1
|
Cawood EE, Baker E, Edwards TA, Woolfson DN, Karamanos TK, Wilson AJ. Understanding β-strand mediated protein-protein interactions: tuning binding behaviour of intrinsically disordered sequences by backbone modification. Chem Sci 2024; 15:10237-10245. [PMID: 38966365 PMCID: PMC11220606 DOI: 10.1039/d4sc02240h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 07/06/2024] Open
Abstract
A significant challenge in chemical biology is to understand and modulate protein-protein interactions (PPIs). Given that many PPIs involve a folded protein domain and a peptide sequence that is intrinsically disordered in isolation, peptides represent powerful tools to understand PPIs. Using the interaction between small ubiquitin-like modifier (SUMO) and SUMO-interacting motifs (SIMs), here we show that N-methylation of the peptide backbone can effectively restrict accessible peptide conformations, predisposing them for protein recognition. Backbone N-methylation in appropriate locations results in faster target binding, and thus higher affinity, as shown by relaxation-based NMR experiments and computational analysis. We show that such higher affinities occur as a consequence of an increase in the energy of the unbound state, and a reduction in the entropic contribution to the binding and activation energies. Thus, backbone N-methylation may represent a useful modification within the peptidomimetic toolbox to probe β-strand mediated interactions.
Collapse
Affiliation(s)
- Emma E Cawood
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Emily Baker
- School of Biochemistry, University of Bristol Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol Life Sciences Building, Tyndall Avenue Bristol BS8 1TQ UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Molecular and Cellular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- College of Biomedical Sciences, Larkin University 18301 N Miami Ave #1 Miami FL 33169 USA
| | - Derek N Woolfson
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Biochemistry, University of Bristol Medical Sciences Building, University Walk Bristol BS8 1TD UK
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
2
|
Zhong C, Zou J, Mao W, Yang P, Zhang J, Gou S, Zhang Y, Liu H, Ni J. Structure modification of anoplin for fighting resistant bacteria. Eur J Med Chem 2024; 268:116276. [PMID: 38452726 DOI: 10.1016/j.ejmech.2024.116276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
The emergence of bacterial resistance has posed a significant challenge to clinical antimicrobial treatment, rendering commonly used antibiotics ineffective. The development of novel antimicrobial agents and strategies is imperative for the treatment of resistant bacterial infections. Antimicrobial peptides (AMPs) are considered a promising class of antimicrobial agents due to their low propensity for resistance and broad-spectrum activity. Anoplin is a small linear α-helical natural antimicrobial peptide that was isolated from the venom of the solitary wasp Anplius samariensis. It exhibits rich biological activity, particularly broad-spectrum antimicrobial activity and low hemolytic activity. Over the past three decades, more than 40 research publications on anoplin have been made available online. This review focuses on the advancements of anoplin in antimicrobial research, encompassing its sources, characterization, antimicrobial activity, influencing factors and structural modifications. The aim is to provide assistances for the development of new antimicrobial agents that can combat bacterial resistance.
Collapse
Affiliation(s)
- Chao Zhong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, PR China.
| | - Jing Zou
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, PR China
| | - Wenbo Mao
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, PR China
| | - Ping Yang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, PR China
| | - Jingying Zhang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, PR China
| | - Sanhu Gou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, PR China
| | - Yun Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, PR China
| | - Hui Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, PR China
| | - Jingman Ni
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
3
|
Mannuthodikayil J, Sinha S, Singh S, Biswas A, Ali I, Mashurabad PC, Tabassum W, Vydyam P, Bhattacharyya MK, Mandal K. A Chimeric Peptide Inhibits Red Blood Cell Invasion by Plasmodium falciparum with Hundredfold Increased Efficacy. Chembiochem 2022; 24:e202200533. [PMID: 36449557 DOI: 10.1002/cbic.202200533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Inhibiting the formation of a tight junction between two malaria parasite proteins, apical membrane antigen 1 and rhoptry neck protein 2, crucial for red blood cell invasion, prevents progression of the disease. In this work, we have used a unique approach to design a chimeric peptide, prepared by fusion of the best features of two peptide inhibitors, that has displayed parasite growth inhibition ex vivo with nanomolar IC50 , which is 100 times better than any of its parent peptides. Furthermore, to gain structural insights, we computationally modelled the hybrid peptide on its receptor.
Collapse
Affiliation(s)
- Jamsad Mannuthodikayil
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| | - Suman Sinha
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| | - Sameer Singh
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| | - Anamika Biswas
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| | - Irshad Ali
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| | - Purna Chandra Mashurabad
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Wahida Tabassum
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Pratap Vydyam
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Mrinal Kanti Bhattacharyya
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Kalyaneswar Mandal
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| |
Collapse
|
4
|
Xu J, Wang J, Li Z, He X, Zhao S, Ma Q, Li X, Liu J, Liu A, Li Y, Yin H, Luo J, Guan G. A universal ELISA assay for detecting six strains of ovine Babesia species in China. Vet Parasitol 2021; 300:109616. [PMID: 34781076 DOI: 10.1016/j.vetpar.2021.109616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 10/13/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Ovine babesiosis, caused by genus of Babesia, is a zoonotic disease and mainly transmitted by hard ticks. It has led to enormous economic losses to the sheep industry in China. In the present study, an ELISA assay for simultaneous detection six strains of Babesia spp., including B. motasi Lintan, B. motasi Tianzhu, B. motasi Hebei, B. motasi Ningxian, Babesia sp. Xinjiang and Babesia sp. Dunhuang, was developed using Apical Membrane Antigen 1 (AMA1) as candidate diagnostic antigen. The sensitivity and specificity of the established ELISA were 97.4 % and 98.0 %, respectively. Relatively high level of specific antibodies could be detected from 12th day to 126th day after sheep experimentally infected with Babesia spp.. A small scale of field sera was investigated using the developed ELISA assay, and the average positive rate was 51.98 %. This study provides an easy to operate, cost effective and time saving approach, which is suitable for both field and experimental samples, thus it could be a useful tool in epidemiological investigations and diagnoses of ovine babesiosis.
Collapse
Affiliation(s)
- Jianlin Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Zhi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China; Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai, 810016, PR China
| | - Xin He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Shuaiyang Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Quanying Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Xuan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Aihong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| |
Collapse
|
5
|
Arredondo SA, Schepis A, Reynolds L, Kappe SHI. Secretory Organelle Function in the Plasmodium Sporozoite. Trends Parasitol 2021; 37:651-663. [PMID: 33589364 DOI: 10.1016/j.pt.2021.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
Plasmodium sporozoites exhibit a complex infection biology in the mosquito and mammalian hosts. The sporozoite apical secretory organelles, the micronemes and rhoptries, store protein mediators of parasite/host/vector interactions and must secrete them in a temporally and spatially well orchestrated manner. Micronemal proteins are critical for sporozoite motility throughout its journey from the mosquito midgut oocyst to the mammalian liver, and also for cell traversal (CT) and hepatocyte invasion. Rhoptry proteins, until recently thought to be only important for hepatocyte invasion, appear to also play an unexpected role in motility and in the interaction with mosquito tissue. Therefore, navigating the different microenvironments with secretion likely requires the sporozoite to have a more complex system of secretory organelles than previously appreciated.
Collapse
Affiliation(s)
- Silvia A Arredondo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Antonino Schepis
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Laura Reynolds
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
6
|
Silva JV, Santos SDS, Machini MT, Giarolla J. Neglected tropical diseases and infectious illnesses: potential targeted peptides employed as hits compounds in drug design. J Drug Target 2020; 29:269-283. [PMID: 33059502 DOI: 10.1080/1061186x.2020.1837843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neglected Tropical Diseases (NTDs) and infectious illnesses, such as malaria, tuberculosis and Zika fever, represent a major public health concern in many countries and regions worldwide, especially in developing ones. They cause thousands of deaths per year, and certainly compromise the life of affected patients. The drugs available for therapy are toxic, have considerable adverse effects, and are obsolete, especially with respect to resistance. In this context, targeted peptides are considered promising in the design of new drugs, since they have specific action and reduced toxicity. Indeed, there is a rising interest in these targeted compounds within the pharmaceutical industry, proving their importance to the Pharmaceutical Sciences field. Many have been approved by the Food and Drug Administration (FDA) to be used as medicines, plus there are more than 300 peptides currently in clinical trials. The main purpose of this review is to show the most promising potential targeted peptides acting as hits molecules in NTDs and other infectious illnesses. We hope to contribute to the discovery of medicines in this relatively neglected area, which will be extremely useful in improving the health of many suffering people.
Collapse
Affiliation(s)
- João Vitor Silva
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Soraya da Silva Santos
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - M Teresa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jeanine Giarolla
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Liu T, Zhu N, Zhong C, Zhu Y, Gou S, Chang L, Bao H, Liu H, Zhang Y, Ni J. Effect of N-methylated and fatty acid conjugation on analogs of antimicrobial peptide Anoplin. Eur J Pharm Sci 2020; 152:105453. [PMID: 32649983 DOI: 10.1016/j.ejps.2020.105453] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022]
Abstract
With the increment of drug-resistant bacteria and the slow development of novel antibiotics, antimicrobial peptides have gained increasing attention as a potential antibiotic alternative. They not only displayed a broad-spectrum antimicrobial activity but also were difficult to induce resistance development because of their unique membrane-lytic activity. Herein, to improve the limitations of Anoplin, the N-methyl amino acids were first used to replace the amino acids of Anoplin at sensitive enzymatic cleave sites (Leu, Ile, Lys and Arg). Afterward, the N-methylated analogs M3.6/M4.7/M5.7 with high stability were screened out and further modified by N-terminal fatty acid conjugation to develop new antimicrobial peptide analogs with both potent antimicrobial activity and high proteolytic stability, and 12 new Anoplin analogs Cn-M3.6/M4.7/M5.7 (n = 8,10,12,14) were designed and synthesized. Our results showed that compared with native Anoplin, the stability of these N-methylated lipopeptides against trypsin and chymotrypsin degradation were increased by 104-106 times. Besides, they still possessed potent antimicrobial activity under physiological salts and serum environment. Among them, the new designed analogs C12-M3.6/M4.7/M5.7 showed the optimal antimicrobial activity, synergy and additive effects were also observed when they were combined with traditional antibiotics polymyxin B, rifampin, and kanamycin. Moreover, they could effectively inhibit the formation of biofilms by P. aeruginosa and S. aureus. The antimicrobial mechanism studied revealed that these N-methylated lipopeptides could display a rapid bactericidal effect by destroying the bacterial cell membrane. Notably, no detectable resistance of these new designed peptides was developed after continuous cultured with E. coli for 20 passages. In summary, we have designed a new class of antimicrobial peptide analogs with potent antimicrobial activity and high proteolytic stability through N-methyl amino acids substitution and N-terminal fatty acid conjugation. This study also provides new ideas and methods for the modification of antimicrobial peptides in the future.
Collapse
Affiliation(s)
- Tianqi Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ningyi Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Chao Zhong
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuewen Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Sanhu Gou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Linlin Chang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hexin Bao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hui Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jingman Ni
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
8
|
Velkov T, Swarbrick JD, Hussein MH, Schneider-Futschik EK, Hoyer D, Li J, Karas JA. The impact of backbone N-methylation on the structure-activity relationship of Leu 10 -teixobactin. J Pept Sci 2019; 25:e3206. [PMID: 31389086 DOI: 10.1002/psc.3206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 11/07/2022]
Abstract
Antimicrobial resistance is a serious threat to global human health; therefore, new anti-infective therapeutics are required. The cyclic depsi-peptide teixobactin exhibits potent antimicrobial activity against several Gram-positive pathogens. To study the natural product's mechanism of action and improve its pharmacological properties, efficient chemical methods for preparing teixobactin analogues are required to expedite structure-activity relationship studies. Described herein is a synthetic route that enables rapid access to analogues. Furthermore, our new N-methylated analogues highlight that hydrogen bonding along the N-terminal tail is likely to be important for antimicrobial activity.
Collapse
Affiliation(s)
- Tony Velkov
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - James D Swarbrick
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Maytham H Hussein
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Elena K Schneider-Futschik
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Hoyer
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - John A Karas
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Wałęsa R, Broda MA. The influence of solvent on conformational properties of peptides with Aib residue-a DFT study. J Mol Model 2017; 23:349. [PMID: 29164349 PMCID: PMC5698364 DOI: 10.1007/s00894-017-3508-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/24/2017] [Indexed: 12/30/2022]
Abstract
The conformational propensities of the Aib residue on the example of two model peptides Ac-Aib-NHMe (1) and Ac-Aib-NMe2 (2), were studied by B3LYP and M06-2X functionals, in the gas phase and in the polar solvents. To verify the reliability of selected functionals, we also performed MP2 calculations for the tested molecules in vacuum. Polarizable continuum models (PCM and SMD) were used to estimate the solvent effect. Ramachandran maps were calculated to find all energy minima. Noncovalent intramolecular interactions due to hydrogen-bonds and dipole attractions between carbonyl groups are responsible for the relative stabilities of the conformers. In order to verify the theoretical results, the available conformations of similar X-ray structures from the Cambridge Crystallographic Data Center (CCDC) were analyzed. The results of the calculations show that both derivatives with the Aib residue in the gas phase prefer structures stabilized by intramolecular N-H⋯O hydrogen bonds, i.e., C5 and C7 conformations, while polar solvent promotes helical conformation with φ, ψ values equal to +/-60°, +/-40°. In addition, in the case of molecule 2, the helical conformation is the only one available in the polar environment. This result is fully consistent with the X-ray data. Graphical abstract Effect of solvent on the Ramachandran maps of the model peptides with Aib residue.
Collapse
Affiliation(s)
- Roksana Wałęsa
- Faculty of Chemistry, University of Opole, 48, Oleska St., 45-052 Opole, Poland
| | - Małgorzata A. Broda
- Faculty of Chemistry, University of Opole, 48, Oleska St., 45-052 Opole, Poland
| |
Collapse
|
10
|
Chew CH, Lim YAL, Chua KH. Heterologous expression of Plasmodium vivax apical membrane antigen 1 (PvAMA1) for binding peptide selection. PeerJ 2017; 5:e3794. [PMID: 28929019 PMCID: PMC5600724 DOI: 10.7717/peerj.3794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/19/2017] [Indexed: 12/14/2022] Open
Abstract
Background Plasmodium is an obligate intracellular parasite. Apical membrane antigen 1 (AMA1) is the most prominent and well characterized malarial surface antigen that is essential for parasite-host cell invasion, i.e., for sporozoite to invade and replicate within hepatocytes in the liver stage and merozoite to penetrate and replicate within erythrocytes in the blood stage. AMA1 has long served as a potent antimalarial drug target and is a pivotal vaccine candidate. A good understanding of the structure and molecular function of this Plasmodium protein, particularly its involvement in host-cell adhesion and invasion, is of great interest and hence it offers an attractive target for the development of novel therapeutics. The present study aims to heterologous express recombinant Plasmodium AMA1 ectodomain of P. vivax (rPvAMA1) for the selection of binding peptides. Methods The rPvAMA1 protein was heterologous expressed using a tag-free Profinity eXactTM system and codon optimized BL21-Codon Plus (DE3)-RIL Escherichia coli strain and further refolded by dialysis for renaturation. Binding peptides toward refolded rPvAMA1 were panned using a Ph.D.-12 random phage display library. Results The rPvAMA1 was successfully expressed and refolded with three phage-displayed dodecapeptides designated as PdV1 (DLTFTVNPLSKA), PdV2 (WHWSWWNPNQLT), and PdV3 (TSVSYINNRHNL) with affinity towards rPvAMA1 identified. All of them exhibited positive binding signal to rPvAMA1 in both direct phage assays, i.e., phage ELISA binding assay and Western blot binding assay. Discussion Phage display technology enables the mapping of protein-protein interactions based on a simple principle that a library of phage particles displaying peptides is used and the phage clones that bind to the target protein are selected and identified. The binding sites of each selected peptides toward PvAMA1 (Protein Data Bank, PDB ID: 1W8K) were in silico predicted using CABS-dock web server. In this case, the binding peptides provide a valuable starting point for the development of peptidomimetic as antimalarial antagonists directed at PvAMA1.
Collapse
Affiliation(s)
- Ching Hoong Chew
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus, Terengganu, Malaysia
| | - Yvonne Ai Lian Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Yang ASP, Lopaticki S, O'Neill MT, Erickson SM, Douglas DN, Kneteman NM, Boddey JA. AMA1 and MAEBL are important for Plasmodium falciparum sporozoite infection of the liver. Cell Microbiol 2017; 19. [PMID: 28371168 DOI: 10.1111/cmi.12745] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/23/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022]
Abstract
The malaria sporozoite injected by a mosquito migrates to the liver by traversing host cells. The sporozoite also traverses hepatocytes before invading a terminal hepatocyte and developing into exoerythrocytic forms. Hepatocyte infection is critical for parasite development into merozoites that infect erythrocytes, and the sporozoite is thus an important target for antimalarial intervention. Here, we investigated two abundant sporozoite proteins of the most virulent malaria parasite Plasmodium falciparum and show that they play important roles during cell traversal and invasion of human hepatocytes. Incubation of P. falciparum sporozoites with R1 peptide, an inhibitor of apical merozoite antigen 1 (AMA1) that blocks merozoite invasion of erythrocytes, strongly reduced cell traversal activity. Consistent with its inhibitory effect on merozoites, R1 peptide also reduced sporozoite entry into human hepatocytes. The strong but incomplete inhibition prompted us to study the AMA-like protein, merozoite apical erythrocyte-binding ligand (MAEBL). MAEBL-deficient P. falciparum sporozoites were severely attenuated for cell traversal activity and hepatocyte entry in vitro and for liver infection in humanized chimeric liver mice. This study shows that AMA1 and MAEBL are important for P. falciparum sporozoites to perform typical functions necessary for infection of human hepatocytes. These two proteins therefore have important roles during infection at distinct points in the life cycle, including the blood, mosquito, and liver stages.
Collapse
Affiliation(s)
- Annie S P Yang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sash Lopaticki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Matthew T O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Sara M Erickson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Donna N Douglas
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Norman M Kneteman
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Devine SM, MacRaild CA, Norton RS, Scammells PJ. Antimalarial drug discovery targeting apical membrane antigen 1. MEDCHEMCOMM 2017; 8:13-20. [PMID: 30108688 PMCID: PMC6072474 DOI: 10.1039/c6md00495d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/27/2016] [Indexed: 01/06/2023]
Abstract
Malaria continues to frustrate humanity's attempts to eradicate this deadly disease. Although gains have been made over the last 15 years, drug resistance to malaria continues to be a major concern. The lack of new antimalarials with novel mechanisms of action continues to challenge the scientific community to find innovative targets to combat this persistent disease. One such target, apical membrane antigen 1 (AMA1), is an essential protein that helps the parasite invade host erythrocytes. Recently, a number of efforts have focused on the druggability of this target, aiming to block the interactions of AMA1 that mediate invasion of host cells. This review covers recent progress in drug discovery targeting this crucial protein-protein interaction in malaria.
Collapse
Affiliation(s)
- Shane M Devine
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| | - Christopher A MacRaild
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| | - Raymond S Norton
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| | - Peter J Scammells
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| |
Collapse
|
13
|
Ngambenjawong C, Pineda JMB, Pun SH. Engineering an Affinity-Enhanced Peptide through Optimization of Cyclization Chemistry. Bioconjug Chem 2016; 27:2854-2862. [PMID: 27779387 DOI: 10.1021/acs.bioconjchem.6b00502] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peptide cyclization is a strategy used to improve stability and activity of peptides. The most commonly used cyclization method is disulfide bridge formation of cysteine-containing peptides, as is typically found in nature. Over the years, an increasing number of alternative chemistries for peptide cyclization with improved efficiency, kinetics, orthogonality, and stability have been reported. However, there has been less appreciation for the opportunity to fine-tune peptide activity via the diverse chemical entities introduced at the site of linkage by different cyclization strategies. Here, we demonstrate how cyclization optimization of an M2 "anti-inflammatory" macrophage-binding peptide (M2pep) resulted in a significant increase in binding affinity of the optimized analog to M2 macrophages while maintaining binding selectivity compared to M1 "pro-inflammatory" macrophages. In this study, we report synthesis and evaluation of four cyclic M2pep(RY) analogs with diverse cyclization strategies: (1) Asp-[amide]-Lys, (2) azido-Lys-[triazole(copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC))]-propargyl-Gly, (3) Cys-[decafluorobiphenyl (DFBP)]-Cys, and (4) Cys-[decafluorobiphenyl sulfone (DFS)]-Cys, whereby the chemical entity or linker at the linkage site is shown in the square bracket and is between the residues involved in cyclization. These peptides are compared to a disulfide-cyclized M2pep(RY) that we previously reported as a serum-stable, affinity-enhanced analog to the original linear M2pep. DFBP-cyclized M2pep(RY) exhibits the highest binding activity to M2 macrophages with apparent dissociation constant (KD) about 2.03 μM compared to 36.3 μM for the original disulfide-cyclized M2pep(RY) and 220 μM for the original linear peptide. DFS-cyclized M2pep(RY) also binds more strongly than the original cyclized analog, whereas amide- and triazole-cyclized M2pep(RY) analogs bind less strongly. We verified that DFBP alone has negligible binding to M2 macrophages and the incorporation of diphenylalanine to the original sequence improves binding activity at the expense of solubility and increased toxicity. In conclusion, we report development of cyclic M2pep(RY) analogs with diverse cyclization strategies leading to the discovery of DFBP-cyclized M2pep(RY) with enhanced M2 macrophage-binding activity.
Collapse
Affiliation(s)
- Chayanon Ngambenjawong
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington , Seattle, Washington 98195, United States
| | - Julio Marco B Pineda
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington , Seattle, Washington 98195, United States
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
14
|
Weiss GE, Crabb BS, Gilson PR. Overlaying Molecular and Temporal Aspects of Malaria Parasite Invasion. Trends Parasitol 2016; 32:284-295. [DOI: 10.1016/j.pt.2015.12.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/02/2015] [Accepted: 12/10/2015] [Indexed: 12/31/2022]
|
15
|
Krishnarjuna B, Lim SS, Devine SM, Debono CO, Lam R, Chandrashekaran IR, Jaipuria G, Yagi H, Atreya HS, Scanlon MJ, MacRaild CA, Scammells PJ, Norton RS. Solution NMR characterization of apical membrane antigen 1 and small molecule interactions as a basis for designing new antimalarials. J Mol Recognit 2016; 29:281-91. [DOI: 10.1002/jmr.2529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/28/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Bankala Krishnarjuna
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville Victoria 3052 Australia
| | - San Sui Lim
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville Victoria 3052 Australia
| | - Shane M. Devine
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville Victoria 3052 Australia
| | - Cael O. Debono
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville Victoria 3052 Australia
| | - Raymond Lam
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville Victoria 3052 Australia
| | - Indu R. Chandrashekaran
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville Victoria 3052 Australia
| | - Garima Jaipuria
- NMR Research Centre; Indian Institute of Science; Bangalore 560012 India
| | - Hiromasa Yagi
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville Victoria 3052 Australia
| | | | - Martin J. Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville Victoria 3052 Australia
| | - Christopher A. MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville Victoria 3052 Australia
| | - Peter J. Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville Victoria 3052 Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville Victoria 3052 Australia
| |
Collapse
|
16
|
Alam MS, Rathore S, Tyagi RK, Sharma YD. Host-parasite interaction: multiple sites in the Plasmodium vivax tryptophan-rich antigen PvTRAg38 interact with the erythrocyte receptor band 3. FEBS Lett 2016; 590:232-41. [PMID: 26823170 PMCID: PMC7163959 DOI: 10.1002/1873-3468.12053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/03/2015] [Accepted: 01/01/2016] [Indexed: 12/25/2022]
Abstract
Tryptophan‐rich antigens of malarial parasites interact with host molecules and play an important role in parasite survival. Merozoite expressed Plasmodium vivax tryptophan‐rich antigen PvTRAg38 binds to human erythrocytes and facilitates parasite growth in a heterlologous Plasmodium falciparum culture system. Recently, we identified band 3 in human erythrocytes as one of its receptors, although the receptor‐ligand binding mechanisms remain unknown. In the present study, using synthetic mutated peptides of PvTRAg38, we show that multiple amino acid residues of its 12 amino acid domain (KWVQWKNDKIRS) at position 197–208 interact with three different ectodomains of band 3 receptor on human erythrocytes. Our findings may help in the design of new therapeutic approaches for malaria.
Collapse
Affiliation(s)
- Mohd S Alam
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Sumit Rathore
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rupesh K Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Yagya D Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
17
|
Delgadillo RF, Parker ML, Lebrun M, Boulanger MJ, Douguet D. Stability of the Plasmodium falciparum AMA1-RON2 Complex Is Governed by the Domain II (DII) Loop. PLoS One 2016; 11:e0144764. [PMID: 26731670 PMCID: PMC4701444 DOI: 10.1371/journal.pone.0144764] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/22/2015] [Indexed: 12/20/2022] Open
Abstract
Plasmodium falciparum is an obligate intracellular protozoan parasite that employs a highly sophisticated mechanism to access the protective environment of the host cells. Key to this mechanism is the formation of an electron dense ring at the parasite-host cell interface called the Moving Junction (MJ) through which the parasite invades. The MJ incorporates two key parasite components: the surface protein Apical Membrane Antigen 1 (AMA1) and its receptor, the Rhoptry Neck Protein (RON) complex, the latter one being targeted to the host cell membrane during invasion. Crystal structures of AMA1 have shown that a partially mobile loop, termed the DII loop, forms part of a deep groove in domain I and overlaps with the RON2 binding site. To investigate the mechanism by which the DII loop influences RON2 binding, we measured the kinetics of association and dissociation and binding equilibria of a PfRON2sp1 peptide with both PfAMA1 and an engineered form of PfAMA1 where the flexible region of the DII loop was replaced by a short Gly-Ser linker (ΔDII-PfAMA1). The reactions were tracked by fluorescence anisotropy as a function of temperature and concentration and globally fitted to acquire the rate constants and corresponding thermodynamic profiles. Our results indicate that both PfAMA1 constructs bound to the PfRON2sp1 peptide with the formation of one intermediate in a sequential reversible reaction: A↔B↔C. Consistent with Isothermal Titration Calorimetry measurements, final complex formation was enthalpically driven and slightly entropically unfavorable. Importantly, our experimental data shows that the DII loop lengthened the complex half-life time by 18-fold (900 s and 48 s at 25°C for Pf and ΔDII-Pf complex, respectively). The longer half-life of the Pf complex appeared to be driven by a slower dissociation process. These data highlight a new influential role for the DII loop in kinetically locking the functional binary complex to enable host cell invasion.
Collapse
Affiliation(s)
- Roberto F. Delgadillo
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis, CNRS, UMR 7275, 660, route des Lucioles, Sophia Antipolis, 06560, Valbonne, France
| | - Michelle L. Parker
- Department of Biochemistry & Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, V8W 3P6, Canada
| | - Maryse Lebrun
- UMR 5235 CNRS, Université de Montpellier, 34095, Montpellier, France
| | - Martin J. Boulanger
- Department of Biochemistry & Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, V8W 3P6, Canada
| | - Dominique Douguet
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis, CNRS, UMR 7275, 660, route des Lucioles, Sophia Antipolis, 06560, Valbonne, France
- * E-mail:
| |
Collapse
|
18
|
Aneja B, Kumar B, Jairajpuri MA, Abid M. A structure guided drug-discovery approach towards identification of Plasmodium inhibitors. RSC Adv 2016. [DOI: 10.1039/c5ra19673f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This article provides a comprehensive review of inhibitors from natural, semisynthetic or synthetic sources against key targets ofPlasmodium falciparum.
Collapse
Affiliation(s)
- Babita Aneja
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| | - Bhumika Kumar
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| | - Mohamad Aman Jairajpuri
- Protein Conformation and Enzymology Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| | - Mohammad Abid
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| |
Collapse
|
19
|
Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase. Nat Commun 2015; 6:10199. [PMID: 26680698 PMCID: PMC4703859 DOI: 10.1038/ncomms10199] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/16/2015] [Indexed: 01/05/2023] Open
Abstract
Cyclotides are diverse plant backbone cyclized peptides that have attracted interest as pharmaceutical scaffolds, but fundamentals of their biosynthetic origin remain elusive. Backbone cyclization is a key enzyme-mediated step of cyclotide biosynthesis and confers a measure of stability on the resultant cyclotide. Furthermore, cyclization would be desirable for engineered peptides. Here we report the identification of four asparaginyl endopeptidases (AEPs), proteases implicated in cyclization, from the cyclotide-producing plant Oldenlandia affinis. We recombinantly express OaAEP1b and find it functions preferably as a cyclase by coupling C-terminal cleavage of propeptide substrates with backbone cyclization. Interestingly, OaAEP1b cannot cleave at the N-terminal site of O. affinis cyclotide precursors, implicating additional proteases in cyclotide biosynthesis. Finally, we demonstrate the broad utility of this enzyme by cyclization of peptides unrelated to cyclotides. We propose that recombinant OaAEP1b is a powerful tool for use in peptide engineering applications where increased stability of peptide products is desired. Cyclotides are plant backbone-cyclised peptides with potential as pharmaceutical scaffolds. Here the authors report on the efficient backbone cyclization of cyclotides and unrelated peptides by a newly identified asparaginyl endopeptidase from Oldenlandia affinis.
Collapse
|
20
|
Bartkowiak G, Gawron K, Jurga S, Schroeder G. Mass spectrometry of lanthanide(III) complexes with 2,6-diformylpyridine bis(4-pyridylcarbohydrazone) and its unusual methylation observed in matrix-assisted laser desorption/ionization mass spectra. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1696-1702. [PMID: 26467121 DOI: 10.1002/rcm.7260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/12/2015] [Accepted: 06/21/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Grażyna Bartkowiak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89B, 61-614, Poznań, Poland
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614, Poznań, Poland
| | - Katarzyna Gawron
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89B, 61-614, Poznań, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614, Poznań, Poland
- Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614, Poznań, Poland
| | - Grzegorz Schroeder
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89B, 61-614, Poznań, Poland
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614, Poznań, Poland
| |
Collapse
|
21
|
Pihan E, Delgadillo RF, Tonkin ML, Pugnière M, Lebrun M, Boulanger MJ, Douguet D. Computational and biophysical approaches to protein-protein interaction inhibition of Plasmodium falciparum AMA1/RON2 complex. J Comput Aided Mol Des 2015; 29:525-39. [PMID: 25822046 DOI: 10.1007/s10822-015-9842-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/25/2015] [Indexed: 11/30/2022]
Abstract
Invasion of the red blood cell by Plasmodium falciparum parasites requires formation of an electron dense circumferential ring called the Moving Junction (MJ). The MJ is anchored by a high affinity complex of two parasite proteins: Apical Membrane Antigen 1 (PfAMA1) displayed on the surface of the parasite and Rhoptry Neck Protein 2 that is discharged from the parasite and imbedded in the membrane of the host cell. Structural studies of PfAMA1 revealed a conserved hydrophobic groove localized to the apical surface that coordinates RON2 and invasion inhibitory peptides. In the present work, we employed computational and biophysical methods to identify competitive P. falciparum AMA1-RON2 inhibitors with the goal of exploring the 'druggability' of this attractive antimalarial target. A virtual screen followed by molecular docking with the PfAMA1 crystal structure was performed using an eight million compound collection that included commercial molecules, the ChEMBL malaria library and approved drugs. The consensus approach resulted in the selection of inhibitor candidates. We also developed a fluorescence anisotropy assay using a modified inhibitory peptide to experimentally validate the ability of the selected compounds to inhibit the AMA1-RON2 interaction. Among those, we identified one compound that displayed significant inhibition. This study offers interesting clues to improve the throughput and reliability of screening for new drug leads.
Collapse
Affiliation(s)
- Emilie Pihan
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis, CNRS, UMR 7275, 660, Route des Lucioles, Sophia Antipolis, 06560, Valbonne, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Weiss GE, Gilson PR, Taechalertpaisarn T, Tham WH, de Jong NWM, Harvey KL, Fowkes FJI, Barlow PN, Rayner JC, Wright GJ, Cowman AF, Crabb BS. Revealing the sequence and resulting cellular morphology of receptor-ligand interactions during Plasmodium falciparum invasion of erythrocytes. PLoS Pathog 2015; 11:e1004670. [PMID: 25723550 PMCID: PMC4344246 DOI: 10.1371/journal.ppat.1004670] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 01/08/2015] [Indexed: 11/18/2022] Open
Abstract
During blood stage Plasmodium falciparum infection, merozoites invade uninfected erythrocytes via a complex, multistep process involving a series of distinct receptor-ligand binding events. Understanding each element in this process increases the potential to block the parasite’s life cycle via drugs or vaccines. To investigate specific receptor-ligand interactions, they were systematically blocked using a combination of genetic deletion, enzymatic receptor cleavage and inhibition of binding via antibodies, peptides and small molecules, and the resulting temporal changes in invasion and morphological effects on erythrocytes were filmed using live cell imaging. Analysis of the videos have shown receptor-ligand interactions occur in the following sequence with the following cellular morphologies; 1) an early heparin-blockable interaction which weakly deforms the erythrocyte, 2) EBA and PfRh ligands which strongly deform the erythrocyte, a process dependant on the merozoite’s actin-myosin motor, 3) a PfRh5-basigin binding step which results in a pore or opening between parasite and host through which it appears small molecules and possibly invasion components can flow and 4) an AMA1–RON2 interaction that mediates tight junction formation, which acts as an anchor point for internalization. In addition to enhancing general knowledge of apicomplexan biology, this work provides a rational basis to combine sequentially acting merozoite vaccine candidates in a single multi-receptor-blocking vaccine. The development of an effective malaria vaccine is a world health priority and would be a critical step toward the control and eventual elimination of this disease. In addition, new pharmacological solutions are necessary as Plasmodium falciparum, the deadliest of the malaria-causing parasites, has developed resistance to every drug currently approved for treatment. Understanding the interactions required for the parasite to invade its erythrocyte host, as well as being valuable to our basic knowledge of parasite biology, is important for the development of drug-based therapies and vaccines. In this study we have, for the first time, filmed P. falciparum parasites invading erythrocytes while systematically blocking several specific interactions between the parasite and the erythrocyte. We have shown there is a sequential progression of specific interactions that occur in at least four distinct steps leading up to invasion. Previous vaccine attempts have targeted one or two of these steps, however, if a single vaccine were designed to block interactions at all four steps, the combined effect might so reduce invasion that parasite growth and disease progression would be arrested. A better understanding of each interaction during invasion, their role and order, can also inform the development of new anti-malarial drugs.
Collapse
Affiliation(s)
| | - Paul R. Gilson
- Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
- * E-mail: (PRG); (BSC)
| | - Tana Taechalertpaisarn
- Burnet Institute, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Australia
| | - Wai-Hong Tham
- Department of Medical Biology, University of Melbourne, Australia
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Australia
| | | | - Katherine L. Harvey
- Burnet Institute, Melbourne, Australia
- Department of Microbiology & Immunology, University of Melbourne, Australia
| | - Freya J. I. Fowkes
- Burnet Institute, Melbourne, Australia
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Australia
- Department of Epidemiology and Preventive Medicine and Department of Infectious Diseases, Monash University, Melbourne, Australia
| | - Paul N. Barlow
- Schools of Chemistry and Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Julian C. Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Alan F. Cowman
- Department of Medical Biology, University of Melbourne, Australia
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Brendan S. Crabb
- Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
- Department of Microbiology & Immunology, University of Melbourne, Australia
- * E-mail: (PRG); (BSC)
| |
Collapse
|
23
|
Gazdik M, O'Neill MT, Lopaticki S, Lowes KN, Smith BJ, Cowman AF, Boddey JA, Sleebs BE. The effect of N-methylation on transition state mimetic inhibitors of the Plasmodium protease, plasmepsin V. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00409d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An N-methylation strategy has been applied to transition state mimetics that are potent inhibitors of plasmepsin V to improve their physical characteristics and their ability to reduce the viability of Plasmodium parasites in culture.
Collapse
Affiliation(s)
- Michelle Gazdik
- The Walter and Eliza Hall Institute of Medical Research
- Parkville
- Australia
- Department of Medical Biology
- The University of Melbourne
| | - Matthew T. O'Neill
- The Walter and Eliza Hall Institute of Medical Research
- Parkville
- Australia
- Department of Medical Biology
- The University of Melbourne
| | - Sash Lopaticki
- The Walter and Eliza Hall Institute of Medical Research
- Parkville
- Australia
- Department of Medical Biology
- The University of Melbourne
| | - Kym N. Lowes
- The Walter and Eliza Hall Institute of Medical Research
- Parkville
- Australia
- Department of Medical Biology
- The University of Melbourne
| | | | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical Research
- Parkville
- Australia
- Department of Medical Biology
- The University of Melbourne
| | - Justin A. Boddey
- The Walter and Eliza Hall Institute of Medical Research
- Parkville
- Australia
- Department of Medical Biology
- The University of Melbourne
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical Research
- Parkville
- Australia
- Department of Medical Biology
- The University of Melbourne
| |
Collapse
|
24
|
Lim SS, Yang W, Krishnarjuna B, Kannan Sivaraman K, Chandrashekaran IR, Kass I, MacRaild CA, Devine SM, Debono CO, Anders RF, Scanlon MJ, Scammells PJ, Norton RS, McGowan S. Structure and dynamics of apical membrane antigen 1 from Plasmodium falciparum FVO. Biochemistry 2014; 53:7310-20. [PMID: 25360546 DOI: 10.1021/bi5012089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Apical membrane antigen 1 (AMA1) interacts with RON2 to form a protein complex that plays a key role in the invasion of host cells by malaria parasites. Blocking this protein-protein interaction represents a potential route to controlling malaria and related parasitic diseases, but the polymorphic nature of AMA1 has proven to be a major challenge to vaccine-induced antibodies and peptide inhibitors exerting strain-transcending inhibitory effects. Here we present the X-ray crystal structure of AMA1 domains I and II from Plasmodium falciparum strain FVO. We compare our new structure to those of AMA1 from P. falciparum 3D7 and Plasmodium vivax. A combination of normalized B factor analysis and computational methods has been used to investigate the flexibility of the domain I loops and how this correlates with their roles in determining the strain specificity of human antibody responses and inhibitory peptides. We also investigated the domain II loop, a key region involved in inhibitor binding, by comparison of multiple AMA1 crystal structures. Collectively, these results provide valuable insights that should contribute to the design of strain-transcending agents targeting P. falciparum AMA1.
Collapse
Affiliation(s)
- San Sui Lim
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Molecular insights into the interaction between Plasmodium falciparum apical membrane antigen 1 and an invasion-inhibitory peptide. PLoS One 2014; 9:e109674. [PMID: 25343578 PMCID: PMC4208761 DOI: 10.1371/journal.pone.0109674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/03/2014] [Indexed: 11/28/2022] Open
Abstract
Apical membrane antigen 1 (AMA1) of the human malaria parasite Plasmodium falciparum has been implicated in invasion of the host erythrocyte. It interacts with malarial rhoptry neck (RON) proteins in the moving junction that forms between the host cell and the invading parasite. Agents that block this interaction inhibit invasion and may serve as promising leads for anti-malarial drug development. The invasion-inhibitory peptide R1 binds to a hydrophobic cleft on AMA1, which is an attractive target site for small molecules that block parasite invasion. In this work, truncation and mutational analyses show that Phe5-Phe9, Phe12 and Arg15 in R1 are the most important residues for high affinity binding to AMA1. These residues interact with two well-defined binding hot spots on AMA1. Computational solvent mapping reveals that one of these hot spots is suitable for small molecule targeting. We also confirm that R1 in solution binds to AMA1 with 1∶1 stoichiometry and adopts a secondary structure consistent with the major form of R1 observed in the crystal structure of the complex. Our results provide a basis for designing high affinity inhibitors of the AMA1-RON2 interaction.
Collapse
|
26
|
Ge X, MacRaild CA, Devine SM, Debono CO, Wang G, Scammells PJ, Scanlon MJ, Anders RF, Foley M, Norton RS. Ligand-Induced Conformational Change of Plasmodium falciparum AMA1 Detected Using 19F NMR. J Med Chem 2014; 57:6419-27. [DOI: 10.1021/jm500390g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiaopeng Ge
- Department
of Biochemistry, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Christopher A. MacRaild
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Shane M. Devine
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Cael O. Debono
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Geqing Wang
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Peter J. Scammells
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Martin J. Scanlon
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Robin F. Anders
- Department
of Biochemistry, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Michael Foley
- Department
of Biochemistry, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Raymond S. Norton
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| |
Collapse
|
27
|
Devine SM, Lim SS, Chandrashekaran IR, MacRaild CA, Drew DR, Debono CO, Lam R, Anders RF, Beeson JG, Scanlon MJ, Scammells PJ, Norton RS. A critical evaluation of pyrrolo[2,3-d]pyrimidine-4-amines as Plasmodium falciparum apical membrane antigen 1 (AMA1) inhibitors. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00090k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyrrolo[2,3-d]pyrimidines are low affinity AMA1 binders that are also prone to aggregation.
Collapse
Affiliation(s)
- Shane M. Devine
- Medicinal Chemistry
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville, Australia
| | - San Sui Lim
- Medicinal Chemistry
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville, Australia
| | - Indu R. Chandrashekaran
- Medicinal Chemistry
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville, Australia
| | - Christopher A. MacRaild
- Medicinal Chemistry
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville, Australia
| | - Damien R. Drew
- Centre for Biomedical Research
- Burnet Institute
- Melbourne, Australia
| | - Cael O. Debono
- Medicinal Chemistry
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville, Australia
| | - Raymond Lam
- Medicinal Chemistry
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville, Australia
| | - Robin F. Anders
- Department of Biochemistry
- La Trobe University
- Melbourne, Australia
| | - James G. Beeson
- Centre for Biomedical Research
- Burnet Institute
- Melbourne, Australia
| | - Martin J. Scanlon
- Medicinal Chemistry
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville, Australia
- Centre of Excellence for Coherent X-Ray Science
| | - Peter J. Scammells
- Medicinal Chemistry
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville, Australia
| | - Raymond S. Norton
- Medicinal Chemistry
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville, Australia
| |
Collapse
|
28
|
Walker DM, Oghumu S, Gupta G, McGwire BS, Drew ME, Satoskar AR. Mechanisms of cellular invasion by intracellular parasites. Cell Mol Life Sci 2013; 71:1245-63. [PMID: 24221133 DOI: 10.1007/s00018-013-1491-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022]
Abstract
Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.
Collapse
Affiliation(s)
- Dawn M Walker
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | | | |
Collapse
|
29
|
Cecere G, Koenig CM, Alleva JL, MacMillan DWC. Enantioselective direct α-amination of aldehydes via a photoredox mechanism: a strategy for asymmetric amine fragment coupling. J Am Chem Soc 2013; 135:11521-4. [PMID: 23869694 PMCID: PMC3786402 DOI: 10.1021/ja406181e] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The direct, asymmetric α-amination of aldehydes has been accomplished via a combination of photoredox and organocatalysis. Photon-generated N-centered radicals undergo enantioselective α-addition to catalytically formed chiral enamines to directly produce stable α-amino aldehyde adducts bearing synthetically useful amine substitution patterns. Incorporation of a photolabile group on the amine precursor obviates the need to employ a photoredox catalyst in this transformation. Importantly, this photoinduced transformation allows direct and enantioselective access to α-amino aldehyde products that do not require postreaction manipulation.
Collapse
Affiliation(s)
- Giuseppe Cecere
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544
| | - Christian M. Koenig
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544
| | - Jennifer L. Alleva
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544
| | | |
Collapse
|
30
|
Abstract
A mathematical model which predicts the intraerythrocytic stages of Plasmodium falciparum infection was developed using data from malaria-infected mice. Variables selected accounted for levels of healthy red blood cells, merozoite (Plasmodium asexual phase) infected red blood cells, gametocyte (Plasmodium sexual phase) infected red blood cells and a phenomenological variable which accounts for the mean activity of the immune system of the host. The model built was able to reproduce the behavior of three different scenarios of malaria. It predicts the later dynamics of malaria-infected humans well after the first peak of parasitemia, the qualitative response of malaria-infected monkeys to vaccination and the changes observed in malaria-infected mice when they are treated with antimalarial drugs. The mathematical model was used to identify new targets to be focused on drug design. Optimization methodologies were applied to identify five targets for minimizing the parasite load; four of the targets thus identified have never before been taken into account in drug design. The potential targets include: 1) increasing the death rate of the gametocytes, 2) decreasing the invasion rate of the red blood cells by the merozoites, 3) increasing the transformation of merozoites into gametocytes, 4) decreasing the activation of the immune system by the gametocytes, and finally 5) a combination of the previous target with decreasing the recycling rate of the red blood cells. The first target is already used in current therapies, whereas the remainders are proposals for potential new targets. Furthermore, the combined target (the simultaneous decrease of the activation of IS by gRBC and the decrease of the influence of IS on the recycling of hRBC) is interesting, since this combination does not affect the parasite directly. Thus, it is not expected to generate selective pressure on the parasites, which means that it would not produce resistance in Plasmodium.
Collapse
Affiliation(s)
- Guido Santos
- Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
| | - Néstor V. Torres
- Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna. Tenerife, Spain
- * E-mail:
| |
Collapse
|
31
|
Lim SS, Debono CO, MacRaild CA, Chandrashekaran IR, Dolezal O, Anders RF, Simpson JS, Scanlon MJ, Devine SM, Scammells PJ, Norton RS. Development of Inhibitors of Plasmodium falciparum Apical Membrane Antigen 1 Based on Fragment Screening. Aust J Chem 2013. [DOI: 10.1071/ch13266] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apical membrane antigen 1 (AMA1) is an essential component of the moving junction complex used by Plasmodium falciparum to invade human red blood cells. AMA1 has a conserved hydrophobic cleft that is the site of key interactions with the rhoptry neck protein complex. Our goal is to develop small molecule inhibitors of AMA1 with broad strain specificity, which we are pursuing using a fragment-based approach. In our screening campaign, we identified fragments that bind to the hydrophobic cleft with a hit rate of 5 %. The high hit rate observed strongly suggests that a druggable pocket is present within the cleft.
Collapse
|
32
|
Alam A, Goyal M, Iqbal MS, Pal C, Dey S, Bindu S, Maity P, Bandyopadhyay U. Novel antimalarial drug targets: hope for new antimalarial drugs. Expert Rev Clin Pharmacol 2012; 2:469-89. [PMID: 22112223 DOI: 10.1586/ecp.09.28] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malaria is a major global threat, that results in more than 2 million deaths each year. The treatment of malaria is becoming extremely difficult due to the emergence of drug-resistant parasites, the absence of an effective vaccine, and the spread of insecticide-resistant vectors. Thus, malarial therapy needs new chemotherapeutic approaches leading to the search for new drug targets. Here, we discuss different approaches to identifying novel antimalarial drug targets. We have also given due attention to the existing validated targets with a view to develop novel, rationally designed lead molecules. Some of the important parasite proteins are claimed to be the targets; however, further in vitro or in vivo structure-function studies of such proteins are crucial to validate these proteins as suitable targets. The interactome analysis among apicoplast, mitochondrion and genomic DNA will also be useful in identifying vital pathways or proteins regulating critical pathways for parasite growth and survival, and could be attractive targets. Molecules responsible for parasite invasion to host erythrocytes and ion channels of infected erythrocytes, essential for intra-erythrocyte survival and stage progression of parasites are also becoming attractive targets. This review will discuss and highlight the current understanding regarding the potential antimalarial drug targets, which could be utilized to develop novel antimalarials.
Collapse
Affiliation(s)
- Athar Alam
- Division of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
INTRODUCTION Toxoplasma gondii, the agent that causes toxoplasmosis, is an opportunistic parasite that infects many mammalian species. It is an obligate intracellular parasite that causes severe congenital neurological and ocular disease mostly in immunocompromised humans. The current regimen of therapy includes only a few medications that often lead to hypersensitivity and toxicity. In addition, there are no vaccines available to prevent the transmission of this agent. Therefore, safer and more effective medicines to treat toxoplasmosis are urgently needed. AREAS COVERED The author presents in silico and in vitro strategies that are currently used to screen for novel targets and unique chemotypes against T. gondii. Furthermore, this review highlights the screening technologies and characterization of some novel targets and new chemical entities that could be developed into highly efficacious treatments for toxoplasmosis. EXPERT OPINION A number of diverse methods are being used to design inhibitors against T. gondii. These include ligand-based methods, in which drugs that have been shown to be efficacious against other Apicomplexa parasites can be repurposed to identify lead molecules against T. gondii. In addition, structure-based methods use currently available repertoire of structural information in various databases to rationally design small-molecule inhibitors of T. gondii. Whereas the screening methods have their advantages and limitations, a combination of methods is ideally suited to design small-molecule inhibitors of complex parasites such as T. gondii.
Collapse
Affiliation(s)
- Sandhya Kortagere
- Drexel University College of Medicine, Institute for Molecular Medicine, Department of Microbiology and Immunology, 2900, Queen Lane, PA 19129, USA.
| |
Collapse
|
34
|
Vulliez-Le Normand B, Tonkin ML, Lamarque MH, Langer S, Hoos S, Roques M, Saul FA, Faber BW, Bentley GA, Boulanger MJ, Lebrun M. Structural and functional insights into the malaria parasite moving junction complex. PLoS Pathog 2012; 8:e1002755. [PMID: 22737069 PMCID: PMC3380929 DOI: 10.1371/journal.ppat.1002755] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/01/2012] [Indexed: 12/03/2022] Open
Abstract
Members of the phylum Apicomplexa, which include the malaria parasite Plasmodium, share many features in their invasion mechanism in spite of their diverse host cell specificities and life cycle characteristics. The formation of a moving junction (MJ) between the membranes of the invading apicomplexan parasite and the host cell is common to these intracellular pathogens. The MJ contains two key parasite components: the surface protein Apical Membrane Antigen 1 (AMA1) and its receptor, the Rhoptry Neck Protein (RON) complex, which is targeted to the host cell membrane during invasion. In particular, RON2, a transmembrane component of the RON complex, interacts directly with AMA1. Here, we report the crystal structure of AMA1 from Plasmodium falciparum in complex with a peptide derived from the extracellular region of PfRON2, highlighting clear specificities of the P. falciparum RON2-AMA1 interaction. The receptor-binding site of PfAMA1 comprises the hydrophobic groove and a region that becomes exposed by displacement of the flexible Domain II loop. Mutations of key contact residues of PfRON2 and PfAMA1 abrogate binding between the recombinant proteins. Although PfRON2 contacts some polymorphic residues, binding studies with PfAMA1 from different strains show that these have little effect on affinity. Moreover, we demonstrate that the PfRON2 peptide inhibits erythrocyte invasion by P. falciparum merozoites and that this strong inhibitory potency is not affected by AMA1 polymorphisms. In parallel, we have determined the crystal structure of PfAMA1 in complex with the invasion-inhibitory peptide R1 derived by phage display, revealing an unexpected structural mimicry of the PfRON2 peptide. These results identify the key residues governing the interactions between AMA1 and RON2 in P. falciparum and suggest novel approaches to antimalarial therapeutics. Malaria arises from infection of erythrocytes by single-cell parasites belonging to the genus Plasmodium, the species P. falciparum causing the most severe forms of the disease. The formation of a moving junction (MJ) between the membranes of the parasite and its host cell is essential for invasion. Two important components of the MJ are Apical Membrane Antigen 1 (AMA1) on the parasite surface and the Plasmodium rhoptry neck (RON) protein complex that is translocated to the erythrocyte membrane during invasion. The extra-cellular region of RON2, a component of this complex, interacts with AMA1, providing a bridge between the parasite and its host cell that is crucial for successful invasion. The parasite thus provides its own receptor for AMA1 and accordingly this critical interaction is not subject to evasive adaptations by the host. We present atomic details of the interaction of PfAMA1 with the carboxy-terminal region of RON2 and shed light on structural adaptations by each apicomplexan parasite to maintain an interaction so crucial for invasion. The structure of the RON2 ligand bound to AMA1 thus provides an ideal basis for drug design as such molecules may be refractory to the development of drug resistance in P. falciparum.
Collapse
Affiliation(s)
| | - Michelle L. Tonkin
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | | | - Susann Langer
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Sylviane Hoos
- Plate-Forme de Biophysique des Macromolécules et de leurs Interactions, Institut Pasteur, Paris, France
| | - Magali Roques
- UMR 5235 CNRS, Université de Montpellier 2, Montpellier, France
| | - Frederick A. Saul
- Unité d'Immunologie Structurale, Institut Pasteur, Paris, France
- URA 2185 CNRS, Paris, France
| | - Bart W. Faber
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Graham A. Bentley
- Unité d'Immunologie Structurale, Institut Pasteur, Paris, France
- URA 2185 CNRS, Paris, France
- * E-mail: (GAB); (MJB); (ML)
| | - Martin J. Boulanger
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail: (GAB); (MJB); (ML)
| | - Maryse Lebrun
- UMR 5235 CNRS, Université de Montpellier 2, Montpellier, France
- * E-mail: (GAB); (MJB); (ML)
| |
Collapse
|
35
|
Harvey KL, Gilson PR, Crabb BS. A model for the progression of receptor-ligand interactions during erythrocyte invasion by Plasmodium falciparum. Int J Parasitol 2012; 42:567-73. [PMID: 22710063 DOI: 10.1016/j.ijpara.2012.02.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/18/2012] [Accepted: 02/23/2012] [Indexed: 11/17/2022]
Abstract
Multiple and seemingly sequential interactions between parasite ligands and their receptors on host erythrocytes are an essential precursor to invasion by the obligate intracellular pathogen, Plasmodium falciparum. Consequently, identification and characterisation of the specific effectors that facilitate these recognition events are of special interest for the development of novel therapeutic and prophylactic solutions to malaria. There have been many recent advances regarding the identification of host-parasite receptor-ligand pairs, however the precise function and temporal aspects of these interactions are far from resolved. This review provides an update on the current details of these interactions to place them in sequence and super impose them upon the known kinetic events of invasion.
Collapse
|
36
|
Rich RL, Myszka DG. Survey of the 2009 commercial optical biosensor literature. J Mol Recognit 2012; 24:892-914. [PMID: 22038797 DOI: 10.1002/jmr.1138] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We took a different approach to reviewing the commercial biosensor literature this year by inviting 22 biosensor users to serve as a review committee. They set the criteria for what to expect in a publication and ultimately decided to use a pass/fail system for selecting which papers to include in this year's reference list. Of the 1514 publications in 2009 that reported using commercially available optical biosensor technology, only 20% passed their cutoff. The most common criticism the reviewers had with the literature was that "the biosensor experiments could have been done better." They selected 10 papers to highlight good experimental technique, data presentation, and unique applications of the technology. This communal review process was educational for everyone involved and one we will not soon forget.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
37
|
Olivieri A, Collins CR, Hackett F, Withers-Martinez C, Marshall J, Flynn HR, Skehel JM, Blackman MJ. Juxtamembrane shedding of Plasmodium falciparum AMA1 is sequence independent and essential, and helps evade invasion-inhibitory antibodies. PLoS Pathog 2011; 7:e1002448. [PMID: 22194692 PMCID: PMC3240622 DOI: 10.1371/journal.ppat.1002448] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/04/2011] [Indexed: 12/16/2022] Open
Abstract
The malarial life cycle involves repeated rounds of intraerythrocytic replication interspersed by host cell rupture which releases merozoites that rapidly invade fresh erythrocytes. Apical membrane antigen-1 (AMA1) is a merozoite protein that plays a critical role in invasion. Antibodies against AMA1 prevent invasion and can protect against malaria in vivo, so AMA1 is of interest as a malaria vaccine candidate. AMA1 is efficiently shed from the invading parasite surface, predominantly through juxtamembrane cleavage by a membrane-bound protease called SUB2, but also by limited intramembrane cleavage. We have investigated the structural requirements for shedding of Plasmodium falciparum AMA1 (PfAMA1), and the consequences of its inhibition. Mutagenesis of the intramembrane cleavage site by targeted homologous recombination abolished intramembrane cleavage with no effect on parasite viability in vitro. Examination of PfSUB2-mediated shedding of episomally-expressed PfAMA1 revealed that the position of cleavage is determined primarily by its distance from the parasite membrane. Certain mutations at the PfSUB2 cleavage site block shedding, and parasites expressing these non-cleavable forms of PfAMA1 on a background of expression of the wild type gene invade and replicate normally in vitro. The non-cleavable PfAMA1 is also functional in invasion. However – in contrast to the intramembrane cleavage site - mutations that block PfSUB2-mediated shedding could not be stably introduced into the genomic pfama1 locus, indicating that some shedding of PfAMA1 by PfSUB2 is essential. Remarkably, parasites expressing shedding-resistant forms of PfAMA1 exhibit enhanced sensitivity to antibody-mediated inhibition of invasion. Drugs that inhibit PfSUB2 activity should block parasite replication and may also enhance the efficacy of vaccines based on AMA1 and other merozoite surface proteins. The malaria parasite invades red blood cells. During invasion several parasite proteins, including a vaccine candidate called PfAMA1, are clipped from the parasite surface. Most of this clipping is performed by an enzyme called PfSUB2, but some also occurs through intramembrane cleavage. The function of this shedding is unknown. We have examined the requirements for shedding of PfAMA1, and the effects of mutations that block shedding. Mutations that block intramembrane cleavage have no effect on the parasite. We then show that PfSUB2 does not recognise a specific amino acid sequence in PfAMA1, but rather cleaves it at a position determined primarily by its distance from the parasite membrane. Certain mutations at the PfSUB2 cleavage site prevent shedding, and parasites expressing non-cleavable PfAMA1 along with unmodified PfAMA1 grow normally. However, these mutations cannot be introduced into the parasite's genome, showing that some shedding by PfSUB2 is essential for parasite survival. Parasites expressing shedding-resistant mutants of PfAMA1 show enhanced sensitivity to invasion-inhibitory antibodies, suggesting that shedding of surface proteins during invasion helps the parasite to evade potentially protective antibodies. Drugs that inhibit PfSUB2 may prevent disease and enhance the efficacy of vaccines based on PfAMA1.
Collapse
Affiliation(s)
- Anna Olivieri
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Christine R. Collins
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Fiona Hackett
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | | | - Joshua Marshall
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Helen R. Flynn
- Protein Analysis and Proteomics Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, Hertfordshire, United Kingdom
| | - J. Mark Skehel
- Protein Analysis and Proteomics Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, Hertfordshire, United Kingdom
| | - Michael J. Blackman
- Protein Analysis and Proteomics Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, Hertfordshire, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
The cysteine-rich regions of Plasmodium falciparum RON2 bind with host erythrocyte and AMA1 during merozoite invasion. Parasitol Res 2011; 110:1711-21. [PMID: 22033736 DOI: 10.1007/s00436-011-2690-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/06/2011] [Indexed: 10/15/2022]
Abstract
Invasion of Plasmodium falciparum merozoites into host erythrocyte involves a series of highly specific and sequential interaction between merozoite and host erythrocyte surface protein. The key step in the invasion process is the formation of a tight protein-protein interaction between host and parasite called as moving junction. A number of parasite proteins secreted from two organelles, microneme and rhoptry, play a role in initial interaction and junction formation between merozoite with host red blood cells (RBCs) during the invasion process. In the present study, we investigated the role of different domains of a P. falciparum rhoptry neck protein PfRON2. Immunofluorescence assay revealed close association of PfAMA1 and PfRON2 in the merozoites during the invasion process. PfRON2 domains were expressed on COS-7 cell surface, and their interaction was analysed with host RBCs and PfAMA1 protein by rosetting assays. The rosetting assays suggest that the C-terminal cysteine-rich domain of PfRON2 plays a role in binding with host erythrocyte. The C-terminal as well as the central cysteine-rich domain of PfRON2 interact with PfAMA1; this binding can be inhibited by monoclonal antibody (mAb 4 G2) against PfAMA1, suggesting that the hydrophobic groove of PfAMA1 binds to PfRON2. These results suggest that PfRON2 plays a role in merozoite invasion and thus it can be an important vaccine candidate antigen.
Collapse
|
39
|
Tal-Gan Y, Freeman NS, Klein S, Levitzki A, Gilon C. Metabolic stability of peptidomimetics: N-methyl and aza heptapeptide analogs of a PKB/Akt inhibitor. Chem Biol Drug Des 2011; 78:887-92. [PMID: 21824328 DOI: 10.1111/j.1747-0285.2011.01207.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Linear peptides suffer from poor pharmacokinetic and pharmacodynamic properties. Peptidomimetics are designed to overcome these pharmacological drawbacks while maintaining the biological effects of the parent peptides. Aza-peptides, in which an alpha carbon is replaced with nitrogen, are promising peptidomimetic analogs; however, little is known about the stability of these analogs toward enzymatic degradation. We performed systematic aza and N-methyl scans of a PKB/Akt inhibitor, PTR6154. We evaluated the stability of the aza-scan and N-methyl scan libraries toward enzymatic degradation by trypsin/chymotrypsin. Our results indicate that the modification site is important for metabolic stability and that aza-peptides have a more global effect than N-methylation, affecting cleavage sites distant from the modification site.
Collapse
Affiliation(s)
- Yftah Tal-Gan
- Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | | | |
Collapse
|
40
|
Erhöhung der αvβ3-Selektivität des Angiogenese hemmenden Wirkstoffs Cilengitid durch N-Methylierung. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102971] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
41
|
Mas-Moruno C, Beck JG, Doedens L, Frank AO, Marinelli L, Cosconati S, Novellino E, Kessler H. Increasing αvβ3 selectivity of the anti-angiogenic drug cilengitide by N-methylation. Angew Chem Int Ed Engl 2011; 50:9496-500. [PMID: 21948451 DOI: 10.1002/anie.201102971] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 05/27/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Carlos Mas-Moruno
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie, Technische Universität München, 85747 Garching, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ünal C, Schwedhelm KF, Thiele A, Weiwad M, Schweimer K, Frese F, Fischer G, Hacker J, Faber C, Steinert M. Collagen IV-derived peptide binds hydrophobic cavity of Legionella pneumophila Mip and interferes with bacterial epithelial transmigration. Cell Microbiol 2011; 13:1558-72. [DOI: 10.1111/j.1462-5822.2011.01641.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Casey JL, Sanalla AM, Tamvakis D, Thalmann C, Carroll EL, Parisi K, Coley AM, Stewart DJ, Vaughan JA, Michalski WP, Luke R, Foley M. Peptides specific for Mycobacterium avium subspecies paratuberculosis infection: diagnostic potential. Protein Eng Des Sel 2011; 24:589-96. [PMID: 21669956 DOI: 10.1093/protein/gzr026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (Map) is the causative agent of Johne's disease (JD). Current serological diagnostic tests for JD are limited by their sensitivity when used in sub-clinical stages of the disease. Our objective was to identify peptides that mimic diagnostically important Map epitopes that might be incorporated into a new-generation JD diagnostic. Four peptides were isolated from a phage-displayed random peptide library by screening on antibodies derived from Map-infected goats. The peptides were recognised by antibodies from Map-infected goats but not by antibodies from uninfected goats. The peptides elicited immune responses in rabbits, which reacted strongly with bona fide Map antigens proving the peptides were true epitope mimics. To assess the diagnostic value a panel of goat sera was screened for reactivity's with peptides. The peptides were recognised by antibodies from a proportion of goats infected with Map compared with control animals with a diagnostic specificity of 100% and the sensitivity ranged from 50 to 75%. Combinations of any two peptides improved sensitivity 62.5-87.5% and 100% sensitivity was achieved with three of the four peptides in combination. These data suggest peptides representing diagnostically important Map epitopes could be incorporated into a sensitive diagnostic test.
Collapse
Affiliation(s)
- J L Casey
- La Trobe University, AdAlta Pty Ltd, 2 Research Drive, VIC 3083, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Roy A, D'Annessa I, Nielsen CJF, Tordrup D, Laursen RR, Knudsen BR, Desideri A, Andersen FF. Peptide Inhibition of Topoisomerase IB from Plasmodium falciparum. Mol Biol Int 2011; 2011:854626. [PMID: 22091414 PMCID: PMC3200115 DOI: 10.4061/2011/854626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/03/2011] [Indexed: 11/21/2022] Open
Abstract
Control of diseases inflicted by protozoan parasites such as Leishmania, Trypanosoma, and Plasmodium, which pose a serious threat to human health worldwide, depends on a rather small number of antiparasite drugs, of which many are toxic and/or inefficient. Moreover, the increasing occurrence of drug-resistant parasites emphasizes the need for new and effective antiprotozoan drugs. In the current study, we describe a synthetic peptide, WRWYCRCK, with inhibitory effect on the essential enzyme topoisomerase I from the malaria-causing parasite Plasmodium falciparum. The peptide inhibits specifically the transition from noncovalent to covalent DNA binding of P. falciparum topoisomerase I, while it does not affect the ligation step of catalysis. A mechanistic explanation for this inhibition is provided by molecular docking analyses. Taken together the presented results suggest that synthetic peptides may represent a new class of potential antiprotozoan drugs.
Collapse
Affiliation(s)
- Amit Roy
- Department of Molecular Biology and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Lee EF, Yao S, Sabo JK, Fairlie WD, Stevenson RA, Harris KS, Anders RF, Foley M, Norton RS. Peptide inhibitors of the malaria surface protein, apical membrane antigen 1: identification of key binding residues. Biopolymers 2011; 95:354-64. [PMID: 21213258 DOI: 10.1002/bip.21582] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 11/10/2022]
Abstract
Apical membrane antigen 1 (AMA1) is essential for malaria parasite invasion of erythrocytes and is therefore an attractive target for drug development. Peptides that bind AMA1 have been identified from random peptide libraries expressed on the surface of phage. Of these, R1, which binds to a hydrophobic ligand binding site on AMA1, was a particularly potent inhibitor of parasite invasion of erythrocytes in vitro. The solution structure of R1 contains a turn-like conformation between residues 5-10. Here the importance of residues in this turn-like structure for binding to AMA1 was examined by site-directed mutagenesis and NMR spectroscopy. The peptide was expressed as a fusion protein following replacement of Met16 by Leu in order to accommodate cyanogen bromide cleavage. This modified peptide (R2) displayed the same affinity for AMA1 as R1, showing that the identity of the side chain at position 16 was not critical for binding. Substitution of Phe5, Pro7, Leu8, and Phe9 with alanine led to significant (7.5- to >350-fold) decreases in affinity for AMA1. Comparison of backbone amide and C(α) H chemical shifts for these R2 analogues with corresponding values for R2 showed no significant changes, with the exception of R2(P7A), where slightly larger differences were observed, particularly for residues flanking position 7. The absence of significant changes in the secondary chemical shifts suggests that these mutations had little effect on the solution conformation of R2. The identification of a nonpolar region of these peptides containing residues essential for AMA1 binding establishes a basis for the design of anti-malarial drugs based on R1 mimetics.
Collapse
Affiliation(s)
- Erinna F Lee
- Structural Biology Division, The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Qu H, Magotti P, Ricklin D, Wu EL, Kourtzelis I, Wu YQ, Kaznessis YN, Lambris JD. Novel analogues of the therapeutic complement inhibitor compstatin with significantly improved affinity and potency. Mol Immunol 2010; 48:481-9. [PMID: 21067811 DOI: 10.1016/j.molimm.2010.10.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 10/10/2010] [Indexed: 11/26/2022]
Abstract
Compstatin is a 13-residue disulfide-bridged peptide that inhibits a key step in the activation of the human complement system. Compstatin and its derivatives have shown great promise for the treatment of many clinical disorders associated with unbalanced complement activity. To obtain more potent compstatin analogues, we have now performed an N-methylation scan of the peptide backbone and amino acid substitutions at position 13. One analogue (Ac-I[CVW(Me)QDW-Sar-AHRC](NMe)I-NH(2)) displayed a 1000-fold increase in both potency (IC(50) = 62 nM) and binding affinity for C3b (K(D) = 2.3 nM) over that of the original compstatin. Biophysical analysis using surface plasmon resonance and isothermal titration calorimetry suggests that the improved binding originates from more favorable free conformation and stronger hydrophobic interactions. This study provides a series of significantly improved drug leads for therapeutic applications in complement-related diseases, and offers new insights into the structure-activity relationships of compstatin analogues.
Collapse
Affiliation(s)
- Hongchang Qu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Hearty S, Conroy PJ, Ayyar BV, Byrne B, O'Kennedy R. Surface plasmon resonance for vaccine design and efficacy studies: recent applications and future trends. Expert Rev Vaccines 2010; 9:645-64. [PMID: 20518719 DOI: 10.1586/erv.10.52] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The lack of a clear correlation between design and protection continues to present a barrier to progress in vaccine research. In this article, we outline how surface plasmon resonance (SPR) biosensors are emerging as tools to help resolve some of the key biophysical determinants of protection and, thereby, facilitate more rational vaccine design campaigns. SPR technology has contributed significantly to our understanding of the complex biophysical determinants of HIV neutralization and offers a platform for preclinical evaluation of vaccine candidates. In particular, the concept of reverse-engineering HIV vaccine targets based on known broadly neutralizing antibody modalities is explored and extended to include other infectious diseases, such as malaria and influenza, and other diseases such as cancer. The analytical capacity afforded by SPR includes serum screening to monitor immune responses and highly efficient quality-control surveillance measures. These are discussed alongside key technological advances, such as developments in sample throughput, and a perspective predicting continued growth and diversification of the role of SPR in vaccine development is proposed.
Collapse
Affiliation(s)
- Stephen Hearty
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| | | | | | | | | |
Collapse
|
48
|
Sedegah M, Kim Y, Peters B, McGrath S, Ganeshan H, Lejano J, Abot E, Banania G, Belmonte M, Sayo R, Farooq F, Doolan DL, Regis D, Tamminga C, Chuang I, Bruder JT, King CR, Ockenhouse CF, Faber B, Remarque E, Hollingdale MR, Richie TL, Sette A. Identification and localization of minimal MHC-restricted CD8+ T cell epitopes within the Plasmodium falciparum AMA1 protein. Malar J 2010; 9:241. [PMID: 20735847 PMCID: PMC2939619 DOI: 10.1186/1475-2875-9-241] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 08/24/2010] [Indexed: 12/14/2022] Open
Abstract
Background Plasmodium falciparum apical membrane antigen-1 (AMA1) is a leading malaria vaccine candidate antigen that is expressed by sporozoite, liver and blood stage parasites. Since CD8+ T cell responses have been implicated in protection against pre-erythrocytic stage malaria, this study was designed to identify MHC class I-restricted epitopes within AMA1. Methods A recombinant adenovirus serotype 5 vector expressing P. falciparum AMA1 was highly immunogenic when administered to healthy, malaria-naive adult volunteers as determined by IFN-γ ELISpot responses to peptide pools containing overlapping 15-mer peptides spanning full-length AMA1. Computerized algorithms (NetMHC software) were used to predict minimal MHC-restricted 8-10-mer epitope sequences within AMA1 15-mer peptides active in ELISpot. A subset of epitopes was synthesized and tested for induction of CD8+ T cell IFN-γ responses by ELISpot depletion and ICS assays. A 3-dimensional model combining Domains I + II of P. falciparum AMA1 and Domain III of P. vivax AMA1 was used to map these epitopes. Results Fourteen 8-10-mer epitopes were predicted to bind to HLA supertypes A01 (3 epitopes), A02 (4 epitopes), B08 (2 epitopes) and B44 (5 epitopes). Nine of the 14 predicted epitopes were recognized in ELISpot or ELISpot and ICS assays by one or more volunteers. Depletion of T cell subsets confirmed that these epitopes were CD8+ T cell-dependent. A mixture of the 14 minimal epitopes was capable of recalling CD8+ T cell IFN-γ responses from PBMC of immunized volunteers. Thirteen of the 14 predicted epitopes were polymorphic and the majority localized to the more conserved front surface of the AMA1 model structure. Conclusions This study predicted 14 and confirmed nine MHC class I-restricted CD8+ T cell epitopes on AMA1 recognized in the context of seven HLA alleles. These HLA alleles belong to four HLA supertypes that have a phenotypic frequency between 23% - 100% in different human populations.
Collapse
Affiliation(s)
- Martha Sedegah
- USMMVP, Malaria Department, NMRC, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Richard D, MacRaild CA, Riglar DT, Chan JA, Foley M, Baum J, Ralph SA, Norton RS, Cowman AF. Interaction between Plasmodium falciparum apical membrane antigen 1 and the rhoptry neck protein complex defines a key step in the erythrocyte invasion process of malaria parasites. J Biol Chem 2010; 285:14815-22. [PMID: 20228060 PMCID: PMC2863225 DOI: 10.1074/jbc.m109.080770] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Invasion of host cells by apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii, is a multistep process. Central to invasion is the formation of a tight junction, an aperture in the host cell through which the parasite pulls itself before settling into a newly formed parasitophorous vacuole. Two protein groups, derived from different secretory organelles, the micronemal protein AMA1 and the rhoptry proteins RON2, RON4, and RON5, have been shown to form part of this structure, with antibodies targeting P. falciparum AMA1 known to inhibit invasion, probably via disruption of its association with the PfRON proteins. Inhibitory AMA1-binding peptides have also been described that block P. falciparum merozoite invasion of the erythrocyte. One of these, R1, blocks invasion some time after initial attachment to the erythrocyte and reorientation of the merozoite to its apical pole. Here we show that the R1 peptide binds the PfAMA1 hydrophobic trough and demonstrate that binding to this region prevents its interaction with the PfRON complex. We show that this defined association between PfAMA1 and the PfRON complex occurs after reorientation and engagement of the actomyosin motor and argue that it precedes rhoptry release. We propose that the formation of the AMA1-RON complex is essential for secretion of the rhoptry contents, which then allows the establishment of parasite infection within the parasitophorous vacuole.
Collapse
Affiliation(s)
- Dave Richard
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Synthesis of chemically modified bioactive peptides: recent advances, challenges and developments for medicinal chemistry. Future Med Chem 2009; 1:1289-310. [DOI: 10.4155/fmc.09.97] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although not complying with Lipinski’s rule, peptides are to an increasing extent being developed into new active pharmaceutical ingredients. This is mainly due to novel application routes, formulations and chemical modifications, which confer on the peptides improved uptake and increased metabolic stability. A brief survey of currently approved peptide drugs and the present scope of the application of peptides as drugs is provided. Cyclic peptides are emerging as an interesting class of peptides with conformational rigidity and homogeneity, high receptor affinity and selectivity, increased metabolic stability and – in special cases – even oral availability. Challenges and new methodology for the synthesis of cyclic peptides are outlined and an overview of approaches toward the design of peptide conformation and peptide modification by nonproteinogenic building blocks is given.
Collapse
|