1
|
Campla CK, Bocchero U, Strickland R, Nellissery J, Advani J, Ignatova I, Srivastava D, Aponte AM, Wang Y, Gumerson J, Martemyanov K, Artemyev NO, Pahlberg J, Swaroop A. Frmpd1 Facilitates Trafficking of G-Protein Transducin and Modulates Synaptic Function in Rod Photoreceptors of Mammalian Retina. eNeuro 2022; 9:ENEURO.0348-22.2022. [PMID: 36180221 PMCID: PMC9581579 DOI: 10.1523/eneuro.0348-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/23/2022] [Indexed: 12/15/2022] Open
Abstract
Trafficking of transducin (Gαt) in rod photoreceptors is critical for adaptive and modulatory responses of the retina to varying light intensities. In addition to fine-tuning phototransduction gain in rod outer segments (OSs), light-induced translocation of Gαt to the rod synapse enhances rod to rod bipolar synaptic transmission. Here, we show that the rod-specific loss of Frmpd1 (FERM and PDZ domain containing 1), in the retina of both female and male mice, results in delayed return of Gαt from the synapse back to outer segments in the dark, compromising the capacity of rods to recover from light adaptation. Frmpd1 directly interacts with Gpsm2 (G-protein signaling modulator 2), and the two proteins are required for appropriate sensitization of rod-rod bipolar signaling under saturating light conditions. These studies provide insight into how the trafficking and function of Gαt is modulated to optimize the photoresponse and synaptic transmission of rod photoreceptors in a light-dependent manner.
Collapse
Affiliation(s)
- Christie K Campla
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ulisse Bocchero
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
- Photoreceptor Physiology Group, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ryan Strickland
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jacob Nellissery
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jayshree Advani
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Irina Ignatova
- Photoreceptor Physiology Group, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Dhiraj Srivastava
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Angel M Aponte
- Proteomics Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yuchen Wang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | - Jessica Gumerson
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kirill Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Johan Pahlberg
- Photoreceptor Physiology Group, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
2
|
Vural A, Lanier SM. Intersection of two key signal integrators in the cell: activator of G-protein signaling 3 and dishevelled-2. J Cell Sci 2020; 133:jcs247908. [PMID: 32737219 PMCID: PMC7490517 DOI: 10.1242/jcs.247908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022] Open
Abstract
Activator of G-protein signaling 3 (AGS3, encoded by GPSM1) was discovered as a one of several receptor-independent activators of G-protein signaling, which are postulated to provide a platform for divergence between canonical and noncanonical G-protein signaling pathways. Similarly, Dishevelled (DVL) proteins serve as a point of divergence for β-catenin-dependent and -independent signaling pathways involving the family of Frizzled (FZD) ligands and cell-surface WNT receptors. We recently discovered the apparent regulated localization of dishevelled-2 (DVL2) and AGS3 to distinct cellular puncta, suggesting that the two proteins interact as part of various cell signaling systems. To address this hypothesis, we asked the following questions: (1) do AGS3 signaling pathways influence the activation of β-catenin (CTNNB1)-regulated transcription through the WNT-Frizzled-Dishevelled axis, and (2) is the AGS3 and DVL2 interaction regulated? The interaction of AGS3 and DVL2 was regulated by protein phosphorylation, subcellular distribution, and a cell-surface G-protein-coupled receptor. These data, and the commonality of functional system impacts observed for AGS3 and DVL2, suggest that the AGS3-DVL2 complex presents an unexpected path for functional integration within the cell.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ali Vural
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Stephen M Lanier
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
3
|
Campla CK, Mast H, Dong L, Lei J, Halford S, Sekaran S, Swaroop A. Targeted deletion of an NRL- and CRX-regulated alternative promoter specifically silences FERM and PDZ domain containing 1 (Frmpd1) in rod photoreceptors. Hum Mol Genet 2020; 28:804-817. [PMID: 30445545 DOI: 10.1093/hmg/ddy388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Regulation of cell type-specific gene expression is critical for generating neuronal diversity. Transcriptome analyses have unraveled extensive heterogeneity of transcribed sequences in retinal photoreceptors because of alternate splicing and/or promoter usage. Here we show that Frmpd1 (FERM and PDZ domain containing 1) is transcribed from an alternative promoter specifically in the retina. Electroporation of Frmpd1 promoter region, -505 to +382 bp, activated reporter gene expression in mouse retina in vivo. A proximal promoter sequence (-8 to +33 bp) of Frmpd1 binds to neural retina leucine zipper (NRL) and cone-rod homeobox protein (CRX), two rod-specific differentiation factors, and is necessary for activating reporter gene expression in vitro and in vivo. Clustered regularly interspaced short palindromic repeats/Cas9-mediated deletion of the genomic region, including NRL and CRX binding sites, in vivo completely eliminated Frmpd1 expression in rods and dramatically reduced expression in rod bipolar cells, thereby overcoming embryonic lethality caused by germline Frmpd1 deletion. Our studies demonstrate that a cell type-specific regulatory control region is a credible target for creating loss-of-function alleles of widely expressed genes.
Collapse
Affiliation(s)
- Christie K Campla
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.,Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Hannah Mast
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jingqi Lei
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Sumathi Sekaran
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Rong X, Han Q, Lin X, Kremerskothen J, Wang E. FRMPD1 activates the Hippo pathway via interaction with WWC3 to suppress the proliferation and invasiveness of lung cancer cells. Cancer Manag Res 2019; 11:3395-3410. [PMID: 31114375 PMCID: PMC6497479 DOI: 10.2147/cmar.s194512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/17/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose: The expression of FERM-domain-containing protein-1 (FRMPD1)/FERM and PDZ domain-containing protein-2 (FRMD2) in malignant tumors, including lung cancer, and its underlying molecular mechanism have not been reported yet. Materials and methods: Immunohistochemistry was performed to analyze the expression of FRMPD1 in lung cancer tissues, and statistical analysis was applied to analyze the relationship between FRMPD1 expression and clinicopathological factors. The biological effects of FRMPD1 on lung cancer cell proliferation and invasion were determined by functional experiments both in vivo and in vitro. Immunoblotting, RT-qPCR, dual-luciferase assay, and immunofluorescence were performed to demonstrate whether FRMPD1 stimulates Hippo signaling. Co-immunoprecipitation assays were used to clarify the underlying role of FRMPD1 in Hippo pathway activation via interaction with WW and C2 domain containing protein-3 (WWC3). Results: We found that FRMPD1 expression in lung cancer specimens was lower than that in normal bronchial epithelium and normal submucosal glands. FRMPD1 expression had a negative correlation with age, Tumor-Node-Metastasis (TNM) stage, lymph node metastasis, as well as poor prognosis. Moreover, ectopic expression of FRMPD1 significantly inhibited the proliferation and invasion of lung cancer cells, and inhibition of FRMPD1 expression led to opposite effects. Mechanistically, we found that FRMPD1 interacted with the C-terminal PDZ binding motif of WWC3 via its PSD95/DLG/ZO1 (PDZ) domain and promoted the phosphorylation of large tumor suppressor-1 (LATS1), thus inhibiting the nuclear translocation of yes-associated protein (YAP). Conclusion: FRMPD1 could activate the Hippo pathway and ultimately inhibit the malignant behavior of lung cancer cells through its interaction with WWC3. This work will provide an important experimental basis for the discovery of novel biomarkers of lung cancer and the development of targeted drugs.
Collapse
Affiliation(s)
- Xuezhu Rong
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Qiang Han
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Xuyong Lin
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Joachim Kremerskothen
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Enhua Wang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
5
|
Piard J, Hu JH, Campeau PM, Rzonca S, Van Esch H, Vincent E, Han M, Rossignol E, Castaneda J, Chelly J, Skinner C, Kalscheuer VM, Wang R, Lemyre E, Kosinska J, Stawinski P, Bal J, Hoffman DA, Schwartz CE, Van Maldergem L, Wang T, Worley PF. FRMPD4 mutations cause X-linked intellectual disability and disrupt dendritic spine morphogenesis. Hum Mol Genet 2019; 27:589-600. [PMID: 29267967 DOI: 10.1093/hmg/ddx426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
FRMPD4 (FERM and PDZ Domain Containing 4) is a neural scaffolding protein that interacts with PSD-95 to positively regulate dendritic spine morphogenesis, and with mGluR1/5 and Homer to regulate mGluR1/5 signaling. We report the genetic and functional characterization of 4 FRMPD4 deleterious mutations that cause a new X-linked intellectual disability (ID) syndrome. These mutations were found to be associated with ID in ten affected male patients from four unrelated families, following an apparent X-linked mode of inheritance. Mutations include deletion of an entire coding exon, a nonsense mutation, a frame-shift mutation resulting in premature termination of translation, and a missense mutation involving a highly conserved amino acid residue neighboring FRMPD4-FERM domain. Clinical features of these patients consisted of moderate to severe ID, language delay and seizures alongside with behavioral and/or psychiatric disturbances. In-depth functional studies showed that a frame-shift mutation, FRMPD4p.Cys618ValfsX8, results in a disruption of FRMPD4 binding with PSD-95 and HOMER1, and a failure to increase spine density in transfected hippocampal neurons. Behavioral studies of frmpd4-KO mice identified hippocampus-dependent spatial learning and memory deficits in Morris Water Maze test. These findings point to an important role of FRMPD4 in normal cognitive development and function in humans and mice, and support the hypothesis that FRMPD4 mutations cause ID by disrupting dendritic spine morphogenesis in glutamatergic neurons.
Collapse
Affiliation(s)
- Juliette Piard
- Centre de Génétique Humaine and Integrative and Cognitive Neuroscience Research Unit EA481, Université de Franche-Comté, Besançon, France
| | - Jia-Hua Hu
- Department of Neuroscience, Department of Pediatrics, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Program in Developmental Neuroscience, Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Hilde Van Esch
- Department of Human Genetics, University Hospitals Leuven, Belgium
| | - Elizabeth Vincent
- Department of Neuroscience, Department of Pediatrics, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mei Han
- Department of Neuroscience, Department of Pediatrics, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elsa Rossignol
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | | | - Jamel Chelly
- CNRS UMR7104, Institut de Génétique, Biologie Moléculaire et Cellulaire, Illkirch, France
| | | | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ruihua Wang
- Department of Neuroscience, Department of Pediatrics, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emmanuelle Lemyre
- Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | | | | | - Jerzy Bal
- Institute of Mother and Child, Warsaw, Poland
| | - Dax A Hoffman
- Program in Developmental Neuroscience, Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Lionel Van Maldergem
- Centre de Génétique Humaine and Integrative and Cognitive Neuroscience Research Unit EA481, Université de Franche-Comté, Besançon, France.,Centre of Clinical Investigation 1431, National Institute for Health and Medical Research (INSERM), Université de Franche-Comté, Besançon, France
| | - Tao Wang
- Department of Neuroscience, Department of Pediatrics, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul F Worley
- Department of Neuroscience, Department of Pediatrics, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Vural A, Fadillioglu E, Kelesoglu F, Ma D, Lanier SM. Role of G-proteins and phosphorylation in the distribution of AGS3 to cell puncta. J Cell Sci 2018; 131:jcs.216507. [PMID: 30404823 DOI: 10.1242/jcs.216507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Activator of G-protein signaling 3 (AGS3, also known as GPSM1) exhibits broad functional diversity and oscillates among different subcellular compartments in a regulated manner. AGS3 consists of a tetratricopeptide repeat (TPR) domain and a G-protein regulatory (GPR) domain. Here, we tested the hypothesis that phosphorylation of the AGS3 GPR domain regulates its subcellular distribution and functionality. In contrast to the cortical and/or diffuse non-homogeneous distribution of wild-type (WT) AGS3, an AGS3 construct lacking all 24 potential phosphorylation sites in the GPR domain localized to cytosolic puncta. This change in localization was revealed to be dependent upon phosphorylation of a single threonine amino acid (T602). The punctate distribution of AGS3-T602A was rescued by co-expression of Gαi and Gαo but not Gαs or Gαq Following treatment with alkaline phosphatase, both AGS3-T602A and WT AGS3 exhibited a gel shift in SDS-PAGE as compared to untreated WT AGS3, consistent with a loss of protein phosphorylation. The punctate distribution of AGS3-T602A was lost in an AGS3-A602T conversion mutant, but was still present upon T602 mutation to glutamate or aspartate. These results implicate dynamic phosphorylation as a discrete mechanism to regulate the subcellular distribution of AGS3 and associated functionality.
Collapse
Affiliation(s)
- Ali Vural
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ersin Fadillioglu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Fatih Kelesoglu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Dzwokai Ma
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Stephen M Lanier
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA .,Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
7
|
Coban-Akdemir Z, White JJ, Song X, Jhangiani SN, Fatih JM, Gambin T, Bayram Y, Chinn IK, Karaca E, Punetha J, Poli C, Boerwinkle E, Shaw CA, Orange JS, Gibbs RA, Lappalainen T, Lupski JR, Carvalho CM, Carvalho CMB. Identifying Genes Whose Mutant Transcripts Cause Dominant Disease Traits by Potential Gain-of-Function Alleles. Am J Hum Genet 2018; 103:171-187. [PMID: 30032986 DOI: 10.1016/j.ajhg.2018.06.009] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022] Open
Abstract
Premature termination codon (PTC)-bearing transcripts are often degraded by nonsense-mediated decay (NMD) resulting in loss-of-function (LoF) alleles. However, not all PTCs result in LoF mutations, i.e., some such transcripts escape NMD and are translated to truncated peptide products that result in disease due to gain-of-function (GoF) effects. Since the location of the PTC is a major factor determining transcript fate, we hypothesized that depletion of protein-truncating variants (PTVs) within the gene region predicted to escape NMD in control databases could provide a rank for genic susceptibility for disease through GoF versus LoF. We developed an NMD escape intolerance score to rank genes based on the depletion of PTVs that would render them able to escape NMD using the Atherosclerosis Risk in Communities Study (ARIC) and the Exome Aggregation Consortium (ExAC) control databases, which was further used to screen the Baylor-Center for Mendelian Genomics disease database. This analysis revealed 1,996 genes significantly depleted for PTVs that are predicted to escape from NMD, i.e., PTVesc; further studies provided evidence that revealed a subset as candidate genes underlying Mendelian phenotypes. Importantly, these genes have characteristically low pLI scores, which can cause them to be overlooked as candidates for dominant diseases. Collectively, we demonstrate that this NMD escape intolerance score is an effective and efficient tool for gene discovery in Mendelian diseases due to production of truncated or altered proteins. More importantly, we provide a complementary analytical tool to aid identification of genes associated with dominant traits through a mechanism distinct from LoF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Johnson B, Lowe GC, Futterer J, Lordkipanidzé M, MacDonald D, Simpson MA, Sanchez-Guiú I, Drake S, Bem D, Leo V, Fletcher SJ, Dawood B, Rivera J, Allsup D, Biss T, Bolton-Maggs PH, Collins P, Curry N, Grimley C, James B, Makris M, Motwani J, Pavord S, Talks K, Thachil J, Wilde J, Williams M, Harrison P, Gissen P, Mundell S, Mumford A, Daly ME, Watson SP, Morgan NV. Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects. Haematologica 2016; 101:1170-1179. [PMID: 27479822 DOI: 10.3324/haematol.2016.146316] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/10/2016] [Indexed: 12/11/2022] Open
Abstract
Inherited thrombocytopenias are a heterogeneous group of disorders characterized by abnormally low platelet counts which can be associated with abnormal bleeding. Next-generation sequencing has previously been employed in these disorders for the confirmation of suspected genetic abnormalities, and more recently in the discovery of novel disease-causing genes. However its full potential has not yet been exploited. Over the past 6 years we have sequenced the exomes from 55 patients, including 37 index cases and 18 additional family members, all of whom were recruited to the UK Genotyping and Phenotyping of Platelets study. All patients had inherited or sustained thrombocytopenia of unknown etiology with platelet counts varying from 11×109/L to 186×109/L. Of the 51 patients phenotypically tested, 37 (73%), had an additional secondary qualitative platelet defect. Using whole exome sequencing analysis we have identified "pathogenic" or "likely pathogenic" variants in 46% (17/37) of our index patients with thrombocytopenia. In addition, we report variants of uncertain significance in 12 index cases, including novel candidate genetic variants in previously unreported genes in four index cases. These results demonstrate that whole exome sequencing is an efficient method for elucidating potential pathogenic genetic variants in inherited thrombocytopenia. Whole exome sequencing also has the added benefit of discovering potentially pathogenic genetic variants for further study in novel genes not previously implicated in inherited thrombocytopenia.
Collapse
Affiliation(s)
- Ben Johnson
- Institute for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Gillian C Lowe
- Institute for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Jane Futterer
- Institute for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Marie Lordkipanidzé
- Institute for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - David MacDonald
- Institute for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Michael A Simpson
- Division of Genetics and Molecular Medicine, King's College, London, UK
| | - Isabel Sanchez-Guiú
- Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Sian Drake
- Institute for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Danai Bem
- Institute for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Vincenzo Leo
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, University of Sheffield, UK
| | - Sarah J Fletcher
- Institute for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Ban Dawood
- Institute for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - José Rivera
- Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - David Allsup
- Hull Haemophilia Treatment Centre, Hull and East Yorkshire Hospitals NHS Trust, Castle Hill Hospital, Hull, UK
| | - Tina Biss
- Department of Haematology, Royal Victoria Infirmary, Newcastle Upon Tyne, UK
| | | | - Peter Collins
- Arthur Bloom Haemophilia Centre, School of Medicine, Cardiff University, UK
| | - Nicola Curry
- Oxford Haemophilia & Thrombosis Centre, Churchill Hospital, Oxford, UK
| | | | - Beki James
- Regional Centre for Paediatric Haematology, Leeds Children's Hospital, UK
| | - Mike Makris
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, University of Sheffield, UK
| | | | - Sue Pavord
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, UK
| | - Katherine Talks
- Department of Haematology, Royal Victoria Infirmary, Newcastle Upon Tyne, UK
| | - Jecko Thachil
- Department of Haematology, Manchester Royal Infirmary, Manchester, UK
| | - Jonathan Wilde
- Adult Haemophilia Centre, Queen Elizabeth Hospital, Birmingham, UK
| | - Mike Williams
- Department of Haematology, Birmingham Children's Hospital, UK
| | - Paul Harrison
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Paul Gissen
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, UK
| | - Stuart Mundell
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, UK
| | - Andrew Mumford
- School of Cellular and Molecular Medicine, University of Bristol, UK
| | - Martina E Daly
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, University of Sheffield, UK
| | - Steve P Watson
- Institute for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Neil V Morgan
- Institute for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | | |
Collapse
|
9
|
Robichaux WG, Oner SS, Lanier SM, Blumer JB. Direct Coupling of a Seven-Transmembrane-Span Receptor to a Gαi G-Protein Regulatory Motif Complex. Mol Pharmacol 2015; 88:231-7. [PMID: 25972449 DOI: 10.1124/mol.115.097741] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/12/2015] [Indexed: 12/29/2022] Open
Abstract
Group II activator of G-protein signaling (AGS) proteins contain one or more G-protein regulatory motifs (GPR), which serve as docking sites for GαiGDP independent of Gβγ and stabilize the GDP-bound conformation of Gαi, acting as guanine nucleotide dissociation inhibitors. The GαGPR interaction is regulated by seven-transmembrane-spanning (7TM) receptors in the intact cell as determined by bioluminescence resonance energy transfer (BRET). It is hypothesized that a 7TM receptor directly couples to the GαGPR complex in a manner analogous to receptor coupling to the Gαβγ heterotrimer. As an initial approach to test this hypothesis, we used BRET to examine 7TM receptor-mediated regulation of GαGPR in the intact cell when Gαi2 yellow fluorescent protein (YFP) was tethered to the carboxyl terminus of the α2A adrenergic receptor (α2AAR-Gαi2YFP). AGS3- and AGS4-Renilla luciferase (Rluc) exhibited robust BRET with the tethered GαiYFP, and this interaction was regulated by receptor activation localizing the regulation to the receptor microenvironment. Agonist regulation of the receptor-Gαi-GPR complex was also confirmed by coimmunoprecipitation and cell fractionation. The tethered Gαi2 was rendered pertussis toxin-insensitive by a C352I mutation, and receptor coupling to endogenous Gαi/oβγ was subsequently eliminated by cell treatment with pertussis toxin (PT). Basal and agonist-induced regulation of α2AAR-Gαi2YFP(C352I):AGS3Rluc and α2AAR-Gαi2YFP(C352I):AGS4Rluc BRET was not altered by PT treatment or Gβγ antagonists. Thus, the localized regulation of GαGPR by receptor activation appears independent of endogenous Gαi/oβγ, suggesting that GαiAGS3 and GαiAGS4 directly sense agonist-induced conformational changes in the receptor, as is the case for 7TM receptor coupling to the Gαβγ heterotrimer. The direct coupling of a receptor to the GαiGPR complex provides an unexpected platform for signal propagation with broad implications.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics (W.G.R., S.S.O., S.M.L., J.B.B.) and Department of Neurosciences (J.B.B.), Medical University of South Carolina, Charleston, South Carolina
| | - Sukru S Oner
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics (W.G.R., S.S.O., S.M.L., J.B.B.) and Department of Neurosciences (J.B.B.), Medical University of South Carolina, Charleston, South Carolina
| | - Stephen M Lanier
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics (W.G.R., S.S.O., S.M.L., J.B.B.) and Department of Neurosciences (J.B.B.), Medical University of South Carolina, Charleston, South Carolina
| | - Joe B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics (W.G.R., S.S.O., S.M.L., J.B.B.) and Department of Neurosciences (J.B.B.), Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
10
|
Johnson EO, Hancock DB, Gaddis NC, Levy JL, Page G, Novak SP, Glasheen C, Saccone NL, Rice JP, Moreau MP, Doheny KF, Romm JM, Brooks AI, Aouizerat BE, Bierut LJ, Kral AH. Novel genetic locus implicated for HIV-1 acquisition with putative regulatory links to HIV replication and infectivity: a genome-wide association study. PLoS One 2015; 10:e0118149. [PMID: 25786224 PMCID: PMC4364715 DOI: 10.1371/journal.pone.0118149] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 01/05/2015] [Indexed: 11/18/2022] Open
Abstract
Fifty percent of variability in HIV-1 susceptibility is attributable to host genetics. Thus identifying genetic associations is essential to understanding pathogenesis of HIV-1 and important for targeting drug development. To date, however, CCR5 remains the only gene conclusively associated with HIV acquisition. To identify novel host genetic determinants of HIV-1 acquisition, we conducted a genome-wide association study among a high-risk sample of 3,136 injection drug users (IDUs) from the Urban Health Study (UHS). In addition to being IDUs, HIV-controls were frequency-matched to cases on environmental exposures to enhance detection of genetic effects. We tested independent replication in the Women's Interagency HIV Study (N=2,533). We also examined publicly available gene expression data to link SNPs associated with HIV acquisition to known mechanisms affecting HIV replication/infectivity. Analysis of the UHS nominated eight genetic regions for replication testing. SNP rs4878712 in FRMPD1 met multiple testing correction for independent replication (P=1.38x10(-4)), although the UHS-WIHS meta-analysis p-value did not reach genome-wide significance (P=4.47x10(-7) vs. P<5.0x10(-8)) Gene expression analyses provided promising biological support for the protective G allele at rs4878712 lowering risk of HIV: (1) the G allele was associated with reduced expression of FBXO10 (r=-0.49, P=6.9x10(-5)); (2) FBXO10 is a component of the Skp1-Cul1-F-box protein E3 ubiquitin ligase complex that targets Bcl-2 protein for degradation; (3) lower FBXO10 expression was associated with higher BCL2 expression (r=-0.49, P=8x10(-5)); (4) higher basal levels of Bcl-2 are known to reduce HIV replication and infectivity in human and animal in vitro studies. These results suggest new potential biological pathways by which host genetics affect susceptibility to HIV upon exposure for follow-up in subsequent studies.
Collapse
Affiliation(s)
- Eric O. Johnson
- RTI International, Research Triangle Park, NC, Atlanta, GA, San Francisco, CA, United States of America
| | - Dana B. Hancock
- RTI International, Research Triangle Park, NC, Atlanta, GA, San Francisco, CA, United States of America
| | - Nathan C. Gaddis
- RTI International, Research Triangle Park, NC, Atlanta, GA, San Francisco, CA, United States of America
| | - Joshua L. Levy
- RTI International, Research Triangle Park, NC, Atlanta, GA, San Francisco, CA, United States of America
| | - Grier Page
- RTI International, Research Triangle Park, NC, Atlanta, GA, San Francisco, CA, United States of America
| | - Scott P. Novak
- RTI International, Research Triangle Park, NC, Atlanta, GA, San Francisco, CA, United States of America
| | - Cristie Glasheen
- RTI International, Research Triangle Park, NC, Atlanta, GA, San Francisco, CA, United States of America
| | - Nancy L. Saccone
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - John P. Rice
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - Michael P. Moreau
- Rutgers University Cell and DNA Repository (RUCDR), Piscataway, NJ, United States of America
| | - Kimberly F. Doheny
- Center for Inherited Disease Research (CIDR), Johns Hopkins University, Baltimore, MD, United States of America
| | - Jane M. Romm
- Center for Inherited Disease Research (CIDR), Johns Hopkins University, Baltimore, MD, United States of America
| | - Andrew I. Brooks
- Rutgers University Cell and DNA Repository (RUCDR), Piscataway, NJ, United States of America
| | - Bradley E. Aouizerat
- School of Nursing, University of California San Francisco, San Francisco, CA, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, United States of America
| | - Laura J. Bierut
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - Alex H. Kral
- RTI International, Research Triangle Park, NC, Atlanta, GA, San Francisco, CA, United States of America
| |
Collapse
|
11
|
Takayanagi H, Yuzawa S, Sumimoto H. Structural basis for the recognition of the scaffold protein Frmpd4/Preso1 by the TPR domain of the adaptor protein LGN. Acta Crystallogr F Struct Biol Commun 2015; 71:175-83. [PMID: 25664792 PMCID: PMC4321472 DOI: 10.1107/s2053230x14028143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 12/26/2014] [Indexed: 12/19/2022] Open
Abstract
The adaptor protein LGN interacts via the N-terminal domain comprising eight tetratricopeptide-repeat (TPR) motifs with its partner proteins mInsc, NuMA, Frmpd1 and Frmpd4 in a mutually exclusive manner. Here, the crystal structure of the LGN TPR domain in complex with human Frmpd4 is described at 1.5 Å resolution. In the complex, the LGN-binding region of Frmpd4 (amino-acid residues 990-1011) adopts an extended structure that runs antiparallel to LGN along the concave surface of the superhelix formed by the TPR motifs. Comparison with the previously determined structures of the LGN-Frmpd1, LGN-mInsc and LGN-NuMA complexes reveals that these partner proteins interact with LGN TPR1-6 via a common core binding region with consensus sequence (E/Q)XEX4-5(E/D/Q)X1-2(K/R)X0-1(V/I). In contrast to Frmpd1, Frmpd4 makes additional contacts with LGN via regions N- and C-terminal to the core sequence. The N-terminal extension is replaced by a specific α-helix in mInsc, which drastically increases the direct contacts with LGN TPR7/8, consistent with the higher affinity of mInsc for LGN. A crystal structure of Frmpd4-bound LGN in an oxidized form is also reported, although oxidation does not appear to strongly affect the interaction with Frmpd4.
Collapse
Affiliation(s)
- Hiroki Takayanagi
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoru Yuzawa
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
12
|
Uversky VN. Unreported intrinsic disorder in proteins: Building connections to the literature on IDPs. INTRINSICALLY DISORDERED PROTEINS 2014; 2:e970499. [PMID: 28232880 PMCID: PMC5314882 DOI: 10.4161/21690693.2014.970499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 09/08/2014] [Indexed: 02/07/2023]
Abstract
This review opens a new series entitled “Unreported intrinsic disorder in proteins.” The goal of this series is to bring attention of researchers to an interesting phenomenon of missed (or overlooked, or ignored, or unreported) disorder. This series serves as a companion to “Digested Disorder” which provides a quarterly review of papers on intrinsically disordered proteins (IDPs) found by standard literature searches. The need for this alternative series results from the observation that there are numerous publications that describe IDPs (or hybrid proteins with ordered and disordered regions) yet fail to recognize many of the key discoveries and publications in the IDP field. By ignoring the body of work on IDPs, such publications often fail to relate their findings to prior discoveries or fail to explore the obvious implications of their work. Thus, the goal of this series is not only to review these very interesting and important papers, but also to point out how each paper relates to the IDP field and show how common tools in the IDP field can readily take the findings in new directions or provide a broader context for the reported findings.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa, FL USA; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino, Russia; Biology Department; Faculty of Science; King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Tse MK, Morris CJ, Zhang M, Wong YH. Activator of G protein signaling 3 forms a complex with resistance to inhibitors of cholinesterase-8A without promoting nucleotide exchange on Gα(i3). Mol Cell Biochem 2014; 401:27-38. [PMID: 25480567 DOI: 10.1007/s11010-014-2289-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/26/2014] [Indexed: 01/04/2023]
Abstract
Activator of G protein signaling 3 (AGS3) is a guanine nucleotide dissociation inhibitor (GDI) which stabilizes the Gα(i/o) subunits as an AGS3/Gα(i/o)-GDP complex. It has recently been demonstrated in reconstitution experiments that the AGS3/Gα(i/o)-GDP complex may act as a substrate of resistance to inhibitors of cholinesterase 8A (Ric-8A), a guanine exchange factor (GEF) for heterotrimeric Gα proteins. Since the ability of Ric-8A to activate Gα(i/o) subunits that are bound to AGS3 in a cellular environment has not been confirmed, we thus examined the effect of Ric-8A on cAMP accumulation in HEK293 cells expressing different forms of AGS3 and Gα(i3). Co-immunoprecipitation assays indicate that full-length AGS3 and its N- and C-terminal truncated mutants can interact with Ric-8A in HEK293 cells. Yeast two-hybrid assay further confirmed that Ric-8A can directly bind to AGS3S, a short form of AGS3 which is endogenously expressed in heart. However, Ric-8A failed to facilitate Gα(i)-induced suppression of adenylyl cyclase, suggesting that it may not serve as a GEF for AGS3/Gα(i/o)-GDP complex in a cellular environment.
Collapse
Affiliation(s)
- Man K Tse
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | |
Collapse
|
14
|
Hofler C, Koelle MR. The G protein regulator AGS-3 allows C. elegans to alter behaviors in response to food deprivation. WORM 2013; 1:56-60. [PMID: 24058824 PMCID: PMC3670173 DOI: 10.4161/worm.19042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Behavioral responses to food deprivation are a fundamental aspect of nervous system function in all animals. In humans, these behavioral responses prevent dieting from being an effective remedy for obesity. Several signaling molecules in the mammalian brain act through G proteins of the Gαi/o family to mediate responses to food restriction. The mechanisms for neural response to food deprivation may be conserved across species, allowing the power of genetic model organisms to generate insights relevant to the problem of human obesity. In a recent study, we found that C. elegans uses Gαo signaling to mediate a number of behavioral changes that occur after food deprivation. Food deprivation causes biochemical changes in the G Protein Regulator (GPR) domain protein AGS-3 and AGS-3, together with the guanine nucleotide exchange factor RIC-8, activates Gαo signaling to alter food-seeking behavior. These proteins are all conserved in the human brain. Thus the study of behavioral responses to food deprivation in C. elegans may reveal the details of conserved molecular mechanisms underlying neural responses to food deprivation.
Collapse
|
15
|
Abstract
Our understanding of the FERM (4.1/ezrin/radixin/moesin) protein family has been rapidly expanding in the last few years, with the result that many new physiological functions have been ascribed to these biochemically unique proteins. In the present review, we will discuss a number of new FRMD (FERM domain)-containing proteins that were initially discovered from genome sequencing but are now being established through biochemical and genetic studies to be involved both in normal cellular processes, but are also associated with a variety of human diseases.
Collapse
|
16
|
Conley JM, Watts VJ. Differential effects of AGS3 expression on D(2L) dopamine receptor-mediated adenylyl cyclase signaling. Cell Mol Neurobiol 2013; 33:551-8. [PMID: 23504261 PMCID: PMC3628818 DOI: 10.1007/s10571-013-9925-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/09/2013] [Indexed: 12/01/2022]
Abstract
Activator of G protein signaling 3 (AGS3) binds Gα(i) subunits in the GDP-bound state, implicating AGS3 as an important regulator of Gα(i)-linked receptor (e.g., D2 dopamine and μ-opioid) signaling. We examined the ability of AGS3 to modulate recombinant adenylyl cyclase (AC) type 1 and 2 signaling in HEK293 cells following both acute and persistent activation of the D(2L) dopamine receptor (D(2L)DR). AGS3 expression modestly enhanced the potency of acute quinpirole-induced D(2L)DR modulation of AC1 or AC2 activity. AGS3 also promoted desensitization of D(2L)DR-mediated inhibition of AC1, whereas desensitization of D(2L)DR-mediated AC2 activation was significantly attenuated. Additionally, AGS3 reduced D(2L)DR-mediated sensitization of AC1 and AC2. These data suggest that AGS3 is involved in altering G protein signaling in a complex fashion that is effector-specific and dependent on the duration of receptor activation.
Collapse
Affiliation(s)
- Jason M. Conley
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Val J. Watts
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
17
|
Structural and biochemical characterization of the interaction between LGN and Frmpd1. J Mol Biol 2013; 425:1039-49. [PMID: 23318951 DOI: 10.1016/j.jmb.2013.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 12/28/2012] [Accepted: 01/07/2013] [Indexed: 11/21/2022]
Abstract
The tetratricopeptide repeat (TPR) motif-containing protein LGN binds multiple targets and regulates their subcellular localizations and functions during both asymmetric and symmetric cell divisions. Here, we characterized the interaction between LGN-TPR motifs and FERM and PDZ domain containing 1 (Frmpd1) and reported the crystal structure of the complex at 2.4Å resolution. A highly conserved fragment at the center of Frmpd1 of ~20 residues was found to be necessary and sufficient to bind to LGN-TPR. This Frmpd1 fragment forms an extended structure and runs along the concave channel of the TPR superhelix in an antiparallel manner in the complex. Structural comparisons and biochemical studies of LGN/Frmpd1 and other known LGN/target interactions demonstrate that the LGN-TPR motifs are versatile and capable of recognizing multiple targets via diverse binding modes. Nevertheless, a conserved "E/QxEx4-5E/D/Qx1-2K/R" motif in LGN/Pins (partner of inscuteable) TPR binding proteins has been identified.
Collapse
|
18
|
Oner SS, Maher EM, Gabay M, Tall GG, Blumer JB, Lanier SM. Regulation of the G-protein regulatory-Gαi signaling complex by nonreceptor guanine nucleotide exchange factors. J Biol Chem 2012; 288:3003-15. [PMID: 23212907 DOI: 10.1074/jbc.m112.418467] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group II activators of G-protein signaling (AGS) serve as binding partners for Gα(i/o/t) via one or more G-protein regulatory (GPR) motifs. GPR-Gα signaling modules may be differentially regulated by cell surface receptors or by different nonreceptor guanine nucleotide exchange factors. We determined the effect of the nonreceptor guanine nucleotide exchange factors AGS1, GIV/Girdin, and Ric-8A on the interaction of two distinct GPR proteins, AGS3 and AGS4, with Gα(il) in the intact cell by bioluminescence resonance energy transfer (BRET) in human embryonic kidney 293 cells. AGS3-Rluc-Gα(i1)-YFP and AGS4-Rluc-Gα(i1)-YFP BRET were regulated by Ric-8A but not by Gα-interacting vesicle-associated protein (GIV) or AGS1. The Ric-8A regulation was biphasic and dependent upon the amount of Ric-8A and Gα(i1)-YFP. The inhibitory regulation of GPR-Gα(i1) BRET by Ric-8A was blocked by pertussis toxin. The enhancement of GPR-Gα(i1) BRET observed with Ric-8A was further augmented by pertussis toxin treatment. The regulation of GPR-Gα(i) interaction by Ric-8A was not altered by RGS4. AGS3-Rluc-Gα(i1)-YFP and AGS4-Rluc-G-Gα(i1)-YFP BRET were observed in both pellet and supernatant subcellular fractions and were regulated by Ric-8A in both fractions. The regulation of the GPR-Gα(i1) complex by Ric-8A, as well as the ability of Ric-8A to restore Gα expression in Ric8A(-/-) mouse embryonic stem cells, involved two helical domains at the carboxyl terminus of Ric-8A. These data indicate a dynamic interaction between GPR proteins, Gα(i1) and Ric-8A, in the cell that influences subcellular localization of the three proteins and regulates complex formation.
Collapse
Affiliation(s)
- Sukru Sadik Oner
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
19
|
Hu JH, Yang L, Kammermeier PJ, Moore CG, Brakeman PR, Tu J, Yu S, Petralia RS, Li Z, Zhang PW, Park JM, Dong X, Xiao B, Worley PF. Preso1 dynamically regulates group I metabotropic glutamate receptors. Nat Neurosci 2012; 15:836-44. [PMID: 22561452 DOI: 10.1038/nn.3103] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/03/2012] [Indexed: 01/13/2023]
Abstract
Group I metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, are G protein–coupled receptors (GPCRs) that are expressed at excitatory synapses in brain and spinal cord. GPCRs are often negatively regulated by specific G protein–coupled receptor kinases and subsequent binding of arrestin-like molecules. Here we demonstrate an alternative mechanism in which group I mGluRs are negatively regulated by proline-directed kinases that phosphorylate the binding site for the adaptor protein Homer, and thereby enhance mGluR–Homer binding to reduce signaling. This mechanism is dependent on a multidomain scaffolding protein, Preso1, that binds mGluR, Homer and proline-directed kinases and that is required for their phosphorylation of mGluR at the Homer binding site. Genetic ablation of Preso1 prevents dynamic phosphorylation of mGluR5, and Preso1(−/−) mice exhibit sustained, mGluR5-dependent inflammatory pain that is linked to enhanced mGluR signaling. Preso1 creates a microdomain for proline-directed kinases with broad substrate specificity to phosphorylate mGluR and to mediate negative regulation.
Collapse
Affiliation(s)
- Jia-Hua Hu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Blumer JB, Oner SS, Lanier SM. Group II activators of G-protein signalling and proteins containing a G-protein regulatory motif. Acta Physiol (Oxf) 2012; 204:202-18. [PMID: 21615707 DOI: 10.1111/j.1748-1716.2011.02327.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Beyond the core triad of receptor, Gαβγ and effector, there are multiple accessory proteins that provide alternative modes of signal input and regulatory adaptability to G-protein signalling systems. Such accessory proteins may segregate a signalling complex to microdomains of the cell, regulate the basal activity, efficiency and specificity of signal propagation and/or serve as alternative binding partners for Gα or Gβγ independent of the classical heterotrimeric Gαβγ complex. The latter concept led to the postulate that Gα and Gβγ regulate intracellular events distinct from their role as transducers for cell surface seven-transmembrane span receptors. One general class of such accessory proteins is defined by AGS proteins or activators of G-protein signalling that refer to mammalian cDNAs identified in a specific yeast-based functional screen. The discovery of AGS proteins and related entities revealed a number of unexpected mechanisms for regulation of G-protein signalling systems and expanded functional roles for this important signalling system.
Collapse
Affiliation(s)
- J B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, 29425, USA
| | | | | |
Collapse
|
21
|
Structural basis for interaction between the conserved cell polarity proteins Inscuteable and Leu-Gly-Asn repeat-enriched protein (LGN). Proc Natl Acad Sci U S A 2011; 108:19210-5. [PMID: 22074847 DOI: 10.1073/pnas.1110951108] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Interaction between the mammalian cell polarity proteins mInsc (mammalian homologue of Inscuteable) and Leu-Gly-Asn repeat-enriched protein (LGN), as well as that between their respective Drosophila homologues Inscuteable and Partner of Inscuteable (Pins), plays crucial roles in mitotic spindle orientation, a process contributing to asymmetric cell division. Here, we report a crystal structure of the LGN-binding domain (LBD) of human mInsc complexed with the N-terminal tetratricopeptide repeat (TPR) motifs of human LGN at 2.6-Å resolution. In the complex, mInsc-LBD adopts an elongated structure with three binding modules--an α-helix, an extended region, and a β-sheet connected with a loop--that runs antiparallel to LGN along the concave surface of the superhelix formed by the TPRs. Structural analysis and structure-based mutagenesis define residues that are critical for mInsc-LGN association, and reveal that the activator of G-protein signaling 3 (AGS3)-binding protein Frmpd1 [4.1/ezrin/radixin/moesin (FERM) and PSD-95/Dlg/ZO-1 (PDZ) domain-containing protein 1] and its relative Frmpd4 interact with LGN via a region homologous to a part of mInsc-LBD, whereas nuclear mitotic apparatus protein (NuMA) and the C terminus of LGN recognize the TPR domain in a manner different from that by mInsc. mInsc binds to LGN with the highest affinity (K(D) ≈ 2.4 nM) and effectively replaces the Frmpd proteins, NuMA, and the LGN C terminus, suggesting the priority of mInsc in binding to LGN. We also demonstrate, using mutant proteins, that mInsc-LGN interaction is vital for stabilization of LGN and for intracellular localization of mInsc.
Collapse
|
22
|
AGS-3 alters Caenorhabditis elegans behavior after food deprivation via RIC-8 activation of the neural G protein G αo. J Neurosci 2011; 31:11553-62. [PMID: 21832186 DOI: 10.1523/jneurosci.2072-11.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Proteins containing the G protein regulator (GPR) domain bind the major neural G protein Gα(o) in vitro. However, the biological functions of GPR proteins in neurons remain undefined, and based on the in vitro activities of GPR proteins it is unclear whether these proteins activate or inhibit G protein signaling in vivo. We found that the conserved GPR domain protein AGS-3 activates Gα(o) signaling in vivo to allow Caenorhabditis elegans to alter several behaviors after food deprivation, apparently so that the animals can more effectively seek food. AGS-3 undergoes a progressive change in its biochemical fractionation upon food deprivation, suggesting that effects of food deprivation are mediated by modifying this protein. We analyzed one C. elegans food-regulated behavior in depth; AGS-3 activates Gα(o) in the ASH chemosensory neurons to allow food-deprived animals to delay response to the aversive stimulus octanol. Genetic epistasis experiments show the following: (1) AGS-3 and the guanine nucleotide exchange factor RIC-8 act in ASH in a mutually dependent fashion to activate Gα(o); (2) this activation requires interaction of the GPR domains of AGS-3 with Gα(o); and (3) Gα(o)-GTP is ultimately the signaling molecule that acts in ASH to delay octanol response. These results identify a biological role for AGS-3 in response to food deprivation and indicate the mechanism for its activation of Gα(o) signaling in vivo.
Collapse
|
23
|
Knauer SK, Fetz V, Rabenstein J, Friedl S, Hofmann B, Sabiani S, Schröder E, Kunst L, Proschak E, Thines E, Kindler T, Schneider G, Marschalek R, Stauber RH, Bier C. Bioassays to monitor Taspase1 function for the identification of pharmacogenetic inhibitors. PLoS One 2011; 6:e18253. [PMID: 21647428 PMCID: PMC3102056 DOI: 10.1371/journal.pone.0018253] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/28/2011] [Indexed: 12/12/2022] Open
Abstract
Background Threonine Aspartase 1 (Taspase1) mediates cleavage of the mixed lineage leukemia (MLL) protein and leukemia provoking MLL-fusions. In contrast to other proteases, the understanding of Taspase1's (patho)biological relevance and function is limited, since neither small molecule inhibitors nor cell based functional assays for Taspase1 are currently available. Methodology/Findings Efficient cell-based assays to probe Taspase1 function in vivo are presented here. These are composed of glutathione S-transferase, autofluorescent protein variants, Taspase1 cleavage sites and rational combinations of nuclear import and export signals. The biosensors localize predominantly to the cytoplasm, whereas expression of biologically active Taspase1 but not of inactive Taspase1 mutants or of the protease Caspase3 triggers their proteolytic cleavage and nuclear accumulation. Compared to in vitro assays using recombinant components the in vivo assay was highly efficient. Employing an optimized nuclear translocation algorithm, the triple-color assay could be adapted to a high-throughput microscopy platform (Z'factor = 0.63). Automated high-content data analysis was used to screen a focused compound library, selected by an in silico pharmacophor screening approach, as well as a collection of fungal extracts. Screening identified two compounds, N-[2-[(4-amino-6-oxo-3H-pyrimidin-2-yl)sulfanyl]ethyl]benzenesulfonamide and 2-benzyltriazole-4,5-dicarboxylic acid, which partially inhibited Taspase1 cleavage in living cells. Additionally, the assay was exploited to probe endogenous Taspase1 in solid tumor cell models and to identify an improved consensus sequence for efficient Taspase1 cleavage. This allowed the in silico identification of novel putative Taspase1 targets. Those include the FERM Domain-Containing Protein 4B, the Tyrosine-Protein Phosphatase Zeta, and DNA Polymerase Zeta. Cleavage site recognition and proteolytic processing of these substrates were verified in the context of the biosensor. Conclusions The assay not only allows to genetically probe Taspase1 structure function in vivo, but is also applicable for high-content screening to identify Taspase1 inhibitors. Such tools will provide novel insights into Taspase1's function and its potential therapeutic relevance.
Collapse
Affiliation(s)
- Shirley K. Knauer
- Institute for Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, Essen, Germany
| | - Verena Fetz
- Mainzer Screening Center (MSC), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Jens Rabenstein
- Institute of Pharmaceutical Biology/ZAFES, Goethe-University, Frankfurt/Main, Germany
| | - Sandra Friedl
- Mainzer Screening Center (MSC), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Bettina Hofmann
- Institute Organic Chemistry and Chemical Biology/ZAFES, Goethe-University, Frankfurt/Main, Germany
| | - Samaneh Sabiani
- Institute of Pharmaceutical Biology/ZAFES, Goethe-University, Frankfurt/Main, Germany
| | - Elisabeth Schröder
- Institute for Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, Essen, Germany
| | - Lena Kunst
- Institute for Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, Essen, Germany
| | - Eugen Proschak
- Institute Organic Chemistry and Chemical Biology/ZAFES, Goethe-University, Frankfurt/Main, Germany
| | - Eckhard Thines
- Institute of Biotechnology and Drug Research Kaiserslautern (IBWF), Kaiserslautern, Germany
| | - Thomas Kindler
- Department of Hematology/Oncology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Gisbert Schneider
- Institute Organic Chemistry and Chemical Biology/ZAFES, Goethe-University, Frankfurt/Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology/ZAFES, Goethe-University, Frankfurt/Main, Germany
| | - Roland H. Stauber
- Mainzer Screening Center (MSC), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
- * E-mail: (CB); (RHS)
| | - Carolin Bier
- Mainzer Screening Center (MSC), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
- * E-mail: (CB); (RHS)
| |
Collapse
|
24
|
Vellano CP, Shu FJ, Ramineni S, Yates CK, Tall GG, Hepler JR. Activation of the regulator of G protein signaling 14-Gαi1-GDP signaling complex is regulated by resistance to inhibitors of cholinesterase-8A. Biochemistry 2011; 50:752-62. [PMID: 21158412 DOI: 10.1021/bi101910n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RGS14 is a brain scaffolding protein that integrates G protein and MAP kinase signaling pathways. Like other RGS proteins, RGS14 is a GTPase activating protein (GAP) that terminates Gαi/o signaling. Unlike other RGS proteins, RGS14 also contains a G protein regulatory (also known as GoLoco) domain that binds Gαi1/3-GDP in cells and in vitro. Here we report that Ric-8A, a nonreceptor guanine nucleotide exchange factor (GEF), functionally interacts with the RGS14-Gαi1-GDP signaling complex to regulate its activation state. RGS14 and Ric-8A are recruited from the cytosol to the plasma membrane in the presence of coexpressed Gαi1 in cells, suggesting formation of a functional protein complex with Gαi1. Consistent with this idea, Ric-8A stimulates dissociation of the RGS14-Gαi1-GDP complex in cells and in vitro using purified proteins. Purified Ric-8A stimulates dissociation of the RGS14-Gαi1-GDP complex to form a stable Ric-8A-Gαi complex in the absence of GTP. In the presence of an activating nucleotide, Ric-8A interacts with the RGS14-Gαi1-GDP complex to stimulate both the steady-state GTPase activity of Gαi1 and binding of GTP to Gαi1. However, sufficiently high concentrations of RGS14 competitively reverse these stimulatory effects of Ric-8A on Gαi1 nucleotide binding and GTPase activity. This observation correlates with findings that show RGS14 and Ric-8A share an overlapping binding region within the last 11 amino acids of Gαi1. As further evidence that these proteins are functionally linked, native RGS14 and Ric-8A coexist within the same hippocampal neurons. These findings demonstrate that RGS14 is a newly appreciated integrator of unconventional Ric-8A and Gαi1 signaling.
Collapse
Affiliation(s)
- Christopher P Vellano
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | | | | | | | | | | |
Collapse
|
25
|
Oner SS, An N, Vural A, Breton B, Bouvier M, Blumer JB, Lanier SM. Regulation of the AGS3·G{alpha}i signaling complex by a seven-transmembrane span receptor. J Biol Chem 2010; 285:33949-58. [PMID: 20716524 DOI: 10.1074/jbc.m110.138073] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
G-protein signaling modulators (GPSM) play diverse functional roles through their interaction with G-protein subunits. AGS3 (GPSM1) contains four G-protein regulatory motifs (GPR) that directly bind Gα(i) free of Gβγ providing an unusual scaffold for the "G-switch" and signaling complexes, but the mechanism by which signals track into this scaffold are not well understood. We report the regulation of the AGS3·Gα(i) signaling module by a cell surface, seven-transmembrane receptor. AGS3 and Gα(i1) tagged with Renilla luciferase or yellow fluorescent protein expressed in mammalian cells exhibited saturable, specific bioluminescence resonance energy transfer indicating complex formation in the cell. Activation of α(2)-adrenergic receptors or μ-opioid receptors reduced AGS3-RLuc·Gα(i1)-YFP energy transfer by over 30%. The agonist-mediated effects were inhibited by pertussis toxin and co-expression of RGS4, but were not altered by Gβγ sequestration with the carboxyl terminus of GRK2. Gα(i)-dependent and agonist-sensitive bioluminescence resonance energy transfer was also observed between AGS3 and cell-surface receptors typically coupled to Gα(i) and/or Gα(o) indicating that AGS3 is part of a larger signaling complex. Upon receptor activation, AGS3 reversibly dissociates from this complex at the cell cortex. Receptor coupling to both Gαβγ and GPR-Gα(i) offer additional flexibility for systems to respond and adapt to challenges and orchestrate complex behaviors.
Collapse
Affiliation(s)
- Sukru Sadik Oner
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Identification of a deubiquitinating enzyme as a novel AGS3-interacting protein. PLoS One 2010; 5:e9725. [PMID: 20305814 PMCID: PMC2840025 DOI: 10.1371/journal.pone.0009725] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 02/22/2010] [Indexed: 11/19/2022] Open
Abstract
Activator of G protein Signaling 3 (AGS3) is a receptor-independent G protein activator that has been implicated in multiple biological events such as brain development, neuroplasticity and addiction, cardiac function, Golgi structure/function, macroautophagy and metabolism. However, how AGS3 is regulated is little known. We demonstrate here that AGS3 interacts with a ubiquitin specific protease USP9x, and this interaction is at least partially mediated through the C-terminal G protein regulatory domain of AGS3. Knockdown of USP9x causes a moderate reduction in the level of AGS3. In contrast, overexpression of either USP9x or its deubiquitinating domain UCH increases the amount of AGS3, whereas expression of the mutant UCH domain that lacks deubiquitinating activity does not have the same effect. As previously observed in AGS3 knockdown cells, the localization of several marker proteins of the late Golgi compartments is disturbed in cells depleted of USP9x. Taken together, our study suggests that USP9x can modulate the level of a subpopulation of AGS3, and this modulation plays a role in regulating the structure of the late Golgi compartments. Finally, we have found that levels of AGS3 and USP9x are co-regulated in the prefrontal cortex of rats withdrawn from repeated cocaine treatment. In conjunction with the above data, this observation indicates a potential role of USP9X in the regulation of the AGS3 level during cocaine-induced neuroplasticity.
Collapse
|
27
|
Shu FJ, Ramineni S, Hepler JR. RGS14 is a multifunctional scaffold that integrates G protein and Ras/Raf MAPkinase signalling pathways. Cell Signal 2010; 22:366-76. [PMID: 19878719 DOI: 10.1016/j.cellsig.2009.10.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/14/2009] [Accepted: 10/19/2009] [Indexed: 01/25/2023]
Abstract
MAPkinase signalling is essential for cell growth, differentiation and cell physiology. G proteins and tyrosine kinase receptors each modulate MAPkinase signalling through distinct pathways. We report here that RGS14 is an integrator of G protein and MAPKinase signalling pathways. RGS14 contains a GPR/GoLoco (GL) domain that forms a stable complex with inactive Gialpha1/3-GDP, and a tandem (R1, R2) Ras binding domain (RBD). We find that RGS14 binds and regulates the subcellular localization and activities of H-Ras and Raf kinases in cells. Activated H-Ras binds RGS14 at the R1 RBD to form a stable complex at cell membranes. RGS14 also co-localizes with and forms a complex with Raf kinases in cells. The regulatory region of Raf-1 binds the RBD region of RGS14, and H-Ras and Raf each facilitate one another's binding to RGS14. RGS14 selectively inhibits PDGF-, but not EGF- or serum-stimulated Erk phosphorylation. This inhibition is dependent on H-Ras binding to RGS14 and is reversed by co-expression of Gialpha1, which binds and recruits RGS14 to the plasma membrane. Gialpha1 binding to RGS14 inhibits Raf binding, indicating that Gialpha1 and Raf binding to RGS14 are mutually exclusive. Taken together, these findings indicate that RGS14 is a newly appreciated integrator of G protein and Ras/Raf signalling pathways.
Collapse
Affiliation(s)
- Feng-jue Shu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322-3090, USA
| | | | | |
Collapse
|
28
|
Vural A, Oner S, An N, Simon V, Ma D, Blumer JB, Lanier SM. Distribution of activator of G-protein signaling 3 within the aggresomal pathway: role of specific residues in the tetratricopeptide repeat domain and differential regulation by the AGS3 binding partners Gi(alpha) and mammalian inscuteable. Mol Cell Biol 2010; 30:1528-40. [PMID: 20065032 PMCID: PMC2832490 DOI: 10.1128/mcb.01018-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 09/10/2009] [Accepted: 12/30/2009] [Indexed: 11/20/2022] Open
Abstract
AGS3, a receptor-independent activator of G-protein signaling, is involved in unexpected functional diversity for G-protein signaling systems. AGS3 has seven tetratricopeptide (TPR) motifs upstream of four G-protein regulatory (GPR) motifs that serve as docking sites for Gialpha-GDP. The positioning of AGS3 within the cell and the intramolecular dynamics between different domains of the proteins are likely key determinants of their ability to influence G-protein signaling. We report that AGS3 enters into the aggresome pathway and that distribution of the protein is regulated by the AGS3 binding partners Gialpha and mammalian Inscuteable (mInsc). Gialpha rescues AGS3 from the aggresome, whereas mInsc augments the aggresome-like distribution of AGS3. The distribution of AGS3 to the aggresome is dependent upon the TPR domain, and it is accelerated by disruption of the TPR organizational structure or introduction of a nonsynonymous single-nucleotide polymorphism. These data present AGS3, G-proteins, and mInsc as candidate proteins involved in regulating cellular stress associated with protein-processing pathologies.
Collapse
Affiliation(s)
- Ali Vural
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Sadik Oner
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Ningfei An
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Violaine Simon
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Dzwokai Ma
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Joe B. Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Stephen M. Lanier
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| |
Collapse
|