1
|
Torres-Velarde JM, Allen KN, Salvador-Pascual A, Leija RG, Luong D, Moreno-Santillán DD, Ensminger DC, Vázquez-Medina JP. Peroxiredoxin 6 suppresses ferroptosis in lung endothelial cells. Free Radic Biol Med 2024; 218:82-93. [PMID: 38579937 PMCID: PMC11177496 DOI: 10.1016/j.freeradbiomed.2024.04.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Peroxiredoxin 6 (Prdx6) repairs peroxidized membranes by reducing oxidized phospholipids, and by replacing oxidized sn-2 fatty acyl groups through hydrolysis/reacylation by its phospholipase A2 (aiPLA2) and lysophosphatidylcholine acyltransferase activities. Prdx6 is highly expressed in the lung, and intact lungs and cells null for Prdx6 or with single-point mutations that inactivate either Prdx6-peroxidase or aiPLA2 activity alone exhibit decreased viability, increased lipid peroxidation, and incomplete repair when exposed to paraquat, hyperoxia, or organic peroxides. Ferroptosis is form of cell death driven by the accumulation of phospholipid hydroperoxides. We studied the role of Prdx6 as a ferroptosis suppressor in the lung. We first compared the expression Prdx6 and glutathione peroxidase 4 (GPx4) and visualized Prdx6 and GPx4 within the lung. Lung Prdx6 mRNA levels were five times higher than GPx4 levels. Both Prdx6 and GPx4 localized to epithelial and endothelial cells. Prdx6 knockout or knockdown sensitized lung endothelial cells to erastin-induced ferroptosis. Cells with genetic inactivation of either aiPLA2 or Prdx6-peroxidase were more sensitive to ferroptosis than WT cells, but less sensitive than KO cells. We then conducted RNA-seq analyses in Prdx6-depleted cells to further explore how the loss of Prdx6 sensitizes lung endothelial cells to ferroptosis. Prdx6 KD upregulated transcriptional signatures associated with selenoamino acid metabolism and mitochondrial function. Accordingly, Prdx6 deficiency blunted mitochondrial function and increased GPx4 abundance whereas GPx4 KD had the opposite effect on Prdx6. Moreover, we detected Prdx6 and GPx4 interactions in intact cells, suggesting that both enzymes cooperate to suppress lipid peroxidation. Notably, Prdx6-depleted cells remained sensitive to erastin-induced ferroptosis despite the compensatory increase in GPx4. These results show that Prdx6 suppresses ferroptosis in lung endothelial cells and that both aiPLA2 and Prdx6-peroxidase contribute to this effect. These results also show that Prdx6 supports mitochondrial function and modulates several coordinated cytoprotective pathways in the pulmonary endothelium.
Collapse
Affiliation(s)
| | - Kaitlin N Allen
- Department of Integrative Biology, University of California, Berkeley, USA
| | | | - Roberto G Leija
- Department of Integrative Biology, University of California, Berkeley, USA
| | - Diamond Luong
- Department of Integrative Biology, University of California, Berkeley, USA
| | | | - David C Ensminger
- Department of Integrative Biology, University of California, Berkeley, USA
| | | |
Collapse
|
2
|
Rahaman H, Herojit K, Singh LR, Haobam R, Fisher AB. Structural and Functional Diversity of the Peroxiredoxin 6 Enzyme Family. Antioxid Redox Signal 2024; 40:759-775. [PMID: 37463006 DOI: 10.1089/ars.2023.0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Significance: Peroxiredoxins (Prdxs) with a single peroxidative cysteine (CP) in a conserved motif PXXX(T/S)XXCP within its thioredoxin fold, have been classified as the peroxiredoxin 6 (Prdx6 ) family. All Prdxs can reduce H2O2 and short chain hydroperoxides while Prdx6 in addition, can reduce phospholipid hydroperoxides (PLOOH) due to its ability to interact with peroxidized phospholipid substrate. The single CP of Prdx6 uses various external electron donors including glutathione thioredoxin, and ascorbic acid for resolution of its peroxidized state and, therefore, its peroxidase activity. Prdx6 proteins also exhibit Ca2+-independent phospholipase A2 (PLA2), lysophosphatidylcholine acyltransferase (LPCAT), and chaperone activities that depend on cellular localization and the oxidation and oligomerisation states of the protein. Thus, Prdx6 is a "moonlighting" enzyme. Recent Advance: Physiologically, Prdx6s have been reported to play an important role in protection against oxidative stress, repair of peroxidized cell membranes, mammalian lung surfactant turnover, activation of some NADPH oxidases, the regulation of seed germination in plants, as an indicator of cellular levels of reactive O2 species through Nrf-Klf9 activation, and possibly in male fertility, regulation of cell death through ferroptosis, cancer metastasis, and oxidative stress-related signalling pathways. Critical Issues: This review outlines Prdx6 enzyme unique structural features and explores its wide range of physiological functions. Yet, existing structural data falls short of fully revealing all of human Prdx6 multifunctional roles. Further endeavour is required to bridge this gap in its understanding. Although there are wide variations in both the structure and function of Prdx6 family members in various organisms, all Prdx6 proteins show the unique a long C-terminal extension that is also seen in Prdx1, but not in other Prdxs. Future Directions: As research data continues to accumulate, the potential for detailed insights into the role of C-terminal of Prdx6 in its oligomerisation and activities. There is a need for thorough exploration of structural characteristics of the various biological functions. Additionally, uncovering the interacting partners of Prdx6 and understanding its involvement in signalling pathways will significantly contribute to a more profound comprehension of its role.
Collapse
Affiliation(s)
- Hamidur Rahaman
- Department of Biotechnology, Manipur University, Imphal, India
| | - Khundrakpam Herojit
- Department of Biotechnology, Manipur University, Imphal, India
- Department of Biotechnology, Mangolnganbi College, Ningthoukhong, India
| | | | - Reena Haobam
- Department of Biotechnology, Manipur University, Imphal, India
| | - Aron B Fisher
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
LAGAL DJ, BÁRCENA JA, REQUEJO-AGUILAR R, PADILLA CA, LETO TL. NOX1 and PRDX6 synergistically support migration and invasiveness of hepatocellular carcinoma cells through enhanced NADPH oxidase activity. ADVANCES IN REDOX RESEARCH : AN OFFICIAL JOURNAL OF THE SOCIETY FOR REDOX BIOLOGY AND MEDICINE AND THE SOCIETY FOR FREE RADICAL RESEARCH-EUROPE 2023; 9:100080. [PMID: 37900981 PMCID: PMC10611439 DOI: 10.1016/j.arres.2023.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The NADPH oxidase 1 (NOX1) complex formed by proteins NOX1, p22phox, NOXO1, NOXA1, and RAC1 plays an important role in the generation of superoxide and other reactive oxygen species (ROS) which are involved in normal and pathological cell functions due to their effects on diverse cell signaling pathways. Cell migration and invasiveness are at the origin of tumor metastasis during cancer progression which involves a process of cellular de-differentiation known as the epithelial-mesenchymal transition (EMT). During EMT cells lose their polarized epithelial phenotype and express mesenchymal marker proteins that enable cytoskeletal rearrangements promoting cell migration, expression and activation of matrix metalloproteinases (MMPs), tissue remodeling, and cell invasion during metastasis. In this work, we explored the importance of the peroxiredoxin 6 (PRDX6)-NOX1 enzyme interaction leading to NOXA1 protein stabilization and increased levels of superoxide produced by NOX in hepatocarcinoma cells. This increase was accompanied by higher levels of N-cadherin and MMP2, correlating with a greater capacity for cell migration and invasiveness of SNU475 hepatocarcinoma cells. The increase in superoxide and the associated downstream effects on cancer progression were suppressed when phospholipase A2 or peroxidase activities of PRDX6 were abolished by site-directed mutagenesis, reinforcing the importance of these catalytic activities in supporting NOX1-based superoxide generation. Overall, these results demonstrate a clear functional cooperation between NOX1 and PRDX6 catalytic activities which generate higher levels of ROS production, resulting in a more aggressive tumor phenotype.
Collapse
Affiliation(s)
- Daniel J. LAGAL
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD, USA
- University of Córdoba, Biochemistry and Molecular Biology Department. Córdoba, Spain
| | - J. Antonio BÁRCENA
- University of Córdoba, Biochemistry and Molecular Biology Department. Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Spain
| | - Raquel REQUEJO-AGUILAR
- University of Córdoba, Biochemistry and Molecular Biology Department. Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Spain
| | - C. Alicia PADILLA
- University of Córdoba, Biochemistry and Molecular Biology Department. Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Spain
| | - Thomas L. LETO
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD, USA
| |
Collapse
|
4
|
Qausain S, Khan FI, Khan MKA. Conserved acidic second shell residue modulates the structure, stability and activity of non-seleno human peroxiredoxin 6. Int J Biol Macromol 2023; 242:124796. [PMID: 37178881 DOI: 10.1016/j.ijbiomac.2023.124796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/29/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
1-Cys peroxiredoxin6 (Prdx6) is unique and inducible bifunctional enzyme in the mammalian lungs and plays a role in the progression and inhibition of cancerous cells at different stages. The enzyme possesses two distinct active sites for phospholipase A2 and peroxidase activity. The conserved residues surrounding the peroxidase active site, also called as second shell residues are Glu50, Leu71, Ser72, His79 and Arg155. Since there is no study done about the active site stabilization of the transition state of Prdx6, there are a lot of questions unanswered regarding the Prdx6 peroxidase activity. In order to evaluate the role of second shell conserved residue Glu50, present in close vicinity to peroxidatic active site, we substituted this negatively charged residue with Alanine and Lysine. To explore the effect of mutation on the biophysical parameters, the mutant proteins were compared with Wild-Type by using biochemical, biophysical, and in silico methods. Comparative spectroscopic methods and enzyme activity demonstrate that the Glu50 plays a significant role in maintaining the structure, stability, and function of protein. From the results we conclude that Glu50 significantly controls the structure; stability and may be involved in the active site stabilization of transition state for proper position of diverse peroxides.
Collapse
Affiliation(s)
- Sana Qausain
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Faez Iqbal Khan
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Md Khurshid Alam Khan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India.
| |
Collapse
|
5
|
Anti-Oxidant and Pro-Oxidant Effects of Peroxiredoxin 6: A Potential Target in Respiratory Diseases. Cells 2023; 12:cells12010181. [PMID: 36611974 PMCID: PMC9818991 DOI: 10.3390/cells12010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Peroxiredoxin 6 (PRDX6) is widely distributed in several organs, especially the lungs. The role of PRDX6 in oxidative stress is controversial and even contradictory, as indicated by research conducted over the past 20 years. PRDX6 has anti-oxidant or pro-oxidant effects on oxidative stress in different diseases. It can even exhibit both anti-oxidant and pro-oxidant effects in the same disease. These findings are attributed to the fact that PRDX6 is a multifunctional enzyme. The peroxidase and phospholipase A2 activity of PRDX6 is closely related to its anti-oxidant and pro-oxidant effects, which leads to the conflicting regulatory effects of PRDX6 on oxidative stress in respiratory diseases. Moreover, PRDX6 interacts with multiple redox signaling pathways to interfere with cell proliferation and apoptosis. PRDX6 has become a new target in respiratory disease research due to its important regulatory role in oxidative stress. In this paper, the role of PRDX6 in oxidative stress in respiratory diseases and the research progress in targeting PRDX6 are reviewed.
Collapse
|
6
|
Wang X, Huang L, Zhang Y, Zhu L, Yang X, Zuo H, Luo X, Mao Y, Hopkins DL. Exploratory study on the potential regulating role of Peroxiredoxin 6 on proteolysis and relationships with desmin early postmortem. Meat Sci 2023; 195:109021. [DOI: 10.1016/j.meatsci.2022.109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
7
|
Sharapov MG, Goncharov RG, Parfenyuk SB, Glushkova OV, Novoselov VI. The Role of Phospholipase Activity of Peroxiredoxin 6 in Its Transmembrane Transport and Protective Properties. Int J Mol Sci 2022; 23:ijms232315265. [PMID: 36499590 PMCID: PMC9738660 DOI: 10.3390/ijms232315265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Peroxiredoxin 6 (Prdx6) is a multifunctional eukaryotic antioxidant enzyme. Mammalian Prdx6 possesses peroxidase activity against a wide range of organic and inorganic hydroperoxides, as well as exhibits phospholipase A2 (aiPLA2) activity, which plays an important role in the reduction of oxidized phospholipids and cell membrane remodeling. Exogenous Prdx6 has recently been shown to be able to penetrate inside the cell. We hypothesized that this entry may be due to the phospholipase activity of Prdx6. Experiments using exogenous Prdx6 in three cell lines (3T3, A549, RAW 264.7) demonstrated that it is the phospholipase activity that promotes its penetration into the cell. Overoxidation of Prdx6 led to a suppression of the peroxidase activity and a 3-to-4-fold growth of aiPLA2, which enhanced the efficiency of its transmembrane transport into the cells by up to 15 times. A mutant form of Prdx6-S32A with an inactivated phospholipase center turned out to be unable to enter the cells in both the reduced and oxidized state of the peroxidase active center. Previously, we have shown that exogenous Prdx6 has a significant radioprotective action. However, the role of phospholipase activity in the radioprotective effects of Prdx6 remained unstudied. Trials with the mutant Prdx6-S32A form, with the use of a total irradiation model in mice, showed a nearly 50% reduction of the radioprotective effect upon aiPLA2 loss. Such a significant decrease in the radioprotective action may be due to the inability of Prdx6-S32A to penetrate animal cells, which prevents its reduction by the natural intracellular reducing agent glutathione S-transferase (πGST) and lowers the efficiency of elimination of peroxides formed from the effect of ionizing radiation. Thus, phospholipase activity may play an important role in the reduction of oxidized Prdx6 and manifestation of its antioxidant properties.
Collapse
|
8
|
Sp1-Mediated Prdx6 Upregulation Leads to Clasmatodendrosis by Increasing Its aiPLA2 Activity in the CA1 Astrocytes in Chronic Epilepsy Rats. Antioxidants (Basel) 2022; 11:antiox11101883. [PMID: 36290607 PMCID: PMC9598987 DOI: 10.3390/antiox11101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022] Open
Abstract
Clasmatodendrosis is an autophagic astroglial degeneration (a non-apoptotic (type II) programmed cell death) whose underlying mechanisms are fully understood. Peroxiredoxin-6 (Prdx6), the “non-selenium glutathione peroxidase (NSGPx)”, is the only member of the 1-cysteine peroxiredoxin family. Unlike the other Prdx family, Prdx6 has multiple functions as glutathione peroxidase (GPx) and acidic calcium-independent phospholipase (aiPLA2). The present study shows that Prdx6 was upregulated in CA1 astrocytes in chronic epilepsy rats. 2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) and N-acetylcysteine (NAC, a precursor of glutathione) ameliorated clasmatodendrosis accompanied by reduced Prdx6 level in CA1 astrocytes. Specificity protein 1 (Sp1) expression was upregulated in CA1 astrocyte, which was inhibited by mithramycin A (MMA). MMA alleviated clasmatodendrosis and Prdx6 upregulation. Sp1 expression was also downregulated by CDDO-Me and NAC. Furthermore, 1-hexadecyl-3-(trifluoroethgl)-sn-glycerol-2 phosphomethanol (MJ33, a selective inhibitor of aiPLA2 activity of Prdx6) attenuated clasmatodendrosis without affecting Prdx6 expression. All chemicals shortened spontaneous seizure duration but not seizure frequency and behavioral seizure severity in chronic epilepsy rats. Therefore, our findings suggest that Sp1 activation may upregulate Prdx6, whose aiPLA2 activity would dominate over GPx activity in CA1 astrocytes and may lead to prolonged seizure activity due to autophagic astroglial degeneration.
Collapse
|
9
|
Beltrán-García J, Osca-Verdegal R, Pérez-Cremades D, Novella S, Hermenegildo C, Pallardó FV, García-Giménez JL. Extracellular Histones Activate Endothelial NLRP3 Inflammasome and are Associated with a Severe Sepsis Phenotype. J Inflamm Res 2022; 15:4217-4238. [PMID: 35915852 PMCID: PMC9338392 DOI: 10.2147/jir.s363693] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/29/2022] [Indexed: 12/27/2022] Open
Affiliation(s)
- Jesús Beltrán-García
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
- Departamento de Fisiología, Facultad de Medicina y Odontología, Universitat de València, València, Spain
| | - Rebeca Osca-Verdegal
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina y Odontología, Universitat de València, València, Spain
| | - Daniel Pérez-Cremades
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
- Departamento de Fisiología, Facultad de Medicina y Odontología, Universitat de València, València, Spain
| | - Susana Novella
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
- Departamento de Fisiología, Facultad de Medicina y Odontología, Universitat de València, València, Spain
| | - Carlos Hermenegildo
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
- Departamento de Fisiología, Facultad de Medicina y Odontología, Universitat de València, València, Spain
| | - Federico V Pallardó
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
- Departamento de Fisiología, Facultad de Medicina y Odontología, Universitat de València, València, Spain
| | - José Luis García-Giménez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
- Departamento de Fisiología, Facultad de Medicina y Odontología, Universitat de València, València, Spain
- Correspondence: José Luis García-Giménez, Departamento de Fisiología, Facultad de Medicina y Odontología, Universitat de València, València, 46010, Spain, Tel +34 963 864 646, Email
| |
Collapse
|
10
|
Salovska B, Kondelova A, Pimkova K, Liblova Z, Pribyl M, Fabrik I, Bartek J, Vajrychova M, Hodny Z. Peroxiredoxin 6 protects irradiated cells from oxidative stress and shapes their senescence-associated cytokine landscape. Redox Biol 2021; 49:102212. [PMID: 34923300 PMCID: PMC8688892 DOI: 10.1016/j.redox.2021.102212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022] Open
Abstract
Cellular senescence is a complex stress response defined as an essentially irreversible cell cycle arrest mediated by the inhibition of cell cycle-specific cyclin dependent kinases. The imbalance in redox homeostasis and oxidative stress have been repeatedly observed as one of the hallmarks of the senescent phenotype. However, a large-scale study investigating protein oxidation and redox signaling in senescent cells in vitro has been lacking. Here we applied a proteome-wide analysis using SILAC-iodoTMT workflow to quantitatively estimate the level of protein sulfhydryl oxidation and proteome level changes in ionizing radiation-induced senescence (IRIS) in hTERT-RPE-1 cells. We observed that senescent cells mobilized the antioxidant system to buffer the increased oxidation stress. Among the antioxidant proteins with increased relative abundance in IRIS, a unique 1-Cys peroxiredoxin family member, peroxiredoxin 6 (PRDX6), was identified as an important contributor to protection against oxidative stress. PRDX6 silencing increased ROS production in senescent cells, decreased their resistance to oxidative stress-induced cell death, and impaired their viability. Subsequent SILAC-iodoTMT and secretome analysis after PRDX6 silencing showed the downregulation of PRDX6 in IRIS affected protein secretory pathways, decreased expression of extracellular matrix proteins, and led to unexpected attenuation of senescence-associated secretory phenotype (SASP). The latter was exemplified by decreased secretion of pro-inflammatory cytokine IL-6 which was also confirmed after treatment with an inhibitor of PRDX6 iPLA2 activity, MJ33. In conclusion, by combining different methodological approaches we discovered a novel role of PRDX6 in senescent cell viability and SASP development. Our results suggest PRDX6 could have a potential as a drug target for senolytic or senomodulatory therapy. SILAC-iodoTMT is a powerful tool to quantify redox imbalance in IRIS. Senescence in hTERT-RPE-1 cells is not accompanied by bulk cysteine oxidation. Antioxidant proteins are upregulated in senescent hTERT-RPE-1 cells. PRDX6 silencing affects redox homeostasis and viability of senescent cells. PRDX6 silencing alters secretome of senescent RPE-1 cells and suppresses IL-6.
Collapse
Affiliation(s)
- Barbora Salovska
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alexandra Kondelova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristyna Pimkova
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; BIOCEV, 1st Medical Faculty, Charles University, Vestec, Czech Republic
| | - Zuzana Liblova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslav Pribyl
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ivo Fabrik
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jiri Bartek
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Marie Vajrychova
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
11
|
Mu X, Wang J, He H, Li Q, Yang B, Wang J, Liu H, Gao Y, Ouyang L, Sun S, Ren Q, Shi X, Hao W, Fei Q, Yang J, Li L, Vest R, Wyss-Coray T, Luo J, Zhang XD. An oligomeric semiconducting nanozyme with ultrafast electron transfers alleviates acute brain injury. SCIENCE ADVANCES 2021; 7:eabk1210. [PMID: 34757781 PMCID: PMC8580303 DOI: 10.1126/sciadv.abk1210] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Artificial enzymes have attracted wide interest in disease diagnosis and biotechnology due to high stability, easy synthesis, and cost effectiveness. Unfortunately, their catalytic rate is limited to surface electron transfer, affecting the catalytic and biological activity. Here, we report an oligomeric nanozyme (O-NZ) with ultrafast electron transfer, achieving ultrahigh catalytic activity. O-NZ shows electron transfer of 1.8 nanoseconds in internal cores and 1.2 picoseconds between core and ligand molecule, leading to ultrahigh superoxidase dismutase–like and glutathione peroxidase–like activity (comparable with natural enzyme, Michaelis constant = 0.87 millimolars). Excitingly, O-NZ can improve the 1-month survival rate of mice with acute brain trauma from 50 to 90% and promote the recovery of long-term neurocognition. Biochemical experiments show that O-NZ can decrease harmful peroxide and superoxide via in vivo catalytic chain reaction and reduce acute neuroinflammation via nuclear factor erythroid-2 related factor 2–mediated up-regulation of heme oxygenase-1 expression.
Collapse
Affiliation(s)
- Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Junying Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Qifeng Li
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bing Yang
- Department of Cellular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Junhui Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haile Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Yalong Gao
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lufei Ouyang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Qinjuan Ren
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xinjian Shi
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenting Hao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Qiaoman Fei
- Department of Cellular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jiang Yang
- School of Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Lulin Li
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Ryan Vest
- Department of Chemical Engineering, School of Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jian Luo
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Corresponding author.
| |
Collapse
|
12
|
Chen C, Gong L, Liu X, Zhu T, Zhou W, Kong L, Luo J. Identification of peroxiredoxin 6 as a direct target of withangulatin A by quantitative chemical proteomics in non-small cell lung cancer. Redox Biol 2021; 46:102130. [PMID: 34517184 PMCID: PMC8441215 DOI: 10.1016/j.redox.2021.102130] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/13/2023] Open
Abstract
Peroxiredoxin 6 (PRDX6), as a bifunctional enzyme with glutathione peroxidase activity (GPx) and Ca2+-independent phospholipase A2 (iPLA2) activity, has a higher expression in various cancer cells, which leads to the increase of antioxidant properties and promotes tumorigenesis. However, only a few inhibitors of PRDX6 have been discovered to date, especially the covalent inhibitors of PRDX6. Here, we firstly identified Withangulatin A (WA), a natural small molecule, as a novel covalent inhibitor of PRDX6. SILAC-ABPP identified that WA could directly bind to PRDX6 and inactivate the enzyme activity of PRDX6 by the α, β-unsaturated ketone moiety. Moreover, WA also facilitated the generation of ROS, and inhibited the GPx and iPLA2 activities. However, WA-1, with a reduced α, β-unsaturated ketone moiety, had no significant inhibition of the GPx and iPLA2 activities. Biolayer interferometry and LC-MS/MS analysis further demonstrated the selectively covalent binding of WA to the cysteine 47 residue (Cys47) of PRDX6, while mutation of Cys47 blocked the binding of WA to PRDX6. Notably, WA-mediated cytotoxicity and inhibition of the GPx and iPLA2 activities were almost abolished by the deficiency of PRDX6. Therefore, this study indicates that WA is a novel PRDX6 covalent inhibitor, which could covalently bind to the Cys47 of PRDX6 and holds great potential in developing anti-tumor agents for targeting PRDX6.
Collapse
Affiliation(s)
- Chen Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lijie Gong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoqin Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianyu Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wuxi Zhou
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jianguang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Peroxiredoxin 6 Plays Essential Role in Mediating Fertilization and Early Embryonic Development in Rabbit Oviduct. Reprod Sci 2021; 29:1560-1576. [PMID: 34424529 DOI: 10.1007/s43032-021-00689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
The oviduct is a site for early reproductive events including gamete maturation, fertilization, and early embryo development. Secretory cells lining the oviduct lumen synthesize and secrete proteins that interact with gametes and developing embryos. Although previous studies have identified some of the secretory proteins in the oviduct, however, knowledge and their precise specific functions in the oviduct are poorly understood. In this study, by using proteomic approach, we identified a secretory protein, Peroxiredoxin 6 (PRDX6), and evaluated its role in mediating early pregnancy events, fertilization, and embryo development in rabbit oviduct. The expression of PRDX6 was significantly higher in ampulla and isthmus sections of the oviduct in mated animal groups compared to non-mated controls. Furthermore, significant reduction in number of embryos recovered from PRDX6 siRNA-transfected oviductal horn was observed compared to the control contralateral horn. Moreover, in animals receiving PRDX6 siRNA in their oviductal horn, the number of implanted blastocysts was significantly less in the uterus as observed on day 9 post-coital (p.c.). Further, during embryo-rabbit oviduct epithelial cell (ROEC) co-culture, siRNA-mediated PRDX6 silencing attenuated the early embryonic development. Mechanistically, increased levels of ROS and expression of oxidative stress- and inflammation-related proteins were found in PRDX6 siRNA-treated ROEC cells as compared to control cells, implicating that ablation of PRDX6 in the oviduct creates a stress-induced micro-environment detrimental to early embryonic development in oviduct. Taken together, our data suggest that PRDX6 maintains an optimal micro-environment conducive to successful embryo development and can be considered as a candidate to evaluate its therapeutic potential in IVF strategies.
Collapse
|
14
|
Mechanisms Underlying the Protective Effect of the Peroxiredoxin-6 Are Mediated via the Protection of Astrocytes during Ischemia/Reoxygenation. Int J Mol Sci 2021; 22:ijms22168805. [PMID: 34445509 PMCID: PMC8396200 DOI: 10.3390/ijms22168805] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemia-like conditions reflect almost the entire spectrum of events that occur during cerebral ischemia, including the induction of oxidative stress, Ca2+ overload, glutamate excitotoxicity, and activation of necrosis and apoptosis in brain cells. Mechanisms for the protective effects of the antioxidant enzyme peroxiredoxin-6 (Prx-6) on hippocampal cells during oxygen-glucose deprivation/reoxygenation (OGD/R) were investigated. Using the methods of fluorescence microscopy, inhibitory analysis, vitality tests and PCR, it was shown that 24-h incubation of mixed hippocampal cell cultures with Prx-6 does not affect the generation of a reversible phase of a OGD-induced rise in Ca2+ ions in cytosol ([Ca2+]i), but inhibits a global increase in [Ca2+]i in astrocytes completely and in neurons by 70%. In addition, after 40 min of OGD, cell necrosis is suppressed, especially in the astrocyte population. This effect is associated with the complex action of Prx-6 on neuroglial networks. As an antioxidant, Prx-6 has a more pronounced and astrocyte-directed effect, compared to the exogenous antioxidant vitamin E (Vit E). Prx-6 inhibits ROS production in mitochondria by increasing the antioxidant capacity of cells and altering the expression of genes encoding redox status proteins. Due to the close bond between [Ca2+]i and intracellular ROS, this effect of Prx-6 is one of its protective mechanisms. Moreover, Prx-6 effectively suppresses not only necrosis, but also apoptosis during OGD and reoxygenation. Incubation with Prx-6 leads to activation of the basic expression of genes encoding protective kinases—PI3K, CaMKII, PKC, anti-apoptotic proteins—Stat3 and Bcl-2, while inhibiting the expression of signaling kinases and factors involved in apoptosis activation—Ikk, Src, NF-κb, Caspase-3, p53, Fas, etc. This effect on the basic expression of the genome leads to the cell preconditions, which is expressed in the inhibition of caspase-3 during OGD/reoxygenation. A significant effect of Prx-6 is directed on suppression of the level of pro-inflammatory cytokine IL-1β and factor TNFα, as well as genes encoding NMDA- and kainate receptor subunits, which was established for the first time for this antioxidant enzyme. The protective effect of Prx-6 is due to its antioxidant properties, since mutant Prx-6 (mutPrx-6, Prx6-C47S) leads to polar opposite effects, contributing to oxidative stress, activation of apoptosis and cell death through receptor action on TLR4.
Collapse
|
15
|
Peroxiredoxins-The Underrated Actors during Virus-Induced Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10060977. [PMID: 34207367 PMCID: PMC8234473 DOI: 10.3390/antiox10060977] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
Enhanced production of reactive oxygen species (ROS) triggered by various stimuli, including viral infections, has attributed much attention in the past years. It has been shown that different viruses that cause acute or chronic diseases induce oxidative stress in infected cells and dysregulate antioxidant its antioxidant capacity. However, most studies focused on catalase and superoxide dismutases, whereas a family of peroxiredoxins (Prdx), the most effective peroxide scavengers, were given little or no attention. In the current review, we demonstrate that peroxiredoxins scavenge hydrogen and organic peroxides at their physiological concentrations at various cell compartments, unlike many other antioxidant enzymes, and discuss their recycling. We also provide data on the regulation of their expression by various transcription factors, as they can be compared with the imprint of viruses on transcriptional machinery. Next, we discuss the involvement of peroxiredoxins in transferring signals from ROS on specific proteins by promoting the oxidation of target cysteine groups, as well as briefly demonstrate evidence of nonenzymatic, chaperone, functions of Prdx. Finally, we give an account of the current state of research of peroxiredoxins for various viruses. These data clearly show that Prdx have not been given proper attention despite all the achievements in general redox biology.
Collapse
|
16
|
Daverey A, Agrawal SK. Regulation of Prdx6 by Nrf2 Mediated Through aiPLA2 in White Matter Reperfusion Injury. Mol Neurobiol 2021; 58:1275-1289. [PMID: 33159299 DOI: 10.1007/s12035-020-02182-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/18/2020] [Indexed: 12/18/2022]
Abstract
Hypoxia and reperfusion produces overproduction of ROS (reactive oxygen species), which may lead to mitochondrial dysfunction leading to cell death and apoptosis. Here, we explore the hypothesis that Prdx6 protects the spinal cord white matter from hypoxia-reperfusion injury and elucidate the possible mechanism by which Prdx6 elicits its protective effects. Briefly, rats were deeply anesthetized with isoflurane. A 30-mm section of the spinal cord was rapidly removed and placed in cold Ringer's solution (2-4 °C). The dissected dorsal column was exposed to hypoxia with 95% N2 and 5% CO2 and reperfusion with 95% O2 and 5% CO2. The expression of Prdx6 significantly upregulated in white matter after hypoxia compared to the sham group, whereas reperfusion caused a gradual decrease in Prdx6 expression after reperfusion injury. For the first time, our study revealed the novel expression and localized expression of Prdx6 in astrocytes after hypoxia, and possible communication of astrocytes and axons through Prdx6. The gradual increase in Nrf2 expression suggests a negative regulation of Prdx6 through Nrf2 signaling. Furthermore, inhibition of aiPLA2 activity of Prdx6 by MJ33 shows that the regulation of Prdx6 by Nrf2 is mediated through aiPLA2 activity. The present study uncovers a differential distribution of Prdx6 in axons and astrocytes and regulation of Prdx6 in hypoxia-reperfusion injury. The low levels of Prdx6 in reperfusion injury lead to increased inflammation and apoptosis in the white matter; therefore, the results of this study suggest that Prdx6 has a protective role in spinal hypoxia-reperfusion injury.
Collapse
Affiliation(s)
- Amita Daverey
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA.
| | - Sandeep K Agrawal
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| |
Collapse
|
17
|
Xin L, Guo Y, Zhao HB, Yu HM, Hou L. Peroxiredoxin 6 translocates to the plasma membrane of human sperm under oxidative stress during cryopreservation. Cryobiology 2021; 100:158-163. [PMID: 33561454 DOI: 10.1016/j.cryobiol.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Peroxiredoxin 6 (PRDX6) is one antioxidant enzyme which could control the levels of reactive oxygen species and to avoid oxidative damage of sperm. In this study, we aimed to investigate the position change of PRDX6 in human sperm under oxidative stress during cryopreservation. Semen samples were obtained from 98 healthy donors and 27 asthenozoospermic donors. The plasma membrane protein and cytoplasmic protein of sperm samples were extracted and analyzed after cryopreservation. Western blot and immunofluorescence were used to measure the expressions of PRDX6. Liquid chromatography mass spectrometric (LC-MS/MS) analysis was performed to confirm the component of sperm membrane complex. Western blot showed that the detection rate of PRDX6 in plasma membranes with low sperm motility (≤20%) was significantly higher than that with high sperm motility (≥40%). Western blot and Immunofluorescence revealed that cryopreservation and thawing induced the position change of the PRDX6 from cytoplasm to sperm membrane. LC-MS/MS analysis showed that PRDX6, ADP/ATP translocase 4 (ANT4) and glyceraldehyde-3-phosphte dehydrogenase (GAPDHS) were present in the components of membrane complex after cryopreservation. The present study indicated that the presence of PRDX6 in sperm plasma membrane was related to sperm motility. GAPDHS and ANT4 may be involved the position change of the PRDX6 from cytoplasm to sperm membrane under oxidative stress during cryopreservation.
Collapse
Affiliation(s)
- Ling Xin
- National Research Institute for Family Planning, Beijing, China.
| | - Ying Guo
- National Research Institute for Family Planning, Beijing, China.
| | - Hai-Bao Zhao
- National Research Institute for Family Planning, Beijing, China.
| | - He-Ming Yu
- National Research Institute for Family Planning, Beijing, China.
| | - Li Hou
- National Research Institute for Family Planning, Beijing, China.
| |
Collapse
|
18
|
Jo HG, Park C, Lee H, Kim GY, Keum YS, Hyun JW, Kwon TK, Choi YH, Hong SH. Inhibition of oxidative stress induced-cytotoxicity by coptisine in V79-4 Chinese hamster lung fibroblasts through the induction of Nrf-2 mediated HO-1 expression. Genes Genomics 2020; 43:17-31. [PMID: 33237503 DOI: 10.1007/s13258-020-01018-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Coptisine is a natural alkaloid compound and is known to have multiple beneficial effects including antioxidant activity. However, whether it can protect lung fibroblasts from oxidative damage has not been studied yet. OBJECTIVES To investigate the potential inhibitory effect of coptisine against oxidative stress in V79-4 lung fibroblast cells. METHODS V79-4 cells were treated with H2O2 (1 mM) in the presence or absence of coptisine (50 µg/ml), N-acetyl cysteine (NAC, 10 mM) or zinc protoporphyrin IX (ZnPP, 10 µM) for the indicated times. The alleviating effects of coptisine on cytotoxicity, cell cycle arrest, apoptosis, reactive oxygen species (ROS) production, DNA damage, mitochondrial dynamics, and inhibition of ATP production against H2O2 were investigated. Western blot analysis was used to analyze the expression levels of specific proteins. RESULTS Coptisine inhibited H2O2-induced cytotoxicity and DNA damage by blocking abnormal ROS generation. H2O2 treatment caused cell cycle arrest at the G2/M phase accompanied by increased expression of cyclin-dependent kinase (Cdk) inhibitor p21WAF1/CIP1 and decreased expression of cyclin B1 and cyclin A. However, these effects were attenuated in the presence of coptisine or NAC. Coptisine also prevented apoptosis by decreasing the rate of Bax/Bcl-2 expression in H2O2-stimulated cells and suppressing the loss of mitochondrial membrane potential and the cytosolic release of cytochrome c. In addition, the activation of nuclear factor-erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) was markedly promoted by coptisine in the presence of H2O2. However, zinc protoporphyrin IX, a potent inhibitor of HO-1, attenuated the ROS scavenging and anti-apoptotic effects of coptisine. CONCLUSIONS Based on current data, we suggest that coptisine can be used as a potential treatment for oxidative stress-related lung disease.
Collapse
Affiliation(s)
- Hyeon-Gyun Jo
- Cheong-Choon Korean Medical Clinic, 47388, Busan, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, 47227, Busan, Republic of Korea
| | - Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, 47340, Busan, Republic of Korea
| | - Hyesook Lee
- Department of Biochemistry, Dong-eui University College of Korean Medicine, 47227, Busan, Republic of Korea.,Anti-Aging Research Center, Dong-eui University, 47340, Busan, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, 63243, Jeju, Republic of Korea
| | - Young-Sam Keum
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 10326, Goyang, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, 63243, Jeju, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, 42601, Daegu, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, 47227, Busan, Republic of Korea. .,Anti-Aging Research Center, Dong-eui University, 47340, Busan, Republic of Korea.
| | - Su Hyun Hong
- Department of Biochemistry, Dong-eui University College of Korean Medicine, 47227, Busan, Republic of Korea. .,Anti-Aging Research Center, Dong-eui University, 47340, Busan, Republic of Korea.
| |
Collapse
|
19
|
Chowhan RK, Rahaman H, Singh LR. Structural basis of peroxidase catalytic cycle of human Prdx6. Sci Rep 2020; 10:17416. [PMID: 33060708 PMCID: PMC7566464 DOI: 10.1038/s41598-020-74052-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 09/24/2020] [Indexed: 11/23/2022] Open
Abstract
Peroxiredoxin 6 (Prdx6) is a ubiquitously expressed antioxidant non-selenium glutathione peroxidase that is known to play a major role in various physiological and pathological processes. It belongs to the family of peroxidases (referred to as Peroxiredoxins, Prdx's) that work independently of any prosthetic groups or co-factors, and instead utilize a peroxidatic thiol residue for peroxide reduction. Mammalian Prdx's are classified according to the number of Cys implicated in their catalytic activity by the formation of either inter-molecular (typical 2-Cys, Prdx1-4) or intra-molecular (atypical 2-Cys, Prdx5) disulfide bond, or non-covalent interactions (1-Cys, Prdx6). The typical and atypical 2-Prdx's have been identified to show decamer/dimer and monomer/dimer transition, respectively, upon oxidation of their peroxidatic cysteine. However, the alterations in the oligomeric status of Prdx6 as a function of peroxidatic thiol's redox state are still ambiguous. While the crystal structure of recombinant human Prdx6 is resolved as a dimer, the solution structures are reported to have both monomers and dimers. In the present study, we have employed several spectroscopic and electrophoretic probes to discern the impact of change in the redox status of peroxidatic cysteine on conformation and oligomeric status of Prdx6. Our study indicates Prdx6's peroxidase activity to be a redox-based conformation driven process which essentially involves monomer-dimer transition.
Collapse
Affiliation(s)
- Rimpy Kaur Chowhan
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Hamidur Rahaman
- Department of Biotechnology, Manipur University, Imphal, 795003, India
| | | |
Collapse
|
20
|
López-Grueso MJ, Lagal DJ, García-Jiménez ÁF, Tarradas RM, Carmona-Hidalgo B, Peinado J, Requejo-Aguilar R, Bárcena JA, Padilla CA. Knockout of PRDX6 induces mitochondrial dysfunction and cell cycle arrest at G2/M in HepG2 hepatocarcinoma cells. Redox Biol 2020; 37:101737. [PMID: 33035814 PMCID: PMC7554216 DOI: 10.1016/j.redox.2020.101737] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
Peroxiredoxin 6 (PRDX6) has been associated with tumor progression and cancer metastasis. Its acting on phospholipid hydroperoxides and its phospholipase-A2 activity are unique among the peroxiredoxin family and add complexity to its action mechanisms. As a first step towards the study of PRDX6 involvement in cancer, we have constructed a human hepatocarcinoma HepG2PRDX6-/- cell line using the CRISPR/Cas9 technique and have characterized the cellular response to lack of PRDX6. Applying quantitative global and redox proteomics, flow cytometry, in vivo extracellular flow analysis, Western blot and electron microscopy, we have detected diminished respiratory capacity, downregulation of mitochondrial proteins and altered mitochondrial morphology. Autophagic vesicles were abundant while the unfolded protein response (UPR), HIF1A and NRF2 transcription factors were not activated, despite increased levels of p62/SQSTM1 and reactive oxygen species (ROS). Insulin receptor (INSR), 3-phosphoinositide-dependent protein kinase 1 (PDPK1), uptake of glucose and hexokinase-2 (HK2) decreased markedly while nucleotide biosynthesis, lipogenesis and synthesis of long chain polyunsaturated fatty acids (LC-PUFA) increased. 254 Cys-peptides belonging to 202 proteins underwent significant redox changes. PRDX6 knockout had an antiproliferative effect due to cell cycle arrest at G2/M transition, without signs of apoptosis. Loss of PLA2 may affect the levels of specific lipids altering lipid signaling pathways, while loss of peroxidase activity could induce redox changes at critical sensitive cysteine residues in key proteins. Oxidation of specific cysteines in Proliferating Cell Nuclear Antigen (PCNA) could interfere with entry into mitosis. The GSH/Glutaredoxin system was downregulated likely contributing to these redox changes. Altogether the data demonstrate that loss of PRDX6 slows down cell division and alters metabolism and mitochondrial function, so that cell survival depends on glycolysis to lactate for ATP production and on AMPK-independent autophagy to obtain building blocks for biosynthesis. PRDX6 is an important link in the chain of elements connecting redox homeostasis and proliferation. A CRISPR-Cas9 based PRDX6 KO human cell line is characterized for the first time. Loss of PRDX6 causes mitochondrial dysfunction, autophagy and slow growth rate. Glucose uptake and HK2 decrease; nucleotide biosynthesis and lipogenesis increase. Oxidation of PCNA Cys residues could be responsible for cell cycle arrest at G2/M.
Collapse
Affiliation(s)
| | - Daniel José Lagal
- Dept. of Biochemistry and Molecular Biology, University of Córdoba, Spain
| | | | | | | | - José Peinado
- Dept. of Biochemistry and Molecular Biology, University of Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Raquel Requejo-Aguilar
- Dept. of Biochemistry and Molecular Biology, University of Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - José Antonio Bárcena
- Dept. of Biochemistry and Molecular Biology, University of Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.
| | - Carmen Alicia Padilla
- Dept. of Biochemistry and Molecular Biology, University of Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| |
Collapse
|
21
|
Park SY, Lee YJ, Park J, Kim TH, Hong SC, Jung EJ, Ju YT, Jeong CY, Park HJ, Ko GH, Song DH, Park M, Yoo J, Jeong SH. PRDX4 overexpression is associated with poor prognosis in gastric cancer. Oncol Lett 2020; 19:3522-3530. [PMID: 32269626 PMCID: PMC7114939 DOI: 10.3892/ol.2020.11468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/29/2020] [Indexed: 11/06/2022] Open
Abstract
Peroxiredoxin IV (PRDX4) is a multifunctional protein that is involved in cell protection against oxidative injury, regulation of cell proliferation, modulation of intracellular signaling, and the pathogenesis of tumors. We previously conducted a proteomic analysis to investigate tumor-specific protein expression in gastric cancer. The aim of the present study was to investigate whether PRDX4 could be a marker of poor prognosis in patients with gastric cancer. Immunohistochemistry was used to validate PRDX4 as a prognostic marker for gastric cancer. Short hairpin RNA (shRNA)-mediated knockdown of PRDX4 expression in AGS cells and MKN28 cells was used for functional studies, and PRDX4 overexpression in PRDX4-depleted cells was used for knock-in studies. Based on immunohistochemistry data, TNM stage and PRDX4 were independent prognostic factors in the Cox proportional hazard model (P<0.05). In the survival analysis, the PRDX4-overexpressing group demonstrated significantly worse survival than the PRDX4-underexpression group (P<0.01). In vitro, knockdown of PRDX4 expression by shRNA caused a significant decrease in cancer invasion. Conversely, overexpression of PRDX4 in PRDX4-depleted cancer cells promoted migration and invasion. By measuring the expression of EMT-related genes, we found that E-cadherin was increased in shPRDX4 cells compared with control shMKN28 cells, and snail and slug were decreased in shPRDX4-1 cells compared with sh-control cells. Furthermore, the expression levels of these genes could be recovered in rescue experiments. In conclusion, the results of the present study suggested that PRDX4 is a marker of poor prognosis in gastric cancer and that PRDX4 is associated with cancer cell migration and invasion via EMT.
Collapse
Affiliation(s)
- Sun Yi Park
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Young-Joon Lee
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Jiho Park
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Tae-Han Kim
- Department of Surgery, Gyeongsang National University Changwon Hospital, Changwon, Gyeongsangnam-do 51472, Republic of Korea
| | - Soon-Chan Hong
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Eun-Jung Jung
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea.,Department of Surgery, Gyeongsang National University Changwon Hospital, Changwon, Gyeongsangnam-do 51472, Republic of Korea
| | - Young-Tae Ju
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Chi-Young Jeong
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Hee Jin Park
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Gyung Hyuck Ko
- Department of Pathology, School of Medicine, Gyeongsang National University, Jinju, Gyeongsang 52727, Republic of Korea
| | - Dae Hyun Song
- Department of Pathology, School of Medicine, Gyeongsang National University, Jinju, Gyeongsang 52727, Republic of Korea
| | - Miyeong Park
- Department of Anesthesiology, Gyeongsang National University Changwon Hospital, Changwon, Gyeongsangnam-do 51472, Republic of Korea
| | - Jiyun Yoo
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Gyeongsang 52528, Republic of Korea
| | - Sang-Ho Jeong
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea.,Department of Surgery, Gyeongsang National University Changwon Hospital, Changwon, Gyeongsangnam-do 51472, Republic of Korea
| |
Collapse
|
22
|
Lee DH, Jung YS, Yun J, Han SB, Roh YS, Song MJ, Hong JT. Peroxiredoxin 6 mediates acetaminophen-induced hepatocyte death through JNK activation. Redox Biol 2020; 32:101496. [PMID: 32171727 PMCID: PMC7068129 DOI: 10.1016/j.redox.2020.101496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/25/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
Acetaminophen (APAP) is one of the most frequently used drugs; however, its overdose leads to acute liver injury. Recently, studies have reported that the adduction of peroxiredoxin 6 (PRDX6), a member of the PRDX family of antioxidant enzymes, is associated with liver diseases. However, the role of PRDX6 in APAP-induced liver injury remains unclear. Here, we assessed both age-matched (about 12 weeks) PRDX6-overexpressing transgenic mice (PRDX6 mice) and wild type (WT) mice presenting acute liver injury induced by the intraperitoneal injection of APAP (500 mg/kg). Although PRDX6 is known as an antioxidant enzyme, PRDX6 mice unexpectedly demonstrated severe liver injury following APAP injection compared with WT mice. We observed that PRDX6 was hyperoxidized after APAP administration. Additionally, calcium-independent phospholipase A2 (iPLA2) activity and lysophosphatidylcholine (LPC) levels were markedly elevated in PRDX6 mice following APAP administration. Moreover, APAP-induced JNK phosphorylation was considerably increased in the liver of PRDX6 mice. MJ33, an inhibitor of PRDX6, attenuated APAP-induced liver injury both in WT and PRDX6 mice. Notably, MJ33 reduced the APAP-induced increase in JNK activation, iPLA2 activity, and LPC levels. Although SP600125, a JNK inhibitor, abolished APAP-induced liver injury, it failed to affect the APAP-induced hyperoxidation of PRDX6, iPLA2 activity, and LPC levels. These results suggested that PRDX6 was converted to the hyperoxidized form by the APAP-induced high concentration of hydrogen peroxides. In the liver, hyperoxidized PRDX6 induced cellular toxicity via JNK activation by enhancing iPLA2 activity and LPC levels; this mechanism appears to be a one-way cascade. PRDX6 is hyperoxidized by ROS induced by APAP in the liver. Increased hyperoxidized PRDX6 by overexpression aggravates APAP-induced liver injury. Hyperoxidized PRDX6 enhances JNK activation via increasing its iPLA2 activity. MJ33, iPLA activity of PRDX6 inhibitor, inhibits APAP-induced liver injury.
Collapse
Affiliation(s)
- Dong Hun Lee
- Department of Biological Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| | - Young Suk Jung
- College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| | - Sang Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| | - Yoon Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| | - Min Jong Song
- Department of Obstetrics and Gynecology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul, 07345, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
23
|
Novoselova EG, Glushkova OV, Lunin SM, Khrenov MO, Parfenyuk SB, Novoselova TV, Sharapov MG, Novoselov VI, Fesenko EE. Peroxiredoxin 6 Attenuates Alloxan-Induced Type 1 Diabetes Mellitus in Mice and Cytokine-Induced Cytotoxicity in RIN-m5F Beta Cells. J Diabetes Res 2020; 2020:7523892. [PMID: 32908936 PMCID: PMC7474389 DOI: 10.1155/2020/7523892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/01/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022] Open
Abstract
Type 1 diabetes is associated with the destruction of pancreatic beta cells, which is mediated via an autoimmune mechanism and consequent inflammatory processes. In this article, we describe a beneficial effect of peroxiredoxin 6 (PRDX6) in a type 1 diabetes mouse model. The main idea of this study was based on the well-known data that oxidative stress plays an important role in pathogenesis of diabetes and its associated complications. We hypothesised that PRDX6, which is well known for its various biological functions, including antioxidant activity, may provide an antidiabetic effect. It was shown that PRDX6 prevented hyperglycemia, lowered the mortality rate, restored the plasma cytokine profile, reversed the splenic cell apoptosis, and reduced the β cell destruction in Langerhans islets in mice with a severe form of alloxan-induced diabetes. In addition, PRDX6 protected rat insulinoma RIN-m5F β cells, cultured with TNF-α and IL-1β, against the cytokine-induced cytotoxicity and reduced the apoptotic cell death and production of ROS. Signal transduction studies showed that PRDX6 prevented the activation of NF-κB and c-Jun N-terminal kinase signaling cascades in RIN-m5F β cells cultured with cytokines. In conclusion, there is a prospect for therapeutic application of PRDX6 to delay or even prevent β cell apoptosis in type 1 diabetes.
Collapse
Affiliation(s)
- Elena G. Novoselova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Institutskaya Str. 3, 142290 Pushchino, Moscow Region, Russia
| | - Olga V. Glushkova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Institutskaya Str. 3, 142290 Pushchino, Moscow Region, Russia
| | - Sergey M. Lunin
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Institutskaya Str. 3, 142290 Pushchino, Moscow Region, Russia
| | - Maxim O. Khrenov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Institutskaya Str. 3, 142290 Pushchino, Moscow Region, Russia
| | - Svetlana B. Parfenyuk
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Institutskaya Str. 3, 142290 Pushchino, Moscow Region, Russia
| | - Tatyana V. Novoselova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Institutskaya Str. 3, 142290 Pushchino, Moscow Region, Russia
| | - Mars G. Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Institutskaya Str. 3, 142290 Pushchino, Moscow Region, Russia
| | - Vladimir I. Novoselov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Institutskaya Str. 3, 142290 Pushchino, Moscow Region, Russia
| | - Evgeny E. Fesenko
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Institutskaya Str. 3, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
24
|
Bibli SI, Hu J, Leisegang MS, Wittig J, Zukunft S, Kapasakalidi A, Fisslthaler B, Tsilimigras D, Zografos G, Filis K, Brandes RP, Papapetropoulos A, Sigala F, Fleming I. Shear stress regulates cystathionine γ lyase expression to preserve endothelial redox balance and reduce membrane lipid peroxidation. Redox Biol 2020; 28:101379. [PMID: 31759247 PMCID: PMC6880097 DOI: 10.1016/j.redox.2019.101379] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/30/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023] Open
Abstract
Cystathionine γ lyase (CSE) is the major source of hydrogen sulfide-derived species (H2Sn) in endothelial cells and plays an important role in protecting against atherosclerosis. Here we investigated the molecular mechanisms underlying the regulation of CSE expression in endothelial cells by fluid shear stress/flow. Fluid shear stress decreased CSE expression in human and murine endothelial cells and was negatively correlated with the transcription factor Krüppel-like factor (KLF) 2. CSE was identified as a direct target of the KLF2-regulated microRNA, miR-27b and high expression of CSE in native human plaque-derived endothelial cells, was also inversely correlated with KLF2 and miR-27b levels. One consequence of decreased CSE expression was the loss of Prx6 sulfhydration (on Cys47), which resulted in Prx6 hyperoxidation, decamerization and inhibition, as well as a concomitant increase in endothelial cell reactive oxygen species and lipid membrane peroxidation. H2Sn supplementation in vitro was able to reverse the redox state of Prx6. Statin therapy, which is known to activate KLF2, also decreased CSE expression but increased CSE activity by preventing its phosphorylation on Ser377. As a result, the sulfhydration of Prx6 was partially restored in samples from plaque containing arteries from statin-treated donors. Taken together, the regulation of CSE expression by shear stress/disturbed flow is dependent on KLF2 and miR-27b. Moreover, in murine and human arteries CSE acts to maintain endothelial redox balance at least partly by targeting Prx6 to prevent its decamerization and inhibition of its peroxidase activity.
Collapse
Key Words
- (3′utr), 3′untranslated region
- (cse), cystathionine γ lyase
- (dhe), dihydroethidium
- (dppp), diphenyl-1-pyrenylphosphine
- (enos), endothelial nitric oxide synthase
- (h2sn), h2s-related sulfane sulfur compounds
- (h2s), hydrogen sulfide
- (h2o2), hydrogen peroxide
- (il-1β), interleukin-1β
- (klf2), krüppel-like factor 2
- (lc-ms/ms), liquid chromatography - tandem mass spectrometry
- (no), nitric oxide
- (prx), peroxiredoxin
- (ros), reactive oxygen species
- (sirna), small interfering rna
- (o2•-), superoxide anion
- (tbars), thiobarbituric acid reactive substances
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Matthias S Leisegang
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany; Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Janina Wittig
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Andrea Kapasakalidi
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Beate Fisslthaler
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Diamantis Tsilimigras
- First Propedeutic Department of Surgery, Vascular Surgery Division, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Georgios Zografos
- First Propedeutic Department of Surgery, Vascular Surgery Division, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Konstantinos Filis
- First Propedeutic Department of Surgery, Vascular Surgery Division, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Ralf P Brandes
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany; Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens Medical School, Athens, Greece; Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou 4, Athens, 11527, Greece
| | - Fragiska Sigala
- First Propedeutic Department of Surgery, Vascular Surgery Division, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany.
| |
Collapse
|
25
|
López Grueso MJ, Tarradas Valero RM, Carmona-Hidalgo B, Lagal Ruiz DJ, Peinado J, McDonagh B, Requejo Aguilar R, Bárcena Ruiz JA, Padilla Peña CA. Peroxiredoxin 6 Down-Regulation Induces Metabolic Remodeling and Cell Cycle Arrest in HepG2 Cells. Antioxidants (Basel) 2019; 8:E505. [PMID: 31652719 PMCID: PMC6912460 DOI: 10.3390/antiox8110505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/29/2022] Open
Abstract
Peroxiredoxin 6 (Prdx6) is the only member of 1-Cys subfamily of peroxiredoxins in human cells. It is the only Prdx acting on phospholipid hydroperoxides possessing two additional sites with phospholipase A2 (PLA2) and lysophosphatidylcholine-acyl transferase (LPCAT) activities. There are contrasting reports on the roles and mechanisms of multifunctional Prdx6 in several pathologies and on its sensitivity to, and influence on, the redox environment. We have down-regulated Prdx6 with specific siRNA in hepatoblastoma HepG2 cells to study its role in cell proliferation, redox homeostasis, and metabolic programming. Cell proliferation and cell number decreased while cell volume increased; import of glucose and nucleotide biosynthesis also diminished while polyamines, phospholipids, and most glycolipids increased. A proteomic quantitative analysis suggested changes in membrane arrangement and vesicle trafficking as well as redox changes in enzymes of carbon and glutathione metabolism, pentose-phosphate pathway, citrate cycle, fatty acid metabolism, biosynthesis of aminoacids, and Glycolysis/Gluconeogenesis. Specific redox changes in Hexokinase-2 (HK2), Prdx6, intracellular chloride ion channel-1 (CLIC1), PEP-carboxykinase-2 (PCK2), and 3-phosphoglycerate dehydrogenase (PHGDH) are compatible with the metabolic remodeling toward a predominant gluconeogenic flow from aminoacids with diversion at 3-phospohglycerate toward serine and other biosynthetic pathways thereon and with cell cycle arrest at G1/S transition.
Collapse
Affiliation(s)
- María José López Grueso
- Department of Biochemistry and Molecular Biology, University of Córdoba, 14074 Córdoba, Spain.
| | | | - Beatriz Carmona-Hidalgo
- Department of Biochemistry and Molecular Biology, University of Córdoba, 14074 Córdoba, Spain.
| | - Daniel José Lagal Ruiz
- Department of Biochemistry and Molecular Biology, University of Córdoba, 14074 Córdoba, Spain.
| | - José Peinado
- Department of Biochemistry and Molecular Biology, University of Córdoba, 14074 Córdoba, Spain.
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain.
| | - Brian McDonagh
- Department of Physiology, School of Medicine, NUI Galway, H91 TK33 Galway, Ireland.
| | - Raquel Requejo Aguilar
- Department of Biochemistry and Molecular Biology, University of Córdoba, 14074 Córdoba, Spain.
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain.
| | - José Antonio Bárcena Ruiz
- Department of Biochemistry and Molecular Biology, University of Córdoba, 14074 Córdoba, Spain.
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain.
| | - Carmen Alicia Padilla Peña
- Department of Biochemistry and Molecular Biology, University of Córdoba, 14074 Córdoba, Spain.
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain.
| |
Collapse
|
26
|
Wang LL, Chen XF, Hu P, Lu SY, Fu BQ, Li YS, Zhai FF, Ju DD, Zhang SJ, Shui YM, Chang J, Ma XL, Su B, Zhou Y, Liu ZS, Ren HL. Host Prdx6 contributing to the intracellular survival of Brucella suis S2 strain. BMC Vet Res 2019; 15:304. [PMID: 31438945 PMCID: PMC6704487 DOI: 10.1186/s12917-019-2049-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/12/2019] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Brucellosis is a worldwide zoonotic infectious disease that is transmitted in various ways and causes great harm to humans and animals. The brucellosis pathogen is Brucella, which mainly resides in macrophage cells and survives and replicates in host cells. However, the mechanisms underlying Brucella survival in macrophage cells have not been thoroughly elucidated to date. Peroxiredoxin 6 (Prdx6) is a bifunctional protein that shows not only GSH peroxidase activity but also phospholipase A2 activity and plays important roles in combating oxidative damage and regulating apoptosis. RESULTS Recombinant mouse (Mus musculus) Prdx6 (MmPrdx6) was expressed and purified, and monoclonal antibodies against MmPrdx6 were prepared. Using the Brucella suis S2 strain to infect RAW264.7 murine macrophages, the level of intracellular Prdx6 expression first decreased and later increased following infection. Overexpressing Prdx6 in macrophages resulted in an increase in B. suis S2 strain levels in RAW264.7 cells, while knocking down Prdx6 reduced the S2 levels in cells. CONCLUSIONS Host Prdx6 can increase the intracellular survival of B. suis S2 strain and plays a role in Brucella infection.
Collapse
Affiliation(s)
- Lu-Lu Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Xiao-Feng Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Pan Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Shi-Ying Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Bao-Quan Fu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yan-Song Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Fei-Fei Zhai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Dan-Di Ju
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Shi-Jun Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Yi-Ming Shui
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Jiang Chang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Xiao-Long Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China.,Shaheyan Animal Husbandry and Veterinary Medicine Station of Dunhua City, Dunhua, 133700, China
| | - Bing Su
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Yu Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Zeng-Shan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Hong-Lin Ren
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China.
| |
Collapse
|
27
|
A key metabolic integrator, coenzyme A, modulates the activity of peroxiredoxin 5 via covalent modification. Mol Cell Biochem 2019; 461:91-102. [PMID: 31375973 PMCID: PMC6790197 DOI: 10.1007/s11010-019-03593-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/20/2019] [Indexed: 01/18/2023]
Abstract
Peroxiredoxins (Prdxs) are antioxidant enzymes that catalyse the breakdown of peroxides and regulate redox activity in the cell. Peroxiredoxin 5 (Prdx5) is a unique member of Prdxs, which displays a wider subcellular distribution and substrate specificity and exhibits a different catalytic mechanism when compared to other members of the family. Here, the role of a key metabolic integrator coenzyme A (CoA) in modulating the activity of Prdx5 was investigated. We report for the first time a novel mode of Prdx5 regulation mediated via covalent and reversible attachment of CoA (CoAlation) in cellular response to oxidative and metabolic stress. The site of CoAlation in endogenous Prdx5 was mapped by mass spectrometry to peroxidatic cysteine 48. By employing an in vitro CoAlation assay, we showed that Prdx5 peroxidase activity is inhibited by covalent interaction with CoA in a dithiothreitol-sensitive manner. Collectively, these results reveal that human Prdx5 is a substrate for CoAlation in vitro and in vivo, and provide new insight into metabolic control of redox status in mammalian cells.
Collapse
|
28
|
Protective role of exogenous recombinant peroxiredoxin 6 under ischemia-reperfusion injury of kidney. Cell Tissue Res 2019; 378:319-332. [DOI: 10.1007/s00441-019-03073-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
|
29
|
Sharapov MG, Novoselov VI. Catalytic and Signaling Role of Peroxiredoxins in Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2019; 84:79-100. [PMID: 31216969 DOI: 10.1134/s0006297919020019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer cells experience strong oxidative stress caused by disorders in cell metabolism and action of external factors. For survival, cancer cells have developed a highly efficient system of antioxidant defense, some of the most important elements of which are peroxiredoxins (Prxs). Prxs are an evolutionarily ancient family of selenium-independent peroxidases that reduce a wide range of organic and inorganic hydroperoxides in the cell and the extracellular space. In addition, some Prxs exhibit chaperone and phospholipase activities. Prxs play an important role in the maintenance of the cell redox homeostasis; they prevent oxidation and aggregation of regulatory proteins, thereby affecting many cell signaling pathways. Prxs are involved in the regulation of cell growth, differentiation, and apoptosis. Due to their versatility and wide representation in all tissues and organs, Prxs participate in the development/suppression of many pathological conditions, among which cancer occupies a special place. This review focuses on the role of Prxs in the development of various forms of cancer. Understanding molecular mechanisms of Prx involvement in these processes will allow to develop new approaches to the prevention and treatment of cancer.
Collapse
Affiliation(s)
- M G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - V I Novoselov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
30
|
Vázquez-Medina JP, Tao JQ, Patel P, Bannitz-Fernandes R, Dodia C, Sorokina EM, Feinstein SI, Chatterjee S, Fisher AB. Genetic inactivation of the phospholipase A 2 activity of peroxiredoxin 6 in mice protects against LPS-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2019; 316:L656-L668. [PMID: 30702344 PMCID: PMC6483013 DOI: 10.1152/ajplung.00344.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/31/2018] [Accepted: 01/17/2019] [Indexed: 12/17/2022] Open
Abstract
Peroxiredoxin 6 (Prdx6) is a multifunctional enzyme that serves important antioxidant roles by scavenging hydroperoxides and reducing peroxidized cell membranes. Prdx6 also plays a key role in cell signaling by activating the NADPH oxidase, type 2 (Nox2) through its acidic Ca2+-independent phospholipase A2 (aiPLA2) activity. Nox2 generation of O2·-, in addition to signaling, can contribute to oxidative stress and inflammation such as during sepsis-induced acute lung injury (ALI). To evaluate a possible role of Prdx6-aiPLA2 activity in the pathophysiology of ALI associated with a systemic insult, wild-type (WT) and Prdx6-D140A mice, which lack aiPLA2 but retain peroxidase activity were administered intraperitoneal LPS. LPS-treated mutant mice had increased survival compared with WT mice while cytokines in lung lavage fluid and lung VCAM-1 expression, nitrotyrosine levels, PMN infiltration, and permeability increased in WT but not in mutant mice. Exposure of mouse pulmonary microvascular endothelial cells in primary culture to LPS promoted phosphorylation of Prdx6 and its translocation to the plasma membrane and increased aiPLA2 activity as well as increased H2O2 generation, nitrotyrosine levels, lipid peroxidation, NF-κB nuclear localization, and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome assembly; these effects were not seen in Nox2 null cells, Prdx6-D140A cells, or WT cells pretreated with MJ33, an inhibitor of aiPLA2 activity. Thus aiPLA2 activity is needed for Nox2-derived oxidant stress associated with LPS exposure. Since inactivation of aiPLA2 reduced mortality and prevented lung inflammation and oxidative stress in this animal model, the aiPLA2 activity of Prdx6 could be a novel target for prevention or treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- José Pablo Vázquez-Medina
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Department of Integrative Biology, University of California , Berkeley, California
| | - Jian-Quin Tao
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Priyal Patel
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Renata Bannitz-Fernandes
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Chandra Dodia
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Elena M Sorokina
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Sheldon I Feinstein
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Shampa Chatterjee
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Aron B Fisher
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
31
|
Feinstein SI. Mouse Models of Genetically Altered Peroxiredoxin 6. Antioxidants (Basel) 2019; 8:E77. [PMID: 30934692 PMCID: PMC6523285 DOI: 10.3390/antiox8040077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/07/2019] [Accepted: 03/20/2019] [Indexed: 01/07/2023] Open
Abstract
Peroxiredoxin 6 (Prdx6) has been shown to have three enzymatic activities: peroxidase, phospholipase A₂ (PLA₂) and acyl transferase. The peroxidase activity is unusual, as it is capable of reducing phospholipid hydroperoxides (as well as hydrogen peroxide and short chain organic peroxides). Knockout and overexpressing mice have been produced that demonstrate the effect that eliminating or overproducing Prdx6 has on the animals' physiology. In addition, mutations in various amino acids of Prdx6 have been identified that interfere with different enzymatic functions as well as protein transport. These mutations were originally characterized biochemically; subsequently, several knock-in mouse strains have been produced, each containing one mutation. These mice include the S32T knock-in that affects protein transport, the C47S knock-in that inactivates the peroxidase enzymatic activity, the D140A knock-in that inactivates the PLA₂ enzymatic activity and the H26A knock-in that inactivates the peroxidase and blocks binding to phospholipids. This review summarizes the properties of these mice based upon studies conducted with the knockout, overexpressing and knock-in mice and the effect of the genetic changes on the biochemistry and physiology of these mice. The availability of these mice is also briefly discussed.
Collapse
Affiliation(s)
- Sheldon I Feinstein
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
- Peroxitech, Ltd., Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
Peroxiredoxin6 in Endothelial Signaling. Antioxidants (Basel) 2019; 8:antiox8030063. [PMID: 30871234 PMCID: PMC6466833 DOI: 10.3390/antiox8030063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
Abstract
Peroxiredoxins (Prdx) are a ubiquitous family of highly conserved antioxidant enzymes with a cysteine residue that participate in the reduction of peroxides. This family comprises members Prdx1–6, of which Peroxiredoxin 6 (Prdx6) is unique in that it is multifunctional with the ability to neutralize peroxides (peroxidase activity) and to produce reactive oxygen species (ROS) via its phospholipase (PLA2) activity that drives assembly of NADPH oxidase (NOX2). From the crystal structure, a C47 residue is responsible for peroxidase activity while a catalytic triad (S32, H26, and D140) has been identified as the active site for its PLA2 activity. This paradox of being an antioxidant as well as an oxidant generator implies that Prdx6 is a regulator of cellular redox equilibrium (graphical abstract). It also indicates that a fine-tuned regulation of Prdx6 expression and activity is crucial to cellular homeostasis. This is specifically important in the endothelium, where ROS production and signaling are critical players in inflammation, injury, and repair, that collectively signal the onset of vascular diseases. Here we review the role of Prdx6 as a regulator of redox signaling, specifically in the endothelium and in mediating various pathologies.
Collapse
|
33
|
Shahnaj S, Chowhan RK, Meetei PA, Kakchingtabam P, Herojit Singh K, Rajendrakumar Singh L, Nongdam P, Fisher AB, Rahaman H. Hyperoxidation of Peroxiredoxin 6 Induces Alteration from Dimeric to Oligomeric State. Antioxidants (Basel) 2019; 8:antiox8020033. [PMID: 30717364 PMCID: PMC6406459 DOI: 10.3390/antiox8020033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 12/15/2022] Open
Abstract
Peroxiredoxins(Prdx), the family of non-selenium glutathione peroxidases, are important antioxidant enzymes that defend our system from the toxic reactive oxygen species (ROS). They are thiol-based peroxidases that utilize self-oxidation of their peroxidatic cysteine (Cp) group to reduce peroxides and peroxidized biomolecules. However, because of its high affinity for hydrogen peroxide this peroxidatic cysteine moiety is extremely susceptible to hyperoxidation, forming peroxidase inactive sulfinic acid (Cys-SO₂H) and sulfonic acid (Cys-SO₃H) derivatives. With the exception of peroxiredoxin 6 (Prdx6), hyperoxidized sulfinic forms of Prdx can be reversed to restore peroxidase activity by the ATP-dependent enzyme sulfiredoxin. Interestingly, hyperoxidized Prdx6 protein seems to have physiological significance as hyperoxidation has been reported to dramatically upregulate its calcium independent phospholipase A₂ activity. Using biochemical studies and molecular dynamic (MD) simulation, we investigated the roles of thermodynamic, structural and internal flexibility of Prdx6 to comprehend the structural alteration of the protein in the oxidized state. We observed the loosening of the hydrophobic core of the enzyme in its secondary and tertiary structures. These changes do not affect the internal dynamics of the protein (as indicated by root-mean-square deviation, RMSD and root mean square fluctuation, RMSF plots). Native-PAGE and dynamic light scattering experiments revealed the formation of higher oligomers of Prdx6 under hyperoxidation. Our study demonstrates that post translational modification (like hyperoxidation) in Prdx6 can result in major alterations of its multimeric status.
Collapse
Affiliation(s)
- Sharifun Shahnaj
- Department of Biotechnology, Manipur University, Manipur 795003, India.
| | | | | | | | | | | | | | - Aron B Fisher
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6068, USA.
| | - Hamidur Rahaman
- Department of Biotechnology, Manipur University, Manipur 795003, India.
| |
Collapse
|
34
|
Santos J, Milthorpe BK, Padula MP. Proteomic Analysis of Cyclic Ketamine Compounds Ability to Induce Neural Differentiation in Human Adult Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20030523. [PMID: 30691166 PMCID: PMC6387408 DOI: 10.3390/ijms20030523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 12/28/2022] Open
Abstract
Neural regeneration is of great interest due to its potential to treat traumatic brain injuries and diseases that impact quality of life. Growth factor mediated differentiation can take up to several weeks to months to produce the cell of interest whereas chemical stimulation may be as minimal as a few hours. The smaller time scale is of great clinical relevance. Adipose derived stem cells (ADSCs) were treated for up to 24 h with a novel differentiation media containing the cyclic ketamine compounds to direct neurogenic induction. The extent of differentiation was investigated by proteome changes occurring during the process. The treatments indicated the ADSCs responded favorably to the neurogenic induction media by presenting a number of morphological cues of neuronal phenotype previously seen and a higher cell population post induction compared to previous studies. Furthermore, approximately 3500 proteins were analyzed and identified by mass spectrometric iTRAQ analyses. The bioinformatics analyses revealed hundreds of proteins whose expression level changes were statistically significant and biologically relevant to neurogenesis and annotated as being involved in neurogenic development. Complementing this, the Bioplex cytokine assay profiles present evidence of decreased panel of stress response cytokines and a relative increase in those involved in neurogenesis.
Collapse
Affiliation(s)
- Jerran Santos
- Advanced Tissue Regeneration & Drug Delivery Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123 Broadway, Ultimo 2007, Australia.
- Proteomics Core Facility and School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123 Broadway, Ultimo 2007, Australia.
- CIRIMAT, Paul Sabatier, University of Toulouse 3 (INPT), 118 Route de Narbonne, 31062 Toulouse, France.
| | - Bruce Kenneth Milthorpe
- Advanced Tissue Regeneration & Drug Delivery Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123 Broadway, Ultimo 2007, Australia.
| | - Matthew Paul Padula
- Proteomics Core Facility and School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123 Broadway, Ultimo 2007, Australia.
| |
Collapse
|
35
|
Sharapov MG, Novoselov VI, Gudkov SV. Radioprotective Role of Peroxiredoxin 6. Antioxidants (Basel) 2019; 8:E15. [PMID: 30621289 PMCID: PMC6356814 DOI: 10.3390/antiox8010015] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 02/06/2023] Open
Abstract
Peroxiredoxin 6 (Prdx6) is a member of an evolutionary ancient family of peroxidase enzymes with diverse functions in the cell. Prdx6 is an important enzymatic antioxidant. It reduces a wide range of peroxide substrates in the cell, thus playing a leading role in the maintenance of the redox homeostasis in mammalian cells. Beside peroxidase activity, Prdx6 has been shown to possess an activity of phospholipase A2, an enzyme playing an important role in membrane phospholipid metabolism. Moreover, Prdx6 takes part in intercellular and intracellular signal transduction due to its peroxidase and phospholipase activity, thus facilitating the initiation of regenerative processes in the cell, suppression of apoptosis, and activation of cell proliferation. Being an effective and important antioxidant enzyme, Prdx6 plays an essential role in neutralizing oxidative stress caused by various factors, including action of ionizing radiation. Endogenous Prdx6 has been shown to possess a significant radioprotective potential in cellular and animal models. Moreover, intravenous infusion of recombinant Prdx6 to animals before irradiation at lethal or sublethal doses has shown its high radioprotective effect. Exogenous Prdx6 effectively alleviates the severeness of radiation lesions, providing normalization of the functional state of radiosensitive organs and tissues, and leads to a significant elevation of the survival rate of animals. Prdx6 can be considered as a potent and promising radioprotective agent for reducing the pathological effect of ionizing radiation on mammalian organisms. The radioprotective properties and mechanisms of radioprotective action of Prdx6 are discussed in the current review.
Collapse
Affiliation(s)
- Mars G Sharapov
- Laboratory of Mechanisms of Reception, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia.
| | - Vladimir I Novoselov
- Laboratory of Mechanisms of Reception, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia.
| | - Sergey V Gudkov
- Wave Research Center, Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia.
- Department of Experimental Clinical Studies, Moscow Regional Research and Clinical Institute (MONIKI), 129110 Moscow, Russia.
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 603950 Nizhni Novgorod, Russia.
| |
Collapse
|
36
|
Zhou S, Dodia C, Feinstein SI, Harper S, Forman HJ, Speicher DW, Fisher AB. Oxidation of Peroxiredoxin 6 in the Presence of GSH Increases its Phospholipase A₂ Activity at Cytoplasmic pH. Antioxidants (Basel) 2018; 8:antiox8010004. [PMID: 30586895 PMCID: PMC6357108 DOI: 10.3390/antiox8010004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/05/2018] [Accepted: 12/18/2018] [Indexed: 01/25/2023] Open
Abstract
The expression of the phospholipase A2 activity (aiPLA2) of peroxiredoxin 6 (Prdx6) in the cell cytoplasm is physiologically relevant for the repair of peroxidized cell membranes, but aiPLA2 assay in vitro indicates that, unlike assay at pH 4, activity at cytosolic pH is essentially absent with non-oxidized substrate. However, the addition of glutathione (GSH) to the assay medium significantly increased aiPLA2 activity at cytosolic pH, while oxidized GSH (GSSG) and several other thiols had no effect. By mass spectroscopy (ESI MS), the addition of GSH to Prdx6 paradoxically led to oxidation of its conserved Cys47 residue to a sulfinic acid. The effect of GSH on PLA2 activity was abolished by incubation under anaerobic conditions, confirming that auto-oxidation of the protein was the mechanism for the GSH effect. Analysis by circular dichroism (CD) and tryptophan fluorescence showed alterations of the protein structure in the presence of GSH. Independently of GSH, the oxidation of Prdx6 by exposure to H2O2 or the presence of oxidized phospholipid as substrate also significantly increased aiPLA2 activity at pH 7. We conclude that the oxidation of the peroxidatically active Cys47 of Prdx6 results in an increase of aiPLA2 activity at pH 7 without effect on the activity of the enzyme at pH 4.
Collapse
Affiliation(s)
- Suiping Zhou
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Chandra Dodia
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Sheldon I Feinstein
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Sandra Harper
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Henry J Forman
- Leonard Davis School of Gerontology, The University of Southern California, Los Angeles, CA 19104, USA.
| | - David W Speicher
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Aron B Fisher
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Arevalo JA, Vázquez-Medina JP. The Role of Peroxiredoxin 6 in Cell Signaling. Antioxidants (Basel) 2018; 7:antiox7120172. [PMID: 30477202 PMCID: PMC6316032 DOI: 10.3390/antiox7120172] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022] Open
Abstract
Peroxiredoxin 6 (Prdx6, 1-cys peroxiredoxin) is a unique member of the peroxiredoxin family that, in contrast to other mammalian peroxiredoxins, lacks a resolving cysteine and uses glutathione and π glutathione S-transferase to complete its catalytic cycle. Prdx6 is also the only peroxiredoxin capable of reducing phospholipid hydroperoxides through its glutathione peroxidase (Gpx) activity. In addition to its peroxidase activity, Prdx6 expresses acidic calcium-independent phospholipase A2 (aiPLA2) and lysophosphatidylcholine acyl transferase (LPCAT) activities in separate catalytic sites. Prdx6 plays crucial roles in lung phospholipid metabolism, lipid peroxidation repair, and inflammatory signaling. Here, we review how the distinct activities of Prdx6 are regulated during physiological and pathological conditions, in addition to the role of Prdx6 in cellular signaling and disease.
Collapse
Affiliation(s)
- José A Arevalo
- Department of Integrative Biology, University of California, Berkeley, CA, 94705, USA.
| | | |
Collapse
|
38
|
Fisher AB. The phospholipase A 2 activity of peroxiredoxin 6. J Lipid Res 2018; 59:1132-1147. [PMID: 29716959 DOI: 10.1194/jlr.r082578] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Peroxiredoxin 6 (Prdx6) is a Ca2+-independent intracellular phospholipase A2 (called aiPLA2) that is localized to cytosol, lysosomes, and lysosomal-related organelles. Activity is minimal at cytosolic pH but is increased significantly with enzyme phosphorylation, at acidic pH, and in the presence of oxidized phospholipid substrate; maximal activity with phosphorylated aiPLA2 is ∼2 µmol/min/mg protein. Prdx6 is a "moonlighting" protein that also expresses glutathione peroxidase and lysophosphatidylcholine acyl transferase activities. The catalytic site for aiPLA2 activity is an S32-H26-D140 triad; S32-H26 is also the phospholipid binding site. Activity is inhibited by a serine "protease" inhibitor (diethyl p-nitrophenyl phosphate), an analog of the PLA2 transition state [1-hexadecyl-3-(trifluoroethyl)-sn-glycero-2-phosphomethanol (MJ33)], and by two naturally occurring proteins (surfactant protein A and p67phox), but not by bromoenol lactone. aiPLA2 activity has important physiological roles in the turnover (synthesis and degradation) of lung surfactant phospholipids, in the repair of peroxidized cell membranes, and in the activation of NADPH oxidase type 2 (NOX2). The enzyme has been implicated in acute lung injury, carcinogenesis, neurodegenerative diseases, diabetes, male infertility, and sundry other conditions, although its specific roles have not been well defined. Protein mutations and animal models are now available to further investigate the roles of Prdx6-aiPLA2 activity in normal and pathological physiology.
Collapse
Affiliation(s)
- Aron B Fisher
- Institute for Environmental Medicine of the Department of Physiology, University of Pennsylvania, Philadelphia, PA 19103
| |
Collapse
|
39
|
Lu Z, Ma Y, Zhang Q, Zhao X, Zhang Y, Zhang L. Proteomic analyses of ram (Ovis aries) testis during different developmental stages. Anim Reprod Sci 2017; 189:93-102. [PMID: 29279200 DOI: 10.1016/j.anireprosci.2017.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/06/2017] [Accepted: 12/19/2017] [Indexed: 11/24/2022]
Abstract
Male reproductive capacity is essential for animal breeding and reproduction. In males, the testes produce sperm and secrete androgen, processes which require precise regulation by multiple proteins. The composition of proteins in the ram testes has not yet been studied systematically, thus, the application of proteomics to explore differential protein regulation during ram testes development is of great significance. In the present study, ram testes were studied at five different developmental phases to assess postnatal differences in protein regulation. Two dimensional electrophoresis (2-DE) was used to separate ram testes proteins at each developmental phase, yielding 45 different proteins, 37 of which were identified by Matrix Assisted Laser Desorption Ionization-Time of Flight-Time of Flight-Mass Spectrometry (MALDI-TOF/TOF-MS). Gene Ontology (GO) was used to specifically annotate the biological process, cellular composition, and molecular function of each identified protein. Most of the identified proteins were involved in structural formation, development, reproduction, and apoptosis of the testicular spermatogenic tissue and spermatozoa. Quantitative real time PCR (qRT-PCR), western blot and immunohistochemical methods were used to verify the proteins, and the results were consistent with that of 2-DE. The proteins that were different in abundance that were identified in this study can be used as biomarkers in future studies of ram reproduction.
Collapse
Affiliation(s)
- Zengkui Lu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin 733300, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin 733300, China.
| | - Quanwei Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
40
|
Liu GY, Shi JX, Shi SL, Liu F, Rui G, Li X, Gao LB, Deng XL, Li QF. Nucleophosmin Regulates Intracellular Oxidative Stress Homeostasis via Antioxidant PRDX6. J Cell Biochem 2017; 118:4697-4707. [PMID: 28513872 DOI: 10.1002/jcb.26135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/16/2017] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species (ROS) play both deleterious and beneficial roles in cancer cells. Nucleophosmin (NPM) is heavily implicated in cancers of diverse origins, being its gene over-expression in solid tumors or frequent mutations in hematological malignancies. However, the role and regulatory mechanism of NPM in oxidative stress are unclear. Here, we found that NPM regulated the expression of peroxiredoxin 6 (PRDX6), a member of thiol-specific antioxidant protein family, consequently affected the level and distribution of ROS. Our data indicated that NPM knockdown caused the increase of ROS and its relocation from cytoplasm to nucleoplasm. In contrast, overexpression or cytoplasmic localization of NPM upregulated PRDX6, and decreased ROS. In addition, NPM knockdown decreased peroxiredoxin family proteins, including PRDX1, PRDX4, and PRDX6. Co-immunoprecipitation further confirmed the interaction between PRDX6 and NPM. Moreover, NSC348884, an inhibitor specifically targeting NPM oligomerization, decreased PRDX6 and significantly upregulated ROS. These observations demonstrated that the expression and localization of NPM affected the homeostatic balance of oxidative stress in tumor cells via PRDX6 protein. The regulation axis of NPM/PRDX/ROS may provide a novel therapeutic target for cancer treatment. J. Cell. Biochem. 118: 4697-4707, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Guo-Yan Liu
- Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China.,Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University/ Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen 361102, P.R. China
| | - Jing-Xian Shi
- Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| | - Song-Lin Shi
- Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| | - Fan Liu
- Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| | - Gang Rui
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen 361003, P.R. China
| | - Xiao Li
- Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| | - Li-Bin Gao
- Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| | - Xiao-Ling Deng
- Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| | - Qi-Fu Li
- Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| |
Collapse
|
41
|
Gandar A, Laffaille P, Marty-Gasset N, Viala D, Molette C, Jean S. Proteome response of fish under multiple stress exposure: Effects of pesticide mixtures and temperature increase. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 184:61-77. [PMID: 28109940 DOI: 10.1016/j.aquatox.2017.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
Aquatic systems can be subjected to multiple stressors, including pollutant cocktails and elevated temperature. Evaluating the combined effects of these stressors on organisms is a great challenge in environmental sciences. To the best of our knowledge, this is the first study to assess the molecular stress response of an aquatic fish species subjected to individual and combined pesticide mixtures and increased temperatures. For that, goldfish (Carassius auratus) were acclimated to two different temperatures (22 and 32°C) for 15 days. They were then exposed for 96h to a cocktail of herbicides and fungicides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin and tebuconazole) at two environmentally relevant concentrations (total concentrations of 8.4μgL-1 and 42μgL-1) at these two temperatures (22 and 32°C). The molecular response in liver was assessed by 2D-proteomics. Identified proteins were integrated using pathway enrichment analysis software to determine the biological functions involved in the individual or combined stress responses and to predict the potential deleterious outcomes. The pesticide mixtures elicited pathways involved in cellular stress response, carbohydrate, protein and lipid metabolisms, methionine cycle, cellular functions, cell structure and death control, with concentration- and temperature-dependent profiles of response. We found that combined temperature increase and pesticide exposure affected the cellular stress response: the effects of oxidative stress were more marked and there was a deregulation of the cell cycle via apoptosis inhibition. Moreover a decrease in the formation of glucose by liver and in ketogenic activity was observed in this multi-stress condition. The decrease in both pathways could reflect a shift from a metabolic compensation strategy to a conservation state. Taken together, our results showed (1) that environmental cocktails of herbicides and fungicides induced important changes in pathways involved in metabolism, cell structure and cell cycle, with possible deleterious outcomes at higher biological scales and (2) that increasing temperature could affect the response of fish to pesticide exposure.
Collapse
Affiliation(s)
- Allison Gandar
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Pascal Laffaille
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | | - Didier Viala
- Plate-Forme 'Exploration du Métabolisme', Centre de Clermont-Ferrand, Theix, 63122, Saint Genès Champanelle, France; UMR 1213 Herbivores, INRA, VetAgro Sup, NRA Theix, 63122, Saint Genès Champanelle, France
| | - Caroline Molette
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31326 Castanet-Tolosan, France
| | - Séverine Jean
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
42
|
Identification of protein biomarkers and signaling pathways associated with prostate cancer radioresistance using label-free LC-MS/MS proteomic approach. Sci Rep 2017; 7:41834. [PMID: 28225015 PMCID: PMC5320484 DOI: 10.1038/srep41834] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/28/2016] [Indexed: 12/20/2022] Open
Abstract
Identifying biomarkers and signaling pathways are important for the management of prostate cancer (CaP) radioresistance. In this study, we identified differential proteins and signaling pathways from parental CaP cell lines and CaP radioresistant (RR) sublines using a label-free LC-MS/MS proteomics approach. A total of 309 signaling pathway proteins were identified to be significantly altered between CaP and CaP-RR cells (p ≤ 0.05, fold differences >1.5, ≥80% power). Among these proteins, nineteen are common among three paired CaP cell lines and associated with metastasis, progression and radioresistance. The PI3K/Akt, VEGF and glucose metabolism pathways were identified as the main pathways associated with CaP radioresistance. In addition, the identified potential protein markers were further validated in CaP-RR cell lines and subcutaneous (s.c) animal xenografts by western blotting and immunohistochemistry, respectively and protein aldolase A (ALDOA) was selected for a radiosensitivity study. We found the depletion of ALDOA combined with radiotherapy effectively reduced colony formation, induced more apoptosis and increased radiosensitivity in CaP-RR cells. Our findings indicate that CaP radioresistance is caused by multifactorial traits and downregulation of ALDOA increases radiosensitivity in CaP-RR cells, suggesting that controlling these identified proteins or signaling pathways in combination with radiotherapy may hold promise to overcome CaP radioresistance.
Collapse
|
43
|
Min Y, Wi SM, Kang JA, Yang T, Park CS, Park SG, Chung S, Shim JH, Chun E, Lee KY. Cereblon negatively regulates TLR4 signaling through the attenuation of ubiquitination of TRAF6. Cell Death Dis 2016; 7:e2313. [PMID: 27468689 PMCID: PMC4973362 DOI: 10.1038/cddis.2016.226] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 11/25/2022]
Abstract
Cereblon (CRBN) is a substrate receptor protein for the CRL4A E3 ubiquitin ligase complex. In this study, we report on a new regulatory role of CRBN in TLR4 signaling. CRBN overexpression leads to suppression of NF-κB activation and production of pro-inflammatory cytokines including IL-6 and IL-1β in response to TLR4 stimulation. Biochemical studies revealed interactions between CRBN and TAK1, and TRAF6 proteins. The interaction between CRBN and TAK1 did not affect the association of the TAB1 and TAB2 proteins, which have pivotal roles in the activation of TAK1, whereas the CRBN-TRAF6 interaction critically affected ubiquitination of TRAF6 and TAB2. Binding mapping results revealed that CRBN interacts with the Zinc finger domain of TRAF6, which contains the ubiquitination site of TRAF6, leading to attenuation of ubiquitination of TRAF6 and TAB2. Functional studies revealed that CRBN-knockdown THP-1 cells show enhanced NF-κB activation and p65- or p50-DNA binding activities, leading to up-regulation of NF-κB-dependent gene expression and increased pro-inflammatory cytokine levels in response to TLR4 stimulation. Furthermore, Crbn−/− mice exhibit decreased survival in response to LPS challenge, accompanied with marked enhancement of pro-inflammatory cytokines, such as TNF-α and IL-6. Taken together, our data demonstrate that CRBN negatively regulates TLR4 signaling via attenuation of TRAF6 and TAB2 ubiquitination.
Collapse
Affiliation(s)
- Yoon Min
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 300, Cheoncheon-dong, Jangan-Gu, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| | - Sae Mi Wi
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 300, Cheoncheon-dong, Jangan-Gu, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| | - Jung-Ah Kang
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Taewoo Yang
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Chul-Seung Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Sung-Gyoo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Sungkwon Chung
- Department of Physiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Jae-Hyuck Shim
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Eunyoung Chun
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Ki-Young Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 300, Cheoncheon-dong, Jangan-Gu, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| |
Collapse
|
44
|
The role of Prdx6 in the protection of cells of the crystalline lens from oxidative stress induced by UV exposure. Jpn J Ophthalmol 2016; 60:408-18. [PMID: 27379999 DOI: 10.1007/s10384-016-0461-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/28/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE The immediate aim of this study was to investigate alterations in peroxiredoxin (Prdx) 6 at posttranslational levels, and the levels of protein oxidation, lipid peroxidation, and reactive oxygen species (ROS) in lens epithelial cells (LECs) after exposure to severe oxidative stress, such as ultraviolet-B (UV-B). Our ultimate aim was to provide new information on antioxidant defenses in the lens and their regulation, thereby broadening existing knowledge of the role of Prdx6 in lens physiology and pathophysiology. METHODS The expression of the hyperoxidized form of Prdx6 and oxidation of protein were analyzed by western blotting and the OxyBlot assay in human LECs (hLECs). ROS levels were quantified using DCFH-DA dye, and cell viability was quantified by the MTS and TUNEL assays. To evaluate the protective effect of Prdx6, we cultured lenses with or without the TAT transduction domain (TAT-HA-Prdx6) and observed (and photographed) the cultures at specified time-points after the exposure to UV-B for the development of opacity. RESULTS Prdx6 in hLECs was hyperoxidized after exposure to high amounts of UV-B. UV-B treatment of hLECs increased the levels of cell death, protein oxidation, and ROS. hLECs exposed to UV-B showed higher levels of ROS, which could be reduced by the application of extrinsic TAT-HA-Prdx6, attenuating UV-B-induced lens opacity and apoptotic cell death. CONCLUSION Excessive oxidative stress induces the hyperoxidation of Prdx6 and may reduce the ability of Prdx6 to protect LECs against ROS or stresses. Because extrinsic Prdx6 could attenuate UV-B-induced abuse, this molecule may have a potential in preventing cataractogenesis.
Collapse
|
45
|
Kwon J, Wang A, Burke DJ, Boudreau HE, Lekstrom KJ, Korzeniowska A, Sugamata R, Kim YS, Yi L, Ersoy I, Jaeger S, Palaniappan K, Ambruso DR, Jackson SH, Leto TL. Peroxiredoxin 6 (Prdx6) supports NADPH oxidase1 (Nox1)-based superoxide generation and cell migration. Free Radic Biol Med 2016; 96:99-115. [PMID: 27094494 PMCID: PMC4929831 DOI: 10.1016/j.freeradbiomed.2016.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 02/05/2023]
Abstract
Nox1 is an abundant source of reactive oxygen species (ROS) in colon epithelium recently shown to function in wound healing and epithelial homeostasis. We identified Peroxiredoxin 6 (Prdx6) as a novel binding partner of Nox activator 1 (Noxa1) in yeast two-hybrid screening experiments using the Noxa1 SH3 domain as bait. Prdx6 is a unique member of the Prdx antioxidant enzyme family exhibiting both glutathione peroxidase and phospholipase A2 activities. We confirmed this interaction in cells overexpressing both proteins, showing Prdx6 binds to and stabilizes wild type Noxa1, but not the SH3 domain mutant form, Noxa1 W436R. We demonstrated in several cell models that Prdx6 knockdown suppresses Nox1 activity, whereas enhanced Prdx6 expression supports higher Nox1-derived superoxide production. Both peroxidase- and lipase-deficient mutant forms of Prdx6 (Prdx6 C47S and S32A, respectively) failed to bind to or stabilize Nox1 components or support Nox1-mediated superoxide generation. Furthermore, the transition-state substrate analogue inhibitor of Prdx6 phospholipase A2 activity (MJ-33) was shown to suppress Nox1 activity, suggesting Nox1 activity is regulated by the phospholipase activity of Prdx6. Finally, wild type Prdx6, but not lipase or peroxidase mutant forms, supports Nox1-mediated cell migration in the HCT-116 colon epithelial cell model of wound closure. These findings highlight a novel pathway in which this antioxidant enzyme positively regulates an oxidant-generating system to support cell migration and wound healing.
Collapse
Affiliation(s)
- Jaeyul Kwon
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Department of Medical Education, School of Medicine, Chungnam National University, Daejeon, 301-747, Korea
| | - Aibing Wang
- Diabetes Cluster, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Devin J. Burke
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Howard E. Boudreau
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Kristen J. Lekstrom
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Agnieszka Korzeniowska
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Ryuichi Sugamata
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Yong-Soo Kim
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Liang Yi
- Diabetes Cluster, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Ilker Ersoy
- Department of Pathology and Anatomical Sciences, University of Missouri, Sch. of Medicine, Columbia, MO, USA
| | - Stefan Jaeger
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Daniel R. Ambruso
- Department of Pediatrics, University of Colorado Sch. of Medicine, Denver, CO, USA
| | - Sharon H. Jackson
- Diabetes Cluster, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Thomas L. Leto
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Corresponding author: Laboratory of Host Defenses, NIAID, NIH, 12441 Parklawn Drive, Rockville, MD, 20852, USA. Fax: 301 480-1731.
| |
Collapse
|
46
|
Kim KH, Lee W, Kim EE. Crystal structures of human peroxiredoxin 6 in different oxidation states. Biochem Biophys Res Commun 2016; 477:717-722. [PMID: 27353378 DOI: 10.1016/j.bbrc.2016.06.125] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 06/24/2016] [Indexed: 11/27/2022]
Abstract
Peroxiredoxins (Prxs) are a family of antioxidant enzymes found ubiquitously. Prxs function not only as H2O2 scavengers but also as highly sensitive H2O2 sensors and signal transducers. Since reactive oxygen species are involved in many cellular metabolic and signaling processes, Prxs play important roles in various diseases. Prxs can be hyperoxidized to the sulfinic acid (SO2H) or sulfonic acid (SO3H) forms in the presence of high concentrations of H2O2. It is known that oligomerization of Prx is changed accompanying oxidation states, and linked to the function. Among the six Prxs in mammals, Prx6 is the only 1-Cys Prx. It is found in all organs in humans, unlike some 2-Cys Prxs, and is present in all species from bacteria to humans. In addition, Prx6 has Ca(2+)-independent phospholipase A2 (PLA2) activity. Thus far only the crystal structure of Prx in the oxidized state has been reported. In this study, we present the crystal structures of human Prx6 in the reduced (SH) and the sulfinic acid (SO2H) forms.
Collapse
Affiliation(s)
- Kyung Hee Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
47
|
Abstract
Capacitation is a series of morphological and metabolic changes necessary for the spermatozoon to achieve fertilizing ability. One of the earlier happenings during mammalian sperm capacitation is the production of reactive oxygen species (ROS) that will trigger and regulate a series of events including protein phosphorylation, in a time-dependent fashion. The identity of the sperm oxidase responsible for the production of ROS involved in capacitation is still elusive, and several candidates are discussed in this review. Interestingly, ROS-induced ROS formation has been described during human sperm capacitation. Redox signaling during capacitation is associated with changes in thiol groups of proteins located on the plasma membrane and subcellular compartments of the spermatozoon. Both, oxidation of thiols forming disulfide bridges and the increase on thiol content are necessary to regulate different sperm proteins associated with capacitation. Reducing equivalents such as NADH and NADPH are necessary to support capacitation in many species including humans. Lactate dehydrogenase, glucose-6-phospohate dehydrogenase, and isocitrate dehydrogenase are responsible in supplying NAD (P) H for sperm capacitation. Peroxiredoxins (PRDXs) are newly described enzymes with antioxidant properties that can protect mammalian spermatozoa; however, they are also candidates for assuring the regulation of redox signaling required for sperm capacitation. The dysregulation of PRDXs and of enzymes needed for their reactivation such as thioredoxin/thioredoxin reductase system and glutathione-S-transferases impairs sperm motility, capacitation, and promotes DNA damage in spermatozoa leading to male infertility.
Collapse
Affiliation(s)
- Cristian O'Flaherty
- Urology Research Laboratory, Surgery Department (Urology Division), Faculty of Medicine, McGill University; The Research Institute, McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
48
|
Wang Y, Javed I, Liu Y, Lu S, Peng G, Zhang Y, Qing H, Deng Y. Effect of Prolonged Simulated Microgravity on Metabolic Proteins in Rat Hippocampus: Steps toward Safe Space Travel. J Proteome Res 2015; 15:29-37. [PMID: 26523826 DOI: 10.1021/acs.jproteome.5b00777] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mitochondria are not only the main source of energy in cells but also produce reactive oxygen species (ROS), which result in oxidative stress when in space. This oxidative stress is responsible for energy imbalances and cellular damage. In this study, a rat tail suspension model was used in individual experiments for 7 and 21 days to explore the effect of simulated microgravity (SM) on metabolic proteins in the hippocampus, a vital brain region involved in learning, memory, and navigation. A comparative (18)O-labeled quantitative proteomic strategy was used to observe the differential expression of metabolic proteins. Forty-two and sixty-seven mitochondrial metabolic proteins were differentially expressed after 21 and 7 days of SM, respectively. Mitochondrial Complex I, III, and IV, isocitrate dehydrogenase and malate dehydrogenase were down-regulated. Moreover, DJ-1 and peroxiredoxin 6, which defend against oxidative damage, were up-regulated in the hippocampus. Western blot analysis of proteins DJ-1 and COX 5A confirmed the mass spectrometry results. Despite these changes in mitochondrial protein expression, no obvious cell apoptosis was observed after 21 days of SM. The results of this study indicate that the oxidative stress induced by SM has profound effects on metabolic proteins.
Collapse
Affiliation(s)
- Yun Wang
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Iqbal Javed
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Yahui Liu
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Song Lu
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Guang Peng
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Yongqian Zhang
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Hong Qing
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Yulin Deng
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| |
Collapse
|
49
|
Ishii T. Close teamwork between Nrf2 and peroxiredoxins 1 and 6 for the regulation of prostaglandin D2 and E2 production in macrophages in acute inflammation. Free Radic Biol Med 2015; 88:189-198. [PMID: 25968070 DOI: 10.1016/j.freeradbiomed.2015.04.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 04/30/2015] [Accepted: 04/30/2015] [Indexed: 12/24/2022]
Abstract
Inflammation is a complex biological self-defense reaction triggered by tissue damage or infection by pathogens. Acute inflammation is regulated by the time- and cell type-dependent production of cytokines and small signaling molecules including reactive oxygen species and prostaglandins. Recent studies have unveiled the important role of the transcription factor Nrf2 in the regulation of prostaglandin production through transcriptional regulation of peroxiredoxins 1 and 6 (Prx1 and Prx6) and lipocalin-type prostaglandin D synthase (L-PGDS). Prx1 and Prx6 are multifunctional proteins important for cell protection against oxidative stress, but also work together to facilitate production of prostaglandins E2 and D2 (PGE2 and PGD2). Prx1 secreted from cells under mild oxidative stress binds Toll-like receptor 4 and induces NF-κB activation, important for the expression of cyclooxygenase-2 and microsomal PGE synthase-1 (mPGES-1) expression. The activated MAPKs p38 and ERK phosphorylate Prx6, leading to NADPH oxidase-2 activation, which contributes to production of PGD2 by hematopoietic prostaglandin D synthase (H-PGDS). PGD2 and its end product 15-deoxy-∆(12,14)-prostaglandin J2 (15d-PGJ2) activate Nrf2 thereby forming a positive feedback loop for further production of PGD2 by L-PGDS. Maintenance of cellular glutathione levels is an important role of Nrf2 not only for cell protection but also for the synthesis of prostaglandins, as mPGES-1 and H-PGDS require glutathione for their activities. This review is aimed at describing the functions of Prx1 and Prx6 in the regulation of PGD2 and PGE2 production in acute inflammation in macrophages and the importance of 15d-PGJ2 as an intrinsic Nrf2 activator.
Collapse
|
50
|
Kim DH, Lee DH, Jo MR, Son DJ, Park MH, Hwang CJ, Park JH, Yuk DY, Yoon DY, Jung YS, Kim Y, Jeong JH, Han SB, Hong JT. Exacerbation of Collagen Antibody-Induced Arthritis in Transgenic Mice Overexpressing Peroxiredoxin 6. Arthritis Rheumatol 2015. [DOI: 10.1002/art.39284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dae Hwan Kim
- Chungbuk National University; Cheongju Chungbuk Republic of Korea
| | - Dong Hun Lee
- Chungbuk National University; Cheongju Chungbuk Republic of Korea
| | - Mi Ran Jo
- Chungbuk National University; Cheongju Chungbuk Republic of Korea
| | - Dong Ju Son
- Chungbuk National University; Cheongju Chungbuk Republic of Korea
| | - Mi Hee Park
- Chungbuk National University; Cheongju Chungbuk Republic of Korea
| | - Chul Ju Hwang
- Chungbuk National University; Cheongju Chungbuk Republic of Korea
| | - Ju Ho Park
- Chungbuk National University; Cheongju Chungbuk Republic of Korea
| | - Dong Yeon Yuk
- Chungbuk National University; Cheongju Chungbuk Republic of Korea
| | | | | | - Youngsoo Kim
- Chungbuk National University; Cheongju Chungbuk Republic of Korea
| | - Jae Hwang Jeong
- Chungbuk Provincial College; Okcheon Chungbuk Republic of Korea
| | - Sang Bae Han
- Chungbuk National University; Cheongju Chungbuk Republic of Korea
| | - Jin Tae Hong
- Chungbuk National University; Cheongju Chungbuk Republic of Korea
| |
Collapse
|