1
|
Cyanobacterial membrane dynamics in the light of eukaryotic principles. Biosci Rep 2023; 43:232406. [PMID: 36602300 PMCID: PMC9950537 DOI: 10.1042/bsr20221269] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Intracellular compartmentalization is a hallmark of eukaryotic cells. Dynamic membrane remodeling, involving membrane fission/fusion events, clearly is crucial for cell viability and function, as well as membrane stabilization and/or repair, e.g., during or after injury. In recent decades, several proteins involved in membrane stabilization and/or dynamic membrane remodeling have been identified and described in eukaryotes. Yet, while typically not having a cellular organization as complex as eukaryotes, also bacteria can contain extra internal membrane systems besides the cytoplasmic membranes (CMs). Thus, also in bacteria mechanisms must have evolved to stabilize membranes and/or trigger dynamic membrane remodeling processes. In fact, in recent years proteins, which were initially defined being eukaryotic inventions, have been recognized also in bacteria, and likely these proteins shape membranes also in these organisms. One example of a complex prokaryotic inner membrane system is the thylakoid membrane (TM) of cyanobacteria, which contains the complexes of the photosynthesis light reaction. Cyanobacteria are evolutionary closely related to chloroplasts, and extensive remodeling of the internal membrane systems has been observed in chloroplasts and cyanobacteria during membrane biogenesis and/or at changing light conditions. We here discuss common principles guiding eukaryotic and prokaryotic membrane dynamics and the proteins involved, with a special focus on the dynamics of the cyanobacterial TMs and CMs.
Collapse
|
2
|
Ahn HJ, Ahn Y, Kurade MB, Patil SM, Ha GS, Bankole PO, Khan MA, Chang SW, Abdellattif MH, Yadav KK, Jeon BH. The comprehensive effects of aluminum oxide nanoparticles on the physiology of freshwater microalga Scenedesmus obliquus and it's phycoremediation performance for the removal of sulfacetamide. ENVIRONMENTAL RESEARCH 2022; 215:114314. [PMID: 36116497 DOI: 10.1016/j.envres.2022.114314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Nanoparticles are inevitable byproducts of modern industry. However, the environmental impacts arising from industrial applications of nanoparticles are largely under-reported. This study evaluated the ecotoxicological effects of aluminum oxide nanoparticles (Al2O3NP) and its influence on sulfacetamide (SA) biodegradation by a freshwater microalga, Scenedesmus obliquus. Although Al2O3NP showed limited toxicity effect on S. obliquus, we observed the toxicity attenuation aspect of Al2O3NP in a mixture of sulfacetamide on microalgae. The addition of 100 mg L-1 of Al2O3NP and 1 mg L-1 of SA reduced total chlorophyll by 23.3% and carotenoids by 21.6% in microalgal compared to control. The gene expression study demonstrated that ATPF0C, Lhcb1, HydA, and psbA genes responsible for ATP synthesis and the photosynthetic system were significantly downregulated, while the Tas gene, which plays a major role in biodegradation of organic xenobiotic chemicals, was significantly upregulated at 1 and 100 mg L-1 of Al2O3NP. The S. obliquus removed 16.8% of SA at 15 mg L-1 in 14 days. However, the removal was slightly enhanced (18.8%) at same concentration of SA in the presence of 50 mg L-1 Al2O3NP. This result proves the stability of sulfacetamide biodegradation capacity of S. obliquus in the presence of Al2O3NP co-contamination. The metabolic analysis showed that SA was degraded into simpler byproducts such as sulfacarbamide, sulfaguanidine, sulfanilamide, 4-(methyl sulfonyl)aniline, and N-hydroxy-benzenamine which have lower ecotoxicity than SA, demonstrating that the ecotoxicity of sulfacetamide has significantly decreased after the microalgal degradation, suggesting the environmental feasibility of microalgae-mediated wastewater technology. This study provides a deeper understanding of the impact of nanoparticles such as Al2O3NP on aquatic ecosystems.
Collapse
Affiliation(s)
- Hyun-Jo Ahn
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yongtae Ahn
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Swapnil M Patil
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Geon-Soo Ha
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Paul O Bankole
- Department of Pure & Applied Botany, Federal University of Agriculture, Abeokuta, Ogun State, 110124, Nigeria
| | - Moonis A Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Magda H Abdellattif
- Department of Chemistry, College of Science, Taif University, Al-Haweiah, P. O. Box 11099, Taif, 21944, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
3
|
Xiao Z, Huang C, Ge H, Wang Y, Duan X, Wang G, Zheng L, Dong J, Huang X, Zhang Y, An H, Xu W, Wang Y. Proximity Labeling Facilitates Defining the Proteome Neighborhood of Photosystem II Oxygen Evolution Complex in a Model Cyanobacterium. Mol Cell Proteomics 2022; 21:100440. [PMID: 36356940 PMCID: PMC9764255 DOI: 10.1016/j.mcpro.2022.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Ascorbate peroxidase (APEX)-based proximity labeling coupled with mass spectrometry has a great potential for spatiotemporal identification of proteins proximal to a protein complex of interest. Using this approach is feasible to define the proteome neighborhood of important protein complexes in a popular photosynthetic model cyanobacterium Synechocystis sp. PCC6803 (hereafter named as Synechocystis). To this end, we developed a robust workflow for APEX2-based proximity labeling in Synechocystis and used the workflow to identify proteins proximal to the photosystem II (PS II) oxygen evolution complex (OEC) through fusion APEX2 with a luminal OEC subunit, PsbO. In total, 38 integral membrane proteins (IMPs) and 93 luminal proteins were identified as proximal to the OEC. A significant portion of these proteins are involved in PS II assembly, maturation, and repair, while the majority of the rest were not previously implicated with PS II. The IMPs include subunits of PS II and cytochrome b6/f, but not of photosystem I (except for PsaL) and ATP synthases, suggesting that the latter two complexes are spatially separated from the OEC with a distance longer than the APEX2 labeling radius. Besides, the topologies of six IMPs were successfully predicted because their lumen-facing regions exclusively contain potential APEX2 labeling sites. The luminal proteins include 66 proteins with a predicted signal peptide and 57 proteins localized also in periplasm, providing important targets to study the regulation and selectivity of protein translocation. Together, we not only developed a robust workflow for the application of APEX2-based proximity labeling in Synechocystis and showcased the feasibility to define the neighborhood proteome of an important protein complex with a short radius but also discovered a set of the proteins that potentially interact with and regulate PS II structure and function.
Collapse
Affiliation(s)
- Zhen Xiao
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Duan
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gaojie Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Limin Zheng
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinghui Dong
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hongyu An
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Knoppová J, Sobotka R, Yu J, Bečková M, Pilný J, Trinugroho JP, Csefalvay L, Bína D, Nixon PJ, Komenda J. Assembly of D1/D2 complexes of photosystem II: Binding of pigments and a network of auxiliary proteins. PLANT PHYSIOLOGY 2022; 189:790-804. [PMID: 35134246 PMCID: PMC9157124 DOI: 10.1093/plphys/kiac045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Photosystem II (PSII) is the multi-subunit light-driven oxidoreductase that drives photosynthetic electron transport using electrons extracted from water. To investigate the initial steps of PSII assembly, we used strains of the cyanobacterium Synechocystis sp. PCC 6803 arrested at early stages of PSII biogenesis and expressing affinity-tagged PSII subunits to isolate PSII reaction center assembly (RCII) complexes and their precursor D1 and D2 modules (D1mod and D2mod). RCII preparations isolated using either a His-tagged D2 or a FLAG-tagged PsbI subunit contained the previously described RCIIa and RCII* complexes that differ with respect to the presence of the Ycf39 assembly factor and high light-inducible proteins (Hlips) and a larger complex consisting of RCIIa bound to monomeric PSI. All RCII complexes contained the PSII subunits D1, D2, PsbI, PsbE, and PsbF and the assembly factors rubredoxin A and Ycf48, but we also detected PsbN, Slr1470, and the Slr0575 proteins, which all have plant homologs. The RCII preparations also contained prohibitins/stomatins (Phbs) of unknown function and FtsH protease subunits. RCII complexes were active in light-induced primary charge separation and bound chlorophylls (Chls), pheophytins, beta-carotenes, and heme. The isolated D1mod consisted of D1/PsbI/Ycf48 with some Ycf39 and Phb3, while D2mod contained D2/cytochrome b559 with co-purifying PsbY, Phb1, Phb3, FtsH2/FtsH3, CyanoP, and Slr1470. As stably bound, Chl was detected in D1mod but not D2mod, formation of RCII appears to be important for stable binding of most of the Chls and both pheophytins. We suggest that Chl can be delivered to RCII from either monomeric Photosystem I or Ycf39/Hlips complexes.
Collapse
Affiliation(s)
- Jana Knoppová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Jianfeng Yu
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Martina Bečková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Jan Pilný
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Joko P Trinugroho
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Ladislav Csefalvay
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - David Bína
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice 370 05, Czech Republic
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Josef Komenda
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| |
Collapse
|
5
|
Advances in the Understanding of the Lifecycle of Photosystem II. Microorganisms 2022; 10:microorganisms10050836. [PMID: 35630282 PMCID: PMC9145668 DOI: 10.3390/microorganisms10050836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
Photosystem II is a light-driven water-plastoquinone oxidoreductase present in cyanobacteria, algae and plants. It produces molecular oxygen and protons to drive ATP synthesis, fueling life on Earth. As a multi-subunit membrane-protein-pigment complex, Photosystem II undergoes a dynamic cycle of synthesis, damage, and repair known as the Photosystem II lifecycle, to maintain a high level of photosynthetic activity at the cellular level. Cyanobacteria, oxygenic photosynthetic bacteria, are frequently used as model organisms to study oxygenic photosynthetic processes due to their ease of growth and genetic manipulation. The cyanobacterial PSII structure and function have been well-characterized, but its lifecycle is under active investigation. In this review, advances in studying the lifecycle of Photosystem II in cyanobacteria will be discussed, with a particular emphasis on new structural findings enabled by cryo-electron microscopy. These structural findings complement a rich and growing body of biochemical and molecular biology research into Photosystem II assembly and repair.
Collapse
|
6
|
Inagaki N. Processing of D1 Protein: A Mysterious Process Carried Out in Thylakoid Lumen. Int J Mol Sci 2022; 23:2520. [PMID: 35269663 PMCID: PMC8909930 DOI: 10.3390/ijms23052520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
In oxygenic photosynthetic organisms, D1 protein, a core subunit of photosystem II (PSII), displays a rapid turnover in the light, in which D1 proteins are distinctively damaged and immediately removed from the PSII. In parallel, as a repair process, D1 proteins are synthesized and simultaneously assembled into the PSII. On this flow, the D1 protein is synthesized as a precursor with a carboxyl-terminal extension, and the D1 processing is defined as a step for proteolytic removal of the extension by a specific protease, CtpA. The D1 processing plays a crucial role in appearance of water-oxidizing capacity of PSII, because the main chain carboxyl group at carboxyl-terminus of the D1 protein, exposed by the D1 processing, ligates a manganese and a calcium atom in the Mn4CaO5-cluster, a special equipment for water-oxidizing chemistry of PSII. This review focuses on the D1 processing and discusses it from four angles: (i) Discovery of the D1 processing and recognition of its importance: (ii) Enzyme involved in the D1 processing: (iii) Efforts for understanding significance of the D1 processing: (iv) Remaining mysteries in the D1 processing. Through the review, I summarize the current status of our knowledge on and around the D1 processing.
Collapse
Affiliation(s)
- Noritoshi Inagaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8518, Japan
| |
Collapse
|
7
|
Ostermeier M, Heinz S, Hamm J, Zabret J, Rast A, Klingl A, Nowaczyk MM, Nickelsen J. Thylakoid attachment to the plasma membrane in Synechocystis sp. PCC 6803 requires the AncM protein. THE PLANT CELL 2022; 34:655-678. [PMID: 34665262 PMCID: PMC8846179 DOI: 10.1093/plcell/koab253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Thylakoids are the highly specialized internal membrane systems that harbor the photosynthetic electron transport machinery in cyanobacteria and in chloroplasts. In Synechocystis sp. PCC 6803, thylakoid membranes (TMs) are arranged in peripheral sheets that occasionally converge on the plasma membrane (PM) to form thylakoid convergence membranes (TCMs). TCMs connect several thylakoid sheets and form local contact sites called thylapses between the two membrane systems, at which the early steps of photosystem II (PSII) assembly occur. The protein CurT is one of the main drivers of TCM formation known so far. Here, we identify, by whole-genome sequencing of a curT- suppressor strain, the protein anchor of convergence membranes (AncM) as a factor required for the attachment of thylakoids to the PM at thylapses. An ancM- mutant is shown to have a photosynthetic phenotype characterized by reductions in oxygen-evolution rate, PSII accumulation, and PS assembly. Moreover, the ancM- strain exhibits an altered thylakoid ultrastructure with additional sheets and TCMs detached from the PM. By combining biochemical studies with fluorescence and correlative light-electron microscopy-based approaches, we show that AncM is an integral membrane protein located in biogenic TCMs that form thylapses. These data suggest an antagonistic function of AncM and CurT in shaping TM ultrastructure.
Collapse
Affiliation(s)
- Matthias Ostermeier
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, 82152, Germany
| | - Steffen Heinz
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, 82152, Germany
| | - Julia Hamm
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, 82152, Germany
| | - Jure Zabret
- Department of Plant Biochemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Anna Rast
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, 82152, Germany
| | - Andreas Klingl
- Department of Plant Development, LMU Munich, Planegg-Martinsried, 82152, Germany
| | - Marc M Nowaczyk
- Department of Plant Biochemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Jörg Nickelsen
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
8
|
Gupta TK, Klumpe S, Gries K, Heinz S, Wietrzynski W, Ohnishi N, Niemeyer J, Spaniol B, Schaffer M, Rast A, Ostermeier M, Strauss M, Plitzko JM, Baumeister W, Rudack T, Sakamoto W, Nickelsen J, Schuller JM, Schroda M, Engel BD. Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity. Cell 2021; 184:3643-3659.e23. [PMID: 34166613 DOI: 10.1016/j.cell.2021.05.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/16/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
Vesicle-inducing protein in plastids 1 (VIPP1) is essential for the biogenesis and maintenance of thylakoid membranes, which transform light into life. However, it is unknown how VIPP1 performs its vital membrane-remodeling functions. Here, we use cryo-electron microscopy to determine structures of cyanobacterial VIPP1 rings, revealing how VIPP1 monomers flex and interweave to form basket-like assemblies of different symmetries. Three VIPP1 monomers together coordinate a non-canonical nucleotide binding pocket on one end of the ring. Inside the ring's lumen, amphipathic helices from each monomer align to form large hydrophobic columns, enabling VIPP1 to bind and curve membranes. In vivo mutations in these hydrophobic surfaces cause extreme thylakoid swelling under high light, indicating an essential role of VIPP1 lipid binding in resisting stress-induced damage. Using cryo-correlative light and electron microscopy (cryo-CLEM), we observe oligomeric VIPP1 coats encapsulating membrane tubules within the Chlamydomonas chloroplast. Our work provides a structural foundation for understanding how VIPP1 directs thylakoid biogenesis and maintenance.
Collapse
Affiliation(s)
- Tilak Kumar Gupta
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Sven Klumpe
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Karin Gries
- Molecular Biotechnology and Systems Biology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Steffen Heinz
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | - Wojciech Wietrzynski
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Norikazu Ohnishi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Justus Niemeyer
- Molecular Biotechnology and Systems Biology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Benjamin Spaniol
- Molecular Biotechnology and Systems Biology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Miroslava Schaffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Anna Rast
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | - Matthias Ostermeier
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | - Mike Strauss
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 17C, Canada
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Till Rudack
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum, 44801 Bochum, Germany; Department of Biophysics, Faculty of Biology & Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Jörg Nickelsen
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | - Jan M Schuller
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University Marburg, 35032 Marburg, Germany.
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany.
| | - Benjamin D Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
9
|
Huokko T, Ni T, Dykes GF, Simpson DM, Brownridge P, Conradi FD, Beynon RJ, Nixon PJ, Mullineaux CW, Zhang P, Liu LN. Probing the biogenesis pathway and dynamics of thylakoid membranes. Nat Commun 2021; 12:3475. [PMID: 34108457 PMCID: PMC8190092 DOI: 10.1038/s41467-021-23680-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 05/11/2021] [Indexed: 01/30/2023] Open
Abstract
How thylakoid membranes are generated to form a metabolically active membrane network and how thylakoid membranes orchestrate the insertion and localization of protein complexes for efficient electron flux remain elusive. Here, we develop a method to modulate thylakoid biogenesis in the rod-shaped cyanobacterium Synechococcus elongatus PCC 7942 by modulating light intensity during cell growth, and probe the spatial-temporal stepwise biogenesis process of thylakoid membranes in cells. Our results reveal that the plasma membrane and regularly arranged concentric thylakoid layers have no physical connections. The newly synthesized thylakoid membrane fragments emerge between the plasma membrane and pre-existing thylakoids. Photosystem I monomers appear in the thylakoid membranes earlier than other mature photosystem assemblies, followed by generation of Photosystem I trimers and Photosystem II complexes. Redistribution of photosynthetic complexes during thylakoid biogenesis ensures establishment of the spatial organization of the functional thylakoid network. This study provides insights into the dynamic biogenesis process and maturation of the functional photosynthetic machinery.
Collapse
Affiliation(s)
- Tuomas Huokko
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Tao Ni
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gregory F Dykes
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Deborah M Simpson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Philip Brownridge
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Fabian D Conradi
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Robert J Beynon
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Peter J Nixon
- Department of Life Sciences, Imperial College London, London, UK
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
| |
Collapse
|
10
|
Dahlgren KK, Gates C, Lee T, Cameron JC. Proximity-based proteomics reveals the thylakoid lumen proteome in the cyanobacterium Synechococcus sp. PCC 7002. PHOTOSYNTHESIS RESEARCH 2021; 147:177-195. [PMID: 33280076 PMCID: PMC7880944 DOI: 10.1007/s11120-020-00806-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Cyanobacteria possess unique intracellular organization. Many proteomic studies have examined different features of cyanobacteria to learn about the intracellular structures and their respective functions. While these studies have made great progress in understanding cyanobacterial physiology, the conventional fractionation methods used to purify cellular structures have limitations; specifically, certain regions of cells cannot be purified with existing fractionation methods. Proximity-based proteomics techniques were developed to overcome the limitations of biochemical fractionation for proteomics. Proximity-based proteomics relies on spatiotemporal protein labeling followed by mass spectrometry of the labeled proteins to determine the proteome of the region of interest. We performed proximity-based proteomics in the cyanobacterium Synechococcus sp. PCC 7002 with the APEX2 enzyme, an engineered ascorbate peroxidase. We determined the proteome of the thylakoid lumen, a region of the cell that has remained challenging to study with existing methods, using a translational fusion between APEX2 and PsbU, a lumenal subunit of photosystem II. Our results demonstrate the power of APEX2 as a tool to study the cell biology of intracellular features and processes, including photosystem II assembly in cyanobacteria, with enhanced spatiotemporal resolution.
Collapse
Affiliation(s)
- Kelsey K Dahlgren
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA
- Interdisciplinary Quantitative Biology Program (IQ Biology), BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Colin Gates
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Thomas Lee
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Jeffrey C Cameron
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA.
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA.
- National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
11
|
Eisenhut M. Manganese Homeostasis in Cyanobacteria. PLANTS 2019; 9:plants9010018. [PMID: 31877921 PMCID: PMC7020235 DOI: 10.3390/plants9010018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022]
Abstract
Manganese (Mn) is essential for life on earth. As a catalyst of the water oxidation reaction within photosystem II, the trace metal is responsible for the evolution of virtually all oxygen in the earth’s atmosphere. Mn acts furthermore as an activator or cofactor of numerous enzymes involved in reactive oxygen species scavenging or central and secondary metabolism. While the sufficient supply of oxygenic photosynthetic organisms with Mn is obvious for maintaining photosynthetic activity, the avoidance of cellular Mn overload is also critical. In this review, current knowledge about the Mn homeostasis network in the model cyanobacterium Synechocystis sp. PCC 6803 is presented, including transporters and regulators.
Collapse
Affiliation(s)
- Marion Eisenhut
- Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
12
|
Liu J, Lu Y, Hua W, Last RL. A New Light on Photosystem II Maintenance in Oxygenic Photosynthesis. FRONTIERS IN PLANT SCIENCE 2019; 10:975. [PMID: 31417592 PMCID: PMC6685048 DOI: 10.3389/fpls.2019.00975] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/11/2019] [Indexed: 05/19/2023]
Abstract
Life on earth is sustained by oxygenic photosynthesis, a process that converts solar energy, carbon dioxide, and water into chemical energy and biomass. Sunlight is essential for growth and productivity of photosynthetic organisms. However, exposure to an excessive amount of light adversely affects fitness due to photooxidative damage to the photosynthetic machinery, primarily to the reaction center of the oxygen-evolving photosystem II (PSII). Photosynthetic organisms have evolved diverse photoprotective and adaptive strategies to avoid, alleviate, and repair PSII damage caused by high-irradiance or fluctuating light. Rapid and harmless dissipation of excess absorbed light within antenna as heat, which is measured by chlorophyll fluorescence as non-photochemical quenching (NPQ), constitutes one of the most efficient protective strategies. In parallel, an elaborate repair system represents another efficient strategy to maintain PSII reaction centers in active states. This article reviews both the reaction center-based strategy for robust repair of photodamaged PSII and the antenna-based strategy for swift control of PSII light-harvesting (NPQ). We discuss evolutionarily and mechanistically diverse strategies used by photosynthetic organisms to maintain PSII function for growth and productivity under static high-irradiance light or fluctuating light environments. Knowledge of mechanisms underlying PSII maintenance would facilitate bioengineering photosynthesis to enhance agricultural productivity and sustainability to feed a growing world population amidst climate change.
Collapse
Affiliation(s)
- Jun Liu
- Department of Functional Genomics and Molecular Biology, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- *Correspondence: Jun Liu,
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| | - Wei Hua
- Department of Functional Genomics and Molecular Biology, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Wei Hua
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
13
|
Bersanini L, Allahverdiyeva Y, Battchikova N, Heinz S, Lespinasse M, Ruohisto E, Mustila H, Nickelsen J, Vass I, Aro EM. Dissecting the Photoprotective Mechanism Encoded by the flv4-2 Operon: a Distinct Contribution of Sll0218 in Photosystem II Stabilization. PLANT, CELL & ENVIRONMENT 2017; 40:378-389. [PMID: 27928824 DOI: 10.1111/pce.12872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 06/06/2023]
Abstract
In Synechocystis sp. PCC 6803, the flv4-2 operon encodes the flavodiiron proteins Flv2 and Flv4 together with a small protein, Sll0218, providing photoprotection for Photosystem II (PSII). Here, the distinct roles of Flv2/Flv4 and Sll0218 were addressed, using a number of flv4-2 operon mutants. In the ∆sll0218 mutant, the presence of Flv2/Flv4 rescued PSII functionality as compared with ∆sll0218-flv2, where neither Sll0218 nor the Flv2/Flv4 heterodimer are expressed. Nevertheless, both the ∆sll0218 and ∆sll0218-flv2 mutants demonstrated deficiency in accumulation of PSII proteins suggesting a role for Sll0218 in PSII stabilization, which was further supported by photoinhibition experiments. Moreover, the accumulation of PSII assembly intermediates occurred in Sll0218-lacking mutants. The YFP-tagged Sll0218 protein localized in a few spots per cell at the external side of the thylakoid membrane, and biochemical membrane fractionation revealed clear enrichment of Sll0218 in the PratA-defined membranes, where the early biogenesis steps of PSII occur. Further, the characteristic antenna uncoupling feature of the ∆flv4-2 operon mutants is shown to be related to PSII destabilization in the absence of Sll0218. It is concluded that the Flv2/Flv4 heterodimer supports PSII functionality, while the Sll0218 protein assists PSII assembly and stabilization, including optimization of light harvesting.
Collapse
Affiliation(s)
- Luca Bersanini
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Yagut Allahverdiyeva
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Natalia Battchikova
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Steffen Heinz
- Molecular Plant Sciences, Ludwig-Maximillians-Universität München, Biozentrum, Grosshaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Maija Lespinasse
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Essi Ruohisto
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Henna Mustila
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Jörg Nickelsen
- Molecular Plant Sciences, Ludwig-Maximillians-Universität München, Biozentrum, Grosshaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Imre Vass
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, P.O. Box 521, H-6701, Szeged, Hungary
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
14
|
Heidrich J, Thurotte A, Schneider D. Specific interaction of IM30/Vipp1 with cyanobacterial and chloroplast membranes results in membrane remodeling and eventually in membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:537-549. [PMID: 27693914 DOI: 10.1016/j.bbamem.2016.09.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022]
Abstract
The photosynthetic light reaction takes place within the thylakoid membrane system in cyanobacteria and chloroplasts. Besides its global importance, the biogenesis, maintenance and dynamics of this membrane system are still a mystery. In the last two decades, strong evidence supported the idea that these processes involve IM30, the inner membrane-associated protein of 30kDa, a protein also known as the vesicle-inducing protein in plastids 1 (Vipp1). Even though we just only begin to understand the precise physiological function of this protein, it is clear that interaction of IM30 with membranes is crucial for biogenesis of thylakoid membranes. Here we summarize and discuss forces guiding IM30-membrane interactions, as the membrane properties as well as the oligomeric state of IM30 appear to affect proper interaction of IM30 with membrane surfaces. Interaction of IM30 with membranes results in an altered membrane structure and can finally trigger fusion of adjacent membranes, when Mg2+ is present. Based on recent results, we finally present a model summarizing individual steps involved in IM30-mediated membrane fusion. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Jennifer Heidrich
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Adrien Thurotte
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Dirk Schneider
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany.
| |
Collapse
|
15
|
Weisz DA, Gross ML, Pakrasi HB. The Use of Advanced Mass Spectrometry to Dissect the Life-Cycle of Photosystem II. FRONTIERS IN PLANT SCIENCE 2016; 7:617. [PMID: 27242823 PMCID: PMC4862242 DOI: 10.3389/fpls.2016.00617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/22/2016] [Indexed: 05/23/2023]
Abstract
Photosystem II (PSII) is a photosynthetic membrane-protein complex that undergoes an intricate, tightly regulated cycle of assembly, damage, and repair. The available crystal structures of cyanobacterial PSII are an essential foundation for understanding PSII function, but nonetheless provide a snapshot only of the active complex. To study aspects of the entire PSII life-cycle, mass spectrometry (MS) has emerged as a powerful tool that can be used in conjunction with biochemical techniques. In this article, we present the MS-based approaches that are used to study PSII composition, dynamics, and structure, and review the information about the PSII life-cycle that has been gained by these methods. This information includes the composition of PSII subcomplexes, discovery of accessory PSII proteins, identification of post-translational modifications and quantification of their changes under various conditions, determination of the binding site of proteins not observed in PSII crystal structures, conformational changes that underlie PSII functions, and identification of water and oxygen channels within PSII. We conclude with an outlook for the opportunity of future MS contributions to PSII research.
Collapse
Affiliation(s)
- Daniel A. Weisz
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Himadri B. Pakrasi
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
| |
Collapse
|
16
|
Bao H, Burnap RL. Photoactivation: The Light-Driven Assembly of the Water Oxidation Complex of Photosystem II. FRONTIERS IN PLANT SCIENCE 2016; 7:578. [PMID: 27200051 PMCID: PMC4853684 DOI: 10.3389/fpls.2016.00578] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/14/2016] [Indexed: 05/10/2023]
Abstract
Photosynthetic water oxidation is catalyzed by the Mn4CaO5 cluster of photosystem II. The assembly of the Mn4O5Ca requires light and involves a sequential process called photoactivation. This process harnesses the charge-separation of the photochemical reaction center and the coordination environment provided by the amino acid side chains of the protein to oxidize and organize the incoming manganese ions to form the oxo-bridged metal cluster capable of H2O-oxidation. Although most aspects of this assembly process remain poorly understood, recent advances in the elucidation of the crystal structure of the fully assembled cyanobacterial PSII complex help in the interpretation of the rich history of experiments designed to understand this process. Moreover, recent insights on the structure and stability of the constituent ions of the Mn4CaO5 cluster may guide future experiments. Here we consider the literature and suggest possible models of assembly including one involving single Mn(2+) oxidation site for all Mn but requiring ion relocation.
Collapse
Affiliation(s)
| | - Robert L. Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State UniversityStillwater, OK, USA
| |
Collapse
|
17
|
Rast A, Rengstl B, Heinz S, Klingl A, Nickelsen J. The Role of Slr0151, a Tetratricopeptide Repeat Protein from Synechocystis sp. PCC 6803, during Photosystem II Assembly and Repair. FRONTIERS IN PLANT SCIENCE 2016; 7:605. [PMID: 27200072 PMCID: PMC4853703 DOI: 10.3389/fpls.2016.00605] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/19/2016] [Indexed: 05/29/2023]
Abstract
The assembly and repair of photosystem II (PSII) is facilitated by a variety of assembly factors. Among those, the tetratricopeptide repeat (TPR) protein Slr0151 from Synechocystis sp. PCC 6803 (hereafter Synechocystis) has previously been assigned a repair function under high light conditions (Yang et al., 2014). Here, we show that inactivation of slr0151 affects thylakoid membrane ultrastructure even under normal light conditions. Moreover, the level and localization of Slr0151 are affected in a variety of PSII-related mutants. In particular, the data suggest a close functional relationship between Slr0151 and Sll0933, which interacts with Ycf48 during PSII assembly and is homologous to PAM68 in Arabidopsis thaliana. Immunofluorescence analysis revealed a punctate distribution of Slr0151 within several different membrane types in Synechocystis cells.
Collapse
Affiliation(s)
- Anna Rast
- Molekularbiologie der Pflanzen, Biozentrum der Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
| | - Birgit Rengstl
- Molekularbiologie der Pflanzen, Biozentrum der Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
| | - Steffen Heinz
- Molekularbiologie der Pflanzen, Biozentrum der Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
| | - Andreas Klingl
- Pflanzliche Entwicklungsbiologie, Biozentrum der Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
| | - Jörg Nickelsen
- Molekularbiologie der Pflanzen, Biozentrum der Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
| |
Collapse
|
18
|
Bohne AV, Schwenkert S, Grimm B, Nickelsen J. Roles of Tetratricopeptide Repeat Proteins in Biogenesis of the Photosynthetic Apparatus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 324:187-227. [PMID: 27017009 DOI: 10.1016/bs.ircmb.2016.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biosynthesis of the photosynthetic apparatus is a complex operation, which includes the concerted synthesis and assembly of lipids, pigments and metal cofactors, and dozens of proteins. Research conducted in recent years has shown that these processes, as well as the stabilization and repair of this molecular machinery, are facilitated by transiently acting regulatory proteins, many of which belong to the superfamily of helical repeat proteins. Here, we focus on one of its families in photoautotrophic model organisms, the tetratricopeptide repeat (TPR) proteins, which participate in almost all of these steps and are crucial for biogenesis of the thylakoid membrane.
Collapse
Affiliation(s)
- A-V Bohne
- Molecular Plant Sciences, Ludwig-Maximilians-University, Munich, Germany
| | - S Schwenkert
- Botany, Ludwig-Maximilians-University, Munich, Germany
| | - B Grimm
- Institute of Biology/Plant Physiology, Humboldt University, Berlin, Germany
| | - J Nickelsen
- Molecular Plant Sciences, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
19
|
Plöchinger M, Schwenkert S, von Sydow L, Schröder WP, Meurer J. Functional Update of the Auxiliary Proteins PsbW, PsbY, HCF136, PsbN, TerC and ALB3 in Maintenance and Assembly of PSII. FRONTIERS IN PLANT SCIENCE 2016; 7:423. [PMID: 27092151 PMCID: PMC4823308 DOI: 10.3389/fpls.2016.00423] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/18/2016] [Indexed: 05/17/2023]
Abstract
Assembly of Photosystem (PS) II in plants has turned out to be a highly complex process which, at least in part, occurs in a sequential order and requires many more auxiliary proteins than subunits present in the complex. Owing to the high evolutionary conservation of the subunit composition and the three-dimensional structure of the PSII complex, most plant factors involved in the biogenesis of PSII originated from cyanobacteria and only rarely evolved de novo. Furthermore, in chloroplasts the initial assembly steps occur in the non-appressed stroma lamellae, whereas the final assembly including the attachment of the major LHCII antenna proteins takes place in the grana regions. The stroma lamellae are also the place where part of PSII repair occurs, which very likely also involves assembly factors. In cyanobacteria initial PSII assembly also occurs in the thylakoid membrane, in so-called thylakoid centers, which are in contact with the plasma membrane. Here, we provide an update on the structures, localisations, topologies, functions, expression and interactions of the low molecular mass PSII subunits PsbY, PsbW and the auxiliary factors HCF136, PsbN, TerC and ALB3, assisting in PSII complex assembly and protein insertion into the thylakoid membrane.
Collapse
Affiliation(s)
- Magdalena Plöchinger
- Department Biologie I, Molekularbiologie der Pflanzen (Botanik), Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| | - Serena Schwenkert
- Department Biologie I, Biochemie und Physiologie der Pflanzen, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| | - Lotta von Sydow
- Umeå Plant Science Center and Department of Chemistry, Umeå UniversityUmeå, Sweden
| | - Wolfgang P. Schröder
- Umeå Plant Science Center and Department of Chemistry, Umeå UniversityUmeå, Sweden
- *Correspondence: Wolfgang P. Schröder,
| | - Jörg Meurer
- Department Biologie I, Molekularbiologie der Pflanzen (Botanik), Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| |
Collapse
|
20
|
Selão TT, Zhang L, Knoppová J, Komenda J, Norling B. Photosystem II Assembly Steps Take Place in the Thylakoid Membrane of the Cyanobacterium Synechocystis sp. PCC6803. PLANT & CELL PHYSIOLOGY 2016; 57:95-104. [PMID: 26578692 DOI: 10.1093/pcp/pcv178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/09/2015] [Indexed: 05/09/2023]
Abstract
Thylakoid biogenesis is an intricate process requiring accurate and timely assembly of proteins, pigments and other cofactors into functional, photosynthetically competent membranes. PSII assembly is studied in particular as its core protein, D1, is very susceptible to photodamage and has a high turnover rate, particularly in high light. PSII assembly is a modular process, with assembly steps proceeding in a specific order. Using aqueous two-phase partitioning to separate plasma membranes (PM) and thylakoid membranes (TM), we studied the subcellular localization of the early assembly steps for PSII biogenesis in a Synechocystis sp. PCC6803 cyanobacterium strain lacking the CP47 antenna. This strain accumulates the early D1-D2 assembly complex which was localized in TM along with associated PSII assembly factors. We also followed insertion and processing of the D1 precursor (pD1) by radioactive pulse-chase labeling. D1 is inserted into the membrane with a C-terminal extension which requires cleavage by a specific protease, the C-terminal processing protease (CtpA), to allow subsequent assembly of the oxygen-evolving complex. pD1 insertion as well as its conversion to mature D1 under various light conditions was seen only in the TM. Epitope-tagged CtpA was also localized in the same membrane, providing further support for the thylakoid location of pD1 processing. However, Vipp1 and PratA, two proteins suggested to be part of the so-called 'thylakoid centers', were found to associate with the PM. Together, these results suggest that early PSII assembly steps occur in TM or specific areas derived from them, with interaction with PM needed for efficient PSII and thylakoid biogenesis.
Collapse
Affiliation(s)
- Tiago T Selão
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Lifang Zhang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Jana Knoppová
- Institute of Microbiology, Center Algatech, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Josef Komenda
- Institute of Microbiology, Center Algatech, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Birgitta Norling
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|
21
|
Heinz S, Liauw P, Nickelsen J, Nowaczyk M. Analysis of photosystem II biogenesis in cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:274-87. [PMID: 26592144 DOI: 10.1016/j.bbabio.2015.11.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/13/2015] [Accepted: 11/15/2015] [Indexed: 11/25/2022]
Abstract
Photosystem II (PSII), a large multisubunit membrane protein complex found in the thylakoid membranes of cyanobacteria, algae and plants, catalyzes light-driven oxygen evolution from water and reduction of plastoquinone. Biogenesis of PSII requires coordinated assembly of at least 20 protein subunits, as well as incorporation of various organic and inorganic cofactors. The stepwise assembly process is facilitated by numerous protein factors that have been identified in recent years. Further analysis of this process requires the development or refinement of specific methods for the identification of novel assembly factors and, in particular, elucidation of the unique role of each. Here we summarize current knowledge of PSII biogenesis in cyanobacteria, focusing primarily on the impact of methodological advances and innovations. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux.
Collapse
Affiliation(s)
- Steffen Heinz
- Molekulare Pflanzenwissenschaften, Biozentrum LMU München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Pasqual Liauw
- Biochemie der Pflanzen, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Jörg Nickelsen
- Molekulare Pflanzenwissenschaften, Biozentrum LMU München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany.
| | - Marc Nowaczyk
- Biochemie der Pflanzen, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
| |
Collapse
|
22
|
Frain KM, Gangl D, Jones A, Zedler JAZ, Robinson C. Protein translocation and thylakoid biogenesis in cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:266-73. [PMID: 26341016 DOI: 10.1016/j.bbabio.2015.08.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/17/2015] [Accepted: 08/31/2015] [Indexed: 10/23/2022]
Abstract
Cyanobacteria exhibit a complex form of membrane differentiation that sets them apart from most bacteria. Many processes take place in the plasma membrane, but photosynthetic light capture, electron transport and ATP synthesis take place in an abundant internal thylakoid membrane. This review considers how this system of subcellular compartmentalisation is maintained, and how proteins are directed towards the various subcompartments--specifically the plasma membrane, periplasm, thylakoid membrane and thylakoid lumen. The involvement of Sec-, Tat- and signal recognition particle- (SRP)-dependent protein targeting pathways is discussed, together with the possible involvement of a so-called 'spontaneous' pathway for the insertion of membrane proteins, previously characterised for chloroplast thylakoid membrane proteins. An intriguing aspect of cyanobacterial cell biology is that most contain only a single set of genes encoding Sec, Tat and SRP components, yet the proteomes of the plasma and thylakoid membranes are very different. The implications for protein sorting mechanisms are considered. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux.
Collapse
Affiliation(s)
- Kelly M Frain
- Centre for Molecular Processing, School of Biosciences, University of Kent, Ingram Building, Canterbury, CT2 7NJ, United Kingdom
| | - Doris Gangl
- Centre for Molecular Processing, School of Biosciences, University of Kent, Ingram Building, Canterbury, CT2 7NJ, United Kingdom
| | - Alexander Jones
- Centre for Molecular Processing, School of Biosciences, University of Kent, Ingram Building, Canterbury, CT2 7NJ, United Kingdom
| | - Julie A Z Zedler
- Centre for Molecular Processing, School of Biosciences, University of Kent, Ingram Building, Canterbury, CT2 7NJ, United Kingdom
| | - Colin Robinson
- Centre for Molecular Processing, School of Biosciences, University of Kent, Ingram Building, Canterbury, CT2 7NJ, United Kingdom.
| |
Collapse
|
23
|
Sacharz J, Bryan SJ, Yu J, Burroughs NJ, Spence EM, Nixon PJ, Mullineaux CW. Sub-cellular location of FtsH proteases in the cyanobacterium Synechocystis sp. PCC 6803 suggests localised PSII repair zones in the thylakoid membranes. Mol Microbiol 2015; 96:448-62. [PMID: 25601560 PMCID: PMC4949578 DOI: 10.1111/mmi.12940] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 12/21/2022]
Abstract
In cyanobacteria and chloroplasts, exposure to HL damages the photosynthetic apparatus, especially the D1 subunit of Photosystem II. To avoid chronic photoinhibition, a PSII repair cycle operates to replace damaged PSII subunits with newly synthesised versions. To determine the sub-cellular location of this process, we examined the localisation of FtsH metalloproteases, some of which are directly involved in degrading damaged D1. We generated transformants of the cyanobacterium Synechocystis sp. PCC6803 expressing GFP-tagged versions of its four FtsH proteases. The ftsH2-gfp strain was functional for PSII repair under our conditions. Confocal microscopy shows that FtsH1 is mainly in the cytoplasmic membrane, while the remaining FtsH proteins are in patches either in the thylakoid or at the interface between the thylakoid and cytoplasmic membranes. HL exposure which increases the activity of the Photosystem II repair cycle led to no detectable changes in FtsH distribution, with the FtsH2 protease involved in D1 degradation retaining its patchy distribution in the thylakoid membrane. We discuss the possibility that the FtsH2-GFP patches represent Photosystem II 'repair zones' within the thylakoid membranes, and the possible advantages of such functionally specialised membrane zones. Anti-GFP affinity pull-downs provide the first indication of the composition of the putative repair zones.
Collapse
Affiliation(s)
- Joanna Sacharz
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Lee DG, Kwon J, Eom CY, Kang YM, Roh SW, Lee KB, Choi JS. Directed analysis of cyanobacterial membrane phosphoproteome using stained phosphoproteins and titanium-enriched phosphopeptides. J Microbiol 2015; 53:279-87. [PMID: 25845541 DOI: 10.1007/s12275-015-5021-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 11/26/2022]
Abstract
Gel-free shotgun phosphoproteomics of unicellular cyanobacterium Synechocystis sp. PCC 6803 has not been reported up to now. The purpose of this study is to develop directed membrane phosphoproteomic method in Synechocystis sp. Total Synechocystis membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and phosphoprotein-stained gel bands were selectively subjected to in-gel trypsin digestion. The phosphorylation sites of the resulting peptides were determined by assigning the neutral loss of [M-H(3)PO(4)] to Ser, Thr, and Tyr residues using nano-liquid chromatography 7 Tesla Fourier transform mass spectrometry. As an initial application, 111 proteins and 33 phosphoproteins were identified containing 11 integral membrane proteins. Identified four unknown phosphoproteins with transmembrane helices were suggested to be involved in membrane migration or transporters based on BLASTP search annotations. The overall distribution of hydrophobic amino acids in pTyr was lower in frequency than that of pSer or pThr. Positively charged amino acids were abundantly revealed in the surrounding amino acids centered on pTyr. A directed shotgun membrane phosphoproteomic strategy provided insight into understanding the fundamental regulatory processes underlying Ser, Thr, and Tyr phosphorylation in multi-layered membranous cyanobacteria.
Collapse
Affiliation(s)
- Dong-Gi Lee
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, 305-806, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Rast A, Heinz S, Nickelsen J. Biogenesis of thylakoid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:821-30. [PMID: 25615584 DOI: 10.1016/j.bbabio.2015.01.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/09/2015] [Accepted: 01/15/2015] [Indexed: 12/15/2022]
Abstract
Thylakoids mediate photosynthetic electron transfer and represent one of the most elaborate energy-transducing membrane systems. Despite our detailed knowledge of its structure and function, much remains to be learned about how the machinery is put together. The concerted synthesis and assembly of lipids, proteins and low-molecular-weight cofactors like pigments and transition metal ions require a high level of spatiotemporal coordination. While increasing numbers of assembly factors are being functionally characterized, the principles that govern how thylakoid membrane maturation is organized in space are just starting to emerge. In both cyanobacteria and chloroplasts, distinct production lines for the fabrication of photosynthetic complexes, in particular photosystem II, have been identified. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Anna Rast
- Molekulare Pflanzenwissenschaften, Biozentrum LMU München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Steffen Heinz
- Molekulare Pflanzenwissenschaften, Biozentrum LMU München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Jörg Nickelsen
- Molekulare Pflanzenwissenschaften, Biozentrum LMU München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
26
|
Huertas MJ, López-Maury L, Giner-Lamia J, Sánchez-Riego AM, Florencio FJ. Metals in cyanobacteria: analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life (Basel) 2014; 4:865-86. [PMID: 25501581 PMCID: PMC4284471 DOI: 10.3390/life4040865] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/27/2014] [Accepted: 12/04/2014] [Indexed: 11/16/2022] Open
Abstract
Traces of metal are required for fundamental biochemical processes, such as photosynthesis and respiration. Cyanobacteria metal homeostasis acquires an important role because the photosynthetic machinery imposes a high demand for metals, making them a limiting factor for cyanobacteria, especially in the open oceans. On the other hand, in the last two centuries, the metal concentrations in marine environments and lake sediments have increased as a result of several industrial activities. In all cases, cells have to tightly regulate uptake to maintain their intracellular concentrations below toxic levels. Mechanisms to obtain metal under limiting conditions and to protect cells from an excess of metals are present in cyanobacteria. Understanding metal homeostasis in cyanobacteria and the proteins involved will help to evaluate the use of these microorganisms in metal bioremediation. Furthermore, it will also help to understand how metal availability impacts primary production in the oceans. In this review, we will focus on copper, nickel, cobalt and arsenic (a toxic metalloid) metabolism, which has been mainly analyzed in model cyanobacterium Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- María José Huertas
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, E-41092 Sevilla, Spain.
| | - Luis López-Maury
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, E-41092 Sevilla, Spain.
| | - Joaquín Giner-Lamia
- Systems Biology and Bioinformatics Laboratory, IBB-CBME, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Ana María Sánchez-Riego
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, E-41092 Sevilla, Spain.
| | - Francisco Javier Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, E-41092 Sevilla, Spain.
| |
Collapse
|
27
|
Mabbitt PD, Wilbanks SM, Eaton-Rye JJ. Structure and function of the hydrophilic Photosystem II assembly proteins: Psb27, Psb28 and Ycf48. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:96-107. [PMID: 24656878 DOI: 10.1016/j.plaphy.2014.02.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/16/2014] [Indexed: 05/23/2023]
Abstract
Photosystem II (PS II) is a macromolecular complex responsible for light-driven oxidation of water and reduction of plastoquinone as part of the photosynthetic electron transport chain found in thylakoid membranes. Each PS II complex is composed of at least 20 protein subunits and over 80 cofactors. The biogenesis of PS II requires further hydrophilic and membrane-spanning proteins which are not part of the active holoenzyme. Many of these biogenesis proteins make transient interactions with specific PS II assembly intermediates: sometimes these are essential for biogenesis while in other examples they are required for optimizing assembly of the mature complex. In this review the function and structure of the Psb27, Psb28 and Ycf48 hydrophilic assembly factors is discussed by combining structural, biochemical and physiological information. Each of these assembly factors has homologues in all oxygenic photosynthetic organisms. We provide a simple overview for the roles of these protein factors in cyanobacterial PS II assembly emphasizing their participation in both photosystem biogenesis and recovery from photodamage.
Collapse
Affiliation(s)
- Peter D Mabbitt
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Sigurd M Wilbanks
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| |
Collapse
|
28
|
Lassen LM, Nielsen AZ, Olsen CE, Bialek W, Jensen K, Møller BL, Jensen PE. Anchoring a plant cytochrome P450 via PsaM to the thylakoids in Synechococcus sp. PCC 7002: evidence for light-driven biosynthesis. PLoS One 2014; 9:e102184. [PMID: 25025215 PMCID: PMC4099078 DOI: 10.1371/journal.pone.0102184] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/16/2014] [Indexed: 12/01/2022] Open
Abstract
Plants produce an immense variety of specialized metabolites, many of which are of high value as their bioactive properties make them useful as for instance pharmaceuticals. The compounds are often produced at low levels in the plant, and due to their complex structures, chemical synthesis may not be feasible. Here, we take advantage of the reducing equivalents generated in photosynthesis in developing an approach for producing plant bioactive natural compounds in a photosynthetic microorganism by functionally coupling a biosynthetic enzyme to photosystem I. This enables driving of the enzymatic reactions with electrons extracted from the photosynthetic electron transport chain. As a proof of concept, we have genetically fused the soluble catalytic domain of the cytochrome P450 CYP79A1, originating from the endoplasmic reticulum membranes of Sorghum bicolor, to a photosystem I subunit in the cyanobacterium Synechococcus sp. PCC 7002, thereby targeting it to the thylakoids. The engineered enzyme showed light-driven activity both in vivo and in vitro, demonstrating the possibility to achieve light-driven biosynthesis of high-value plant specialized metabolites in cyanobacteria.
Collapse
Affiliation(s)
- Lærke Münter Lassen
- Center for Synthetic Biology “bioSYNergy”, the VILLUM Research Center “Plant Plasticity”, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
| | - Agnieszka Zygadlo Nielsen
- Center for Synthetic Biology “bioSYNergy”, the VILLUM Research Center “Plant Plasticity”, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
| | - Carl Erik Olsen
- Center for Synthetic Biology “bioSYNergy”, the VILLUM Research Center “Plant Plasticity”, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
| | - Wojciech Bialek
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Kenneth Jensen
- Center for Synthetic Biology “bioSYNergy”, the VILLUM Research Center “Plant Plasticity”, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Center for Synthetic Biology “bioSYNergy”, the VILLUM Research Center “Plant Plasticity”, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
| | - Poul Erik Jensen
- Center for Synthetic Biology “bioSYNergy”, the VILLUM Research Center “Plant Plasticity”, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
| |
Collapse
|
29
|
Chi W, Ma J, Zhang L. Regulatory factors for the assembly of thylakoid membrane protein complexes. Philos Trans R Soc Lond B Biol Sci 2013; 367:3420-9. [PMID: 23148269 DOI: 10.1098/rstb.2012.0065] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Major multi-protein photosynthetic complexes, located in thylakoid membranes, are responsible for the capture of light and its conversion into chemical energy in oxygenic photosynthetic organisms. Although the structures and functions of these photosynthetic complexes have been explored, the molecular mechanisms underlying their assembly remain elusive. In this review, we summarize current knowledge of the regulatory components involved in the assembly of thylakoid membrane protein complexes in photosynthetic organisms. Many of the known regulatory factors are conserved between prokaryotes and eukaryotes, whereas others appear to be newly evolved or to have expanded predominantly in eukaryotes. Their specific features and fundamental differences in cyanobacteria, green algae and land plants are discussed.
Collapse
Affiliation(s)
- Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | |
Collapse
|
30
|
Rengstl B, Knoppová J, Komenda J, Nickelsen J. Characterization of a Synechocystis double mutant lacking the photosystem II assembly factors YCF48 and Sll0933. PLANTA 2013; 237:471-80. [PMID: 22847023 DOI: 10.1007/s00425-012-1720-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/13/2012] [Indexed: 05/03/2023]
Abstract
The de novo assembly of photosystem II (PSII) depends on a variety of assisting factors. We have previously shown that two of them, namely, YCF48 and Sll0933, mutually interact and form a complex (Rengstl et al. in J Biol Chem 286:21944-21951, 2011). To gain further insights into the importance of the YCF48/Sll0933 interaction, an ycf48 ( - ) sll0933 ( - ) double mutant was constructed and its phenotype was compared with the single mutants' phenotypes. Analysis of fluorescence spectra and oxygen evolution revealed high-light sensitivity not only for YCF48 deficient strains but also for sll0933 ( - ), which, in addition, showed reduced synthesis and accumulation of newly synthesized CP43 and CP47 proteins in pulse-labeling experiments. In general, the phenotypic characteristics of ycf48 ( - ) sll0933 ( - ) were dominated by the effect of the ycf48 deletion and additional inactivation of the sll0933 gene showed only negligible additional impairments with regard to growth, absorption spectra and accumulation of PSII-related proteins and assembly complexes. In yeast split-ubiquitin analyses, the interaction between YCF48 and Sll0933 was confirmed and, furthermore, support for direct binding of Sll0933 to CP43 and CP47 was obtained. Our data provide important new information which further refines our knowledge about the PSII assembly process and role of accessory protein factors within it.
Collapse
Affiliation(s)
- Birgit Rengstl
- Molekulare Pflanzenwissenschaften, Biozentrum LMU München, Großhaderner Strasse 2-4, Planegg-Martinsried, Germany
| | | | | | | |
Collapse
|
31
|
Wunder T, Xu W, Liu Q, Wanner G, Leister D, Pribil M. The major thylakoid protein kinases STN7 and STN8 revisited: effects of altered STN8 levels and regulatory specificities of the STN kinases. FRONTIERS IN PLANT SCIENCE 2013; 4:417. [PMID: 24151498 PMCID: PMC3801152 DOI: 10.3389/fpls.2013.00417] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/01/2013] [Indexed: 05/19/2023]
Abstract
Thylakoid phosphorylation is predominantly mediated by the protein kinases STN7 and STN8. While STN7 primarily catalyzes LHCII phosphorylation, which enables LHCII to migrate from photosystem (PS) II to PSI, STN8 mainly phosphorylates PSII core proteins. The reversible phosphorylation of PSII core proteins is thought to regulate the PSII repair cycle and PSII supercomplex stability, and play a role in modulating the folding of thylakoid membranes. Earlier studies clearly demonstrated a considerable substrate overlap between the two STN kinases, raising the possibility of a balanced interdependence between them at either the protein or activity level. Here, we show that such an interdependence of the STN kinases on protein level does not seem to exist as neither knock-out nor overexpression of STN7 or STN8 affects accumulation of the other. STN7 and STN8 are both shown to be integral thylakoid proteins that form part of molecular supercomplexes, but exhibit different spatial distributions and are subject to different modes of regulation. Evidence is presented for the existence of a second redox-sensitive motif in STN7, which seems to be targeted by thioredoxin f. Effects of altered STN8 levels on PSII core phosphorylation, supercomplex formation, photosynthetic performance and thylakoid ultrastructure were analyzed in Arabidopsis thaliana using STN8-overexpressing plants (oeSTN8). In general, oeSTN8 plants were less sensitive to intense light and exhibited changes in thylakoid ultrastructure, with grana stacks containing more layers and reduced amounts of PSII supercomplexes. Hence, we conclude that STN8 acts in an amount-dependent manner similar to what was shown for STN7 in previous studies. However, the modes of regulation of the STN kinases appear to differ significantly.
Collapse
Affiliation(s)
- Tobias Wunder
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
| | - Wenteng Xu
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
| | - Qiuping Liu
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
| | - Gerhard Wanner
- Ultrastrukturforschung, Department Biology I, Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
- PhotoLab Trentino - a Joint Initiative of the University of Trento (Centre for Integrative Biology) and the Edmund Mach Foundation (Research and Innovation Centre)San Michele all'Adige (Trento), Italy
- *Correspondence: Dario Leister, Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany e-mail:
| | - Mathias Pribil
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
- Mass Spectrometry Unit, Department Biology I, Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
| |
Collapse
|
32
|
Nickelsen J, Rengstl B. Photosystem II assembly: from cyanobacteria to plants. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:609-35. [PMID: 23451783 DOI: 10.1146/annurev-arplant-050312-120124] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Photosystem II (PSII) is an integral-membrane, multisubunit complex that initiates electron flow in oxygenic photosynthesis. The biogenesis of this complex machine involves the concerted assembly of at least 20 different polypeptides as well as the incorporation of a variety of inorganic and organic cofactors. Many factors have recently been identified that constitute an integrative network mediating the stepwise assembly of PSII components. One recurring theme is the subcellular organization of the assembly process in specialized membranes that form distinct biogenesis centers. Here, we review our current knowledge of the molecular components and events involved in PSII assembly and their high degree of evolutionary conservation.
Collapse
Affiliation(s)
- Jörg Nickelsen
- Molekulare Pflanzenwissenschaften, Biozentrum Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| | | |
Collapse
|
33
|
Meierhoff K, Westhoff P. The Biogenesis of the Thylakoid Membrane: Photosystem II, a Case Study. PLASTID DEVELOPMENT IN LEAVES DURING GROWTH AND SENESCENCE 2013. [DOI: 10.1007/978-94-007-5724-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Biogenic membranes of the chloroplast in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2012; 109:19286-91. [PMID: 23129655 DOI: 10.1073/pnas.1209860109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The polypeptide subunits of the photosynthetic electron transport complexes in plants and algae are encoded by two genomes. Nuclear genome-encoded subunits are synthesized in the cytoplasm by 80S ribosomes, imported across the chloroplast envelope, and assembled with the subunits that are encoded by the plastid genome. Plastid genome-encoded subunits are synthesized by 70S chloroplast ribosomes directly into membranes that are widely believed to belong to the photosynthetic thylakoid vesicles. However, in situ evidence suggested that subunits of photosystem II are synthesized in specific regions within the chloroplast and cytoplasm of Chlamydomonas. Our results provide biochemical and in situ evidence of biogenic membranes that are localized to these translation zones. A "chloroplast translation membrane" is bound by the translation machinery and appears to be privileged for the synthesis of polypeptides encoded by the plastid genome. Membrane domains of the chloroplast envelope are located adjacent to the cytoplasmic translation zone and enriched in the translocons of the outer and inner chloroplast envelope membranes protein import complexes, suggesting a coordination of protein synthesis and import. Our findings contribute to a current realization that biogenic processes are compartmentalized within organelles and bacteria.
Collapse
|
35
|
Komenda J, Sobotka R, Nixon PJ. Assembling and maintaining the Photosystem II complex in chloroplasts and cyanobacteria. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:245-51. [PMID: 22386092 DOI: 10.1016/j.pbi.2012.01.017] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 01/30/2012] [Accepted: 01/30/2012] [Indexed: 05/20/2023]
Abstract
Plants, algae and cyanobacteria grow because of their ability to use sunlight to extract electrons from water. This vital reaction is catalysed by the Photosystem II (PSII) complex, a large multi-subunit pigment-protein complex embedded in the thylakoid membrane. Recent results show that assembly of PSII occurs in a step-wise fashion in defined regions of the membrane system, involves conserved auxiliary factors and is closely coupled to chlorophyll biosynthesis. PSII is also repaired following damage by light. FtsH proteases play an important role in selectively removing damaged proteins from the complex, both in chloroplasts and cyanobacteria, whilst undamaged subunits and pigments are recycled. The chloroplastic Deg proteases play a supplementary role in PSII repair.
Collapse
Affiliation(s)
- Josef Komenda
- Institute of Microbiology, Laboratory of Photosynthesis, Opatovický mlýn, Třeboň, Czech Republic
| | | | | |
Collapse
|
36
|
van de Meene AML, Sharp WP, McDaniel JH, Friedrich H, Vermaas WFJ, Roberson RW. Gross morphological changes in thylakoid membrane structure are associated with photosystem I deletion in Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1427-34. [PMID: 22305964 DOI: 10.1016/j.bbamem.2012.01.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 11/17/2022]
Abstract
Cells of Synechocystis sp. PCC 6803 lacking photosystem I (PSI-less) and containing only photosystem II (PSII) or lacking both photosystems I and II (PSI/PSII-less) were compared to wild type (WT) cells to investigate the role of the photosystems in the architecture, structure, and number of thylakoid membranes. All cells were grown at 0.5μmol photons m(-2)s(-1). The lumen of the thylakoid membranes of the WT cells grown at this low light intensity were inflated compared to cells grown at higher light intensity. Tubular as well as sheet-like thylakoid membranes were found in the PSI-less strain at all stages of development with organized regular arrays of phycobilisomes on the surface of the thylakoid membranes. Tubular structures were also found in the PSI/PSII-less strain, but these were smaller in diameter to those found in the PSI-less strain with what appeared to be a different internal structure and were less common. There were fewer and smaller thylakoid membrane sheets in the double mutant and the phycobilisomes were found on the surface in more disordered arrays. These differences in thylakoid membrane structure most likely reflect the altered composition of photosynthetic particles and distribution of other integral membrane proteins and their interaction with the lipid bilayer. These results suggest an important role for the presence of PSII in the formation of the highly ordered tubular structures.
Collapse
|
37
|
Assembly of the water-oxidizing complex in photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:204-11. [DOI: 10.1016/j.jphotobiol.2011.02.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/27/2011] [Accepted: 02/03/2011] [Indexed: 11/21/2022]
|
38
|
The roles of chloroplast proteases in the biogenesis and maintenance of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:239-46. [PMID: 21645493 DOI: 10.1016/j.bbabio.2011.05.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 05/03/2011] [Accepted: 05/17/2011] [Indexed: 12/28/2022]
Abstract
Photosystem II (PSII) catalyzes one of the key reactions of photosynthesis, the light-driven conversion of water into oxygen. Although the structure and function of PSII have been well documented, our understanding of the biogenesis and maintenance of PSII protein complexes is still limited. A considerable number of auxiliary and regulatory proteins have been identified to be involved in the regulation of this process. The carboxy-terminal processing protease CtpA, the serine-type protease DegP and the ATP-dependent thylakoid-bound metalloprotease FtsH are critical for the biogenesis and maintenance of PSII. Here, we summarize and discuss the structural and functional aspects of these chloroplast proteases in these processes. This article is part of a Special Issue entitled: SI: Photosystem II.
Collapse
|
39
|
Mulo P, Sakurai I, Aro EM. Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:247-57. [PMID: 21565160 DOI: 10.1016/j.bbabio.2011.04.011] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/06/2011] [Accepted: 04/07/2011] [Indexed: 11/26/2022]
Abstract
The Photosystem (PS) II of cyanobacteria, green algae and higher plants is prone to light-induced inactivation, the D1 protein being the primary target of such damage. As a consequence, the D1 protein, encoded by the psbA gene, is degraded and re-synthesized in a multistep process called PSII repair cycle. In cyanobacteria, a small gene family codes for the various, functionally distinct D1 isoforms. In these organisms, the regulation of the psbA gene expression occurs mainly at the level of transcription, but the expression is fine-tuned by regulation of translation elongation. In plants and green algae, the D1 protein is encoded by a single psbA gene located in the chloroplast genome. In chloroplasts of Chlamydomonas reinhardtii the psbA gene expression is strongly regulated by mRNA processing, and particularly at the level of translation initiation. In chloroplasts of higher plants, translation elongation is the prevalent mechanism for regulation of the psbA gene expression. The pre-existing pool of psbA transcripts forms translation initiation complexes in plant chloroplasts even in darkness, while the D1 synthesis can be completed only in the light. Replacement of damaged D1 protein requires also the assistance by a number of auxiliary proteins, which are encoded by the nuclear genome in green algae and higher plants. Nevertheless, many of these chaperones are conserved between prokaryotes and eukaryotes. Here, we describe the specific features and fundamental differences of the psbA gene expression and the regeneration of the PSII reaction center protein D1 in cyanobacteria, green algae and higher plants. This article is part of a Special Issue entitled Photosystem II.
Collapse
Affiliation(s)
- Paula Mulo
- Department of Biochemistry and Food Chemistry, University of Turku, Finland.
| | | | | |
Collapse
|
40
|
Rengstl B, Oster U, Stengel A, Nickelsen J. An intermediate membrane subfraction in cyanobacteria is involved in an assembly network for Photosystem II biogenesis. J Biol Chem 2011; 286:21944-51. [PMID: 21531723 DOI: 10.1074/jbc.m111.237867] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Early steps in the biogenesis of Photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803 are thought to occur in a specialized membrane fraction that is characterized by the specific accumulation of the PSII assembly factor PratA and its interaction partner pD1, the precursor of the D1 protein of PSII. Here, we report the molecular characterization of this membrane fraction, called the PratA-defined membrane (PDM), with regard to its lipid and pigment composition and its association with PSII assembly factors, including YCF48, Slr1471, Sll0933, and Pitt. We demonstrate that YCF48 and Slr1471 are present and that the chlorophyll precursor chlorophyllide a accumulates in the PDM. Analysis of PDMs from various mutant lines suggests a central role for PratA in the spatial organization of PSII biogenesis. Moreover, quantitative immunoblot analyses revealed a network of interdependences between several PSII assembly factors and chlorophyll synthesis. In addition, formation of complexes containing both YCF48 and Sll0933 was substantiated by co-immunoprecipitation experiments. The findings are integrated into a refined model for PSII biogenesis in Synechocystis 6803.
Collapse
Affiliation(s)
- Birgit Rengstl
- Molekulare Pflanzenwissenschaften, Biozentrum, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | | | | | | |
Collapse
|
41
|
Dynamics of the cyanobacterial photosynthetic network: Communication and modification of membrane protein complexes. Eur J Cell Biol 2010; 89:974-82. [DOI: 10.1016/j.ejcb.2010.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Armbruster U, Zühlke J, Rengstl B, Kreller R, Makarenko E, Rühle T, Schünemann D, Jahns P, Weisshaar B, Nickelsen J, Leister D. The Arabidopsis thylakoid protein PAM68 is required for efficient D1 biogenesis and photosystem II assembly. THE PLANT CELL 2010; 22:3439-60. [PMID: 20923938 PMCID: PMC2990134 DOI: 10.1105/tpc.110.077453] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 09/04/2010] [Accepted: 09/21/2010] [Indexed: 05/20/2023]
Abstract
Photosystem II (PSII) is a multiprotein complex that functions as a light-driven water:plastoquinone oxidoreductase in photosynthesis. Assembly of PSII proceeds through a number of distinct intermediate states and requires auxiliary proteins. The photosynthesis affected mutant 68 (pam68) of Arabidopsis thaliana displays drastically altered chlorophyll fluorescence and abnormally low levels of the PSII core subunits D1, D2, CP43, and CP47. We show that these phenotypes result from a specific decrease in the stability and maturation of D1. This is associated with a marked increase in the synthesis of RC (the PSII reaction center-like assembly complex) at the expense of PSII dimers and supercomplexes. PAM68 is a conserved integral membrane protein found in cyanobacterial and eukaryotic thylakoids and interacts in split-ubiquitin assays with several PSII core proteins and known PSII assembly factors. Biochemical analyses of thylakoids from Arabidopsis and Synechocystis sp PCC 6803 suggest that, during PSII assembly, PAM68 proteins associate with an early intermediate complex that might contain D1 and the assembly factor LPA1. Inactivation of cyanobacterial PAM68 destabilizes RC but does not affect larger PSII assembly complexes. Our data imply that PAM68 proteins promote early steps in PSII biogenesis in cyanobacteria and plants, but their inactivation is differently compensated for in the two classes of organisms.
Collapse
Affiliation(s)
- Ute Armbruster
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Jessica Zühlke
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Birgit Rengstl
- Molekulare Pflanzenwissenschaften, Department Biologie I, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Renate Kreller
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Elina Makarenko
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Thilo Rühle
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Danja Schünemann
- AG Molekularbiologie Pflanzlicher Organellen, Ruhr-Universität-Bochum, 44801 Bochum, Germany
| | - Peter Jahns
- Institute of Plant Biochemistry, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Bernd Weisshaar
- Lehrstuhl für Genomforschung, Fakultät für Biology, Universität Bielefeld, 33615 Bielefeld, Germany
| | - Jörg Nickelsen
- Molekulare Pflanzenwissenschaften, Department Biologie I, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Dario Leister
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
- Address correspondence to
| |
Collapse
|
43
|
Nickelsen J, Rengstl B, Stengel A, Schottkowski M, Soll J, Ankele E. Biogenesis of the cyanobacterial thylakoid membrane system--an update. FEMS Microbiol Lett 2010; 315:1-5. [PMID: 20831593 DOI: 10.1111/j.1574-6968.2010.02096.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Current molecular analyses suggest that initial steps of the biogenesis of cyanobacterial photosystems progress in a membrane subfraction representing a biosynthetic center with contact to both plasma and thylakoid membranes. This special membrane fraction is defined by the presence of the photosystem II assembly factor PratA. The proposed model suggests that both biogenesis of protein complexes and insertion of chlorophyll molecules into the photosystems occur in this intermediate membrane system.
Collapse
Affiliation(s)
- Jörg Nickelsen
- Molekulare Pflanzenwissenschaften, Biozentrum LMU München, Planegg-Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Zhang S, Frankel LK, Bricker TM. The Sll0606 protein is required for photosystem II assembly/stability in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 2010; 285:32047-54. [PMID: 20724474 DOI: 10.1074/jbc.m110.166983] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An insertional transposon mutation in the sll0606 gene was found to lead to a loss of photoautotrophy but not photoheterotrophy in the cyanobacterium Synechocystis sp. PCC 6803. Complementation analysis of this mutant (Tsll0606) indicated that an intact sll0606 gene could fully restore photoautotrophic growth. Gene organization in the vicinity of sll0606 indicates that it is not contained in an operon. No electron transport activity was detected in Tsll0606 using water as an electron donor and 2,6-dichlorobenzoquinone as an electron acceptor, indicating that Photosystem II (PS II) was defective. Electron transport activity using dichlorophenol indolephenol plus ascorbate as an electron donor to methyl viologen, however, was the same as observed in the control strain. This indicated that electron flow through Photosystem I was normal. Fluorescence induction and decay parameters verified that Photosystem II was highly compromised. The quantum yield for energy trapping by Photosystem II (F(V)/F(M)) in the mutant was less than 10% of that observed in the control strain. The small variable fluorescence yield observed after a single saturating flash exhibited aberrant Q(A)(-) reoxidation kinetics that were insensitive to dichloromethylurea. Immunological analysis indicated that whereas the D2 and CP47 proteins were modestly affected, the D1 and CP43 components were dramatically reduced. Analysis of two-dimensional blue native/lithium dodecyl sulfate-polyacrylamide gels indicated that no intact PS II monomer or dimers were observed in the mutant. The CP43-less PS II monomer did accumulate to detectable levels. Our results indicate that the Sll0606 protein is required for the assembly/stability of a functionally competent Photosystem II.
Collapse
Affiliation(s)
- Shulu Zhang
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | |
Collapse
|
45
|
Nixon PJ, Michoux F, Yu J, Boehm M, Komenda J. Recent advances in understanding the assembly and repair of photosystem II. ANNALS OF BOTANY 2010; 106:1-16. [PMID: 20338950 PMCID: PMC2889791 DOI: 10.1093/aob/mcq059] [Citation(s) in RCA: 390] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/01/2010] [Accepted: 02/09/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Photosystem II (PSII) is the light-driven water:plastoquinone oxidoreductase of oxygenic photosynthesis and is found in the thylakoid membrane of chloroplasts and cyanobacteria. Considerable attention is focused on how PSII is assembled in vivo and how it is repaired following irreversible damage by visible light (so-called photoinhibition). Understanding these processes might lead to the development of plants with improved growth characteristics especially under conditions of abiotic stress. SCOPE Here we summarize recent results on the assembly and repair of PSII in cyanobacteria, which are excellent model organisms to study higher plant photosynthesis. CONCLUSIONS Assembly of PSII is highly co-ordinated and proceeds through a number of distinct assembly intermediates. Associated with these assembly complexes are proteins that are not found in the final functional PSII complex. Structural information and possible functions are beginning to emerge for several of these 'assembly' factors, notably Ycf48/Hcf136, Psb27 and Psb28. A number of other auxiliary proteins have been identified that appear to have evolved since the divergence of chloroplasts and cyanobacteria. The repair of PSII involves partial disassembly of the damaged complex, the selective replacement of the damaged sub-unit (predominantly the D1 sub-unit) by a newly synthesized copy, and reassembly. It is likely that chlorophyll released during the repair process is temporarily stored by small CAB-like proteins (SCPs). A model is proposed in which damaged D1 is removed in Synechocystis sp. PCC 6803 by a hetero-oligomeric complex composed of two different types of FtsH sub-unit (FtsH2 and FtsH3), with degradation proceeding from the N-terminus of D1 in a highly processive reaction. It is postulated that a similar mechanism of D1 degradation also operates in chloroplasts. Deg proteases are not required for D1 degradation in Synechocystis 6803 but members of this protease family might play a supplementary role in D1 degradation in chloroplasts under extreme conditions.
Collapse
Affiliation(s)
- Peter J Nixon
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
46
|
Wei L, Guo J, Ouyang M, Sun X, Ma J, Chi W, Lu C, Zhang L. LPA19, a Psb27 homolog in Arabidopsis thaliana, facilitates D1 protein precursor processing during PSII biogenesis. J Biol Chem 2010; 285:21391-8. [PMID: 20444695 DOI: 10.1074/jbc.m110.105064] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biogenesis and assembly of photosystem II (PSII) are mainly regulated by the nuclear-encoded factors. To further identify the novel components involved in PSII biogenesis, we isolated and characterized a high chlorophyll fluorescence low psii accumulation19 (lpa19) mutant, which is defective in PSII biogenesis. LPA19 encodes a Psb27 homolog (At1g05385). Interestingly, another Psb27 homolog (At1g03600) in Arabidopsis was revealed to be required for the efficient repair of photodamaged PSII. These results suggest that the Psb27 homologs play distinct functions in PSII biogenesis and repair in Arabidopsis. Chloroplast protein labeling assays showed that the C-terminal processing of D1 in the lpa19 mutant was impaired. Protein overlay assays provided evidence that LPA19 interacts with D1, and coimmunoprecipitation analysis demonstrated that LPA19 interacts with mature D1 (mD1) and precursor D1 (pD1). Moreover, LPA19 protein was shown to specifically interact with the soluble C terminus present in the precursor and mature D1 through yeast two-hybrid analyses. Thus, these studies suggest that LPA19 is involved in facilitating the D1 precursor protein processing in Arabidopsis.
Collapse
Affiliation(s)
- Lili Wei
- Fr Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Komenda J, Knoppová J, Krynická V, Nixon PJ, Tichý M. Role of FtsH2 in the repair of Photosystem II in mutants of the cyanobacterium Synechocystis PCC 6803 with impaired assembly or stability of the CaMn(4) cluster. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:566-75. [PMID: 20153291 DOI: 10.1016/j.bbabio.2010.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/25/2010] [Accepted: 02/04/2010] [Indexed: 11/26/2022]
Abstract
The FtsH2 protease, encoded by the slr0228 gene, plays a key role in the selective degradation of photodamaged D1 protein during the repair of Photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803. To test whether additional proteases might be involved in D1 degradation during high rates of photodamage, we have studied the synthesis and degradation of the D1 protein in DeltaPsbO and DeltaPsbV mutants, in which the CaMn(4) cluster catalyzing oxygen evolution is less stable, and in the D1 processing mutants, D1-S345P and DeltaCtpA, which are unable to assemble a functional cluster. All four mutants exhibited a dramatically increased rate of D1 degradation in high light compared to the wild-type. Additional inactivation of the ftsH2 gene slowed the rate of D1 degradation dramatically and increased the level of PSII complexes. We conclude that FtsH2 plays a major role in the degradation of both precursor and mature forms of D1 following donor-side photoinhibition. However, this conclusion concerned only D1 assembled into larger complexes containing at least D2 and CP47. In the DeltapsbEFLJ deletion mutant blocked at an early stage in PSII assembly, unassembled D1 protein was efficiently degraded in the absence of FtsH2 pointing to the involvement of other protease(s). Significantly, the DeltaPsbO mutant displayed unusually low levels of cellular chlorophyll at extremely low-light intensities. The possibilities that PSII repair may limit the availability of chlorophyll for the biogenesis of other chlorophyll-binding proteins and that PsbO might have a regulatory role in PSII repair are discussed.
Collapse
Affiliation(s)
- Josef Komenda
- Institute of Microbiology, Academy of Sciences, Opatovický mlýn, Trebon, Czech Republic.
| | | | | | | | | |
Collapse
|
48
|
Schottkowski M, Ratke J, Oster U, Nowaczyk M, Nickelsen J. Pitt, a novel tetratricopeptide repeat protein involved in light-dependent chlorophyll biosynthesis and thylakoid membrane biogenesis in Synechocystis sp. PCC 6803. MOLECULAR PLANT 2009; 2:1289-97. [PMID: 19843617 DOI: 10.1093/mp/ssp075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Biogenesis of photosynthetic pigment/protein complexes is a highly regulated process that requires various assisting factors. Here, we report on the molecular analysis of the Pitt gene (slr1644) from the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803) that encodes a membrane-bound tetratricopeptide repeat (TPR) protein of formerly unknown function. Targeted inactivation of Pitt affected photosynthetic performance and light-dependent chlorophyll synthesis. Yeast two-hybrid analyses and native PAGE strongly suggest a complex formation between Pitt and the light-dependent protochlorophyllide oxidoreductase (POR). Consistently, POR levels are approximately threefold reduced in the pitt insertion mutant. The membrane sublocalization of Pitt was found to be dependent on the presence of the periplasmic photosystem II (PSII) biogenesis factor PratA, supporting the idea that Pitt is involved in the early steps of photosynthetic pigment/protein complex formation.
Collapse
Affiliation(s)
- Marco Schottkowski
- Molekulare Pflanzenwissenschaften, Biozentrum LMU München, Grobetahaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
49
|
Dewez D, Park S, García-Cerdán JG, Lindberg P, Melis A. Mechanism of REP27 protein action in the D1 protein turnover and photosystem II repair from photodamage. PLANT PHYSIOLOGY 2009; 151:88-99. [PMID: 19574473 PMCID: PMC2736001 DOI: 10.1104/pp.109.140798] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 06/30/2009] [Indexed: 05/20/2023]
Abstract
The function of the REP27 protein (GenBank accession no. EF127650) in the photosystem II (PSII) repair process was elucidated. REP27 is a nucleus-encoded and chloroplast-targeted protein containing two tetratricopeptide repeat (TPR) motifs, two putative transmembrane domains, and an extended carboxyl (C)-terminal region. Cell fractionation and western-blot analysis localized the REP27 protein in the Chlamydomonas reinhardtii chloroplast thylakoids. A folding model for REP27 suggested chloroplast stroma localization for amino- and C-terminal regions as well as the two TPRs. A REP27 gene knockout strain of Chlamydomonas, termed the rep27 mutant, was employed for complementation studies. The rep27 mutant was aberrant in the PSII-repair process and had substantially lower than wild-type levels of D1 protein. Truncated REP27 cDNA constructs were made for complementation of rep27, whereby TPR1, TPR2, TPR1+TPR2, or the C-terminal domains were deleted. rep27-complemented strains minus the TPR motifs showed elevated levels of D1 in thylakoids, comparable to those in the wild type, but the PSII photochemical efficiency of these strains was not restored, suggesting that the functionality of the PSII reaction center could not be recovered in the absence of the TPR motifs. It is suggested that TPR motifs play a role in the functional activation of the newly integrated D1 protein in the PSII reaction center. rep27-complemented strains missing the C-terminal domain showed low levels of D1 protein in thylakoids as well as low PSII photochemical efficiency, comparable to those in the rep27 mutant. Therefore, the C-terminal domain is needed for a de novo biosynthesis and/or assembly of D1 in the photodamaged PSII template. We conclude that REP27 plays a dual role in the regulation of D1 protein turnover by facilitating cotranslational biosynthesis insertion (C-terminal domain) and activation (TPR motifs) of the nascent D1 during the PSII repair process.
Collapse
Affiliation(s)
- David Dewez
- Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA
| | | | | | | | | |
Collapse
|