1
|
Abramova A, Bride J, Oger C, Demion M, Galano JM, Durand T, Roy J. Metabolites derived from radical oxidation of PUFA: NEO-PUFAs, promising molecules for health? Atherosclerosis 2024:118600. [PMID: 39341752 DOI: 10.1016/j.atherosclerosis.2024.118600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Oxidative stress plays a critical role in numerous pathological processes. Under these stress conditions, the free radical-catalyzed lipid peroxidation generates in vivo a large number of key products that are involved in many physiological and pathophysiological processes. Among these products are neuroprostanes, which arise from the peroxidation of docosahexaenoic acid (DHA), and isoprostanes, resulting from arachidonic acid (AA) and eicosapentaenoic acid (EPA) through the same peroxidation process. These non-enzymatic oxygenated metabolites newly appointed NEO-PUFAs have gained recognition as reliable markers of oxidative stress in neurogenerative and cardiovascular diseases. Moreover, some of them display a wide range of biological activities. The ability to detect and measure these metabolites offers precious insights into the mechanisms of oxidative damage and holds potential therapeutic implications for various health conditions, including neurodegenerative diseases. This review focuses on the role of neuroprostanes as biomarkers for oxidative stress and related diseases, highlighting their potential applications in medical research and treatment.
Collapse
Affiliation(s)
- Anna Abramova
- Institut des Biomolécules Max Mousseron, Pôle Recherche Chimie Balard, Université Montpellier, UMR 5247, CNRS, ENSCM, 34293, Montpellier cedex, France
| | - Jamie Bride
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, Pôle Recherche Chimie Balard, Université Montpellier, UMR 5247, CNRS, ENSCM, 34293, Montpellier cedex, France
| | - Marie Demion
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, Pôle Recherche Chimie Balard, Université Montpellier, UMR 5247, CNRS, ENSCM, 34293, Montpellier cedex, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, Pôle Recherche Chimie Balard, Université Montpellier, UMR 5247, CNRS, ENSCM, 34293, Montpellier cedex, France.
| | - Jérôme Roy
- Universite de Pau et des Pays de l'Adour, INRAE, NUMEA, Aquapôle, 64310, Saint-Pée-sur-Nivelle, France.
| |
Collapse
|
2
|
You M, Xie Z, Zhang N, Zhang Y, Xiao D, Liu S, Zhuang W, Li L, Tao Y. Signaling pathways in cancer metabolism: mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:196. [PMID: 37164974 PMCID: PMC10172373 DOI: 10.1038/s41392-023-01442-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
A wide spectrum of metabolites (mainly, the three major nutrients and their derivatives) can be sensed by specific sensors, then trigger a series of signal transduction pathways and affect the expression levels of genes in epigenetics, which is called metabolite sensing. Life body regulates metabolism, immunity, and inflammation by metabolite sensing, coordinating the pathophysiology of the host to achieve balance with the external environment. Metabolic reprogramming in cancers cause different phenotypic characteristics of cancer cell from normal cell, including cell proliferation, migration, invasion, angiogenesis, etc. Metabolic disorders in cancer cells further create a microenvironment including many kinds of oncometabolites that are conducive to the growth of cancer, thus forming a vicious circle. At the same time, exogenous metabolites can also affect the biological behavior of tumors. Here, we discuss the metabolite sensing mechanisms of the three major nutrients and their derivatives, as well as their abnormalities in the development of various cancers, and discuss the potential therapeutic targets based on metabolite-sensing signaling pathways to prevent the progression of cancer.
Collapse
Affiliation(s)
- Mengshu You
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Zhuolin Xie
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Nan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, People's Republic of China.
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
3
|
Davinelli S, Medoro A, Intrieri M, Saso L, Scapagnini G, Kang JX. Targeting NRF2-KEAP1 axis by Omega-3 fatty acids and their derivatives: Emerging opportunities against aging and diseases. Free Radic Biol Med 2022; 193:736-750. [PMID: 36402440 DOI: 10.1016/j.freeradbiomed.2022.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
The transcription factor NRF2 and its endogenous inhibitor KEAP1 play a crucial role in the maintenance of cellular redox homeostasis by regulating the gene expression of diverse networks of antioxidant, anti-inflammatory, and detoxification enzymes. Therefore, activation of NRF2 provides cytoprotection against numerous pathologies, including age-related diseases. An age-associated loss of NRF2 function may be a key driving force behind the aging phenotype. Recently, numerous NRF2 inducers have been identified and some of them are promising candidates to restore NRF2 transcriptional activity during aging. Emerging evidence indicates that omega-3 (n-3) polyunsaturated fatty acids (PUFAs) and their electrophilic derivatives may trigger a protective response via NRF2 activation, rescuing or maintaining cellular redox homeostasis. In this review, we provide an overview of the NRF2-KEAP1 system and its dysregulation in aging cells. We also summarize current studies on the modulatory role of n-3 PUFAs as potential agents to prevent multiple chronic diseases and restore the age-related impairment of NRF2 function.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Dyall SC, Balas L, Bazan NG, Brenna JT, Chiang N, da Costa Souza F, Dalli J, Durand T, Galano JM, Lein PJ, Serhan CN, Taha AY. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Prog Lipid Res 2022; 86:101165. [PMID: 35508275 PMCID: PMC9346631 DOI: 10.1016/j.plipres.2022.101165] [Citation(s) in RCA: 212] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/26/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids, and influence cellular function via effects on membrane properties, and also by acting as a precursor pool for lipid mediators. These lipid mediators are formed via activation of pathways involving at least one step of dioxygen-dependent oxidation, and are consequently called oxylipins. Their biosynthesis can be either enzymatically-dependent, utilising the promiscuous cyclooxygenase, lipoxygenase, or cytochrome P450 mixed function oxidase pathways, or nonenzymatic via free radical-catalyzed pathways. The oxylipins include the classical eicosanoids, comprising prostaglandins, thromboxanes, and leukotrienes, and also more recently identified lipid mediators. With the advent of new technologies there is growing interest in identifying these different lipid mediators and characterising their roles in health and disease. This review brings together contributions from some of those at the forefront of research into lipid mediators, who provide brief introductions and summaries of current understanding of the structure and functions of the main classes of nonclassical oxylipins. The topics covered include omega-3 and omega-6 PUFA biosynthesis pathways, focusing on the roles of the different fatty acid desaturase enzymes, oxidized linoleic acid metabolites, omega-3 PUFA-derived specialized pro-resolving mediators, elovanoids, nonenzymatically oxidized PUFAs, and fatty acid esters of hydroxy fatty acids.
Collapse
|
5
|
Komoda T, Koseki Y. 17T223A, a new spiroximicin family compound from <i>Streptomyces</i> sp. J GEN APPL MICROBIOL 2022; 68:193-199. [DOI: 10.2323/jgam.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Toshikazu Komoda
- School of Food, Agricultural, and Environmental Sciences, Miyagi University
| | - Yoshitaka Koseki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
| |
Collapse
|
6
|
Fatty acid nitroalkene reversal of established lung fibrosis. Redox Biol 2021; 50:102226. [PMID: 35150970 PMCID: PMC8844680 DOI: 10.1016/j.redox.2021.102226] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue fibrosis occurs in response to dysregulated metabolism, pro-inflammatory signaling and tissue repair reactions. For example, lungs exposed to environmental toxins, cancer therapies, chronic inflammation and other stimuli manifest a phenotypic shift to activated myofibroblasts and progressive and often irreversible lung tissue scarring. There are no therapies that stop or reverse fibrosis. The 2 FDA-approved anti-fibrotic drugs at best only slow the progression of fibrosis in humans. The present study was designed to test whether a small molecule electrophilic nitroalkene, nitro-oleic acid (NO2-OA), could reverse established pulmonary fibrosis induced by the intratracheal administration of bleomycin in C57BL/6 mice. After 14 d of bleomycin-induced fibrosis development in vivo, lungs were removed, sectioned and precision-cut lung slices (PCLS) from control and bleomycin-treated mice were cultured ex vivo for 4 d with either vehicle or NO2-OA (5 μM). Biochemical and morphological analyses showed that over a 4 d time frame, NO2-OA significantly inhibited pro-inflammatory mediator and growth factor expression and reversed key indices of fibrosis (hydroxyproline, collagen 1A1 and 3A1, fibronectin-1). Quantitative image analysis of PCLS immunohistology reinforced these observations, revealing that NO2-OA suppressed additional hallmarks of the fibrotic response, including alveolar epithelial cell loss, myofibroblast differentiation and proliferation, collagen and α-smooth muscle actin expression. NO2-OA also accelerated collagen degradation by resident macrophages. These effects occurred in the absence of the recognized NO2-OA modulation of circulating and migrating immune cell activation. Thus, small molecule nitroalkenes may be useful agents for reversing pathogenic fibrosis of lung and other organs. Small molecule electrophiles, pleiotropic anti-inflammatory and anti-fibrotic drugs. NO2-OA inhibits activated myofibroblasts, induces dedifferentiation to fibroblasts. NO2-OA activates extracellular matrix degradation by macrophages. NO2-OA promotes proliferation of alveolar type 1 and 2 epithelial cells. NO2-OA reverses established lung fibrosis in murine lung slices.
Collapse
|
7
|
Biochemical Characterization of 13-Lipoxygenases of Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms221910237. [PMID: 34638573 PMCID: PMC8508710 DOI: 10.3390/ijms221910237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 02/01/2023] Open
Abstract
13-lipoxygenases (13-LOX) catalyze the dioxygenation of various polyunsaturated fatty acids (PUFAs), of which α-linolenic acid (LeA) is converted to 13-S-hydroperoxyoctadeca-9, 11, 15-trienoic acid (13-HPOT), the precursor for the prostaglandin-like plant hormones cis-(+)-12-oxophytodienoic acid (12-OPDA) and methyl jasmonate (MJ). This study aimed for characterizing the four annotated A. thaliana 13-LOX enzymes (LOX2, LOX3, LOX4, and LOX6) focusing on synthesis of 12-OPDA and 4Z,7Z,10Z)-12-[[-(1S,5S)-4-oxo-5-(2Z)-pent-2-en-1yl] cyclopent-2-en-1yl] dodeca-4,7,10-trienoic acid (OCPD). In addition, we performed interaction studies of 13-LOXs with ions and molecules to advance our understanding of 13-LOX. Cell imaging indicated plastid targeting of fluorescent proteins fused to 13-LOXs-N-terminal extensions, supporting the prediction of 13-LOX localization to plastids. The apparent maximal velocity (Vmax app) values for LOX-catalyzed LeA oxidation were highest for LOX4 (128 nmol·s−1·mg protein−1), with a Km value of 5.8 µM. A. thaliana 13-LOXs, in cascade with 12-OPDA pathway enzymes, synthesized 12-OPDA and OCPD from LeA and docosahexaenoic acid, previously shown only for LOX6. The activities of the four isoforms were differently affected by physiologically relevant chemicals, such as Mg2+, Ca2+, Cu2+ and Cd2+, and by 12-OPDA and MJ. As demonstrated for LOX4, 12-OPDA inhibited enzymatic LeA hydroperoxidation, with half-maximal enzyme inhibition at 48 µM. Biochemical interactions, such as the sensitivity of LOX toward thiol-reactive agents belonging to cyclopentenone prostaglandins, are suggested to occur in human LOX homologs. Furthermore, we conclude that 13-LOXs are isoforms with rather specific functional and regulatory enzymatic features.
Collapse
|
8
|
Belcastro L, Ferreira CS, Saraiva MA, Mucci DB, Murgia A, Lai C, Vigor C, Oger C, Galano JM, Pinto GDA, Griffin JL, Torres AG, Durand T, Burton GJ, Sardinha FLC, El-Bacha T. Decreased Fatty Acid Transporter FABP1 and Increased Isoprostanes and Neuroprostanes in the Human Term Placenta: Implications for Inflammation and Birth Weight in Maternal Pre-Gestational Obesity. Nutrients 2021; 13:2768. [PMID: 34444927 PMCID: PMC8398812 DOI: 10.3390/nu13082768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/26/2022] Open
Abstract
The rise in prevalence of obesity in women of reproductive age in developed and developing countries might propagate intergenerational cycles of detrimental effects on metabolic health. Placental lipid metabolism is disrupted by maternal obesity, which possibly affects the life-long health of the offspring. Here, we investigated placental lipid metabolism in women with pre-gestational obesity as a sole pregnancy complication and compared it to placental responses of lean women. Open profile and targeted lipidomics were used to assess placental lipids and oxidised products of docosahexaenoic (DHA) and arachidonic acid (AA), respectively, neuroprostanes and isoprostanes. Despite no overall signs of lipid accumulation, DHA and AA levels in placentas from obese women were, respectively, 2.2 and 2.5 times higher than those from lean women. Additionally, a 2-fold increase in DHA-derived neuroprostanes and a 1.7-fold increase in AA-derived isoprostanes were seen in the obese group. These changes correlated with a 70% decrease in placental FABP1 protein. Multivariate analyses suggested that neuroprostanes and isoprostanes are associated with maternal and placental inflammation and with birth weight. These results might shed light on the molecular mechanisms associated with altered placental fatty acid metabolism in maternal pre-gestational obesity, placing these oxidised fatty acids as novel mediators of placental function.
Collapse
Affiliation(s)
- Livia Belcastro
- Laboratory of Nutritional Biochemistry, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.B.); (M.A.S.); (D.B.M.)
| | - Carolina S. Ferreira
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.F.); (G.D.A.P.); (A.G.T.)
| | - Marcelle A. Saraiva
- Laboratory of Nutritional Biochemistry, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.B.); (M.A.S.); (D.B.M.)
| | - Daniela B. Mucci
- Laboratory of Nutritional Biochemistry, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.B.); (M.A.S.); (D.B.M.)
| | - Antonio Murgia
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; (A.M.); (J.L.G.)
| | - Carla Lai
- Department of Environmental and Life Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Bâtiment Balard, 1919 Route de Mende, 34293 Montpellier, France; (C.V.); (C.O.); (J.-M.G.); (T.D.)
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Bâtiment Balard, 1919 Route de Mende, 34293 Montpellier, France; (C.V.); (C.O.); (J.-M.G.); (T.D.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Bâtiment Balard, 1919 Route de Mende, 34293 Montpellier, France; (C.V.); (C.O.); (J.-M.G.); (T.D.)
| | - Gabriela D. A. Pinto
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.F.); (G.D.A.P.); (A.G.T.)
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; (A.M.); (J.L.G.)
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2BX, UK
| | - Alexandre G. Torres
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.F.); (G.D.A.P.); (A.G.T.)
- Lipid Biochemistry and Lipidomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Bâtiment Balard, 1919 Route de Mende, 34293 Montpellier, France; (C.V.); (C.O.); (J.-M.G.); (T.D.)
| | - Graham J. Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK;
| | - Fátima L. C. Sardinha
- Laboratory of Nutritional Biochemistry, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.B.); (M.A.S.); (D.B.M.)
| | - Tatiana El-Bacha
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.F.); (G.D.A.P.); (A.G.T.)
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK;
| |
Collapse
|
9
|
Moving forward with isoprostanes, neuroprostanes and phytoprostanes: where are we now? Essays Biochem 2021; 64:463-484. [PMID: 32602531 DOI: 10.1042/ebc20190096] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential components in eukaryotic cell membrane. They take part in the regulation of cell signalling pathways and act as precursors in inflammatory metabolism. Beside these, PUFAs auto-oxidize through free radical initiated mechanism and release key products that have various physiological functions. These products surfaced in the early nineties and were classified as prostaglandin isomers or isoprostanes, neuroprostanes and phytoprostanes. Although these molecules are considered robust biomarkers of oxidative damage in diseases, they also contain biological activities in humans. Conceptual progress in the last 3 years has added more understanding about the importance of these molecules in different fields. In this chapter, a brief overview of the past 30 years and the recent scope of these molecules, including their biological activities, biosynthetic pathways and analytical approaches are discussed.
Collapse
|
10
|
Lipid Peroxidation and Antioxidant Supplementation in Neurodegenerative Diseases: A Review of Human Studies. Antioxidants (Basel) 2020; 9:antiox9111128. [PMID: 33202952 PMCID: PMC7696060 DOI: 10.3390/antiox9111128] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/05/2023] Open
Abstract
Being characterized by progressive and severe damage in neuronal cells, neurodegenerative diseases (NDDs) are the major cause of disability and morbidity in the elderly, imposing a significant economic and social burden. As major components of the central nervous system, lipids play important roles in neural health and pathology. Disturbed lipid metabolism, particularly lipid peroxidation (LPO), is associated with the development of many NDDs, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), all of which show elevated levels of LPO products and LPO-modified proteins. Thus, the inhibition of neuronal oxidation might slow the progression and reduce the severity of NDD; natural antioxidants, such as polyphenols and antioxidant vitamins, seem to be the most promising agents. Here, we summarize current literature data that were derived from human studies on the effect of natural polyphenols and vitamins A, C, and E supplementation in patients with AD, PD, and ALS. Although these compounds may reduce the severity and slow the progression of NDD, research gaps remain in antioxidants supplementation in AD, PD, and ALS patients, which indicates that further human studies applying antioxidant supplementation in different forms of NDDs are urgently needed.
Collapse
|
11
|
O’Brien J, Wendell SG. Electrophile Modulation of Inflammation: A Two-Hit Approach. Metabolites 2020; 10:metabo10110453. [PMID: 33182676 PMCID: PMC7696920 DOI: 10.3390/metabo10110453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Electrophilic small molecules have gained significant attention over the last decade in the field of covalent drug discovery. Long recognized as mediators of the inflammatory process, recent evidence suggests that electrophiles may modulate the immune response through the regulation of metabolic networks. These molecules function as pleiotropic signaling mediators capable of reversibly reacting with nucleophilic biomolecules, most notably at reactive cysteines. More specifically, electrophiles target critical cysteines in redox regulatory proteins to activate protective pathways such as the nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 (Nrf2-Keap1) antioxidant signaling pathway while also inhibiting Nuclear Factor κB (NF-κB). During inflammatory states, reactive species broadly alter cell signaling through the oxidation of lipids, amino acids, and nucleic acids, effectively propagating the inflammatory sequence. Subsequent changes in metabolic signaling inform immune cell maturation and effector function. Therapeutic strategies targeting inflammatory pathologies leverage electrophilic drug compounds, in part, because of their documented effect on the redox balance of the cell. With mounting evidence demonstrating the link between redox signaling and metabolism, electrophiles represent ideal therapeutic candidates for the treatment of inflammatory conditions. Through their pleiotropic signaling activity, electrophiles may be used strategically to both directly and indirectly target immune cell metabolism.
Collapse
|
12
|
Modulatory role of dietary polyunsaturated fatty acids in Nrf2-mediated redox homeostasis. Prog Lipid Res 2020; 80:101066. [DOI: 10.1016/j.plipres.2020.101066] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
|
13
|
Sharma T, Mandal CC. Omega-3 fatty acids in pathological calcification and bone health. J Food Biochem 2020; 44:e13333. [PMID: 32548903 DOI: 10.1111/jfbc.13333] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 01/19/2023]
Abstract
Omega-3 fatty acids (ω-3FAs) such as Docosahexaenoic acid (DHA) and Eicosapentanoic acid (EPA), are active ingredient of fish oil, which have larger health benefits against various diseases including cardiovascular, neurodegenerative, cancers and bone diseases. Substantial studies documented a preventive role of omega-3 fatty acids in pathological calcification like vascular calcification and microcalcification in cancer tissues. In parallel, these fatty acids improve bone quality probably by preventing bone decay and augmenting bone mineralization. This study also addresses that the functions of ω-3FAs not only depend on tissue types, but also work through different molecular mechanisms for preventing pathological calcification in various tissues and improving bone health. PRACTICAL APPLICATIONS: Practical applications of the current study are to improve the knowledge about the supplementation of omega-3 fatty acids. This study infers that supplementation of omega-3 fatty acids aids in bone preservation in elder females at the risk of osteoporosis and also, on the contrary, omega-3 fatty acids interfere with pathological calcification of vascular cells and cancer cells. Omega-3 supplementation should be given to the cardiac patients because of its cardio protective role. In line with this, omega-3 supplementation should be included with chemotherapy for cancer patients as it can prevent osteoblastic potential of breast cancer patients, responsible for pathological mineralization, and blocks off target toxicities. Administration of omega-3 fatty acid with chemotherapy will not only improve survival of cancer patients, but also improve the bone quality. Thus, this study allows a better understanding on omega-3 fatty acids in combating pathological complications such as osteoporosis, vascular calcification, and breast microcalcification.
Collapse
Affiliation(s)
- Tanu Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
14
|
Shoieb SM, El-Ghiaty MA, Alqahtani MA, El-Kadi AO. Cytochrome P450-derived eicosanoids and inflammation in liver diseases. Prostaglandins Other Lipid Mediat 2020; 147:106400. [DOI: 10.1016/j.prostaglandins.2019.106400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/08/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023]
|
15
|
Sofyana NT, Zheng J, Manabe Y, Yamamoto Y, Kishino S, Ogawa J, Sugawara T. Gut microbial fatty acid metabolites (KetoA and KetoC) affect the progression of nonalcoholic steatohepatitis and reverse cholesterol transport metabolism in mouse model. Lipids 2020; 55:151-162. [PMID: 32040876 DOI: 10.1002/lipd.12219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 01/05/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a common liver disease that occurs in both alcoholics and nonalcoholics. Oxidative stress is a possible causative factor for liver diseases including NASH. Gut microorganisms, especially lactic acid bacteria, can produce unique fatty acids, including hydroxy, oxo, conjugated, and partially saturated fatty acids. The oxo fatty acid 10-oxo-11(E)-octadecenoic acid (KetoC) provides potent cytoprotective effects against oxidative stress through activation of Nrf2-ARE pathway. The aim of this study was to explore the preventive and therapeutic effects of gut microbial fatty acid metabolites in a NASH mouse model. The mice were divided into 3 experimental groups and fed as follows: (1) high-fat diet (HFD) (2) HFD mixed with 0.1% KetoA (10-oxo-12(Z)-octadecenoic acid), and (3) HFD mixed with 0.1% KetoC. After 3 weeks of feeding, plasma parameters, liver histology, and mRNA expression of multiple genes were assessed. There was hardly any difference in fat accumulation in the histological study; however, no ballooning occurred in 2/5 mice of KetoC group. Bridging fibrosis was not observed in the KetoA group, although KetoA administration did not significantly suppress fibrosis score (p = 0.10). In addition, KetoC increased the expression level of HDL related genes and HDL cholesterol levels in the plasma. These results indicated that KetoA and KetoC may partly affect the progression of NASH in mice models.
Collapse
Affiliation(s)
- Neng Tanty Sofyana
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Jiawen Zheng
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuki Manabe
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuta Yamamoto
- Department of Anatomy and Cell Biology, Wakayama Medical University, 580 Mikazura, Wakayama-shi, 641-0011, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tatsuya Sugawara
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
16
|
Chen J, Li Y, Tang Z, Sun Z. Regulatory Functions of Fatty Acids with Different Chain Lengths on the Intestinal Health in Pigs and Relative Signaling Pathways. Curr Protein Pept Sci 2019; 20:674-682. [PMID: 31084590 DOI: 10.2174/1389203720666190514120023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/12/2019] [Indexed: 01/04/2023]
Abstract
Intestines are not only major organs for nutrient digestion and absorption, but are also the largest immune organ in pigs. They are essential for maintaining the health and growth of piglets. Fatty acids, including short-chain fatty acids, medium-chain fatty acids, and long-chain polyunsaturated fatty acids, are important nutrients; they are a major energy source, important components of the cell membrane, metabolic substrates in many biochemical pathways, cell-signaling molecules, and play role as immune modulators. Research has shown that fatty acids exert beneficial effects on intestinal health in animal models and clinical trials. The objective of this review is to give a clear understanding of the regulatory effects of fatty acids of different chain lengths on intestinal health in pigs and their signaling pathways, providing scientific reference for developing a feeding technique to apply fatty acids to piglet diets.
Collapse
Affiliation(s)
- Jinchao Chen
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yunxia Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiru Tang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhihong Sun
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
17
|
Gladine C, Ostermann AI, Newman JW, Schebb NH. MS-based targeted metabolomics of eicosanoids and other oxylipins: Analytical and inter-individual variabilities. Free Radic Biol Med 2019; 144:72-89. [PMID: 31085232 DOI: 10.1016/j.freeradbiomed.2019.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Oxylipins, including the well-known eicosanoids, are potent lipid mediators involved in numerous physiological and pathological processes. Therefore, their quantitative profiling has gained a lot of attention during the last years notably in the active field of health biomarker discovery. Oxylipins include hundreds of structurally and stereochemically distinct lipid species which today are most commonly analyzed by (ultra) high performance liquid chromatography-mass spectrometry based ((U)HPLC-MS) methods. To maximize the utility of oxylipin profiling in clinical research, it is crucial to understand and assess the factors contributing to the analytical and biological variability of oxylipin profiles in humans. In this review, these factors and their impacts are summarized and discussed, providing a framework for recommendations expected to enhance the interlaboratory comparability and biological interpretation of oxylipin profiling in clinical research.
Collapse
Affiliation(s)
- Cécile Gladine
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France.
| | - Annika I Ostermann
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Gaußstraße 20, University of Wuppertal, 42119, Wuppertal, Germany
| | - John W Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA; University of California Davis, Department of Nutrition, Davis, CA, USA
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Gaußstraße 20, University of Wuppertal, 42119, Wuppertal, Germany
| |
Collapse
|
18
|
Wang W, Zhang P, Ou J, Liu F, Tang K, Xu W. Selective Extraction of ECG from Tea Polyphenols by One Step in Centrifugal Contactor Separators: Modeling and Application. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b06042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wanru Wang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Panliang Zhang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Jian Ou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Fusong Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Kewen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| |
Collapse
|
19
|
Polyunsaturated Fatty Acids and Their Potential Therapeutic Role in Cardiovascular System Disorders-A Review. Nutrients 2018; 10:nu10101561. [PMID: 30347877 PMCID: PMC6213446 DOI: 10.3390/nu10101561] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/11/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases are described as the leading cause of morbidity and mortality in modern societies. Therefore, the importance of cardiovascular diseases prevention is widely reflected in the increasing number of reports on the topic among the key scientific research efforts of the recent period. The importance of essential fatty acids (EFAs) has been recognized in the fields of cardiac science and cardiac medicine, with the significant effects of various fatty acids having been confirmed by experimental studies. Polyunsaturated fatty acids are considered to be important versatile mediators for improving and maintaining human health over the entire lifespan, however, only the cardiac effect has been extensively documented. Recently, it has been shown that omega-3 fatty acids may play a beneficial role in several human pathologies, such as obesity and diabetes mellitus type 2, and are also associated with a reduced incidence of stroke and atherosclerosis, and decreased incidence of cardiovascular diseases. A reasonable diet and wise supplementation of omega-3 EFAs are essential in the prevention and treatment of cardiovascular diseases prevention and treatment.
Collapse
|
20
|
Biernacki M, Łuczaj W, Jarocka-Karpowicz I, Ambrożewicz E, Toczek M, Skrzydlewska E. The Effect of Long-Term Administration of Fatty Acid Amide Hydrolase Inhibitor URB597 on Oxidative Metabolism in the Heart of Rats with Primary and Secondary Hypertension. Molecules 2018; 23:E2350. [PMID: 30223427 PMCID: PMC6225141 DOI: 10.3390/molecules23092350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 01/24/2023] Open
Abstract
Fatty acid amide hydrolase (FAAH) inhibitor [3-(3-carbamoylphenyl)phenyl] N-cyclohexylcarbamate (URB597) may influence redox balance and blood pressure through the modulation of endocannabinoids levels. Therefore, this study aimed to compare changes in oxidative metabolism and apoptosis in the hearts of rats with spontaneous hypertension (SHR) and secondary hypertension (11-deoxycorticosterone acetate; DOCA-salt rats) treated by URB597 via intraperitoneal injection for 14 days. The results showed that URB597 decreased the activity of NADPH and xanthine oxidases in both groups of rats. Moreover, in the heart of SHR rats, URB597 led to an increase of enzymatic and nonenzymatic antioxidant activity and levels (catalase, vitamin C, glutathione/glutathione disulfide [GSH/GSSG]) and upregulation of the thioredoxin system; however, NRf2 expression was downregulated. The opposite effect in relation to Nrf2 activity and the thioredoxin system was observed in DOCA-salt rats after URB597 administration. Despite improvement in antioxidant parameters, URB597 enhanced oxidative modifications of phospholipids (4-hydroxynonenal and isoprostanes) and proteins (carbonyl groups) in SHR heart, whereas 4-hydroxynonenal and carbonyl groups levels decreased in the heart of DOCA-salt rats. Obtained results suggest that examined lipid mediators are involved in peroxisome proliferator-activated receptors (PPAR)-independent and PPAR-dependent modulation of cardiac inflammatory reactions. Furthermore, decreased expression of pro-apoptotic proteins (Bax and caspase 3 and 9) was observed after URB597 administration in the heart of both groups of hypertensive rats, whereas expression of the antiapoptotic protein (Bcl-2) increased in SHR rats. Long-term administration of URB597 altered cardiac redox status depending on the type of hypertension. URB597 enhanced oxidative metabolism and reduced pro-apoptotic factors in the heart of SHR rats, increasing the probability of heart metabolic disorders occurrence or progression.
Collapse
Affiliation(s)
- Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland.
| | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland.
| | - Iwona Jarocka-Karpowicz
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland.
| | - Ewa Ambrożewicz
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland.
| | - Marek Toczek
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland.
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland.
| |
Collapse
|
21
|
Jobbagy S, Tan RJ. Nitrolipids in kidney physiology and disease. Nitric Oxide 2018; 78:S1089-8603(18)30006-5. [PMID: 29605557 PMCID: PMC6163094 DOI: 10.1016/j.niox.2018.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
The kidneys are vital organs responsible for maintaining body fluid homeostasis within proper physiologic ranges. Kidney disease is an epidemic clinical problem causing significant morbidity and mortality, and current treatments are limited to renin-angiotensin system blockade or renal replacement therapy for the majority of affected individuals. There is a critical, unmet need for novel pharmacological agents to improve the outcome of patients with kidney disease. Nitro-oleic acid (NO2-OA) is an endogenously generated electrophilic compound with the capacity to modify thiols in proteins, altering their function. The most important targets appear to be the Keap1/Nrf2 and NF-κB pathways, which have widespread effects on antioxidant, detoxifying, and inflammatory responses in cells and tissues. Through these and potentially additional protective actions, NO2-OA may be capable of preserving or enhancing kidney function in acute and chronic kidney diseases.
Collapse
Affiliation(s)
- Soma Jobbagy
- Department of Phamacology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Roderick J Tan
- Division of Renal-Electrolyte, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA., United States.
| |
Collapse
|
22
|
Galano JM, Roy J, Durand T, Lee JCY, Le Guennec JY, Oger C, Demion M. Biological activities of non-enzymatic oxygenated metabolites of polyunsaturated fatty acids (NEO-PUFAs) derived from EPA and DHA: New anti-arrhythmic compounds? Mol Aspects Med 2018; 64:161-168. [PMID: 29572110 DOI: 10.1016/j.mam.2018.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/13/2018] [Accepted: 03/18/2018] [Indexed: 12/13/2022]
Abstract
ω3 Polyunsaturated fatty acids (ω3 PUFAs) have several biological properties including anti-arrhythmic effects. However, there are some evidences that it is not solely ω3 PUFAs per se that are biologically active but the non-enzymatic oxygenated metabolites of polyunsaturated fatty acids (NEO-PUFAs) like isoprostanes and neuroprostanes. Recent question arises how these molecules take part in physiological homeostasis, show biological bioactivities and anti-inflammatory properties. Furthermore, they are involved in the circulations of childbirth, by inducing the closure of the ductus arteriosus. In addition, oxidative stress which can be beneficial for the heart in given environmental conditions such as the presence of ω3 PUFAs on the site of the stress and the signaling pathways involved are also explained in this review.
Collapse
Affiliation(s)
| | - Jérôme Roy
- Université de Montpellier, CNRS, Inserm, PhyMedExp, Montpellier, France
| | - Thierry Durand
- Université de Montpellier, CNRS, IBMM, Montpellier, France
| | | | | | - Camille Oger
- Université de Montpellier, CNRS, IBMM, Montpellier, France
| | - Marie Demion
- Université de Montpellier, CNRS, Inserm, PhyMedExp, Montpellier, France
| |
Collapse
|
23
|
Insight into the contribution of isoprostanoids to the health effects of omega 3 PUFAs. Prostaglandins Other Lipid Mediat 2017; 133:111-122. [DOI: 10.1016/j.prostaglandins.2017.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/07/2017] [Accepted: 05/31/2017] [Indexed: 12/30/2022]
|
24
|
Galano JM, Lee YY, Oger C, Vigor C, Vercauteren J, Durand T, Giera M, Lee JCY. Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25years of research in chemistry and biology. Prog Lipid Res 2017; 68:83-108. [PMID: 28923590 DOI: 10.1016/j.plipres.2017.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023]
Abstract
Since the beginning of the 1990's diverse types of metabolites originating from polyunsaturated fatty acids, formed under autooxidative conditions were discovered. Known as prostaglandin isomers (or isoprostanoids) originating from arachidonic acid, neuroprostanes from docosahexaenoic acid, and phytoprostanes from α-linolenic acid proved to be prevalent in biology. The syntheses of these compounds by organic chemists and the development of sophisticated mass spectrometry methods has boosted our understanding of the isoprostanoid biology. In recent years, it has become accepted that these molecules not only serve as markers of oxidative damage but also exhibit a wide range of bioactivities. In addition, isoprostanoids have emerged as indicators of oxidative stress in humans and their environment. This review explores in detail the isoprostanoid chemistry and biology that has been achieved in the past three decades.
Collapse
Affiliation(s)
- Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Yiu Yiu Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2300RC Leiden, The Netherlands
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
25
|
Maynard D, Müller SM, Hahmeier M, Löwe J, Feussner I, Gröger H, Viehhauser A, Dietz KJ. One-pot synthesis of bioactive cyclopentenones from α-linolenic acid and docosahexaenoic acid. Bioorg Med Chem 2017; 26:1356-1364. [PMID: 28818464 DOI: 10.1016/j.bmc.2017.07.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 01/09/2023]
Abstract
Oxidation products of the poly-unsaturated fatty acids (PUFAs) arachidonic acid, α-linolenic acid and docosahexaenoic acid are bioactive in plants and animals as shown for the cyclopentenones prostaglandin 15d-PGJ2 and PGA2, cis-(+)-12-oxophytodienoic acid (12-OPDA), and 14-A-4 neuroprostane. In this study an inexpensive and simple enzymatic multi-step one-pot synthesis is presented for 12-OPDA, which is derived from α-linolenic acid, and the analogous docosahexaenoic acid (DHA)-derived cyclopentenone [(4Z,7Z,10Z)-12-[[-(1S,5S)-4-oxo-5-(2Z)-pent-2-en-1yl]-cyclopent-2-en-1yl] dodeca-4,7,10-trienoic acid, OCPD]. The three enzymes utilized in this multi-step cascade were crude soybean lipoxygenase or a recombinant lipoxygenase, allene oxide synthase and allene oxide cyclase from Arabidopsis thaliana. The DHA-derived 12-OPDA analog OCPD is predicted to have medicinal potential and signaling properties in planta. With OCPD in hand, it is shown that this compound interacts with chloroplast cyclophilin 20-3 and can be metabolized by 12-oxophytodienoic acid reductase (OPR3) which is an enzyme relevant for substrate bioactivity modulation in planta.
Collapse
Affiliation(s)
- Daniel Maynard
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Germany
| | - Sara Mareike Müller
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Germany
| | - Monika Hahmeier
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Germany
| | - Jana Löwe
- Department of Organic Chemistry, Faculty of Chemistry, University of Bielefeld, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, University of Göttingen, Germany
| | - Harald Gröger
- Department of Organic Chemistry, Faculty of Chemistry, University of Bielefeld, Germany
| | - Andrea Viehhauser
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Germany.
| |
Collapse
|
26
|
Bernardo A, Giammarco ML, De Nuccio C, Ajmone-Cat MA, Visentin S, De Simone R, Minghetti L. Docosahexaenoic acid promotes oligodendrocyte differentiation via PPAR-γ signalling and prevents tumor necrosis factor-α-dependent maturational arrest. Biochim Biophys Acta Mol Cell Biol Lipids 2017. [PMID: 28647405 DOI: 10.1016/j.bbalip.2017.06.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Docosahexaenoic acid (DHA) is an essential omega-3 fatty acid known to be neuroprotective in several models of human diseases, including multiple sclerosis. The protective effects of DHA are largely attributed to its ability to interfere with the activity of transcription factors controlling immune and inflammatory responses, including the agonist-dependent transcription factor peroxisome proliferator-activated receptor-γ (PPAR-γ). In this study, we used primary oligodendrocyte progenitor (OP) cultures from neonatal rat brain to investigate whether DHA could influence OP maturation and directly promote myelination, as previously reported for selective PPAR-γ agonists. We show that, similarly to the selective PPAR-γ agonist pioglitazone (PGZ), DHA promotes OP maturation and counteracts the maturational arrest induced by TNF-α, used to mimic inflammatory conditions. The PPAR-γ antagonist GW9662 prevented both DHA-induced OP maturation and PPAR-γ nuclear translocation, supporting the hypothesis that DHA acts through the activation of PPAR-γ. In addition, both PGZ and DHA induced the phosphorylation of extracellular signal-regulated-kinase 1-2 (ERK1/2), in a PPAR-γ-dependent manner. ERK1/2 activity is known to regulate the transition from OPs to immature oligodendrocytes and the presence of specific inhibitors of ERK1/2 phosphorylation (U0126 or PD98059) prevented the differentiating effects of both DHA and PGZ. These results indicate that DHA might influence the process of OP maturation through its PPAR-γ agonistic activity and provide novel molecular mechanisms for the action of this dietary fatty acid, further supporting the nutritional intervention in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- A Bernardo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - M L Giammarco
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - C De Nuccio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - M A Ajmone-Cat
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - S Visentin
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - R De Simone
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - L Minghetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
27
|
Bosviel R, Joumard-Cubizolles L, Chinetti-Gbaguidi G, Bayle D, Copin C, Hennuyer N, Duplan I, Staels B, Zanoni G, Porta A, Balas L, Galano JM, Oger C, Mazur A, Durand T, Gladine C. DHA-derived oxylipins, neuroprostanes and protectins, differentially and dose-dependently modulate the inflammatory response in human macrophages: Putative mechanisms through PPAR activation. Free Radic Biol Med 2017; 103:146-154. [PMID: 27988338 DOI: 10.1016/j.freeradbiomed.2016.12.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/29/2016] [Accepted: 12/13/2016] [Indexed: 01/15/2023]
Abstract
Whereas the anti-inflammatory properties and mechanisms of action of long chain ω3 PUFAs have been abundantly investigated, research gaps remain regarding the respective contribution and mechanisms of action of their oxygenated metabolites collectively known as oxylipins. We conducted a dose-dependent and comparative study in human primary macrophages aiming to compare the anti-inflammatory activity of two types of DHA-derived oxylipins including the well-described protectins (NPD1 and PDX), formed through lipoxygenase pathway and the neuroprostanes (14-A4t- and 4-F4t-NeuroP) formed through free-radical mediated oxygenation and expected to be new anti-inflammatory mediators. Considering the potential ability of these DHA-derived oxylipins to bind PPARs and knowing the central role of these transcription factors in the regulation of macrophage inflammatory response, we performed transactivation assays to compare the ability of protectins and neuroprostanes to activate PPARs. All molecules significantly reduced mRNA levels of cytokines such as IL-6 and TNF-α, however not at the same doses. NPD1 showed the most effect at 0.1µM (-14.9%, p<0.05 for IL-6 and -26.7%, p<0.05 for TNF-α) while the three other molecules had greater effects at 10µM, with the strongest result due to the cyclopentenone neuroprostane, 14-A4t-NeuroP (-49.8%, p<0.001 and -40.8%, p<0.001, respectively). Part of the anti-inflammatory properties of the DHA-derived oxylipins investigated could be linked to their activation of PPARs. Indeed, all tested oxylipins significantly activated PPARγ, with 14-A4t-NeuroP leading to the strongest activation, and NPD1 and PDX also activated PPARα. In conclusion, our results show that neuroprostanes and more especially cyclopentenone neuroprostanes have potent anti-inflammatory activities similar or even more pronounced than protectins supporting that neuroprostanes should be considered as important contributors to the anti-inflammatory effects of DHA.
Collapse
Affiliation(s)
- Rémy Bosviel
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France.
| | - Laurie Joumard-Cubizolles
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France.
| | - Giulia Chinetti-Gbaguidi
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, F-59000 Lille, France; University of Côte d'Azur, CHU, Inserm, CNRS, IRCAN, France.
| | - Dominique Bayle
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France.
| | - Corinne Copin
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, F-59000 Lille, France.
| | - Nathalie Hennuyer
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, F-59000 Lille, France.
| | - Isabelle Duplan
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, F-59000 Lille, France.
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, F-59000 Lille, France.
| | | | | | | | | | - Camille Oger
- IBMM, UMR 5247 CNRS/UM/ENSCM, Montpellier, France.
| | - Andrzej Mazur
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France.
| | | | - Cécile Gladine
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
28
|
Kuda O. Bioactive metabolites of docosahexaenoic acid. Biochimie 2017; 136:12-20. [PMID: 28087294 DOI: 10.1016/j.biochi.2017.01.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/02/2017] [Accepted: 01/08/2017] [Indexed: 12/13/2022]
Abstract
Docosahexaenoic acid (DHA) is an essential fatty acid that is recognized as a beneficial dietary constituent and as a source of the anti-inflammatory specialized proresolving mediators (SPM): resolvins, protectins and maresins. Apart from SPMs, other metabolites of DHA also exert potent biological effects. This article summarizes current knowledge on the metabolic pathways involved in generation of DHA metabolites. Over 70 biologically active metabolites have been described, but are often discussed separately within specific research areas. This review follows DHA metabolism and attempts to integrate the diverse DHA metabolites emphasizing those with identified biological effects. DHA metabolites could be divided into DHA-derived SPMs, DHA epoxides, electrophilic oxo-derivatives (EFOX) of DHA, neuroprostanes, ethanolamines, acylglycerols, docosahexaenoyl amides of amino acids or neurotransmitters, and branched DHA esters of hydroxy fatty acids. These bioactive metabolites have pleiotropic effects that include augmenting energy expenditure, stimulating lipid catabolism, modulating the immune response, helping to resolve inflammation, and promoting wound healing and tissue regeneration. As a result they have been shown to exert many beneficial actions: neuroprotection, anti-hypertension, anti-hyperalgesia, anti-arrhythmia, anti-tumorigenesis etc. Given the chemical structure of DHA, the number and geometry of double bonds, and the panel of enzymes metabolizing DHA, it is also likely that novel bioactive derivatives will be identified in the future.
Collapse
Affiliation(s)
- Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.
| |
Collapse
|
29
|
Kumar N, Gupta G, Anilkumar K, Fatima N, Karnati R, Reddy GV, Giri PV, Reddanna P. 15-Lipoxygenase metabolites of α-linolenic acid, [13-(S)-HPOTrE and 13-(S)-HOTrE], mediate anti-inflammatory effects by inactivating NLRP3 inflammasome. Sci Rep 2016; 6:31649. [PMID: 27535180 PMCID: PMC4989172 DOI: 10.1038/srep31649] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 07/22/2016] [Indexed: 01/04/2023] Open
Abstract
The ratio of ω-6 to ω-3 polyunsaturated fatty acids (PUFAs) appears to be critical in the regulation of various pathophysiological processes and to maintain cellular homeostasis. While a high proportion of dietary intake of ω-6 PUFAs is associated with various inflammatory disorders, higher intake of ω-3 PUFAs is known to offer protection. It is now well established that beneficial effects of ω-3 PUFAs are mediated in part by their oxygenated metabolites mainly via the lipoxygenase (LOX) and cyclooxygenase (COX) pathways. However, the down-stream signaling pathways that are involved in these anti-inflammatory effects of ω-3 PUFAs have not been elucidated. The present study evaluates the effects of 15-LOX metabolites of α-linolenic acid (ALA, ω-3 PUFA) on lipopolysaccharide (LPS) induced inflammation in RAW 264.7 cells and peritoneal macrophages. Further, the effect of these metabolites on the survival of BALB/c mice in LPS mediated septic shock and also polymicrobial sepsis in Cecal Ligation and Puncture (CLP) mouse model was studied. These studies reveal the anti-inflammatory effects of 13-(S)-hydroperoxyoctadecatrienoic acid [13-(S)-HPOTrE] and 13-(S)-hydroxyoctadecatrienoic acid [13-(S)-HOTrE] by inactivating NLRP3 inflammasome complex through the PPAR-γ pathway. Additionally, both metabolites also deactivated autophagy and induced apoptosis. In mediating all these effects 13-(S)-HPOTrE was more potent than 13-(S)-HOTrE.
Collapse
Affiliation(s)
- Naresh Kumar
- School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Geetika Gupta
- School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Kotha Anilkumar
- National Institute of Animal Biotechnology, Hyderabad 500049, India
| | - Naireen Fatima
- School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Roy Karnati
- School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | | | - Pallu Reddanna
- School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
30
|
Simeonov SP, Nunes JPM, Guerra K, Kurteva VB, Afonso CAM. Synthesis of Chiral Cyclopentenones. Chem Rev 2016; 116:5744-893. [DOI: 10.1021/cr500504w] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Svilen P. Simeonov
- Institute
of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str, bl.9, 1113 Sofia, Bulgaria
| | - João P. M. Nunes
- Department
of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Krassimira Guerra
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Vanya B. Kurteva
- Institute
of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str, bl.9, 1113 Sofia, Bulgaria
| | - Carlos A. M. Afonso
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
31
|
Furumoto H, Nanthirudjanar T, Hirata T, Sugawara T. Dietary Effects of Oxidized Eicosapentaenoic Acid (EPA) and Intact EPA on Hepatic Steatosis Induced by a High-sucrose Diet and Liver-X-receptor α Agonist in Mice. J Oleo Sci 2016; 65:233-40. [PMID: 26876675 DOI: 10.5650/jos.ess15227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have shown that dietary omega-3 polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid (EPA), improve lipid metabolism. The beneficial effects of PUFA-derived oxidation products have been increasingly reported. However, EPA is easily oxidized in food products and in the human body, generating various derivatives of oxidized EPA (oxEPA), such that these oxidation products may partially contribute to EPA's effect. We previously reported that oxEPA was more potent than intact EPA in reducing liver-X-receptor α (LXRα)-induced cellular triacylglycerol (TG) accumulation. However, the in vivo hypolipidemic effects of oxEPA remain unclear. In the present study, we evaluated the effect of oral administration of EPA and oxEPA on hepatic steatosis in mice induced by a high-sucrose diet and a synthetic LXRα agonist, TO-901317. Both EPA and oxEPA reduced TG accumulation in the liver and plasma biomarkers of liver injury. Furthermore, they suppressed the expression of lipogenic genes, but not β-oxidation genes, in a similar pattern as the biomarkers. Our results suggest that oxEPA and intact EPA suppress de novo lipogenesis to ameliorate hepatic steatosis.
Collapse
Affiliation(s)
- Hidehiro Furumoto
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University
| | | | | | | |
Collapse
|
32
|
Serini S, Ottes Vasconcelos R, Fasano E, Calviello G. Epigenetic regulation of gene expression and M2 macrophage polarization as new potential omega-3 polyunsaturated fatty acid targets in colon inflammation and cancer. Expert Opin Ther Targets 2016; 20:843-58. [PMID: 26781478 DOI: 10.1517/14728222.2016.1139085] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION It has become increasingly clear that dietary habits may affect the risk/progression of chronic diseases with a pathogenic inflammatory component, such as colorectal cancer. Considerable attention has been directed toward the ability of nutritional agents to target key molecular pathways involved in these inflammatory-related diseases. AREAS COVERED ω-3 Polyunsaturated fatty acids (PUFA) and their oxidative metabolites have attracted considerable interest as possible anti-inflammatory and anti-cancer agents, especially in areas such as the large bowel, where the influence of orally introduced substances is high and tumors show deranged PUFA patterns. On this basis, we have analyzed pre-clinical findings that have recently revealed new insight into the molecular pathways targeted by ω-3 PUFA. EXPERT OPINION The findings analyzed herein demonstrate that ω-3 PUFA may exert beneficial effects by targeting the epigenetic regulation of gene expression and altering M2 macrophage polarization during the inflammatory response. These mechanisms need to be better explored in the large bowel, and further studies could better clarify their role and the potential of dietary interventions with ω-3 PUFA in the large bowel. The epigenomic mechanism is discussed in view of the potential of ω-3 PUFA to enhance the efficacy of other agents used in the therapy of colorectal cancer.
Collapse
Affiliation(s)
- Simona Serini
- a Institute of General Pathology , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Renata Ottes Vasconcelos
- a Institute of General Pathology , Università Cattolica del Sacro Cuore , Rome , Italy.,b Institute of Biological Sciences , Federal University of Rio Grande - FURG , Rio Grande , Brazil
| | - Elena Fasano
- c Department of Internal Medicine, Unit of Medical Oncology , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Gabriella Calviello
- a Institute of General Pathology , Università Cattolica del Sacro Cuore , Rome , Italy
| |
Collapse
|
33
|
Vu CB, Bemis JE, Benson E, Bista P, Carney D, Fahrner R, Lee D, Liu F, Lonkar P, Milne JC, Nichols AJ, Picarella D, Shoelson A, Smith J, Ting A, Wensley A, Yeager M, Zimmer M, Jirousek MR. Synthesis and Characterization of Fatty Acid Conjugates of Niacin and Salicylic Acid. J Med Chem 2016; 59:1217-31. [PMID: 26784936 DOI: 10.1021/acs.jmedchem.5b01961] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This report describes the synthesis and preliminary biological characterization of novel fatty acid niacin conjugates and fatty acid salicylate conjugates. These molecular entities were created by covalently linking two bioactive molecules, either niacin or salicylic acid, to an omega-3 fatty acid. This methodology allows the simultaneous intracellular delivery of two bioactives in order to elicit a pharmacological response that could not be replicated by administering the bioactives individually or in combination. The fatty acid niacin conjugate 5 has been shown to be an inhibitor of the sterol regulatory element binding protein (SREBP), a key regulator of cholesterol metabolism proteins such as PCSK9, HMG-CoA reductase, ATP citrate lyase, and NPC1L1. On the other hand, the fatty acid salicylate conjugate 11 has been shown to have a unique anti-inflammatory profile based on its ability to modulate the NF-κB pathway through the intracellular release of the two bioactives.
Collapse
Affiliation(s)
- Chi B Vu
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Jean E Bemis
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Ericka Benson
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Pradeep Bista
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - David Carney
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Richard Fahrner
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Diana Lee
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Feng Liu
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Pallavi Lonkar
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Jill C Milne
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Andrew J Nichols
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Dominic Picarella
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Adam Shoelson
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Jesse Smith
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Amal Ting
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Allison Wensley
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Maisy Yeager
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Michael Zimmer
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Michael R Jirousek
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
34
|
Komoda T, Saeki N, Koseki Y, Kiyota H. 12T061A and 12T061C, two new julichrome family compounds, as radical scavengers from Streptomyces sp. J GEN APPL MICROBIOL 2016; 62:1-6. [DOI: 10.2323/jgam.62.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Toshikazu Komoda
- School of Food, Agricultural, and Environmental Sciences, Miyagi University
| | - Naoko Saeki
- School of Food, Agricultural, and Environmental Sciences, Miyagi University
| | - Yoshitaka Koseki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
| | - Hiromasa Kiyota
- Graduate School of Environmental and Life Science, Okayama University
| |
Collapse
|
35
|
Endogenous Generation and Signaling Actions of Omega-3 Fatty Acid Electrophilic Derivatives. BIOMED RESEARCH INTERNATIONAL 2015; 2015:501792. [PMID: 26339618 PMCID: PMC4538325 DOI: 10.1155/2015/501792] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 12/28/2022]
Abstract
Dietary omega-3 polyunsaturated fatty acids (PUFAs) are beneficial for a number of conditions ranging from cardiovascular disease to chronic airways disorders, neurodegeneration, and cancer. Growing evidence has shown that bioactive oxygenated derivatives are responsible for transducing these salutary effects. Electrophilic oxo-derivatives of omega-3 PUFAs represent a class of oxidized derivatives that can be generated via enzymatic and nonenzymatic pathways. Inflammation and oxidative stress favor the formation of these signaling species to promote the resolution of inflammation within a fine autoregulatory loop. Endogenous generation of electrophilic oxo-derivatives of omega-3 PUFAs has been observed in in vitro and ex vivo human models and dietary supplementation of omega-3 PUFAs has been reported to increase their formation. Due to the presence of an α,β-unsaturated ketone moiety, these compounds covalently and reversibly react with nucleophilic residues on target proteins triggering the activation of cytoprotective pathways, including the Nrf2 antioxidant response, the heat shock response, and the peroxisome proliferator activated receptor γ (PPARγ) and suppressing the NF-κB proinflammatory pathway. The endogenous nature of electrophilic oxo-derivatives of omega-3 PUFAs combined with their ability to simultaneously activate multiple cytoprotective pathways has made these compounds attractive for the development of new therapies for the treatment of chronic disorders and acute events characterized by inflammation and oxidative stress.
Collapse
|
36
|
Non-enzymatic cyclic oxygenated metabolites of omega-3 polyunsaturated fatty acid: Bioactive drugs? Biochimie 2015; 120:56-61. [PMID: 26112019 DOI: 10.1016/j.biochi.2015.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/13/2015] [Indexed: 12/21/2022]
Abstract
Non-enzymatic oxygenated metabolites derived from polyunsaturated fatty acids (PUFA) are formed in vivo through free radical reaction under oxidative stress conditions. It has been over twenty-five years since the discovery of cyclic oxygenated metabolites derived from arachidonic acid (20:4 n-6), the isoprostanes, and since then they have become biomarkers of choice for assessing in vivo OS in humans and animals. Chemical synthesis of n-3 PUFA isoprostanoids such as F3-Isoprostanes from eicosapentaenoic acid (20:5 n-3), and F4-Neuroprostanes from docosahexaenoic acid (22:6 n-6) unravelled novel and unexpected biological properties of such omega-3 non-enzymatic cyclic metabolites as highlighted in this review.
Collapse
|
37
|
Guo L, Chen Z, Amarnath V, Yancey PG, Van Lenten BJ, Savage JR, Fazio S, Linton MF, Davies SS. Isolevuglandin-type lipid aldehydes induce the inflammatory response of macrophages by modifying phosphatidylethanolamines and activating the receptor for advanced glycation endproducts. Antioxid Redox Signal 2015; 22:1633-45. [PMID: 25751734 PMCID: PMC4485367 DOI: 10.1089/ars.2014.6078] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIMS Increased lipid peroxidation occurs in many conditions associated with inflammation. Because lipid peroxidation produces lipid aldehydes that can induce inflammatory responses through unknown mechanisms, elucidating these mechanisms may lead to development of better treatments for inflammatory diseases. We recently demonstrated that exposure of cultured cells to lipid aldehydes such as isolevuglandins (IsoLG) results in the modification of phosphatidylethanolamine (PE). We therefore sought to determine (i) whether PE modification by isolevuglandins (IsoLG-PE) occurred in vivo, (ii) whether IsoLG-PE stimulated the inflammatory responses of macrophages, and (iii) the identity of receptors mediating the inflammatory effects of IsoLG-PE. RESULTS IsoLG-PE levels were elevated in plasma of patients with familial hypercholesterolemia and in the livers of mice fed a high-fat diet to induce obesity and hepatosteatosis. IsoLG-PE potently stimulated nuclear factor kappa B (NFκB) activation and expression of inflammatory cytokines in macrophages. The effects of IsoLG-PE were blocked by the soluble form of the receptor for advanced glycation endproducts (sRAGE) and by RAGE antagonists. Furthermore, macrophages derived from the bone marrow of Ager null mice failed to express inflammatory cytokines in response to IsoLG-PE to the same extent as macrophages from wild-type mice. INNOVATION These studies are the first to identify IsoLG-PE as a mediator of macrophage activation and a specific receptor, RAGE, which mediates its biological effects. CONCLUSION PE modification by IsoLG forms RAGE ligands that activate macrophages, so that the increased IsoLG-PE generated by high circulating cholesterol levels or high-fat diet may play a role in the inflammation associated with these conditions.
Collapse
Affiliation(s)
- Lilu Guo
- 1Division of Clinical Pharmacology, Vanderbilt University at Nashville, Nashville, Tennessee
| | - Zhongyi Chen
- 1Division of Clinical Pharmacology, Vanderbilt University at Nashville, Nashville, Tennessee
| | | | - Patricia G Yancey
- 3Department of Medicine, Vanderbilt University at Nashville, Nashville, Tennessee
| | - Brian J Van Lenten
- 4Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | | | - Sergio Fazio
- 6Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - MacRae F Linton
- 3Department of Medicine, Vanderbilt University at Nashville, Nashville, Tennessee.,7Department of Pharmacology, Vanderbilt University at Nashville, Nashville, Tennessee
| | - Sean S Davies
- 1Division of Clinical Pharmacology, Vanderbilt University at Nashville, Nashville, Tennessee.,7Department of Pharmacology, Vanderbilt University at Nashville, Nashville, Tennessee.,8Vanderbilt Institute of Chemical Biology, Vanderbilt University at Nashville, Nashville, Tennessee
| |
Collapse
|
38
|
Yeh A, Kruse SE, Marcinek DJ, Gallagher EP. Effect of omega-3 fatty acid oxidation products on the cellular and mitochondrial toxicity of BDE 47. Toxicol In Vitro 2015; 29:672-80. [PMID: 25659769 PMCID: PMC4479582 DOI: 10.1016/j.tiv.2015.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 12/08/2014] [Accepted: 01/25/2015] [Indexed: 01/01/2023]
Abstract
High levels of the flame retardant 2,2',4,4'-tetrabromodiphenyl ether (BDE 47) have been detected in Pacific salmon sampled near urban areas, raising concern over the safety of salmon consumption. However, salmon fillets also contain the antioxidants eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), whose oxidation products induce cellular antioxidant responses. Because oxidative stress is a mechanism of BDE 47 toxicity, we hypothesized that oxidized EPA and DHA can ameliorate the cellular and mitochondrial toxicity of BDE 47. HepG2 cells were treated with a mixture of oxidized EPA and DHA (oxEPA/oxDHA) at a ratio relevant to salmon consumption (1.5/1 oxEPA/oxDHA) followed by exposure to 100 μM BDE 47. Pretreatment with oxEPA/oxDHA for 12 h prior to BDE 47 exposure prevented BDE 47-mediated depletion of glutathione, and increased expression of antioxidant response genes. oxEPA/oxDHA also reduced the level of reactive oxygen species production by BDE 47. The oxEPA/oxDHA antioxidant responses were associated with partial protection against BDE 47-induced loss of viability and also mitochondrial membrane potential. Mitochondrial electron transport system functional analysis revealed extensive inhibition of State 3 respiration and maximum respiratory capacity by BDE 47 were partially reversed by oxEPA/oxDHA. Our findings indicate that the antioxidant effects of oxEPA/oxDHA protect against short exposures to BDE 47, including a protective role of these compounds on maintaining cellular and mitochondrial function.
Collapse
Affiliation(s)
- Andrew Yeh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105-6099, United States
| | - Shane E Kruse
- Department of Radiology, University of Washington Medical School, Seattle, WA 98195, United States
| | - David J Marcinek
- Department of Radiology, University of Washington Medical School, Seattle, WA 98195, United States
| | - Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105-6099, United States.
| |
Collapse
|
39
|
Medina S, Miguel-Elízaga ID, Oger C, Galano JM, Durand T, Martínez-Villanueva M, Castillo MLGD, Villegas-Martínez I, Ferreres F, Martínez-Hernández P, Gil-Izquierdo Á. Dihomo-isoprostanes-nonenzymatic metabolites of AdA-are higher in epileptic patients compared to healthy individuals by a new ultrahigh pressure liquid chromatography-triple quadrupole-tandem mass spectrometry method. Free Radic Biol Med 2015; 79:154-63. [PMID: 25464272 DOI: 10.1016/j.freeradbiomed.2014.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/15/2014] [Accepted: 11/05/2014] [Indexed: 11/25/2022]
Abstract
Oxidative stress is a biochemical state in which reactive oxygen species are generated and it has been associated with pathological states including epilepsy. Therein, neuroprostanes (NeuroPs) and dihomo-isoprostanes (Dihomo-IsoPs)-a series of compounds formed nonenzymatically through free radical-induced DHA, n-6 DPA, and AdA peroxidation-are implicated in the pathophysiological status of various human neurological diseases. A new, robust, and selective analytical method for the determination of 10 NeuroPs/Dihomo-IsoPs in human urine, using solid-phase extraction and UHPLC-QqQ-MS/MS in the multiple reaction monitoring mode (using a negative electrospray ionization interface), was developed. Nine NeuroPs/Dihomo-IsoPs were identified in 15 epileptic patients, matched with healthy volunteers. Among them, 17-F2t-Dihomo-IsoP, Ent-7(R)-7-F2t-Dihomo-IsoP, and Ent-7-epi-7-F2t-Dihomo-IsoP, derived from adrenic acid (AdA), were significantly higher in epileptic patients than in healthy volunteers. The validated method provided a high-throughput assay with a limit of detection and limit of quantification for each analyte of 0.10-5.90ngmL(-1) and 0.15-11.81ngmL(-1), respectively. The intra- and interday variations were lower than 14%. Dihomo-IsoPs have been considered as potential markers of epilepsy for the first time and their measurement may increase the understanding of the role of oxidative stress in neurological diseases, in intra vitam studies. The present study highlights a potential role of Dihomo-IsoPs as biomarkers in persons with epilepsy, though its mechanisms and possible implications should be the subject of further investigations.
Collapse
Affiliation(s)
- Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| | | | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-University Montpellier I and II-ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-University Montpellier I and II-ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-University Montpellier I and II-ENSCM, Faculty of Pharmacy, Montpellier, France
| | | | | | | | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| | | | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain.
| |
Collapse
|
40
|
Corsi L, Dongmo BM, Avallone R. Supplementation of omega 3 fatty acids improves oxidative stress in activated BV2 microglial cell line. Int J Food Sci Nutr 2015; 66:293-9. [PMID: 25582176 DOI: 10.3109/09637486.2014.986073] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Many reports have shown promising beneficial effects of long-chain polyunsaturated fatty acids (L-PUFAs) of the omega 3 series in several brain diseases. In the present study, we tested the hypothesis that omega 3 fatty acids supplement reduced pro-inflammatory functions in vitro and in vivo. We demonstrated that a supplement rich in PUFAs (SRP) increased cell viability in a dose-dependent manner suggesting its protective role against lipopolysaccharide (LPS)-induced cell death in BV2 microglial cell line. In the same cultures, the supplement rich in PUFAs reduced the reactive oxygen species (ROS) and nitric oxide (NO) production. A most prominent target for ROS management is the family of peroxisome proliferator-activated receptors (PPARs). The co-treatment with SRP and LPS increased significantly the nuclear immunoreactivity of PPAR-γwhen compared the LPS treatment alone. Moreover, the chronic administration of the SRP in rats, increased the immunoreactivity of the PPAR-γ1 protein confirming its potential neuroprotective effect.
Collapse
Affiliation(s)
- Lorenzo Corsi
- Department of Life Sciences, Modena and Reggio Emilia University , Modena , Italy
| | | | | |
Collapse
|
41
|
Snyder NW, Golin-Bisello F, Gao Y, Blair IA, Freeman BA, Wendell SG. 15-Oxoeicosatetraenoic acid is a 15-hydroxyprostaglandin dehydrogenase-derived electrophilic mediator of inflammatory signaling pathways. Chem Biol Interact 2014; 234:144-53. [PMID: 25450232 DOI: 10.1016/j.cbi.2014.10.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/17/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023]
Abstract
Bioactive lipids govern cellular homeostasis and pathogenic inflammatory processes. Current dogma holds that bioactive lipids, such as prostaglandins and lipoxins, are inactivated by 15-hydroxyprostaglandin dehydrogenase (15PGDH). In contrast, the present results reveal that catabolic "inactivation" of hydroxylated polyunsaturated fatty acids (PUFAs) yields electrophilic α,β-unsaturated ketone derivatives. These endogenously produced species are chemically reactive signaling mediators that induce tissue protective events. Electrophilic fatty acids diversify the proteome through post-translational alkylation of nucleophilic cysteines in key transcriptional regulatory proteins and enzymes that govern cellular metabolic and inflammatory homeostasis. 15PGDH regulates these processes as it is responsible for the formation of numerous electrophilic fatty acids including the arachidonic acid metabolite, 15-oxoeicosatetraenoic acid (15-oxoETE). Herein, the role of 15-oxoETE in regulating signaling responses is reported. In cell cultures, 15-oxoETE activates Nrf2-regulated antioxidant responses (AR) and inhibits NF-κB-mediated pro-inflammatory responses via IKKβ inhibition. Inhibition of glutathione S-transferases using ethacrynic acid incrementally increased the signaling capacity of 15-oxoETE by decreasing 15-oxoETE-GSH adduct formation. This work demonstrates that 15PGDH plays a role in the regulation of cell and tissue homeostasis via the production of electrophilic fatty acid signaling mediators.
Collapse
Affiliation(s)
- Nathaniel W Snyder
- University of Pennsylvania, Department of Pharmacology and Center of Excellence in Environmental Toxicology, Philadelphia, PA 19104, USA
| | - Franca Golin-Bisello
- University of Pittsburgh, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15261, USA
| | - Yang Gao
- University of Pittsburgh, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15261, USA
| | - Ian A Blair
- University of Pennsylvania, Department of Pharmacology and Center of Excellence in Environmental Toxicology, Philadelphia, PA 19104, USA
| | - Bruce A Freeman
- University of Pittsburgh, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15261, USA
| | - Stacy Gelhaus Wendell
- University of Pittsburgh, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15261, USA.
| |
Collapse
|
42
|
Dual anti-oxidant and anti-inflammatory actions of the electrophilic cyclooxygenase-2-derived 17-oxo-DHA in lipopolysaccharide- and cigarette smoke-induced inflammation. Biochim Biophys Acta Gen Subj 2014; 1840:2299-309. [DOI: 10.1016/j.bbagen.2014.02.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/13/2014] [Accepted: 02/24/2014] [Indexed: 01/17/2023]
|
43
|
Ranjan R, Deng J, Chung S, Lee YG, Park GY, Xiao L, Joo M, Christman JW, Karpurapu M. The transcription factor nuclear factor of activated T cells c3 modulates the function of macrophages in sepsis. J Innate Immun 2014; 6:754-64. [PMID: 24970700 DOI: 10.1159/000362647] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 04/03/2014] [Indexed: 01/16/2023] Open
Abstract
The role of the transcription factor nuclear factor of activated T cells (NFAT) was initially identified in T and B cell gene expression, but its role in regulating gene expression in macrophages during sepsis is not known. Our data show that NFATc3 regulates expression of inducible nitric oxide synthase (iNOS) in macrophages stimulated with lipopolysaccharide. Selective inhibition of NFAT by cyclosporine A and a competitive peptide inhibitor 11R-VIVIT inhibited endotoxin-induced expression of iNOS and nitric oxide (NO) release. Macrophages from NFATc3 knockout (KO) mice show reduced iNOS expression and NO release and attenuated bactericidal activity. Gel shift and chromatin immunoprecipitation assays show that endotoxin challenge increases NFATc3 binding to the iNOS promoter, resulting in transcriptional activation of iNOS. The binding of NFATc3 to the iNOS promoter is abolished by NFAT inhibitors. NFATc3 KO mice subjected to sepsis show that NFATc3 is necessary for bacterial clearance in mouse lungs during sepsis. Our study demonstrates for the first time that NFATc3 is necessary for macrophage iNOS expression during sepsis, which is essential for containment of bacterial infections.
Collapse
Affiliation(s)
- Ravi Ranjan
- Department of Medicine and Section of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois, Chicago, Ill., USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Petriello MC, Newsome B, Hennig B. Influence of nutrition in PCB-induced vascular inflammation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:6410-8. [PMID: 23417440 PMCID: PMC3686851 DOI: 10.1007/s11356-013-1549-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/04/2013] [Indexed: 04/15/2023]
Abstract
The nutritional profile of an individual can influence the toxicity of persistent environmental toxicants. Polychlorinated biphenyls (PCBs), prevalent environmental pollutants, are highly lipid-soluble toxic compounds that biomagnify through trophic levels and pose cancer, neurocognitive, and atherosclerotic risk to human populations. There is a growing body of knowledge that PCBs can initiate inflammatory responses in vivo, and this inflammation can be either exacerbated or ameliorated by nutrition. Data indicate that diets high in certain dietary lipids such as omega-6 fatty acids can worsen PCB-induced vascular toxicity while diets enriched with bioactive food components such as polyphenols and omega-3 polyunsaturated fatty acids can improve the toxicant-induced inflammation. There is evidence that bioactive nutrients protect through multiple cell signaling pathways, but we have shown that lipid raft caveolae and the antioxidant defense controller nuclear factor (erythroid-derived 2)-like 2 (Nrf2) both play a predominant role in nutritional modulation of PCB-induced vascular toxicity. Interestingly, there appears to be an intimate cross-talk between caveolae-related proteins and cellular Nrf2, and focusing on the use of specific bioactive food components that simultaneously alter both pathways may produce a more effective and efficient cytoprotective response to toxicant exposure. The use of nutrition as a protective tool is an economically beneficial means to address the toxicity of persistent environmental toxicants and may become a sensible means to protect human populations from PCB-induced vascular inflammation and associated chronic diseases.
Collapse
Affiliation(s)
- Michael C. Petriello
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0200
- University of Kentucky SRP Center, University of Kentucky, Lexington, KY 40536-0200
| | - Bradley Newsome
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055
- University of Kentucky SRP Center, University of Kentucky, Lexington, KY 40536-0200
| | - Bernhard Hennig
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0200
- University of Kentucky SRP Center, University of Kentucky, Lexington, KY 40536-0200
- Corresponding author: Kentucky SRP Center, Room 599, Wethington Building, 900 South Limestone Street, University of Kentucky, Lexington, KY 40536-0200, USA. Phone: (859) 218-1343; Fax: (859) 257-1811;
| |
Collapse
|
45
|
Wang J, Shi Y, Zhang L, Zhang F, Hu X, Zhang W, Leak RK, Gao Y, Chen L, Chen J. Omega-3 polyunsaturated fatty acids enhance cerebral angiogenesis and provide long-term protection after stroke. Neurobiol Dis 2014; 68:91-103. [PMID: 24794156 DOI: 10.1016/j.nbd.2014.04.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/11/2014] [Accepted: 04/21/2014] [Indexed: 11/29/2022] Open
Abstract
Stroke is a devastating neurological disorder and one of the leading causes of death and serious disability. After cerebral ischemia, revascularization in the ischemic boundary zone provides nutritive blood flow as well as various growth factors to promote the survival and activity of neurons and neural progenitor cells. Enhancement of angiogenesis and the resulting improvement of cerebral microcirculation are key restorative mechanisms and represent an important therapeutic strategy for ischemic stroke. In the present study, we tested the hypothesis that post-stroke angiogenesis would be enhanced by omega-3 polyunsaturated fatty acids (n-3 PUFAs), a major component of dietary fish oil. To this end, we found that transgenic fat-1 mice that overproduce n-3 PUFAs exhibited long-term behavioral and histological protection against transient focal cerebral ischemia (tFCI). Importantly, fat-1 transgenic mice also exhibited robust improvements in revascularization and angiogenesis compared to wild type littermates, suggesting a potential role for n-3 fatty acids in post-stroke cerebrovascular remodeling. Mechanistically, n-3 PUFAs induced upregulation of angiopoietin 2 (Ang 2) in astrocytes after tFCI and stimulated extracellular Ang 2 release from cultured astrocytes after oxygen and glucose deprivation. Ang 2 facilitated endothelial proliferation and barrier formation in vitro by potentiating the effects of VEGF on phospholipase Cγ1 and Src signaling. Consistent with these findings, blockade of Src activity in post-stroke fat-1 mice impaired n-3 PUFA-induced angiogenesis and exacerbated long-term neurological outcomes. Taken together, our findings strongly suggest that n-3 PUFA supplementation is a potential angiogenic treatment capable of augmenting brain repair and improving long-term functional recovery after cerebral ischemia.
Collapse
Affiliation(s)
- Jiayin Wang
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yejie Shi
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lili Zhang
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Feng Zhang
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Wenting Zhang
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Rehana K Leak
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ling Chen
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Department of Neurosurgery and PLA Institute of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China.
| | - Jun Chen
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
46
|
Generation and dietary modulation of anti-inflammatory electrophilic omega-3 fatty acid derivatives. PLoS One 2014; 9:e94836. [PMID: 24736647 PMCID: PMC3988126 DOI: 10.1371/journal.pone.0094836] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/19/2014] [Indexed: 01/07/2023] Open
Abstract
Dietary ω-3 polyunsaturated fatty acids (PUFAs) decrease cardiovascular risk via suppression of inflammation. The generation of electrophilic α,β-unsaturated ketone derivatives of the ω-3 PUFAs docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) in activated human macrophages is catalyzed by cyclooxygenase-2 (Cox-2). These derivatives are potent pleiotropic anti-inflammatory signaling mediators that act via mechanisms including the activation of Nrf2-dependent phase 2 gene expression and suppression of pro-inflammatory NF-κB-driven gene expression. Herein, the endogenous generation of ω-3 PUFAs electrophilic ketone derivatives and their hydroxy precursors was evaluated in human neutrophils. In addition, their dietary modulation was assessed through a randomized clinical trial. Methods Endogenous generation of electrophilic omega-3 PUFAs and their hydroxy precursors was evaluated by mass spectrometry in neutrophils isolated from healthy subjects, both at baseline and upon stimulation with calcium ionophore. For the clinical trial, participants were healthy adults 30–55 years of age with a reported EPA+DHA consumption of ≤300 mg/day randomly assigned to parallel groups receiving daily oil capsule supplements for a period of 4 months containing either 1.4 g of EPA+DHA (active condition, n = 24) or identical appearing soybean oil (control condition, n = 21). Participants and laboratory technicians remained blinded to treatment assignments. Results 5-lypoxygenase-dependent endogenous generation of 7-oxo-DHA, 7-oxo-DPA and 5-oxo-EPA and their hydroxy precursors is reported in human neutrophils stimulated with calcium ionophore and phorbol 12-myristate 13-acetate (PMA). Dietary EPA+DHA supplementation significantly increased the formation of 7-oxo-DHA and 5-oxo-EPA, with no significant modulation of arachidonic acid (AA) metabolite levels. Conclusions The endogenous detection of these electrophilic ω-3 fatty acid ketone derivatives supports the precept that the benefit of ω-3 PUFA-rich diets can be attributed to the generation of electrophilic oxygenated metabolites that transduce anti-inflammatory actions rather than the suppression of pro-inflammatory AA metabolites. Trial Registration ClinicalTrials.gov NCT00663871
Collapse
|
47
|
Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1. J Neurosci 2014; 34:1903-15. [PMID: 24478369 DOI: 10.1523/jneurosci.4043-13.2014] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ischemic stroke is a debilitating clinical disorder that affects millions of people, yet lacks effective neuroprotective treatments. Fish oil is known to exert beneficial effects against cerebral ischemia. However, the underlying protective mechanisms are not fully understood. The present study tests the hypothesis that omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate ischemic neuronal injury by activating nuclear factor E2-related factor 2 (Nrf2) and upregulating heme oxygenase-1 (HO-1) in both in vitro and in vivo models. We observed that pretreatment of rat primary neurons with docosahexaenoic acid (DHA) significantly reduced neuronal death following oxygen-glucose deprivation. This protection was associated with increased Nrf2 activation and HO-1 upregulation. Inhibition of HO-1 activity with tin protoporphyrin IX attenuated the protective effects of DHA. Further studies showed that 4-hydroxy-2E-hexenal (4-HHE), an end-product of peroxidation of n-3 PUFAs, was a more potent Nrf2 inducer than 4-hydroxy-2E-nonenal derived from n-6 PUFAs. In an in vivo setting, transgenic mice overexpressing fatty acid metabolism-1, an enzyme that converts n-6 PUFAs to n-3 PUFAs, were remarkably resistant to focal cerebral ischemia compared with their wild-type littermates. Regular mice fed with a fish oil-enhanced diet also demonstrated significant resistance to ischemia compared with mice fed with a regular diet. As expected, the protection was associated with HO-1 upregulation, Nrf2 activation, and 4-HHE generation. Together, our data demonstrate that n-3 PUFAs are highly effective in protecting the brain, and that the protective mechanisms involve Nrf2 activation and HO-1 upregulation by 4-HHE. Further investigation of n-3 PUFA neuroprotective mechanisms may accelerate the development of stroke therapies.
Collapse
|
48
|
Gladine C, Newman JW, Durand T, Pedersen TL, Galano JM, Demougeot C, Berdeaux O, Pujos-Guillot E, Mazur A, Comte B. Lipid profiling following intake of the omega 3 fatty acid DHA identifies the peroxidized metabolites F4-neuroprostanes as the best predictors of atherosclerosis prevention. PLoS One 2014; 9:e89393. [PMID: 24558496 PMCID: PMC3928438 DOI: 10.1371/journal.pone.0089393] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/20/2014] [Indexed: 12/13/2022] Open
Abstract
The anti-atherogenic effects of omega 3 fatty acids, namely eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) are well recognized but the impact of dietary intake on bioactive lipid mediator profiles remains unclear. Such a profiling effort may offer novel targets for future studies into the mechanism of action of omega 3 fatty acids. The present study aimed to determine the impact of DHA supplementation on the profiles of polyunsaturated fatty acids (PUFA) oxygenated metabolites and to investigate their contribution to atherosclerosis prevention. A special emphasis was given to the non-enzymatic metabolites knowing the high susceptibility of DHA to free radical-mediated peroxidation and the increased oxidative stress associated with plaque formation. Atherosclerosis prone mice (LDLR−/−) received increasing doses of DHA (0, 0.1, 1 or 2% of energy) during 20 weeks leading to a dose-dependent reduction of atherosclerosis (R2 = 0.97, p = 0.02), triglyceridemia (R2 = 0.97, p = 0.01) and cholesterolemia (R2 = 0.96, p<0.01). Targeted lipidomic analyses revealed that both the profiles of EPA and DHA and their corresponding oxygenated metabolites were substantially modulated in plasma and liver. Notably, the hepatic level of F4-neuroprostanes, a specific class of DHA peroxidized metabolites, was strongly correlated with the hepatic DHA level. Moreover, unbiased statistical analysis including correlation analyses, hierarchical cluster and projection to latent structure discriminate analysis revealed that the hepatic level of F4-neuroprostanes was the variable most negatively correlated with the plaque extent (p<0.001) and along with plasma EPA-derived diols was an important mathematical positive predictor of atherosclerosis prevention. Thus, oxygenated n-3 PUFAs, and F4-neuroprostanes in particular, are potential biomarkers of DHA-associated atherosclerosis prevention. While these may contribute to the anti-atherogenic effects of DHA, further in vitro investigations are needed to confirm such a contention and to decipher the molecular mechanisms of action.
Collapse
Affiliation(s)
- Cécile Gladine
- UMR1019 Unité de Nutrition Humaine (UNH), INRA, CRNH Auvergne, Clermont Université, Université d’Auvergne, Clermont-Ferrand, France
| | - John W. Newman
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, California, United States of America
- Department of Nutrition, University of California, Davis, California, United States of America
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR CNRS 5247, Universités de Montpellier I et II, France, Montpellier, France
| | - Theresa L. Pedersen
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, California, United States of America
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR CNRS 5247, Universités de Montpellier I et II, France, Montpellier, France
| | - Céline Demougeot
- EA 4267 Fonctions et Dysfonctions epithéliales, University of Franche-Comté, Besançon, France
| | - Olivier Berdeaux
- UMR6265 Centre des Sciences du Goût et de l’Alimentation, CNRS, Dijon, France
- UMR1324 Centre des Sciences du Goût et de l’Alimentation, INRA, Dijon, France
- UMR Centre des Sciences du Goût et de l’Alimentation, Université de Bourgogne, Dijon, France
| | - Estelle Pujos-Guillot
- UMR1019 Unité de Nutrition Humaine (UNH), INRA, CRNH Auvergne, Clermont Université, Université d’Auvergne, Clermont-Ferrand, France
- UMR 1019, Plateforme d’Exploration du Métabolisme, INRA, Clermont-Ferrand, France
| | - Andrzej Mazur
- UMR1019 Unité de Nutrition Humaine (UNH), INRA, CRNH Auvergne, Clermont Université, Université d’Auvergne, Clermont-Ferrand, France
| | - Blandine Comte
- UMR1019 Unité de Nutrition Humaine (UNH), INRA, CRNH Auvergne, Clermont Université, Université d’Auvergne, Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|
49
|
Porta A, Brunoldi E, Zanoni G, Vidari G. First total synthesis of labeled EPA and DHA-derived A-type cyclopentenone isoprostanoids: [D2]-15-A3t-IsoP and [D2]-17-A4t-NeuroP. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.12.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Delmastro-Greenwood M, Freeman BA, Wendell SG. Redox-dependent anti-inflammatory signaling actions of unsaturated fatty acids. Annu Rev Physiol 2013; 76:79-105. [PMID: 24161076 DOI: 10.1146/annurev-physiol-021113-170341] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unsaturated fatty acids are metabolized to reactive products that can act as pro- or anti-inflammatory signaling mediators. Electrophilic fatty acid species, including nitro- and oxo-containing fatty acids, display salutary anti-inflammatory and metabolic actions. Electrophilicity can be conferred by both enzymatic and oxidative reactions, via the homolytic addition of nitrogen dioxide to a double bond or via the formation of α,β-unsaturated carbonyl and epoxide substituents. The endogenous formation of electrophilic fatty acids is significant and influenced by diet, metabolic, and inflammatory reactions. Transcriptional regulatory proteins and enzymes can sense the redox status of the surrounding environment upon electrophilic fatty acid adduction of functionally significant, nucleophilic cysteines. Through this covalent and often reversible posttranslational modification, gene expression and metabolic responses are induced. At low concentrations, the pleiotropic signaling actions that are regulated by these protein targets suggest that some classes of electrophilic lipids may be useful for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Meghan Delmastro-Greenwood
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; , ,
| | | | | |
Collapse
|