several skeletal muscle samples, and expression of proteins involved in nitrate metabolism and transport were also measured. Increased nitrate supply elevated nitrate and nitrite levels in all measured tissues. Surprisingly, after high nitrate diet termination, levels of both ions in liver and all muscle samples first declined to lower levels than the original baseline. During the course of the overall experiment there was a gradual increase of XOR expression in muscle tissue, which likely led to enhanced nitrate to nitrite reduction. We also noted differences in basal levels of nitrate in the different types of muscles. These findings suggest complex control of muscle nitrate levels, perhaps with multiple processes to preserve its intracellular levels.
Collapse
Affiliation(s)
- Ji Won Park
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samantha M Thomas
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan N Schechter
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Barbora Piknova
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
27
|
Anastasio AT, Paniagua A, Diamond C, Ferlauto HR, Fernandez-Moure JS. Nanomaterial Nitric Oxide Delivery in Traumatic Orthopedic Regenerative Medicine. Front Bioeng Biotechnol 2021; 8:592008. [PMID: 33537289 PMCID: PMC7849904 DOI: 10.3389/fbioe.2020.592008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Achieving bone fracture union after trauma represents a major challenge for the orthopedic surgeon. Fracture non-healing has a multifactorial etiology and there are many risk factors for non-fusion. Environmental factors such as wound contamination, infection, and open fractures can contribute to non-healing, as can patient specific factors such as poor vascular status and improper immunologic response to fracture. Nitric oxide (NO) is a small, neutral, hydrophobic, highly reactive free radical that can diffuse across local cell membranes and exert paracrine functions in the vascular wall. This molecule plays a role in many biologic pathways, and participates in wound healing through decontamination, mediating inflammation, angiogenesis, and tissue remodeling. Additionally, NO is thought to play a role in fighting wound infection by mitigating growth of both Gram negative and Gram positive pathogens. Herein, we discuss recent developments in NO delivery mechanisms and potential implications for patients with bone fractures. NO donors are functional groups that store and release NO, independent of the enzymatic actions of NOS. Donor molecules include organic nitrates/nitrites, metal-NO complexes, and low molecular weight NO donors such as NONOates. Numerous advancements have also been made in developing mechanisms for localized nanomaterial delivery of nitric oxide to bone. NO-releasing aerogels, sol- gel derived nanomaterials, dendrimers, NO-releasing micelles, and core cross linked star (CCS) polymers are all discussed as potential avenues of NO delivery to bone. As a further target for improved fracture healing, 3d bone scaffolds have been developed to include potential for nanoparticulated NO release. These advancements are discussed in detail, and their potential therapeutic advantages are explored. This review aims to provide valuable insight for translational researchers who wish to improve the armamentarium of the feature trauma surgeon through use of NO mediated augmentation of bone healing.
Collapse
Affiliation(s)
| | - Ariana Paniagua
- Duke University School of Medicine, Durham, NC, United States
| | - Carrie Diamond
- Duke University School of Medicine, Durham, NC, United States
| | | | | |
Collapse
|
28
|
Yao L, Cai K, Mei F, Wang X, Fan C, Jiang H, Xie F, Li Y, Bai L, Peng K, Deng W, Lai S, Wang J. Urine Nitric Oxide Is Lower in Parents of Autistic Children. Front Psychiatry 2021; 12:607191. [PMID: 34093255 PMCID: PMC8175662 DOI: 10.3389/fpsyt.2021.607191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/16/2021] [Indexed: 01/15/2023] Open
Abstract
Parents raising children with autism spectrum disorder (ASD) usually carry on their daily life under tremendous stress, but limited empirical research has been devoted to this population. It is known that parents' health status directly impacts therapeutic outcome of ASD children. As an important regulator in cardiovascular, nervous and immune systems, nitric oxide (NO) levels haven't been reported in parents of ASD children yet. In this study, we measured urine nitrite and nitrate from 43 ASD parents (ASD-P), and 43 healthy adults in the same range of age (Control) who didn't have any ASD descendants. Comparison between the ASD-P and Control groups showed that NO 2 - , NO 3 - , and NO 2 - / NO 3 - were all significantly lower in the ASD-P group. Analysis on the interaction effect of sex and group indicated that urine NO 3 - of mothers in ASD-P was lower than that in females of the Control group, but no significant difference was observed between males in both groups. It is for the first time that urine nitric oxide metabolites (nitrite, nitrate) levels were precisely reported to differentiate parents of autistic children from other adults without ASD descendants. This phenomenon suggests that parents (especially mothers) of autistic children might have experienced more mental and physical stressors, which led to decreased NO levels during metabolism. Further investigations are necessary to uncover the etiology of low urine NO among parents of autistic children.
Collapse
Affiliation(s)
- Lulu Yao
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, China
| | - Kun Cai
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Fanghua Mei
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Xiaohua Wang
- School of Social Development and Public Policy, Beijing Normal University, Beijing, China
| | - Chuangang Fan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Hong Jiang
- Department of Child Health Care, Huangshi Maternity and Child Health Care Hospital, Wuhan, China
| | - Fang Xie
- Department of Child Health Care, Huangshi Maternity and Child Health Care Hospital, Wuhan, China
| | - Ying Li
- Department of Child Health Care, Huangshi Maternity and Child Health Care Hospital, Wuhan, China
| | - Lu Bai
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, China
| | - Kang Peng
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, China
| | - Wenwen Deng
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, China
| | - Shenghan Lai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jun Wang
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, China
| |
Collapse
|
29
|
Paragas EM, Choughule K, Jones JP, Barr JT. Enzyme Kinetics, Pharmacokinetics, and Inhibition of Aldehyde Oxidase. Methods Mol Biol 2021; 2342:257-284. [PMID: 34272698 DOI: 10.1007/978-1-0716-1554-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aldehyde oxidase (AO) has emerged as an important drug metabolizing enzyme over the last decade. Several compounds have failed in the clinic because the clearance or toxicity was underestimated by preclinical species. Human AO is much more active than rodent AO, and dogs do not have functional AO. Metabolic products from AO-catalyzed oxidation are generally nonreactive and often they have much lower solubility. AO metabolism is not limited to oxidation as AO can also catalyze reduction of oxygen and nitrite. Reduction of oxygen leads to the reactive oxygen species (ROS) superoxide radical anion and hydrogen peroxide. Reduction of nitrite leads to the formation of nitric oxide with potential pharmacological implications. AO is also reported to catalyze the reductive metabolism of nitro-compounds, N-oxides, sulfoxides, isoxazoles, isothiazoles, nitrite, and hydroxamic acids. These reductive transformations may cause toxicity due to the formation of reactive metabolites. Moreover, the inhibition kinetics are complex, and multiple probe substrates should be used when assessing the potential for DDIs. Finally, AO appears to be amenable to computational predictions of both regioselectivity and rates of reaction, which holds promise for virtual screening.
Collapse
Affiliation(s)
- Erickson M Paragas
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Kanika Choughule
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, Boston, MA, USA
| | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | - John T Barr
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, South San Francisco, CA, USA.
| |
Collapse
|
30
|
Sriboonyong T, Kawamatawong T, Sriwantana T, Srihirun S, Titapiwatanakun V, Vivithanaporn P, Pornsuriyasak P, Sibmooh N, Kamalaporn H. Efficacy and safety of inhaled nebulized sodium nitrite in asthmatic patients. Pulm Pharmacol Ther 2020; 66:101984. [PMID: 33338662 DOI: 10.1016/j.pupt.2020.101984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/20/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Nitrite is a physiologic nitric oxide (NO) derivative that can be bioactivated to NO. NO has been shown to attenuate airway inflammation and enhance the anti-inflammatory effect of corticosteroids in the animal model of asthma. Here, we aimed to investigate the efficacy and safety of inhaled sodium nitrite as add-on therapy with inhaled corticosteroid (ICS) in adult patients with persistent asthma. METHODS In protocol 1, 10 asthmatic patients were administered a single dose of nebulized 15-mg sodium nitrite to assess safety, effect on lung function, and pharmacokinetics of nitrite within 120 min. In protocol 2, 20 patients were randomly assigned to a nitrite (15 mg twice daily) group or a placebo group to assess the efficacy over 12 weeks. The primary outcome was the forced expiratory volume in 1 s (FEV1). The secondary outcomes were other lung function parameters, unplanned asthma-related visits at the emergency department (ED) or outpatient department (OPD), admission days, asthma control test (ACT), and safety. RESULTS Nebulized sodium nitrite had neither acute adverse effect nor effect on lung function test within 120 min. No blood pressure change was seen. At week 12, FEV1 increased in the nitrite group, whereas there was no change in the placebo group. There were 5 events of asthma exacerbation, 4 ED visits, and one unplanned OPD visit in the placebo group, but none of these was noted in the nitrite group. There was no change in ACT scores in both groups. No adverse event was reported during 12 weeks in the nitrite group. There was no change in methemoglobin levels and sputum inflammatory markers. CONCLUSION From our pilot trial, nebulized sodium nitrite is safe in asthmatic patients, and shows the potential to reduce asthma exacerbation compared with placebo.
Collapse
Affiliation(s)
- Tidarat Sriboonyong
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Theerasuk Kawamatawong
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thanaporn Sriwantana
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Sirada Srihirun
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Varin Titapiwatanakun
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Thailand
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Prapaporn Pornsuriyasak
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nathawut Sibmooh
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand; Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Harutai Kamalaporn
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
31
|
Amdahl MB, DeMartino AW, Gladwin MT. Inorganic nitrite bioactivation and role in physiological signaling and therapeutics. Biol Chem 2020; 401:201-211. [PMID: 31747370 DOI: 10.1515/hsz-2019-0349] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/02/2019] [Indexed: 01/23/2023]
Abstract
The bioactivation of inorganic nitrite refers to the conversion of otherwise 'inert' nitrite to the diatomic signaling molecule nitric oxide (NO), which plays important roles in human physiology and disease, notably in the regulation of vascular tone and blood flow. While the most well-known sources of NO are the nitric oxide synthase (NOS) enzymes, another source of NO is the nitrate-nitrite-NO pathway, whereby nitrite (obtained from reduction of dietary nitrate) is further reduced to form NO. The past few decades have seen extensive study of the mechanisms of NO generation through nitrate and nitrite bioactivation, as well as growing appreciation of the contribution of this pathway to NO signaling in vivo. This review, prepared for the volume 400 celebration issue of Biological Chemistry, summarizes some of the key reactions of the nitrate-nitrite-NO pathway such as reduction, disproportionation, dehydration, and oxidative denitrosylation, as well as current evidence for the contribution of the pathway to human cardiovascular physiology. Finally, ongoing efforts to develop novel medical therapies for multifarious conditions, especially those related to pathologic vasoconstriction and ischemia/reperfusion injury, are also explored.
Collapse
Affiliation(s)
- Matthew B Amdahl
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
32
|
San Juan AF, Dominguez R, Lago-Rodríguez Á, Montoya JJ, Tan R, Bailey SJ. Effects of Dietary Nitrate Supplementation on Weightlifting Exercise Performance in Healthy Adults: A Systematic Review. Nutrients 2020; 12:E2227. [PMID: 32722588 PMCID: PMC7469052 DOI: 10.3390/nu12082227] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Dietary nitrate (NO3-) supplementation has been evidenced to induce an ergogenic effect in endurance and sprint-type exercise, which may be underpinned by enhanced muscle contractility and perfusion, particularly in type II muscle fibers. However, limited data are available to evaluate the ergogenic potential of NO3- supplementation during other exercise modalities that mandate type II fiber recruitment, such as weightlifting exercise (i.e., resistance exercise). In this systematic review, we examine the existing evidence basis for NO3- supplementation to improve muscular power, velocity of contraction, and muscular endurance during weightlifting exercise in healthy adults. We also discuss the potential mechanistic bases for any positive effects of NO3- supplementation on resistance exercise performance. Dialnet, Directory of Open Access Journals, Medline, Pubmed, Scielo, Scopus and SPORT Discus databases were searched for articles using the keywords: nitrate or beetroot and supplement or nut*r or diet and strength or "resistance exercise" or "resistance training" or "muscular power". Four articles fulfilling the inclusion criteria were identified. Two of the four studies indicated that NO3- supplementation could increase aspects of upper body weightlifting exercise (i.e., bench press) performance (increases in mean power/velocity of contraction/number of repetitions to failure), whereas another study observed an increase in the number of repetitions to failure during lower limb weightlifting exercise (i.e., back squat). Although these preliminary observations are encouraging, further research is required for the ergogenic potential of NO3- supplementation on weightlifting exercise performance to be determined.
Collapse
Affiliation(s)
- Alejandro F. San Juan
- Department of Health and Human Performance, Sport Biomechanics Laboratory, Facultad de Ciencias de la Actividad Física y del Deporte—INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Raul Dominguez
- Faculty of Health Science, Universidad Isabel I, 09003 Burgos, Spain;
| | | | - Juan José Montoya
- Faculty of Medicine, School of Medicine of Physical Education and Sport, Complutense University, 28040 Madrid, Spain;
| | - Rachel Tan
- Faculty of Sports Medicine, Natural Sciences Division, Pepperdine University, Malibu, CA 90263, USA;
| | - Stephen J. Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK;
| |
Collapse
|
33
|
Pardue S, Kolluru GK, Shen X, Lewis SE, Saffle CB, Kelley EE, Kevil CG. Hydrogen sulfide stimulates xanthine oxidoreductase conversion to nitrite reductase and formation of NO. Redox Biol 2020; 34:101447. [PMID: 32035920 PMCID: PMC7327988 DOI: 10.1016/j.redox.2020.101447] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular disease is the leading cause of death and disability worldwide with increased oxidative stress and reduced NO bioavailability serving as key risk factors. For decades, elevation in protein abundance and enzymatic activity of xanthine oxidoreductase (XOR) under hypoxic/inflammatory conditions has been associated with organ damage and vascular dysfunction. Recent reports have challenged this dogma by identifying a beneficial function for XOR, under similar hypoxic/acidic conditions, whereby XOR catalyzes the reduction of nitrite (NO2-) to nitric oxide (NO) through poorly defined mechanisms. We previously reported that hydrogen sulfide (H2S/sulfide) confers significant vascular benefit under these same conditions via NO2- mediated mechanisms independent of nitric oxide synthase (NOS). Here we report for the first time the convergence of H2S, XOR, and nitrite to form a concerted triad for NO generation. Specifically, hypoxic endothelial cells show a dose-dependent, sulfide and polysulfide (diallyl trisulfide (DATS)-induced, NOS-independent NO2- reduction to NO that is dependent upon the enzymatic activity of XOR. Interestingly, nitrite reduction to NO was found to be slower and more sustained with DATS compared to H2S. Capacity for sulfide/polysulfide to produce an XOR-dependent impact on NO generation translates to salutary actions in vivo as DATS administration in cystathionine-γ-lyase (CSE) knockout mice significantly improved hindlimb ischemia blood flow post ligation, while the XOR-specific inhibitor, febuxostat (Febx), abrogated this benefit. Moreover, flow-mediated vasodilation (FMD) in CSE knockout mice following administration of DATS resulted in greater than 4-fold enhancement in femoral artery dilation while co-treatment with Febx completely completely abrogated this effect. Together, these results identify XOR as a focal point of convergence between sulfide- and nitrite-mediated signaling, as well as affirm the critical need to reexamine current dogma regarding inhibition of XOR in the context of vascular dysfunction.
Collapse
Affiliation(s)
- Sibile Pardue
- Department of Pathology, LSU Health Sciences Center, Shreveport, LA, USA
| | - Gopi K Kolluru
- Department of Pathology, LSU Health Sciences Center, Shreveport, LA, USA
| | - Xinggui Shen
- Department of Pathology, LSU Health Sciences Center, Shreveport, LA, USA
| | - Sara E Lewis
- Department of Physiology and Pharmacology, West Virginia University, United States
| | - Courtney B Saffle
- Department of Physiology and Pharmacology, West Virginia University, United States
| | - Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University, United States
| | - Christopher G Kevil
- Department of Pathology, LSU Health Sciences Center, Shreveport, LA, USA; Department of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport, LA, USA; Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
34
|
Kapil V, Khambata RS, Jones DA, Rathod K, Primus C, Massimo G, Fukuto JM, Ahluwalia A. The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. Pharmacol Rev 2020; 72:692-766. [DOI: 10.1124/pr.120.019240] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
35
|
Abstract
Significance: Cytoglobin (Cygb) was discovered as a new addition to the globin superfamily and subsequently identified to have potent nitric oxide (NO) dioxygenase function. Cygb plays a critical role in the oxygen-dependent regulation of NO levels and vascular tone. Recent Advances: In recent years, the mechanism of the Cygb-mediated NO dioxygenation has been studied in isolated protein, smooth muscle cell, isolated blood vessel, and in vivo animal model systems. Studies in Cygb-/- mice have demonstrated that Cygb plays a critical role in regulating blood pressure and vascular tone. This review summarizes advances in the knowledge of NO dioxygenation/metabolism regulated by Cygb. Advances in measurement of NO diffusion dynamics across blood vessels and kinetic modeling of Cygb-mediated NO dioxygenation are summarized. The oxygen-dependent regulation of NO degradation by Cygb is also reviewed along with how Cygb paradoxically generates NO from nitrite under anaerobic conditions. The important role of Cygb in the regulation of vascular function and disease is reviewed. Critical Issues: Cygb is a more potent NO dioxygenase (NOD) than previously known globins with structural differences in heme coordination and environment, conferring it with a higher rate of reduction and more rapid process of NO dioxygenation with unique oxygen dependence. Various cellular reducing systems regenerate the catalytic oxyferrous Cygb species, supporting a high rate of NO dioxygenation. Future Directions: There remains a critical need to further characterize the factors and processes that modulate Cygb-mediated NOD function, and to develop pharmacological or other approaches to modulate Cygb function and expression.
Collapse
Affiliation(s)
- Jay L Zweier
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Govindasamy Ilangovan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
36
|
Pinheiro LC, Ferreira GC, Damacena de Angelis C, Toledo JC, Tanus-Santos JE. A comprehensive time course study of tissue nitric oxide metabolites concentrations after oral nitrite administration. Free Radic Biol Med 2020; 152:43-51. [PMID: 32151744 DOI: 10.1016/j.freeradbiomed.2020.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/18/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022]
Abstract
Nitrite and nitrate are considered nitric oxide (NO) storage pools. The assessment of their tissue concentrations may improve our understanding of how they attenuate pathophysiological mechanisms promoting disease. We hypothesized that significant differences exist when the tissue concentrations of nitrite, nitrate, and nitrosylated species (RXNO) are compared among different tissues, particularly when nitrite is administered orally because nitrite generates various NO-related species in the stomach. We studied the different time-dependent changes in plasma and tissue concentrations of nitrite, nitrate, and RXNO after oral nitrite 15 mg/kg was administered rats, which were euthanized 15, 30, 60, 120, 240, 480 or 1440 min after nitrite administration. A control group received water. Arterial blood samples were collected and the rats were perfused with a PBS solution containing NEM/DTPA to prevent the destruction of RXNO. After perfusion, heart, aorta, mesenteric artery, brain, stomach, liver and femoral muscle were harvested and immediately stored at -70°C until analyzed for their nitrite, nitrate and RXNO contents using an ozone-based reductive chemiluminescence assay. While nitrite administration did not increase aortic nitrite or nitrate concentrations for at least 60 min, both aorta and mesenteric vessels stored nitrite from 8 to 24 h after its administration and their tissue concentrations increased from 10 to 40-fold those found in plasma. In contrast, the other studied tissues showed only transient increases in the concentrations of these NO metabolites, including RXNO. The differences among tissues may reflect differences in mechanisms regulating cellular influx of nitrite. These findings have important pharmacological and clinical implications.
Collapse
Affiliation(s)
- Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Célio Damacena de Angelis
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 13083-887, Campinas, Sao Paulo, Brazil
| | - Jose Carlos Toledo
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, 14040-901, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
37
|
Liu Y, Croft KD, Hodgson JM, Mori T, Ward NC. Mechanisms of the protective effects of nitrate and nitrite in cardiovascular and metabolic diseases. Nitric Oxide 2020; 96:35-43. [PMID: 31954804 DOI: 10.1016/j.niox.2020.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 12/28/2022]
Abstract
Within the body, NO is produced by nitric oxide synthases via converting l-arginine to citrulline. Additionally, NO is also produced via the NOS-independent nitrate-nitrite-NO pathway. Unlike the classical pathway, the nitrate-nitrite-NO pathway is oxygen independent and viewed as a back-up function to ensure NO generation during ischaemia/hypoxia. Dietary nitrate and nitrite have emerged as substrates for endogenous NO generation and other bioactive nitrogen oxides with promising protective effects on cardiovascular and metabolic function. In brief, inorganic nitrate and nitrite can decrease blood pressure, protect against ischaemia-reperfusion injury, enhance endothelial function, inhibit platelet aggregation, modulate mitochondrial function and improve features of the metabolic syndrome. However, many questions regarding the specific mechanisms of these protective effects on cardiovascular and metabolic diseases remain unclear. In this review, we focus on nitrate/nitrite bioactivation, as well as the potential mechanisms for nitrate/nitrite-mediated effects on cardiovascular and metabolic diseases. Understanding how dietary nitrate and nitrite induce beneficial effect on cardiovascular and metabolic diseases could open up novel therapeutic opportunities in clinical practice.
Collapse
Affiliation(s)
- Yang Liu
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Kevin D Croft
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Jonathan M Hodgson
- School of Biomedical Sciences, University of Western Australia, Perth, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Trevor Mori
- Medical School, University of Western Australia, Perth, Australia
| | - Natalie C Ward
- Medical School, University of Western Australia, Perth, Australia; School of Public Health and Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.
| |
Collapse
|
38
|
Sabadashka M, Nagalievska M, Sybirna N. Tyrosine nitration as a key event of signal transduction that regulates functional state of the cell. Cell Biol Int 2020; 45:481-497. [PMID: 31908104 DOI: 10.1002/cbin.11301] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/04/2020] [Indexed: 12/21/2022]
Abstract
This review is dedicated to the role of nitration of proteins by tyrosine residues in physiological and pathological conditions. First of all, we analyze the biochemical evidence of peroxynitrite formation and reactions that lead to its formation, types of posttranslational modifications (PTMs) induced by reactive nitrogen species, as well as three biological pathways of tyrosine nitration. Then, we describe two possible mechanisms of protein nitration that are involved in intracellular signal transduction, as well as its interconnection with phosphorylation/dephosphorylation of tyrosine. Next part of the review is dedicated to the role of proteins nitration in different pathological conditions. In this section, special attention is devoted to the role of nitration in changes of functional properties of actin-protein that undergoes PTMs both in normal and pathological conditions. Overall, this review is devoted to the main features of protein nitration by tyrosine residue and the role of this process in intracellular signal transduction in basal and pathological conditions.
Collapse
Affiliation(s)
- Mariya Sabadashka
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, 4, Hrushevskyi St., Lviv, 79005, Ukraine
| | - Mariia Nagalievska
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, 4, Hrushevskyi St., Lviv, 79005, Ukraine
| | - Nataliia Sybirna
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, 4, Hrushevskyi St., Lviv, 79005, Ukraine
| |
Collapse
|
39
|
Dunne M, Regenold M, Allen C. Hyperthermia can alter tumor physiology and improve chemo- and radio-therapy efficacy. Adv Drug Deliv Rev 2020; 163-164:98-124. [PMID: 32681862 DOI: 10.1016/j.addr.2020.07.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Hyperthermia has demonstrated clinical success in improving the efficacy of both chemo- and radio-therapy in solid tumors. Pre-clinical and clinical research studies have demonstrated that targeted hyperthermia can increase tumor blood flow and increase the perfused fraction of the tumor in a temperature and time dependent manner. Changes in tumor blood circulation can produce significant physiological changes including enhanced vascular permeability, increased oxygenation, decreased interstitial fluid pressure, and reestablishment of normal physiological pH conditions. These alterations in tumor physiology can positively impact both small molecule and nanomedicine chemotherapy accumulation and distribution within the tumor, as well as the fraction of the tumor susceptible to radiation therapy. Hyperthermia can trigger drug release from thermosensitive formulations and further improve the accumulation, distribution, and efficacy of chemotherapy.
Collapse
|
40
|
Srihirun S, Park JW, Teng R, Sawaengdee W, Piknova B, Schechter AN. Nitrate uptake and metabolism in human skeletal muscle cell cultures. Nitric Oxide 2020; 94:1-8. [PMID: 31604144 PMCID: PMC7341890 DOI: 10.1016/j.niox.2019.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/06/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
Several studies show that dietary nitrate enhances exercise performance, presumably by increasing muscle blood flow and improving oxygen utilization. These effects are likely mediated by nitrate metabolites, including nitrite and nitric oxide (NO). However, the mechanisms of nitrate production, storage, and metabolism to nitrite and NO in skeletal muscle cells are still unclear. We hypothesized that exogenous nitrate can be taken up and metabolized to nitrite/NO inside the skeletal muscle. We found rapid uptake of exogeneous nitrate in both myoblasts and myotubes, increasing nitrite levels in myotubes, but not myoblasts. During differentiation we found increased expression of molybdenum containing proteins, such as xanthine oxidoreductase (XOR) and the mitochondrial amidoxime-reducing component (MARC); nitrate and nitrite reductases. Sialin, a known nitrate transporter, was detected in myoblasts; nitrate uptake decreased after sialin knockdown. Inhibition of chloride channel 1 (CLC1) also led to significantly decreased uptake of nitrate. Addition of exogenous nitrite, which resulted in higher intracellular nitrite levels, increased intracellular cGMP levels in myotubes. In summary, our results demonstrate for the first time the presence of the nitrate/nitrite/NO pathway in skeletal muscle cells, namely the existence of strong uptake of exogenous nitrate into cells and conversion of intracellular nitrate to nitrite and NO. Our results further support our previously formulated hypothesis about the importance of the nitrate to nitrite to NO intrinsic reduction pathways in skeletal muscles, which likely contributes to improved exercise tolerance after nitrate ingestion.
Collapse
Affiliation(s)
- Sirada Srihirun
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand; Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
| | - Ji Won Park
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
| | - Rujia Teng
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
| | - Waritta Sawaengdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Barbora Piknova
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
| | - Alan N Schechter
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
41
|
Pharmaceutical Preconditioning With Nitric Oxide Synthase and L-Arginine in Ischemic Tissues. Ann Plast Surg 2019; 84:705-710. [PMID: 31850966 DOI: 10.1097/sap.0000000000002117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Nitric oxide (NO) is a multifunctional signaling molecule involved in regulating vascular tone and tissue oxygenation. It is also an important cytoprotective agent against ischemia-reperfusion injury (IRI). Enhancing NO bioavailability via exogenous NO synthases (NOSs) and L-arginine promotes conversation to NO, circumventing the problem of nonfunctioning NOSs under hypoxic and acidic conditions. In this study, the authors evaluated the therapeutic efficacy of neuronal, inducible, and endothelial NOS and L-arginine on reperfusion-induced skin flap alterations. METHODS The vascular pedicle isolated rat skin flap model was used and underwent 3 hours of ischemia. At 30 minutes before ischemia, normal saline, endothelial-, inducible-, and neuronal NOSs (1/2 IU) and L-arginine (100 mg/kg body weight) were administered by means of intravenous infusion. The IRI-induced alterations were measured 5 days after the operation. RESULTS The 3 isoforms of NOS increased the flap vitality rate (VR) from 10% to 23% compared with the control group. L-Arginine treatment also increased the VR by approximately 15%. The combination of L-arginine with NOS resulted in even higher flap VRs. The best results could be achieved with the combination of endothelial NOS (2 IU) and L-arginine. CONCLUSIONS Modulation of NO bioavailability via exogenous application of NOSs and L-arginine significantly improved VRs in a skin flap rat model. This pharmacologic preconditioning has the potential to attenuate IRI-induced alterations in skin flaps.
Collapse
|
42
|
Pharmacokinetics and pharmacodynamics of single dose of inhaled nebulized sodium nitrite in healthy and hemoglobin E/β-thalassemia subjects. Nitric Oxide 2019; 93:6-14. [DOI: 10.1016/j.niox.2019.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 01/19/2023]
|
43
|
Premont RT, Reynolds JD, Zhang R, Stamler JS. Role of Nitric Oxide Carried by Hemoglobin in Cardiovascular Physiology: Developments on a Three-Gas Respiratory Cycle. Circ Res 2019; 126:129-158. [PMID: 31590598 DOI: 10.1161/circresaha.119.315626] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A continuous supply of oxygen is essential for the survival of multicellular organisms. The understanding of how this supply is regulated in the microvasculature has evolved from viewing erythrocytes (red blood cells [RBCs]) as passive carriers of oxygen to recognizing the complex interplay between Hb (hemoglobin) and oxygen, carbon dioxide, and nitric oxide-the three-gas respiratory cycle-that insures adequate oxygen and nutrient delivery to meet local metabolic demand. In this context, it is blood flow and not blood oxygen content that is the main driver of tissue oxygenation by RBCs. Herein, we review the lines of experimentation that led to this understanding of RBC function; from the foundational understanding of allosteric regulation of oxygen binding in Hb in the stereochemical model of Perutz, to blood flow autoregulation (hypoxic vasodilation governing oxygen delivery) observed by Guyton, to current understanding that centers on S-nitrosylation of Hb (ie, S-nitrosohemoglobin; SNO-Hb) as a purveyor of oxygen-dependent vasodilatory activity. Notably, hypoxic vasodilation is recapitulated by native S-nitrosothiol (SNO)-replete RBCs and by SNO-Hb itself, whereby SNO is released from Hb and RBCs during deoxygenation, in proportion to the degree of Hb deoxygenation, to regulate vessels directly. In addition, we discuss how dysregulation of this system through genetic mutation in Hb or through disease is a common factor in oxygenation pathologies resulting from microcirculatory impairment, including sickle cell disease, ischemic heart disease, and heart failure. We then conclude by identifying potential therapeutic interventions to correct deficits in RBC-mediated vasodilation to improve oxygen delivery-steps toward effective microvasculature-targeted therapies. To the extent that diseases of the heart, lungs, and blood are associated with impaired tissue oxygenation, the development of new therapies based on the three-gas respiratory system have the potential to improve the well-being of millions of patients.
Collapse
Affiliation(s)
- Richard T Premont
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Harrington Discovery Institute (R.T.P., J.D.R., J.S.S.), University Hospitals Cleveland Medical Center, OH
| | - James D Reynolds
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Department of Anesthesiology and Perioperative Medicine (J.D.R.), Case Western Reserve University School of Medicine, OH.,Harrington Discovery Institute (R.T.P., J.D.R., J.S.S.), University Hospitals Cleveland Medical Center, OH
| | - Rongli Zhang
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Department of Medicine, Cardiovascular Research Institute (R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH
| | - Jonathan S Stamler
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Department of Medicine, Cardiovascular Research Institute (R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Harrington Discovery Institute (R.T.P., J.D.R., J.S.S.), University Hospitals Cleveland Medical Center, OH
| |
Collapse
|
44
|
Wylie LJ, Park JW, Vanhatalo A, Kadach S, Black MI, Stoyanov Z, Schechter AN, Jones AM, Piknova B. Human skeletal muscle nitrate store: influence of dietary nitrate supplementation and exercise. J Physiol 2019; 597:5565-5576. [PMID: 31350908 PMCID: PMC9358602 DOI: 10.1113/jp278076] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/22/2019] [Indexed: 12/18/2022] Open
Abstract
Rodent skeletal muscle contains a large store of nitrate that can be augmented by the consumption of dietary nitrate. This muscle nitrate reservoir has been found to be an important source of nitrite and nitric oxide (NO) via its reduction by tissue xanthine oxidoreductase. To explore if this pathway is also active in human skeletal muscle during exercise, and if it is sensitive to local nitrate availability, we assessed exercise-induced changes in muscle nitrate and nitrite concentrations in young healthy humans, under baseline conditions and following dietary nitrate consumption. We found that baseline nitrate and nitrite concentrations were far higher in muscle than in plasma (~4-fold and ~29-fold, respectively), and that the consumption of a single bolus of dietary nitrate (12.8 mmol) significantly elevated nitrate concentration in both plasma (~19-fold) and muscle (~5-fold). Consistent with these observations, and with previous suggestions of active muscle nitrate transport, we present western blot data to show significant expression of the active nitrate/nitrite transporter sialin in human skeletal muscle. Furthermore, we report an exercise-induced reduction in human muscle nitrate concentration (by ~39%), but only in the presence of an increased muscle nitrate store. Our results indicate that human skeletal muscle nitrate stores are sensitive to dietary nitrate intake and may contribute to NO generation during exercise. Together, these findings suggest that skeletal muscle plays an important role in the transport, storage and metabolism of nitrate in humans.
Collapse
Affiliation(s)
- Lee J. Wylie
- Sport and Health SciencesCollege of Life and Environmental SciencesSt Luke's CampusUniversity of Exeter Exeter EX1 2LU UK
| | - Ji Won Park
- Molecular Medicine BranchNIDDKNational Institutes of Health Bethesda MD 20892–1822 USA
| | - Anni Vanhatalo
- Sport and Health SciencesCollege of Life and Environmental SciencesSt Luke's CampusUniversity of Exeter Exeter EX1 2LU UK
| | - Stefan Kadach
- Sport and Health SciencesCollege of Life and Environmental SciencesSt Luke's CampusUniversity of Exeter Exeter EX1 2LU UK
| | - Matthew I. Black
- Sport and Health SciencesCollege of Life and Environmental SciencesSt Luke's CampusUniversity of Exeter Exeter EX1 2LU UK
| | - Zdravko Stoyanov
- Sport and Health SciencesCollege of Life and Environmental SciencesSt Luke's CampusUniversity of Exeter Exeter EX1 2LU UK
| | - Alan N. Schechter
- Molecular Medicine BranchNIDDKNational Institutes of Health Bethesda MD 20892–1822 USA
| | - Andrew M. Jones
- Sport and Health SciencesCollege of Life and Environmental SciencesSt Luke's CampusUniversity of Exeter Exeter EX1 2LU UK
| | - Barbora Piknova
- Molecular Medicine BranchNIDDKNational Institutes of Health Bethesda MD 20892–1822 USA
| |
Collapse
|
45
|
Immunomodulatory roles of nitric oxide in cancer: tumor microenvironment says "NO" to antitumor immune response. Transl Res 2019; 210:99-108. [PMID: 30953610 DOI: 10.1016/j.trsl.2019.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/18/2019] [Accepted: 03/12/2019] [Indexed: 01/01/2023]
Abstract
In recent years, an increasing number of studies have shown that there is an important connection between nitric oxide (NO) and the pathology of malignant diseases, but we are far from a complete comprehension of how this simple diatomic molecule contributes to tumorigenesis. The emerging identification of immune-mediated mechanisms regulated by NO may help to unravel the intricate and complex relationships between NO and cancer. Therefore, this review provides a summary of recent advances in our understanding of the immunomodulatory role of NO in cancer, and in particular the role of this pleiotropic signaling molecule as an immunosuppressive mediator in the tumor microenvironment. We will discuss the participation of NO in the different strategies used by tumors to escape from immune system-mediated recognition, including the acquisition of stem cell like capacities by tumor cells and the metabolic reprogramming of tumor infiltrating immune cells. Finally, we will also discuss different therapeutic strategies directed against NO for abating the immunosuppressive tumor microenvironment and to increase the efficacy of immunotherapy in cancer.
Collapse
|
46
|
Cortés-Puch I, Sun J, Schechter AN, Solomon SB, Park JW, Feng J, Gilliard C, Natanson C, Piknova B. Inhaled nebulized nitrite and nitrate therapy in a canine model of hypoxia-induced pulmonary hypertension. Nitric Oxide 2019; 91:1-14. [PMID: 31299340 DOI: 10.1016/j.niox.2019.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/17/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
Dysfunction in the nitric oxide (NO) signaling pathway can lead to the development of pulmonary hypertension (PH) in mammals. Discovery of an alternative pathway to NO generation involving reduction from nitrate to nitrite and to NO has motivated the evaluation of nitrite as an alternative to inhaled NO for PH. In contrast, inhaled nitrate has not been evaluated to date, and potential benefits include a prolonged half-life and decreased risk of methemoglobinemia. In a canine model of acute hypoxia-induced PH we evaluated the effects of inhaled nitrate to reduce pulmonary arterial pressure (PAP). In a randomized controlled trial, inhaled nitrate was compared to inhaled nitrite and inhaled saline. Exhaled NO, PAP and systemic blood pressures were continuously monitored. Inhaled nitrite significantly decreased PAP and increased exhaled NO. In contrast, inhaled nitrate and inhaled saline did not decrease PAP or increase exhaled NO. Unexpectedly, we found that inhaled nitrite resulted in prolonged (>5 h) exhaled NO release, increase in nitrate venous/arterial levels and a late surge in venous nitrite levels. These findings do not support a therapeutic role for inhaled nitrate in PH but may have therapeutic implications for inhaled nitrite in various disease states.
Collapse
Affiliation(s)
- Irene Cortés-Puch
- National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of California Davis, Sacramento, CA, USA
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Alan N Schechter
- National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, USA
| | - Steven B Solomon
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ji Won Park
- National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, USA
| | - Jing Feng
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Cameron Gilliard
- National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, USA; Penn State Health Milton S. Hershey Medical Center, Department of Anesthesia and Perioperative Medicine, Hershey, PA, USA
| | - Charles Natanson
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Barbora Piknova
- National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
47
|
Abstract
Nitric oxide (NO) plays a plethora of important roles in the human body. Insufficient production of NO (for example, during older age and in various disease conditions) can adversely impact health and physical performance. In addition to its endogenous production through the oxidation of l-arginine, NO can be formed nonenzymatically via the reduction of nitrate and nitrite, and the storage of these anions can be augmented by the consumption of nitrate-rich foodstuffs such as green leafy vegetables. Recent studies indicate that dietary nitrate supplementation, administered most commonly in the form of beetroot juice, can ( a) improve muscle efficiency by reducing the O2 cost of submaximal exercise and thereby improve endurance exercise performance and ( b) enhance skeletal muscle contractile function and thereby improve muscle power and sprint exercise performance. This review describes the physiological mechanisms potentially responsible for these effects, outlines the circumstances in which ergogenic effects are most likely to be evident, and discusses the effects of dietary nitrate supplementation on physical performance in a range of human populations.
Collapse
Affiliation(s)
- Andrew M Jones
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| | - Christopher Thompson
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| | - Lee J Wylie
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| | - Anni Vanhatalo
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| |
Collapse
|
48
|
Spiers JG, Chen HJC, Bourgognon JM, Steinert JR. Dysregulation of stress systems and nitric oxide signaling underlies neuronal dysfunction in Alzheimer's disease. Free Radic Biol Med 2019; 134:468-483. [PMID: 30716433 DOI: 10.1016/j.freeradbiomed.2019.01.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Abstract
Stress is a multimodal response involving the coordination of numerous body systems in order to maximize the chance of survival. However, long term activation of the stress response results in neuronal oxidative stress via reactive oxygen and nitrogen species generation, contributing to the development of depression. Stress-induced depression shares a high comorbidity with other neurological conditions including Alzheimer's disease (AD) and dementia, often appearing as one of the earliest observable symptoms in these diseases. Furthermore, stress and/or depression appear to exacerbate cognitive impairment in the context of AD associated with dysfunctional catecholaminergic signaling. Given there are a number of homologous pathways involved in the pathophysiology of depression and AD, this article will highlight the mechanisms by which stress-induced perturbations in oxidative stress, and particularly NO signaling, contribute to neurodegeneration.
Collapse
Affiliation(s)
- Jereme G Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3083, Australia.
| | - Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | | | - Joern R Steinert
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, LE1 9HN, United Kingdom.
| |
Collapse
|
49
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
50
|
Oliveira-Paula GH, Pinheiro LC, Tanus-Santos JE. Mechanisms impairing blood pressure responses to nitrite and nitrate. Nitric Oxide 2019; 85:35-43. [PMID: 30716418 DOI: 10.1016/j.niox.2019.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
Hypertension is a multifactorial disease associated with impaired nitric oxide (NO) production and bioavailability. In this respect, restoring NO activity by using nitrite and nitrate has been considered a potential therapeutic strategy to treat hypertension. This possibility is justified by the understanding that both nitrite and nitrate may be recycled back to NO and also promote the generation of other bioactive species. This process involves a complex biological circuit known as the enterosalivary cycle of nitrate, where this anion is actively taken up by the salivary glands and converted to nitrite by nitrate-reducing bacteria in the oral cavity. Nitrite is then ingested and reduced to NO and other nitroso species under the acid conditions of the stomach, whereas reminiscent nitrite that escapes gastric reduction is absorbed systemically and can be converted into NO by nitrite-reductases in tissues. While there is no doubt that nitrite and nitrate exert antihypertensive effects, several agents can impair the blood pressure responses to these anions by disrupting the enterosalivary cycle of nitrate. These agents include dietary and smoking-derived thiocyanate, antiseptic mouthwash, proton pump inhibitors, ascorbate at high concentrations, and xanthine oxidoreductase inhibitors. In this article, we provide an overview of the physiological aspects of nitrite and nitrate bioactivation and the therapeutic potential of these anions in hypertension. We also discuss mechanisms by which agents counteracting the antihypertensive responses to nitrite and nitrate mediate their effects. These critical aspects should be taken into consideration when suggesting nitrate or nitrite-based therapies to patients.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|