1
|
Karki D, LaPointe AT, Isom C, Thomas M, Sokoloski KJ. Mechanistic insights into Sindbis virus infection: noncapped genomic RNAs enhance the translation of capped genomic RNAs to promote viral infectivity. Nucleic Acids Res 2025; 53:gkae1230. [PMID: 39660624 PMCID: PMC11724270 DOI: 10.1093/nar/gkae1230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
Alphaviruses are globally distributed, vector-borne RNA viruses with high outbreak potential and no clinical interventions, posing a significant global health threat. Previously, the production and packaging of both viral capped and noncapped genomic RNAs (cgRNA and ncgRNA) during infection was reported. Studies have linked ncgRNA production to viral infectivity and pathogenesis, but its precise role remains unclear. To define the benefits of ncgRNAs, pure populations of capped and noncapped Sindbis virus (SINV) gRNAs were synthesized and transfected into host cells. The data showed that mixtures of cgRNAs and ncgRNAs had higher infectivity compared to pure cgRNAs, with mixtures containing low cgRNA proportions exceeding linear infectivity expectations. This enhancement depended on co-delivery of cgRNAs and ncgRNAs to the same cell and required the noncapped RNAs to be viral in origin. Contrary to the initial hypothesis that the ncgRNAs serve as replication templates, the cgRNAs were preferentially replicated. Further analysis revealed that viral gene expression, viral RNA (vRNA) synthesis and particle production were enhanced in the presence of ncgRNAs, which function to promote cgRNA translation early in infection. Our findings highlight the importance of ncgRNAs in alphaviral infection, showing they enhance cgRNA functions and significantly contribute to viral infectivity.
Collapse
Affiliation(s)
- Deepa Karki
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Autumn T LaPointe
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Cierra Isom
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Milton Thomas
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Kevin J Sokoloski
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
2
|
Yin P, Sobolik EB, May NA, Wang S, Fayed A, Vyshenska D, Drobish AM, Parks MG, Lello LS, Merits A, Morrison TE, Greninger AL, Kielian M. Mutations in chikungunya virus nsP4 decrease viral fitness and sensitivity to the broad-spectrum antiviral 4'-Fluorouridine. PLoS Pathog 2025; 21:e1012859. [PMID: 39804924 PMCID: PMC11759387 DOI: 10.1371/journal.ppat.1012859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/24/2025] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Chikungunya virus (CHIKV) is an arthritogenic alphavirus that has re-emerged to cause large outbreaks of human infections worldwide. There are currently no approved antivirals for treatment of CHIKV infection. Recently, we reported that the ribonucleoside analog 4'-fluorouridine (4'-FlU) is a highly potent inhibitor of CHIKV replication, and targets the viral nsP4 RNA dependent RNA polymerase. In mouse models, oral therapy with 4'-FlU diminished viral tissue burdens and virus-induced disease signs. To provide critical evidence for the potential of 4'-FlU as a CHIKV antiviral, here we selected for CHIKV variants with decreased 4'-FlU sensitivity, identifying two pairs of mutations in nsP2 and nsP4. The nsP4 mutations Q192L and C483Y were predominantly responsible for reduced sensitivity. These variants were still inhibited by higher concentrations of 4'-FlU, and the mutations did not change nsP4 fidelity or provide a virus fitness advantage in vitro or in vivo. Pathogenesis studies in mice showed that the nsP4-C483Y variant caused similar disease and viral tissue burden as WT CHIKV, while the nsP4-Q192L variant was strongly attenuated. Together these results support the potential of 4'-FlU to be an important antiviral against CHIKV.
Collapse
Affiliation(s)
- Peiqi Yin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Elizabeth B. Sobolik
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Nicholas A. May
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Sainan Wang
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Atef Fayed
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Dariia Vyshenska
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Adam M. Drobish
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - M. Guston Parks
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | | | - Andres Merits
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Alexander L. Greninger
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
3
|
Shahrtash SA, Ghnim ZS, Ghaheri M, Adabi J, Hassanzadeh MA, Yasamineh S, Afkhami H, Kheirkhah AH, Gholizadeh O, Moghadam HZ. Recent Advances in the Role of Different Nanoparticles in the Various Biosensors for the Detection of the Chikungunya Virus. Mol Biotechnol 2025; 67:54-79. [PMID: 38393630 DOI: 10.1007/s12033-024-01052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024]
Abstract
Humans contract the Chikungunya virus (CHIKV), an alphavirus transmitted by mosquitoes that induces acute and chronic musculoskeletal discomfort and fever. Millions of cases of the disease have been attributed to CHIKV in the Indian Ocean region since 2004, and the virus has since spread to Europe, the Middle East, and the Pacific. The exponential proliferation of CHIKV in recent times underscores the critical nature of implementing preventative measures and exploring potential control strategies. The principal laboratory test employed to diagnose infection in serum samples collected over six days after the onset of symptoms is the detection of CHIKV or viral RNA. Although two commercially available real-time reverse transcription-polymerase chain reaction products exist, data on their validity are limited. A diagnostic instrument that is rapid, sensitive, specific, and cost-effective is, therefore an absolute necessity, particularly in developing nations. Biosensors have demonstrated considerable potential in the realm of pathogen detection. The rapid and sensitive detection of viruses has been facilitated by the development of numerous types of biosensors, including affinity-based nano-biosensors, graphene affinity-based biosensors, optical nano-biosensors, surface Plasmon Resonance-based optical nano-biosensors, and electrochemical nano-biosensors. Furthermore, the utilization of nanomaterials for signal extension, including but not limited to gold and silver nanoparticles, quantum dots, and iron oxide NPs, has enhanced the precision and sensitivity of biosensors. The developed innovative diagnostic method is time-efficient, precise, and economical; it can be implemented as a point-of-care device. The technique may be implemented in diagnostic laboratories and hospitals to identify patients infected with CHIKV. Throughout this article, we have examined a multitude of CHIKV nano-biosensors and their respective properties. Following a discussion of representative nanotechnologies for biosensors, numerous NPs-assisted CHIKV nano-biosensors are summarized in this article. As a result, we anticipate that this review will furnish a significant foundation for advancing innovative CHIKV nano-biosensors.
Collapse
Affiliation(s)
| | | | - Mohammad Ghaheri
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Javid Adabi
- Chemical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Amir Hossein Kheirkhah
- Department of Tissue Engineering and Applied Cell Science, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Omid Gholizadeh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
- Azad Researcher, Virology and Biotechnology, Tehran, Iran.
| | - Hesam Zendehdel Moghadam
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Martin MF, Bonaventure B, McCray NE, Peersen OB, Rozen-Gagnon K, Stapleford KA. Distinct chikungunya virus polymerase palm subdomains contribute to viral protein accumulation and virion production. PLoS Pathog 2024; 20:e1011972. [PMID: 39401243 PMCID: PMC11501042 DOI: 10.1371/journal.ppat.1011972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 10/24/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024] Open
Abstract
Alphaviruses encode an error-prone RNA-dependent RNA polymerase (RdRp), nsP4, required for genome synthesis, yet how the RdRp functions in the complete alphavirus life cycle is not well-defined. Previous work using chikungunya virus has established the importance of the nsP4 residue cysteine 483 in replication. Given the location of residue C483 in the nsP4 palm domain, we hypothesized that other residues within this domain and surrounding subdomains would also contribute to polymerase function. To test this hypothesis, we designed a panel of nsP4 variants via homology modeling based on the coxsackievirus B3 3D polymerase. We rescued each variant in mammalian and mosquito cells and discovered that the palm domain and ring finger subdomain contribute to host-specific replication. In C6/36 cells, we found that while the nsP4 variants had replicase function similar to that of wild-type CHIKV, many variants presented changes in protein accumulation and virion production even when viral nonstructural and structural proteins were produced. Finally, we found that WT CHIKV and nsP4 variant replication and protein production could be enhanced in mammalian cells at 28°C, yet growing virus under these conditions led to changes in virus infectivity. Taken together, these studies highlight that distinct nsP4 subdomains are required for proper RNA transcription and translation, having major effects on virion production.
Collapse
Affiliation(s)
- Marie-France Martin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Boris Bonaventure
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Nia E. McCray
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Olve B. Peersen
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | | | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| |
Collapse
|
5
|
Girard J, Le Bihan O, Lai-Kee-Him J, Girleanu M, Bernard E, Castellarin C, Chee M, Neyret A, Spehner D, Holy X, Favier AL, Briant L, Bron P. In situ fate of Chikungunya virus replication organelles. J Virol 2024; 98:e0036824. [PMID: 38940586 PMCID: PMC11265437 DOI: 10.1128/jvi.00368-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/02/2024] [Indexed: 06/29/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne pathogen responsible for an acute musculoskeletal disease in humans. Replication of the viral RNA genome occurs in specialized membranous replication organelles (ROs) or spherules, which contain the viral replication complex. Initially generated by RNA synthesis-associated plasma membrane deformation, alphavirus ROs are generally rapidly endocytosed to produce type I cytopathic vacuoles (CPV-I), from which nascent RNAs are extruded for cytoplasmic translation. By contrast, CHIKV ROs are poorly internalized, raising the question of their fate and functionality at the late stage of infection. Here, using in situ cryogenic-electron microscopy approaches, we investigate the outcome of CHIKV ROs and associated replication machinery in infected human cells. We evidence the late persistence of CHIKV ROs at the plasma membrane with a crowned protein complex at the spherule neck similar to the recently resolved replication complex. The unexpectedly heterogeneous and large diameter of these compartments suggests a continuous, dynamic growth of these organelles beyond the replication of a single RNA genome. Ultrastructural analysis of surrounding cytoplasmic regions supports that outgrown CHIKV ROs remain dynamically active in viral RNA synthesis and export to the cell cytosol for protein translation. Interestingly, rare ROs with a homogeneous diameter are also marginally internalized in CPV-I near honeycomb-like arrangements of unknown function, which are absent in uninfected controls, thereby suggesting a temporal regulation of this internalization. Altogether, this study sheds new light on the dynamic pattern of CHIKV ROs and associated viral replication at the interface with cell membranes in infected cells.IMPORTANCEThe Chikungunya virus (CHIKV) is a positive-stranded RNA virus that requires specialized membranous replication organelles (ROs) for its genome replication. Our knowledge of this viral cycle stage is still incomplete, notably regarding the fate and functional dynamics of CHIKV ROs in infected cells. Here, we show that CHIKV ROs are maintained at the plasma membrane beyond the first viral cycle, continuing to grow and be dynamically active both in viral RNA replication and in its export to the cell cytosol, where translation occurs in proximity to ROs. This contrasts with the homogeneous diameter of ROs during internalization in cytoplasmic vacuoles, which are often associated with honeycomb-like arrangements of unknown function, suggesting a regulated mechanism. This study sheds new light on the dynamics and fate of CHIKV ROs in human cells and, consequently, on our understanding of the Chikungunya viral cycle.
Collapse
Affiliation(s)
- Justine Girard
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS, INSERM, Montpellier, France
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Olivier Le Bihan
- Institut de Recherche Biomédicale des Armées (IRBA), Ministère des armées, Brétigny-sur-Orge, France
| | - Joséphine Lai-Kee-Him
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Maria Girleanu
- Institut de Recherche Biomédicale des Armées (IRBA), Ministère des armées, Brétigny-sur-Orge, France
| | - Eric Bernard
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Cedric Castellarin
- Institut de Recherche Biomédicale des Armées (IRBA), Ministère des armées, Brétigny-sur-Orge, France
| | - Matthew Chee
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Aymeric Neyret
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Danièle Spehner
- Institut de Recherche Biomédicale des Armées (IRBA), Ministère des armées, Brétigny-sur-Orge, France
| | - Xavier Holy
- Institut de Recherche Biomédicale des Armées (IRBA), Ministère des armées, Brétigny-sur-Orge, France
| | - Anne-Laure Favier
- Institut de Recherche Biomédicale des Armées (IRBA), Ministère des armées, Brétigny-sur-Orge, France
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Patrick Bron
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
6
|
Xu C, Gamil AAA, Wang X, Munang’andu HM, Evensen Ø. MAVS disruption impairs downstream signaling and results in higher virus replication levels of salmonid alphavirus subtype 3 but not infectious pancreatic necrosis virus in vitro. Front Immunol 2024; 15:1401086. [PMID: 38903507 PMCID: PMC11187282 DOI: 10.3389/fimmu.2024.1401086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
The mitochondrial anti-viral signaling (MAVS) protein is an intermediary adaptor protein of retinoic acid-inducible gene-1 (RIG-I) like receptor (RLR) signaling, which activates the transcription factor interferon (IFN) regulatory factor 3 (IRF3) and NF-kB to produce type I IFNs. MAVS expression has been reported in different fish species, but few studies have shown its functional role in anti-viral responses to fish viruses. In this study, we used the transcription activator-like effector nuclease (TALEN) as a gene editing tool to disrupt the function of MAVS in Chinook salmon (Oncorhynchus tshawytscha) embryonic cells (CHSE) to understand its role in induction of interferon I responses to infections with the (+) RNA virus salmonid alphavirus subtype 3 (SAV-3), and the dsRNA virus infectious pancreatic necrosis virus (IPNV) infection. A MAVS-disrupted CHSE clone with a 7-aa polypeptide (GVFVSRV) deletion mutation at the N-terminal of the CARD domain infected with SAV-3 resulted in significantly lower expression of IRF3, IFNa, and ISGs and increased viral titer (1.5 log10) compared to wild-type. In contrast, the IPNV titer in MAVS-disrupted cells was not different from the wild-type. Furthermore, overexpression of salmon MAVS in MAVS-disrupted CHSE cells rescued the impaired type I IFN-mediated anti-viral effect against SAV-3.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Amr A. A. Gamil
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Øystein Evensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
7
|
Martin MF, Bonaventure B, McCray NE, Peersen OB, Rozen-Gagnon K, Stapleford KA. Distinct chikungunya virus polymerase palm subdomains contribute to virus replication and virion assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575630. [PMID: 38293111 PMCID: PMC10827052 DOI: 10.1101/2024.01.15.575630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Alphaviruses encode an error-prone RNA-dependent RNA polymerase (RdRp), nsP4, required for genome synthesis, yet how the RdRp functions in the complete alphavirus life cycle is not well-defined. Previous work using chikungunya virus (CHIKV) has established the importance of the nsP4 residue cysteine 483 in maintaining viral genetic fidelity. Given the location of residue C483 in the nsP4 palm domain, we hypothesized that other residues within this domain and surrounding subdomains would also contribute to polymerase function. To test this hypothesis, we designed a panel of nsP4 variants via homology modeling based on the Coxsackievirus B3 3 polymerase. We rescued each variant in both mammalian and mosquito cells and discovered that the palm domain and ring finger subdomain contribute to polymerase host-specific replication and genetic stability. Surprisingly, in mosquito cells, these variants in the ring finger and palm domain were replication competent and produced viral structural proteins, but they were unable to produce infectious progeny, indicating a yet uncharacterized role for the polymerase in viral assembly. Finally, we have identified additional residues in the nsP4 palm domain that influence the genetic diversity of the viral progeny, potentially via an alteration in NTP binding and/or discrimination by the polymerase. Taken together, these studies highlight that distinct nsP4 subdomains regulate multiple processes of the alphavirus life cycle, placing nsP4 in a central role during the switch from RNA synthesis to packaging and assembly.
Collapse
Affiliation(s)
- Marie-France Martin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Boris Bonaventure
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nia E. McCray
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Olve B. Peersen
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
8
|
Law MCY, Zhang K, Tan YB, Nguyen TM, Luo D. Chikungunya virus nonstructural protein 1 is a versatile RNA capping and decapping enzyme. J Biol Chem 2023; 299:105415. [PMID: 37918803 PMCID: PMC10687048 DOI: 10.1016/j.jbc.2023.105415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/21/2023] [Indexed: 11/04/2023] Open
Abstract
Chikungunya virus (CHIKV) nonstructural protein 1 (nsP1) contains both the N7-guanine methyltransferase and guanylyltransferase activities and catalyzes the 5' end cap formation of viral RNAs. To further understand its catalytic activity and role in virus-host interaction, we demonstrate that purified recombinant CHIKV nsP1 can reverse the guanylyl transfer reaction and remove the m7GMP from a variety of capped RNA substrates including host mRNAs. We then provide the structural basis of this function with a high-resolution cryo-EM structure of nsP1 in complex with the unconventional cap-1 substrate RNA m7GpppAmU. We show that the 5'ppRNA species generated by decapping can trigger retinoic acid-inducible gene I-mediated interferon response. We further demonstrate that the decapping activity is conserved among the alphaviral nsP1s. To our knowledge, this is a new mechanism through which alphaviruses activate the antiviral immune response. This decapping activity could promote cellular mRNA degradation and facilitate viral gene expression, which is functionally analogous to the cap-snatching mechanism by influenza virus.
Collapse
Affiliation(s)
- Michelle Cheok Yien Law
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Kuo Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Yaw Bia Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Trinh Mai Nguyen
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore; National Centre for Infectious Diseases, Singapore, Singapore.
| |
Collapse
|
9
|
Cao V, Loeanurit N, Hengphasatporn K, Hairani R, Wacharachaisurapol N, Prompila N, Wittayalertpanya S, Shigeta Y, Khotavivattana T, Chavasiri W, Boonyasuppayakorn S. The 8-bromobaicalein alleviated chikungunya-induced musculoskeletal inflammation and reduced the viral load in healthy adult mice. Emerg Microbes Infect 2023; 12:2270074. [PMID: 37842770 PMCID: PMC10653753 DOI: 10.1080/22221751.2023.2270074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Chikungunya virus is a re-emerging arbovirus that has caused epidemic outbreaks in recent decades. Patients in older age groups with high viral load and severe immunologic response during acute infection are likely to develop chronic arthritis and severe joint pain. Currently, no antiviral drug is available. Previous studies suggested that a flavone derivative, 8-bromobaicalein, was a potential dengue and Zika replication inhibitor in a cell-based system targeting flaviviral polymerase. Here we characterized that 8-bromobaicalein inhibited chikungunya virus replication with EC50 of 0.49 ± 0.11 µM in Vero cells. The molecular target predicted at viral nsP1 methyltransferase using molecular binding and fragment molecular orbital calculation. Additionally, oral administration of 250 mg/kg twice daily treatment alleviated chikungunya-induced musculoskeletal inflammation and reduced viral load in healthy adult mice. Pharmacokinetic analysis indicated that the 250 mg/kg administration maintained the compound level above EC99.9 for 12 h. Therefore, 8-bromobaicalein should be a potential candidate for further development as a pan-arboviral drug.
Collapse
Affiliation(s)
- Van Cao
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Interdisciplinary Program in Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- DaNang University of Medical Technology and Pharmacy, DaNang, Vietnam
| | - Naphat Loeanurit
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Rita Hairani
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Noppadol Wacharachaisurapol
- Clinical Pharmakokinetics and Pharmacogenomics Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nantaporn Prompila
- Chula Pharmacokinetic Research Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supeecha Wittayalertpanya
- Clinical Pharmakokinetics and Pharmacogenomics Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Chula Pharmacokinetic Research Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tanatorn Khotavivattana
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Siwaporn Boonyasuppayakorn
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Vaccine Research and Development, Chulalongkorn University (Chula-VRC), Bangkok, Thailand
| |
Collapse
|
10
|
Komori M, Morey AL, Quiñones-Molina AA, Fofana J, Romero L, Peters E, Matsuda K, Gummuluru S, Smith JF, Akahata W, Akiyama H. Incorporation of 5 methylcytidine alleviates innate immune response to self-amplifying RNA vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565056. [PMID: 37961509 PMCID: PMC10634970 DOI: 10.1101/2023.11.01.565056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In order to improve vaccine effectiveness and safety profile of existing synthetic RNA-based vaccines, we have developed a self-amplifying RNA (saRNA)-based vaccine expressing membrane-anchored receptor binding domain (RBD) of SARS-CoV-2 S protein (S-RBD) and have demonstrated that a minimal dose of this saRNA vaccine elicits robust immune responses. Results from a recent clinical trial with 5-methylcytidine (5mC) incorporating saRNA vaccine demonstrated reduced vaccine-induced adverse effects while maintaining robust humoral responses. In this study, we investigate the mechanisms accounting for induction of efficient innate and adaptive immune responses and attenuated adverse effects induced by the 5mC-incorporated saRNA. We show that the 5mC-incorporating saRNA platform leads to prolonged and robust expression of antigen, while induction of type-I interferon (IFN-I), a key driver of reactogenicity, is attenuated in peripheral blood mononuclear cells (PBMCs), but not in macrophages and dendritic cells. Interestingly, we find that the major cellular source of IFN-I production in PBMCs is plasmacytoid dendritic cells (pDCs), which is attenuated upon 5mC incorporation in saRNA. In addition, we demonstrate that monocytes also play an important role in amplifying proinflammatory responses. Furthermore, we show that the detection of saRNA is mediated by a host cytosolic RNA sensor, RIG-I. Importantly, 5mC-incorporating saRNA vaccine candidate produced robust IgG responses against S-RBD upon injection in mice, thus providing strong support for the potential clinical use of 5mC-incorporating saRNA vaccines.
Collapse
|
11
|
Lin G, Zhang Y. Mutations in the non-structural protein coding region regulate gene expression from replicon RNAs derived from Venezuelan equine encephalitis virus. Biotechnol Lett 2023:10.1007/s10529-023-03379-7. [PMID: 37266878 DOI: 10.1007/s10529-023-03379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/14/2023] [Accepted: 04/11/2023] [Indexed: 06/03/2023]
Abstract
Self-replicating RNA (repRNA) derived from Venezuelan equine encephalitis (VEE) virus is a promising platform for gene therapy and confers prolonged gene expression due to its self-replicating capability, but repRNA suffers from a suboptimal transgene expression level due to its induction of intracellular innate response which may result in inhibition of translation. To improve transgene expression of repRNA, we introduced point mutations in the non-structural protein 1-4 (nsP1-4) coding region of VEE replicon vectors. As a proof of concept, inflammatory cytokines served as genes of interest and were cloned in their wild type and several mutant replicon vectors, followed by transfection in mammalian cells. Our data show that VEE replicons bearing nsP1GGAC-nsP2T or nsP1GGAC-nsP2AT mutations in the nsP1-4 coding region could significantly reduce the recognition by innate immunity as evidenced by the decreased production of type I interferon, and enhance transgene expression in host cells. Thus, the newly discovered mutant VEE replicon vectors could serve as promising gene expression platforms to advance VEE-derived repRNA-based gene therapies.
Collapse
Affiliation(s)
- Guibin Lin
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, Guangdong, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yuan Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, Guangdong, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
12
|
Bartholomeeusen K, Daniel M, LaBeaud DA, Gasque P, Peeling RW, Stephenson KE, Ng LFP, Ariën KK. Chikungunya fever. Nat Rev Dis Primers 2023; 9:17. [PMID: 37024497 PMCID: PMC11126297 DOI: 10.1038/s41572-023-00429-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
Chikungunya virus is widespread throughout the tropics, where it causes recurrent outbreaks of chikungunya fever. In recent years, outbreaks have afflicted populations in East and Central Africa, South America and Southeast Asia. The virus is transmitted by Aedes aegypti and Aedes albopictus mosquitoes. Chikungunya fever is characterized by severe arthralgia and myalgia that can persist for years and have considerable detrimental effects on health, quality of life and economic productivity. The effects of climate change as well as increased globalization of commerce and travel have led to growth of the habitat of Aedes mosquitoes. As a result, increasing numbers of people will be at risk of chikungunya fever in the coming years. In the absence of specific antiviral treatments and with vaccines still in development, surveillance and vector control are essential to suppress re-emergence and epidemics.
Collapse
Affiliation(s)
- Koen Bartholomeeusen
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Matthieu Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, Saint-Denis, France
- Service de Médecine d'Urgences-SAMU-SMUR, CHU de La Réunion, Saint-Denis, France
| | - Desiree A LaBeaud
- Department of Pediatrics, Division of Infectious Disease, Stanford University School of Medicine, Stanford, CA, USA
| | - Philippe Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, Saint-Denis, France
- Laboratoire d'Immunologie Clinique et Expérimentale Océan Indien LICE-OI, Université de La Réunion, Saint-Denis, France
| | - Rosanna W Peeling
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Kathryn E Stephenson
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
13
|
Ogorek TJ, Golden JE. Advances in the Development of Small Molecule Antivirals against Equine Encephalitic Viruses. Viruses 2023; 15:413. [PMID: 36851628 PMCID: PMC9958955 DOI: 10.3390/v15020413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Venezuelan, western, and eastern equine encephalitic alphaviruses (VEEV, WEEV, and EEEV, respectively) are arboviruses that are highly pathogenic to equines and cause significant harm to infected humans. Currently, human alphavirus infection and the resulting diseases caused by them are unmitigated due to the absence of approved vaccines or therapeutics for general use. These circumstances, combined with the unpredictability of outbreaks-as exemplified by a 2019 EEE surge in the United States that claimed 19 patient lives-emphasize the risks posed by these viruses, especially for aerosolized VEEV and EEEV which are potential biothreats. Herein, small molecule inhibitors of VEEV, WEEV, and EEEV are reviewed that have been identified or advanced in the last five years since a comprehensive review was last performed. We organize structures according to host- versus virus-targeted mechanisms, highlight cellular and animal data that are milestones in the development pipeline, and provide a perspective on key considerations for the progression of compounds at early and later stages of advancement.
Collapse
Affiliation(s)
- Tyler J. Ogorek
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jennifer E. Golden
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
14
|
Treffers EE, Tas A, Scholte FEM, de Ru AH, Snijder EJ, van Veelen PA, van Hemert MJ. The alphavirus nonstructural protein 2 NTPase induces a host translational shut-off through phosphorylation of eEF2 via cAMP-PKA-eEF2K signaling. PLoS Pathog 2023; 19:e1011179. [PMID: 36848386 PMCID: PMC9997916 DOI: 10.1371/journal.ppat.1011179] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/09/2023] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging alphavirus. Since 2005, it has infected millions of people during outbreaks in Africa, Asia, and South/Central America. CHIKV replication depends on host cell factors at many levels and is expected to have a profound effect on cellular physiology. To obtain more insight into host responses to infection, stable isotope labeling with amino acids in cell culture and liquid chromatography-tandem mass spectrometry were used to assess temporal changes in the cellular phosphoproteome during CHIKV infection. Among the ~3,000 unique phosphorylation sites analyzed, the largest change in phosphorylation status was measured on residue T56 of eukaryotic elongation factor 2 (eEF2), which showed a >50-fold increase at 8 and 12 h p.i. Infection with other alphaviruses (Semliki Forest, Sindbis and Venezuelan equine encephalitis virus (VEEV)) triggered a similarly strong eEF2 phosphorylation. Expression of a truncated form of CHIKV or VEEV nsP2, containing only the N-terminal and NTPase/helicase domains (nsP2-NTD-Hel), sufficed to induce eEF2 phosphorylation, which could be prevented by mutating key residues in the Walker A and B motifs of the NTPase domain. Alphavirus infection or expression of nsP2-NTD-Hel resulted in decreased cellular ATP levels and increased cAMP levels. This did not occur when catalytically inactive NTPase mutants were expressed. The wild-type nsP2-NTD-Hel inhibited cellular translation independent of the C-terminal nsP2 domain, which was previously implicated in directing the virus-induced host shut-off for Old World alphaviruses. We hypothesize that the alphavirus NTPase activates a cellular adenylyl cyclase resulting in increased cAMP levels, thus activating PKA and subsequently eukaryotic elongation factor 2 kinase. This in turn triggers eEF2 phosphorylation and translational inhibition. We conclude that the nsP2-driven increase of cAMP levels contributes to the alphavirus-induced shut-off of cellular protein synthesis that is shared between Old and New World alphaviruses. MS Data are available via ProteomeXchange with identifier PXD009381.
Collapse
Affiliation(s)
- Emmely E. Treffers
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ali Tas
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Florine E. M. Scholte
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnoud H. de Ru
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J. Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A. van Veelen
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn J. van Hemert
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
15
|
Schmidt C, Schnierle BS. Self-Amplifying RNA Vaccine Candidates: Alternative Platforms for mRNA Vaccine Development. Pathogens 2023; 12:138. [PMID: 36678486 PMCID: PMC9863218 DOI: 10.3390/pathogens12010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The present use of mRNA vaccines against COVID-19 has shown for the first time the potential of mRNA vaccines for infectious diseases. Here we will summarize the current knowledge about improved mRNA vaccines, i.e., the self-amplifying mRNA (saRNA) vaccines. This approach may enhance antigen expression by amplification of the antigen-encoding RNA. RNA design, RNA delivery, and the innate immune responses induced by RNA will be reviewed.
Collapse
Affiliation(s)
- Christin Schmidt
- Section AIDS and Newly Emerging Pathogens, Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Barbara S. Schnierle
- Section AIDS and Newly Emerging Pathogens, Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
16
|
Skidmore AM, Bradfute SB. The life cycle of the alphaviruses: From an antiviral perspective. Antiviral Res 2023; 209:105476. [PMID: 36436722 PMCID: PMC9840710 DOI: 10.1016/j.antiviral.2022.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The alphaviruses are a widely distributed group of positive-sense, single stranded, RNA viruses. These viruses are largely arthropod-borne and can be found on all populated continents. These viruses cause significant human disease, and recently have begun to spread into new populations, such as the expansion of Chikungunya virus into southern Europe and the Caribbean, where it has established itself as endemic. The study of alphaviruses is an active and expanding field, due to their impacts on human health, their effects on agriculture, and the threat that some pose as potential agents of biological warfare and terrorism. In this systematic review we will summarize both historic knowledge in the field as well as recently published data that has potential to shift current theories in how alphaviruses are able to function. This review is comprehensive, covering all parts of the alphaviral life cycle as well as a brief overview of their pathology and the current state of research in regards to vaccines and therapeutics for alphaviral disease.
Collapse
Affiliation(s)
- Andrew M Skidmore
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3245, Albuquerque, NM, 87131, USA.
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3330A, Albuquerque, NM, 87131, USA.
| |
Collapse
|
17
|
Kim T, Abraham R, Pieterse L, Yeh JX, Griffin DE. Cell-Type-Dependent Role for nsP3 Macrodomain ADP-Ribose Binding and Hydrolase Activity during Chikungunya Virus Infection. Viruses 2022; 14:v14122744. [PMID: 36560748 PMCID: PMC9787352 DOI: 10.3390/v14122744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Chikungunya virus (CHIKV) causes outbreaks of rash, arthritis, and fever associated with neurologic complications, where astrocytes are preferentially infected. A determinant of virulence is the macrodomain (MD) of nonstructural protein 3 (nsP3), which binds and removes ADP-ribose (ADPr) from ADP-ribosylated substrates and regulates stress-granule disruption. We compared the replication of CHIKV 181/25 (WT) and MD mutants with decreased ADPr binding and hydrolase (G32S) or increased ADPr binding and decreased hydrolase (Y114A) activities in C8-D1A astrocytic cells and NSC-34 neuronal cells. WT CHIKV replication was initiated more rapidly with earlier nsP synthesis in C8-D1A than in NSC-34 cells. G32S established infection, amplified replication complexes, and induced host-protein synthesis shut-off less efficiently than WT and produced less infectious virus, while Y114A replication was close to WT. However, G32S mutation effects on structural protein synthesis were cell-type-dependent. In NSC-34 cells, E2 synthesis was decreased compared to WT, while in C8-D1A cells synthesis was increased. Excess E2 produced by G32S-infected C8-D1A cells was assembled into virus particles that were less infectious than those from WT or Y114A-infected cells. Because nsP3 recruits ADP-ribosylated RNA-binding proteins in stress granules away from translation-initiation factors into nsP3 granules where the MD hydrolase can remove ADPr, we postulate that suboptimal translation-factor release decreased structural protein synthesis in NSC-34 cells while failure to de-ADP-ribosylate regulatory RNA-binding proteins increased synthesis in C8-D1A cells.
Collapse
|
18
|
Wang S, Merits A. G3BP/Rin-Binding Motifs Inserted into Flexible Regions of nsP2 Support RNA Replication of Chikungunya Virus. J Virol 2022; 96:e0127822. [PMID: 36226983 PMCID: PMC9645214 DOI: 10.1128/jvi.01278-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus. In infected cells, its positive-sense RNA genome is translated into polyproteins that are subsequently processed into four nonstructural proteins (nsP1 to 4), the virus-encoded subunits of the RNA replicase. However, for RNA replication, interactions between nsPs and host proteins are also needed. These interactions are mostly mediated through the intrinsically disordered C-terminal hypervariable domain (HVD) in nsP3. Duplicate FGDF motifs in the HVD are required for interaction with mammalian RasGAP SH3-binding proteins (G3BPs) and their mosquito homolog Rin; these interactions are crucial for CHIKV RNA replication. In this study, we inactivated G3BP/Rin-binding motifs in the HVD and inserted peptides containing either native or inactivated G3BP/Rin-binding motifs into flexible regions of nsP1, nsP2, or nsP4. Insertion of native motifs into nsP1 or nsP2 but not into the C terminus of nsP4 activated CHIKV RNA replication in human cells in a G3BP-dependent manner. In mosquito cells, activation also resulted from the insertion of inactive motifs after residue 8 or 466 in nsP2; however, the effect was significantly larger when the inserted sequence contained native motifs. Nonetheless, CHIKV mutants harboring mutations in the HVD and containing insertions of native motifs in nsP2 were not viable in mosquito cells. In contrast, mutant genomes containing native motifs after residue 466 or 618 in nsP2 replicated in BHK-21 cells, with the latter mutant forming infectious progeny. Thus, the binding of G3BPs to nsP2 can support CHIKV RNA replication and restore the infectivity of viruses lacking G3BP-binding motifs in the HVD of nsP3. IMPORTANCE CHIKV is a reemerging alphavirus that has spread throughout more than 60 countries and is the causative agent of chikungunya fever. No approved drugs or vaccines are available for the treatment or prevention of CHIKV infection. CHIKV replication depends on the ability of its replicase proteins to interact with host cell factors, and a better understanding of host cell factor roles in viral infection will increase our understanding of CHIKV RNA replication and provide new strategies for viral infection attenuation. Here, we demonstrate that the motifs required for the binding of host G3BP/Rin proteins remain functional when transferred from their natural location in nsP3 to different replicase proteins and may enable mutant viruses to complete a full replication cycle. To our knowledge, this is the first demonstration of interaction motifs for crucial host factors being successfully transferred from one replicase protein to another subunit of alphavirus replicase.
Collapse
Affiliation(s)
- Sainan Wang
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
19
|
Yeh JX, Fan Y, Bartlett ML, Zhang X, Sadowski N, Hauer DA, Timp W, Griffin DE. Treatment of Sindbis Virus-Infected Neurons with Antibody to E2 Alters Synthesis of Complete and nsP1-Expressing Defective Viral RNAs. mBio 2022; 13:e0222122. [PMID: 36069441 PMCID: PMC9600605 DOI: 10.1128/mbio.02221-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Alphaviruses are positive-sense RNA viruses that are important causes of viral encephalomyelitis. Sindbis virus (SINV), the prototype alphavirus, preferentially infects neurons in mice and is a model system for studying mechanisms of viral clearance from the nervous system. Antibody specific to the SINV E2 glycoprotein plays an important role in SINV clearance, and this effect is reproduced in cultures of infected mature neurons. To determine how anti-E2 antibody affects SINV RNA synthesis, Oxford Nanopore Technologies direct long-read RNA sequencing was used to sequence viral RNAs following antibody treatment of infected neurons. Differentiated AP-7 rat olfactory neuronal cells, an in vitro model for mature neurons, were infected with SINV and treated with anti-E2 antibody. Whole-cell RNA lysates were collected for sequencing of poly(A)-selected RNA 24, 48, and 72 h after infection. Three primary species of viral RNA were produced: genomic, subgenomic, and defective viral genomes (DVGs) encoding the RNA capping protein nsP1. Antibody treatment resulted in overall lower production of SINV RNA, decreased synthesis of subgenomic RNA relative to genomic RNA, and suppressed production of the nsP1 DVG. The nsP1 DVG was packaged into virus particles and could be translated. Because antibody-treated cells released a higher proportion of virions with noncapped genomes and transient transfection to express the nsP1 DVG improved viral RNA capping in antibody-treated cells, we postulate that one mechanism by which antibody inhibits SINV replication in neurons is to suppress DVG synthesis and thus decrease production of infectious virions containing capped genomes. IMPORTANCE Alphaviruses are important causes of viral encephalomyelitis without approved treatments or vaccines. Antibody to the Sindbis virus (SINV) E2 glycoprotein is required for immune-mediated noncytolytic virus clearance from neurons. We used direct RNA nanopore sequencing to evaluate how anti-E2 antibody affects SINV replication at the RNA level. Antibody altered the viral RNAs produced by decreasing the proportion of subgenomic relative to genomic RNA and suppressing production of a previously unrecognized defective viral genome (DVG) encoding nsP1, the viral RNA capping enzyme. Antibody-treated neurons released a lower proportion of SINV particles with capped genomes necessary for translation and infection. Decreased nsP1 DVG production in antibody-treated neurons led to lower expression of nsP1 protein, decreased genome capping efficiency, and release of fewer infectious virus particles. Capping was increased with exogenous expression of the nsP1 DVG. These studies identify a novel alphavirus DVG function and new mechanism for antibody-mediated control of virus replication.
Collapse
Affiliation(s)
- Jane X. Yeh
- Johns Hopkins Bloomberg School of Public Health, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA
| | - Yunfan Fan
- Johns Hopkins University Whiting School of Engineering, Department of Biomedical Engineering, Baltimore, Maryland, USA
| | - Maggie L. Bartlett
- Johns Hopkins Bloomberg School of Public Health, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA
| | - Xiaoyan Zhang
- Johns Hopkins Bloomberg School of Public Health, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA
| | - Norah Sadowski
- Johns Hopkins University Whiting School of Engineering, Department of Biomedical Engineering, Baltimore, Maryland, USA
| | - Debra A. Hauer
- Johns Hopkins Bloomberg School of Public Health, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA
| | - Winston Timp
- Johns Hopkins University Whiting School of Engineering, Department of Biomedical Engineering, Baltimore, Maryland, USA
| | - Diane E. Griffin
- Johns Hopkins Bloomberg School of Public Health, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA
| |
Collapse
|
20
|
TMEΜ45B Interacts with Sindbis Virus Nsp1 and Nsp4 and Inhibits Viral Replication. J Virol 2022; 96:e0091922. [PMID: 35938871 PMCID: PMC9472651 DOI: 10.1128/jvi.00919-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alphavirus infection induces the expression of type I interferons, which inhibit the viral replication by upregulating the expression of interferon-stimulated genes (ISGs). Identification and mechanistic studies of the antiviral ISGs help to better understand how the host controls viral infection and help to better understand the viral replication process. Here, we report that the ISG product TMEM45B inhibits the replication of Sindbis virus (SINV). TMEM45B is a transmembrane protein that was detected mainly in the trans-Golgi network, endosomes, and lysosomes but not obviously at the plasma membrane or endoplasmic reticulum. TMEM45B interacted with the viral nonstructural proteins Nsp1 and Nsp4 and inhibited the translation and promoted the degradation of SINV RNA. TMEM45B overexpression rendered the intracellular membrane-associated viral RNA sensitive to RNase treatment. In line with these results, the formation of cytopathic vacuoles (CPVs) was dramatically diminished in TMEM45B-expressing cells. TMEM45B also interacted with Nsp1 and Nsp4 of chikungunya virus (CHIKV), suggesting that it may also inhibit the replication of other alphaviruses. These findings identified TMEM45B as an antiviral factor against alphaviruses and help to better understand the process of the viral genome replication. IMPORTANCE Alphaviruses are positive-stranded RNA viruses with more than 30 members. Infection with Old World alphaviruses, which comprise some important human pathogens such as chikungunya virus and Ross River virus, rarely results in fatal diseases but can lead to high morbidity in humans. Infection with New World alphaviruses usually causes serious encephalitis but low morbidity in humans. Alphavirus infection induces the expression of type I interferons, which subsequently upregulate hundreds of interferon-stimulated genes. Identification and characterization of host antiviral factors help to better understand how the viruses can establish effective infection. Here, we identified TMEM45B as a novel interferon-stimulated antiviral factor against Sindbis virus, a prototype alphavirus. TMEM45B interacted with viral proteins Nsp1 and Nsp4, interfered with the interaction between Nsp1 and Nsp4, and inhibited the viral replication. These findings provide insights into the detailed process of the viral replication and help to better understand the virus-host interactions.
Collapse
|
21
|
Abstract
The positive-sense flavivirus RNA genome bears a cap 1 structure essential for RNA stability and viral protein translation, and the formation of cap 1 requires the virally encoded nonstructural protein NS5 harboring guanylyltransferase (GTase), cap guanine N7 methyltransferase (N7 MTase), and 5'-nucleotide ribose 2'-O MTase activities in its single-domain MTase module. Despite numerous MTase-containing structures reported, the structural evidence for a critical GMP-enzyme intermediate formation and RNA repositioning when transitioning among different reactions is missing. Here, we report 10 high-resolution MTase crystal structures of Omsk hemorrhagic fever virus (OHFV), a representative high-consequence tick-borne flavivirus, capturing previously unidentified GMP-arginine adduct structures and a rarely observed capped RNA conformation. These structures help us thread capping events in the canonical model with a structure-based hypothesis involving the flipping of the 5' nucleotide, while the observation of an m7GMP-arginine adduct is compatible with an alternate capping model that decouples the N7 and 2'-O methylation steps. IMPORTANCE The methyltransferase (MTase) domain of flavivirus NS5 is unique in harboring guanylyltransferase (GTase), N7 MTase, and 2'-O MTase activities, playing a central role in viral RNA capping. However, the detailed mechanisms of the multistep capping process remain elusive. Here, we report 10 crystal structures of a flavivirus MTase to help understand the guanylyl transfer from GTP to the GTase itself and the transition between guanylyl transfer and methylation steps. In particular, a previously unobserved GMP-arginine covalent intermediate was captured multiple times in MTase crystal soaking trials with GTP present in the soaking solution, supporting its role in bridging the guanylyl transfer from GTP to the GTase and subsequent transfer to the 5'-diphosphate RNA.
Collapse
|
22
|
Zhang K, Law MCY, Nguyen TM, Tan YB, Wirawan M, Law YS, Jeong LS, Luo D. Molecular basis of specific viral RNA recognition and 5'-end capping by the Chikungunya virus nsP1. Cell Rep 2022; 40:111133. [PMID: 35905713 DOI: 10.1016/j.celrep.2022.111133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Many viruses encode RNA-modifying enzymes to edit the 5' end of viral RNA to mimic the cellular mRNA for effective protein translation, genome replication, and evasion of the host defense mechanisms. Alphavirus nsP1 synthesizes the 5' end Cap-0 structure of viral RNAs. However, the molecular basis of the capping process remains unclear. We determine high-resolution cryoelectron microscopy (cryo-EM) structures of Chikungunya virus nsP1 in complex with m7GTP/SAH, covalently attached m7GMP, and Cap-0 viral RNA. These structures reveal details of viral-RNA-capping reactions and uncover a sequence-specific virus RNA-recognition pattern that, in turn, regulates viral-RNA-capping efficiency to ensure optimal genome replication and subgenomic RNA transcription. This sequence-specific enzyme-RNA pairing is conserved across all alphaviruses.
Collapse
Affiliation(s)
- Kuo Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore; School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Michelle Cheok Yien Law
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Trinh Mai Nguyen
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Yaw Bia Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Melissa Wirawan
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Yee-Song Law
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Lak Shin Jeong
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
23
|
Cherkashchenko L, Rausalu K, Basu S, Alphey L, Merits A. Expression of Alphavirus Nonstructural Protein 2 (nsP2) in Mosquito Cells Inhibits Viral RNA Replication in Both a Protease Activity-Dependent and -Independent Manner. Viruses 2022; 14:v14061327. [PMID: 35746799 PMCID: PMC9228716 DOI: 10.3390/v14061327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 01/02/2023] Open
Abstract
Alphaviruses are positive-strand RNA viruses, mostly being mosquito-transmitted. Cells infected by an alphavirus become resistant to superinfection due to a block that occurs at the level of RNA replication. Alphavirus replication proteins, called nsP1-4, are produced from nonstructural polyprotein precursors, processed by the protease activity of nsP2. Trans-replicase systems and replicon vectors were used to study effects of nsP2 of chikungunya virus and Sindbis virus on alphavirus RNA replication in mosquito cells. Co-expressed wild-type nsP2 reduced RNA replicase activity of homologous virus; this effect was reduced but typically not abolished by mutation in the protease active site of nsP2. Mutations in the replicase polyprotein that blocked its cleavage by nsP2 reduced the negative effect of nsP2 co-expression, confirming that nsP2-mediated inhibition of RNA replicase activity is largely due to nsP2-mediated processing of the nonstructural polyprotein. Co-expression of nsP2 also suppressed the activity of replicases of heterologous alphaviruses. Thus, the presence of nsP2 inhibits formation and activity of alphavirus RNA replicase in protease activity-dependent and -independent manners. This knowledge improves our understanding about mechanisms of superinfection exclusion for alphaviruses and may aid the development of anti-alphavirus approaches.
Collapse
Affiliation(s)
- Liubov Cherkashchenko
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (L.C.); (K.R.)
| | - Kai Rausalu
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (L.C.); (K.R.)
| | - Sanjay Basu
- The Pirbright Institute, Ash Road, Pirbright GU24 ONF, UK; (S.B.); (L.A.)
| | - Luke Alphey
- The Pirbright Institute, Ash Road, Pirbright GU24 ONF, UK; (S.B.); (L.A.)
| | - Andres Merits
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (L.C.); (K.R.)
- Correspondence:
| |
Collapse
|
24
|
Mayaro Virus Non-Structural Protein 2 Circumvents the Induction of Interferon in Part by Depleting Host Transcription Initiation Factor IIE Subunit 2. Cells 2021; 10:cells10123510. [PMID: 34944018 PMCID: PMC8700540 DOI: 10.3390/cells10123510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
Mayaro virus (MAYV) is an emerging mosquito-transmitted virus that belongs to the genus Alphavirus within the family Togaviridae. Humans infected with MAYV often develop chronic and debilitating arthralgia and myalgia. The virus is primarily maintained via a sylvatic cycle, but it has the potential to adapt to urban settings, which could lead to large outbreaks. The interferon (IFN) system is a critical antiviral response that limits replication and pathogenesis of many different RNA viruses, including alphaviruses. Here, we investigated how MAYV infection affects the induction phase of the IFN response. Production of type I and III IFNs was efficiently suppressed during MAYV infection, and mapping revealed that expression of the viral non-structural protein 2 (nsP2) was sufficient for this process. Interactome analysis showed that nsP2 interacts with DNA-directed RNA polymerase II subunit A (Rpb1) and transcription initiation factor IIE subunit 2 (TFIIE2), which are host proteins required for RNA polymerase II-mediated transcription. Levels of these host proteins were reduced by nsP2 expression and during infection by MAYV and related alphaviruses, suggesting that nsP2-mediated inhibition of host cell transcription is an important aspect of how some alphaviruses block IFN induction. The findings from this study may prove useful in design of vaccines and antivirals, which are currently not available for protection against MAYV and infection by other alphaviruses.
Collapse
|
25
|
Kasprzyk R, Jemielity J. Enzymatic Assays to Explore Viral mRNA Capping Machinery. Chembiochem 2021; 22:3236-3253. [PMID: 34291555 PMCID: PMC8426721 DOI: 10.1002/cbic.202100291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/21/2021] [Indexed: 12/25/2022]
Abstract
In eukaryotes, mRNA is modified by the addition of the 7-methylguanosine (m7 G) 5' cap to protect mRNA from premature degradation, thereby enhancing translation and enabling differentiation between self (endogenous) and non-self RNAs (e. g., viral ones). Viruses often develop their own mRNA capping pathways to augment the expression of their proteins and escape host innate immune response. Insights into this capping system may provide new ideas for therapeutic interventions and facilitate drug discovery, e. g., against viruses that cause pandemic outbreaks, such as beta-coronaviruses SARS-CoV (2002), MARS-CoV (2012), and the most recent SARS-CoV-2. Thus, proper methods for the screening of large compound libraries are required to identify lead structures that could serve as a basis for rational antiviral drug design. This review summarizes the methods that allow the monitoring of the activity and inhibition of enzymes involved in mRNA capping.
Collapse
Affiliation(s)
- Renata Kasprzyk
- Centre of New TechnologiesUniversity of WarsawBanacha 2c02-097WarsawPoland
- College of Inter-Faculty Individual Studies inMathematics and Natural SciencesUniversity of WarsawBanacha 2c02-097WarsawPoland
| | - Jacek Jemielity
- Centre of New TechnologiesUniversity of WarsawBanacha 2c02-097WarsawPoland
| |
Collapse
|
26
|
Abstract
Alphaviruses are positive-strand RNA viruses, typically transmitted by mosquitoes between vertebrate hosts. They encode four essential replication proteins, the non-structural proteins nsP1-4, which possess the enzymatic activities of RNA capping, RNA helicase, site-specific protease, ADP-ribosyl removal and RNA polymerase. Alphaviruses have been key models in the study of membrane-associated RNA replication, which is a conserved feature among the positive-strand RNA viruses of animals and plants. We review new structural and functional information on the nsPs and their interaction with host proteins and membranes, as well as with viral RNA sequences. The dodecameric ring structure of nsP1 is likely to be one of the evolutionary innovations that facilitated the success of the progenitors of current positive-strand RNA viruses.
Collapse
Affiliation(s)
- Tero Ahola
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
27
|
Abstract
Alphaviruses have positive-strand RNA genomes containing two open reading frames (ORFs). The first ORF encodes the nonstructural (ns) polyproteins P123 and P1234 that act as precursors for the subunits of the viral RNA replicase (nsP1 to nsP4). Processing of P1234 leads to the formation of a negative-strand replicase consisting of nsP4 (RNA polymerase) and P123 components. Subsequent processing of P123 results in a positive-strand replicase. The second ORF encoding the structural proteins is expressed via the synthesis of a subgenomic RNA. Alphavirus replicase is capable of using template RNAs that contain essential cis-active sequences. Here, we demonstrate that the replicases of nine alphaviruses, expressed in the form of separate P123 and nsP4 components, are active. Their activity depends on the abundance of nsP4. The match of nsP4 to its template strongly influences efficient subgenomic RNA synthesis. nsP4 of Barmah Forest virus (BFV) formed a functional replicase only with matching P123, while nsP4s of other alphaviruses were compatible also with several heterologous P123s. The P123 components of Venezuelan equine encephalitis virus and Sindbis virus (SINV) required matching nsP4s, while P123 of other viruses could form active replicases with different nsP4s. Chimeras of Semliki Forest virus, harboring the nsP4 of chikungunya virus, Ross River virus, BFV, or SINV were viable. In contrast, chimeras of SINV, harboring an nsP4 from different alphaviruses, exhibited a temperature-sensitive phenotype. These findings highlight the possibility for formation of new alphaviruses via recombination events and provide a novel approach for the development of attenuated chimeric viruses for vaccination strategies. IMPORTANCE A key element of every virus with an RNA genome is the RNA replicase. Understanding the principles of RNA replicase formation and functioning is therefore crucial for understanding and responding to the emergence of new viruses. Reconstruction of the replicases of nine alphaviruses from nsP4 and P123 polyproteins revealed that the nsP4 of the majority of alphaviruses, including the mosquito-specific Eilat virus, could form a functional replicase with P123 originating from a different virus, and the corresponding chimeric viruses were replication-competent. nsP4 also had an evident role in determining the template RNA preference and the efficiency of RNA synthesis. The revealed broad picture of the compatibility of the replicase components of alphaviruses is important for understanding the formation and functioning of the alphavirus RNA replicase and highlights the possibilities for recombination between different alphavirus species.
Collapse
|
28
|
Identification of Quinolinones as Antivirals against Venezuelan Equine Encephalitis Virus. Antimicrob Agents Chemother 2021; 65:e0024421. [PMID: 34152810 DOI: 10.1128/aac.00244-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a reemerging alphavirus that can cause encephalitis resulting in severe human morbidity and mortality. Using a high-throughput cell-based screen, we identified a quinolinone compound that protected against VEEV-induced cytopathic effects. Analysis of viral replication in cells identified several quinolinone compounds with potent inhibitory activity against vaccine and virulent strains of VEEV. These quinolinones also displayed inhibitory activity against additional alphaviruses, such as Mayaro virus and Ross River virus, although the potency was greatly reduced. Time-of-addition studies indicated that these compounds inhibit the early-to-mid stage of viral replication. Deep sequencing and reverse genetics studies identified two unique resistance mutations in the nsP2 gene (Y102S/C; stalk domain) that conferred VEEV resistance on this chemical series. Moreover, introduction of a K102Y mutation into the nsP2 gene enhanced the sensitivity of chikungunya virus (CHIKV) to this chemical series. Computational modeling of CHIKV and VEEV nsP2 identified a highly probable docking alignment for the quinolinone compounds that require a tyrosine residue at position 102 within the helicase stalk domain. These studies identified a class of compounds with antiviral activity against VEEV and other alphaviruses and provide further evidence that therapeutics targeting nsP2 may be useful against alphavirus infection.
Collapse
|
29
|
Elmasri Z, Nasal BL, Jose J. Alphavirus-Induced Membrane Rearrangements during Replication, Assembly, and Budding. Pathogens 2021; 10:984. [PMID: 34451448 PMCID: PMC8399458 DOI: 10.3390/pathogens10080984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/01/2023] Open
Abstract
Alphaviruses are arthropod-borne viruses mainly transmitted by hematophagous insects that cause moderate to fatal disease in humans and other animals. Currently, there are no approved vaccines or antivirals to mitigate alphavirus infections. In this review, we summarize the current knowledge of alphavirus-induced structures and their functions in infected cells. Throughout their lifecycle, alphaviruses induce several structural modifications, including replication spherules, type I and type II cytopathic vacuoles, and filopodial extensions. Type I cytopathic vacuoles are replication-induced structures containing replication spherules that are sites of RNA replication on the endosomal and lysosomal limiting membrane. Type II cytopathic vacuoles are assembly induced structures that originate from the Golgi apparatus. Filopodial extensions are induced at the plasma membrane and are involved in budding and cell-to-cell transport of virions. This review provides an overview of the viral and host factors involved in the biogenesis and function of these virus-induced structures. Understanding virus-host interactions in infected cells will lead to the identification of new targets for antiviral discovery.
Collapse
Affiliation(s)
- Zeinab Elmasri
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Biochemistry & Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Benjamin L. Nasal
- Department of Biochemistry & Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Joyce Jose
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Biochemistry & Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
30
|
Alphavirus Virulence Determinants. Pathogens 2021; 10:pathogens10080981. [PMID: 34451445 PMCID: PMC8401390 DOI: 10.3390/pathogens10080981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 11/17/2022] Open
Abstract
Alphaviruses are important pathogens that continue to cause outbreaks of disease in humans and animals worldwide. Diseases caused by alphavirus infections include acute symptoms of fever, rash, and nausea as well as chronic arthritis and severe-to-fatal conditions including myocarditis and encephalitis. Despite their prevalence and the significant public health threat they pose, there are currently no effective antiviral treatments or vaccines against alphaviruses. Various genetic determinants of alphavirus virulence, including genomic RNA elements and specific protein residues and domains, have been described by researchers to play key roles in the development of disease, the immune response to infection, and virus transmissibility. Here, we focus on the determinants that are currently described in the literature. Understanding how these molecular determinants shape viral infections can lead to new strategies for the development of therapies and vaccines to combat these viruses.
Collapse
|
31
|
Valdés-López JF, Fernandez GJ, Urcuqui-Inchima S. Interleukin 27 as an inducer of antiviral response against chikungunya virus infection in human macrophages. Cell Immunol 2021; 367:104411. [PMID: 34325085 DOI: 10.1016/j.cellimm.2021.104411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 07/17/2021] [Indexed: 01/31/2023]
Abstract
Chikungunya virus (CHIKV) is known to have a wide range of tropism in human cell types throughout infection, including keratinocytes, fibroblasts, endothelial cells, monocytes, and macrophages. We reported that human monocytes-derived macrophages (MDMs) are permissive to CHIKV infection in vitro. We found that the peak of CHIKV replication was at 24 hpi; however, at 48 hpi, a significant reduction in viral titer was observed that correlated with high expression levels of genes encoding antiviral proteins (AVPs) in an IFN-independent manner. To explore the molecular mechanisms involved in the induction of antiviral response in CHIKV-infected MDMs, we performed transcriptomic analysis by RNA-sequencing. Differential expression of genes at 24 hpi showed that CHIKV infection abrogated the expression of all types of IFNs in MDMs. However, we observed that CHIKV-infected MDMs activated the JAK-STAT signaling and induced a robust antiviral response associated with control of CHIKV replication. We identified that the IL27 pathway is activated in CHIKV-infected MDMs and that kinetics of IL27p28 mRNA expression and IL27 protein production correlated with the expression of AVPs in CHIKV-infected MDMs. Furthermore, we showed that stimulation of THP-1-derived macrophages with recombinant-human IL27 induced the activation of the JAK-STAT signaling and induced a robust pro-inflammatory and antiviral response, comparable to CHIKV-infected MDMs. Furthermore, pre-treatment of MDMs with recombinant-human IL27 inhibits CHIKV replication in a dose-dependently manner (IC50 = 1.83 ng/mL). Altogether, results show that IL27 is highly expressed in CHIKV-infected MDMs, leading to activation of JAK-STAT signaling and stimulation of pro-inflammatory and antiviral response to control CHIKV replication in an IFN-independent manner.
Collapse
Affiliation(s)
- Juan Felipe Valdés-López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Geysson J Fernandez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
32
|
Structure and Sequence Requirements for RNA Capping at the Venezuelan Equine Encephalitis Virus RNA 5' End. J Virol 2021; 95:e0077721. [PMID: 34011549 DOI: 10.1128/jvi.00777-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a reemerging arthropod-borne virus causing encephalitis in humans and domesticated animals. VEEV possesses a positive single-stranded RNA genome capped at its 5' end. The capping process is performed by the nonstructural protein nsP1, which bears methyl and guanylyltransferase activities. The capping reaction starts with the methylation of GTP. The generated m7GTP is complexed to the enzyme to form an m7GMP-nsP1 covalent intermediate. The m7GMP is then transferred onto the 5'-diphosphate end of the viral RNA. Here, we explore the specificities of the acceptor substrate in terms of length, RNA secondary structure, and/or sequence. Any diphosphate nucleosides but GDP can serve as acceptors of the m7GMP to yield m7GpppA, m7GpppC, or m7GpppU. We show that capping is more efficient on small RNA molecules, whereas RNAs longer than 130 nucleotides are barely capped by the enzyme. The structure and sequence of the short, conserved stem-loop, downstream to the cap, is an essential regulatory element for the capping process. IMPORTANCE The emergence, reemergence, and expansion of alphaviruses (genus of the family Togaviridae) are a serious public health and epizootic threat. Venezuelan equine encephalitis virus (VEEV) causes encephalitis in human and domesticated animals, with a mortality rate reaching 80% in horses. To date, no efficient vaccine or safe antivirals are available for human use. VEEV nonstructural protein 1 (nsP1) is the viral capping enzyme characteristic of the Alphavirus genus. nsP1 catalyzes methyltransferase and guanylyltransferase reactions, representing a good therapeutic target. In the present report, we provide insights into the molecular features and specificities of the cap acceptor substrate for the guanylylation reaction.
Collapse
|
33
|
Structural Insights into the Mechanisms of Action of Functionally Distinct Classes of Chikungunya Virus Nonstructural Protein 1 Inhibitors. Antimicrob Agents Chemother 2021; 65:e0256620. [PMID: 33875421 PMCID: PMC8218635 DOI: 10.1128/aac.02566-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chikungunya virus (CHIKV) nonstructural protein 1 (nsP1) harbors the methyltransferase (MTase) and guanylyltransferase (GTase) activities needed for viral RNA capping and represents a promising antiviral drug target. We compared the antiviral efficacies of nsP1 inhibitors belonging to the MADTP, CHVB, and FHNA series (6′-fluoro-homoneplanocin A [FHNA], its 3′-keto form, and 6′-β-fluoro-homoaristeromycin). Cell-based phenotypic cross-resistance assays revealed that the CHVB and MADTP series had similar modes of action that differed from that of the FHNA series. In biochemical assays with purified Semliki Forest virus and CHIKV nsP1, CHVB compounds strongly inhibited MTase and GTase activities, while MADTP-372 had a moderate inhibitory effect. FHNA did not directly inhibit the enzymatic activity of CHIKV nsP1. The first-of-their-kind molecular-docking studies with the cryo-electron microscopy (cryo-EM) structure of CHIKV nsP1, which is assembled into a dodecameric ring, revealed that the MADTP and CHVB series bind at the S-adenosylmethionine (SAM)-binding site in the capping domain, where they would function as competitive or noncompetitive inhibitors. The FHNA series was predicted to bind at the secondary binding pocket in the ring-aperture membrane-binding and oligomerization (RAMBO) domain, potentially interfering with the membrane binding and oligomerization of nsP1. Our cell-based and enzymatic assays, in combination with molecular docking and mapping of compound resistance mutations to the nsP1 structure, allowed us to group nsP1 inhibitors into functionally distinct classes. This study identified druggable pockets in the nsP1 dodecameric structure and provides a basis for the rational design, optimization, and combination of inhibitors of this unique and promising antiviral drug target.
Collapse
|
34
|
Abdullah N, Ahemad N, Aliazis K, Khairat JE, Lee TC, Abdul Ahmad SA, Adnan NAA, Macha NO, Hassan SS. The Putative Roles and Functions of Indel, Repetition and Duplication Events in Alphavirus Non-Structural Protein 3 Hypervariable Domain (nsP3 HVD) in Evolution, Viability and Re-Emergence. Viruses 2021; 13:v13061021. [PMID: 34071712 PMCID: PMC8228767 DOI: 10.3390/v13061021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022] Open
Abstract
Alphavirus non-structural proteins 1–4 (nsP1, nsP2, nsP3, and nsP4) are known to be crucial for alphavirus RNA replication and translation. To date, nsP3 has been demonstrated to mediate many virus–host protein–protein interactions in several fundamental alphavirus mechanisms, particularly during the early stages of replication. However, the molecular pathways and proteins networks underlying these mechanisms remain poorly described. This is due to the low genetic sequence homology of the nsP3 protein among the alphavirus species, especially at its 3′ C-terminal domain, the hypervariable domain (HVD). Moreover, the nsP3 HVD is almost or completely intrinsically disordered and has a poor ability to form secondary structures. Evolution in the nsP3 HVD region allows the alphavirus to adapt to vertebrate and insect hosts. This review focuses on the putative roles and functions of indel, repetition, and duplication events that have occurred in the alphavirus nsP3 HVD, including characterization of the differences and their implications for specificity in the context of virus–host interactions in fundamental alphavirus mechanisms, which have thus directly facilitated the evolution, adaptation, viability, and re-emergence of these viruses.
Collapse
Affiliation(s)
- Nurshariza Abdullah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Konstantinos Aliazis
- Institute of Immunology and Immunotherapy, Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham B15 2TT, UK;
| | - Jasmine Elanie Khairat
- Institute of Biological Sciences, Faculty of Science, University Malaya, Kuala Lumpur 50603, Malaysia;
| | - Thong Chuan Lee
- Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan 26300, Pahang, Malaysia;
| | - Siti Aisyah Abdul Ahmad
- Immunogenetic Unit, Allergy and Immunology Research Center, Institute for Medical Research, Ministry of Health Malaysia, Shah Alam 40170, Selangor, Malaysia;
| | - Nur Amelia Azreen Adnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
| | - Nur Omar Macha
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
- Correspondence: ; Tel.: +60-3-5514-6340
| |
Collapse
|
35
|
Arthritogenic Alphavirus Capsid Protein. Life (Basel) 2021; 11:life11030230. [PMID: 33799673 PMCID: PMC7999773 DOI: 10.3390/life11030230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/03/2023] Open
Abstract
In the past two decades Old World and arthritogenic alphavirus have been responsible for epidemics of polyarthritis, causing high morbidity and becoming a major public health concern. The multifunctional arthritogenic alphavirus capsid protein is crucial for viral infection. Capsid protein has roles in genome encapsulation, budding and virion assembly. Its role in multiple infection processes makes capsid protein an attractive target to exploit in combating alphaviral infection. In this review, we summarize the function of arthritogenic alphavirus capsid protein, and describe studies that have used capsid protein to develop novel arthritogenic alphavirus therapeutic and diagnostic strategies.
Collapse
|
36
|
Interdomain Flexibility of Chikungunya Virus nsP2 Helicase-Protease Differentially Influences Viral RNA Replication and Infectivity. J Virol 2021; 95:JVI.01470-20. [PMID: 33328310 DOI: 10.1128/jvi.01470-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/06/2020] [Indexed: 01/09/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for chikungunya fever. Nonstructural protein 2 (nsP2), a multifunctional protein essential for viral replication, has an N-terminal helicase region (nsP2h), which has both nucleotide triphosphatase and RNA triphosphatase activities, as well as a C-terminal cysteine protease region (nsP2p), which is responsible for nonstructural polyprotein processing. The two functional units are connected through a linker of 14 residues. Although crystal structures of the helicase and protease regions of CHIKV nsP2 have been solved separately, the conformational arrangement of the full-length nsP2 and the biological role of the linker remain elusive. Using the small-angle X-ray scattering (SAXS) method, we demonstrated that the full-length nsP2 is elongated and partially folded in solution. The reconstructed model of the structure of nsP2 contains a flexible interdomain linker, and there is no direct interaction between the two structured regions. To examine the function of the interdomain linker, we constructed and characterized a set of CHIKV mutants. The deletion of three or five amino acid residues in the linker region resulted in a modest defect in viral RNA replication and transcription but completely abolished viral infectivity. In contrast, increasing the flexibility of nsP2 by lengthening the interdomain linker increased both genomic RNA replication and viral infectivity. The enzymatic activities of the corresponding mutant proteins were largely unaffected. This work suggests that increasing the interdomain flexibility of nsP2 could facilitate the assembly of the replication complex (RC) with increased efficiency and promote virus production.IMPORTANCE CHIKV nsP2 plays multiple roles in viral RNA replication and virus-host interactions. The helicase and protease regions of nsP2 are connected through a short linker. Here, we determined that the conformation of full-length CHIKV nsP2 is elongated and that the protein is flexible in solution. We also highlight the importance of the flexibility of the interdomain of nsP2 on viral RNA synthesis and infectivity. CHIKV mutants harboring shortened linkers fail to produce infectious virus particles despite showing only relatively mild defects in genomic and subgenomic RNA synthesis. Mutations increasing the length of the interdomain linker have only mild and generally beneficial impacts on virus replication. Thus, our findings link interdomain flexibility with the regulation of viral RNA replication and infectivity of the viral genome.
Collapse
|
37
|
Abstract
Mosquito-transmitted alphaviruses have been the cause of widespread outbreaks of disease that can range from mild illness to lethal encephalitis or severe polyarthritis. There are currently no safe and effective vaccines or therapeutics with which to prevent or treat alphaviral disease, highlighting the need to better understand alphaviral pathogenesis to develop novel antiviral strategies. This report reveals production of noncapped genomic RNAs (ncgRNAs) to be a novel determinant of alphaviral virulence and offers insight into the importance of inflammation to pathogenesis. Taken together, the findings reported here suggest that the ncgRNAs contribute to alphaviral pathogenesis through the sensing of the ncgRNAs during alphaviral infection and are necessary for the development of severe disease. Alphaviruses are positive-sense RNA viruses that utilize a 5′ cap structure to facilitate translation of viral proteins and to protect the viral RNA genome. Nonetheless, significant quantities of viral genomic RNAs that lack a canonical 5′ cap structure are produced during alphaviral replication and packaged into viral particles. However, the role/impact of the noncapped genomic RNA (ncgRNA) during alphaviral infection in vivo has yet to be characterized. To determine the importance of the ncgRNA in vivo, the previously described D355A and N376A nsP1 mutations, which increase or decrease nsP1 capping activity, respectively, were incorporated into the neurovirulent AR86 strain of Sindbis virus to enable characterization of the impact of altered capping efficiency in a murine model of infection. Mice infected with the N376A nsP1 mutant exhibited slightly decreased rates of mortality and delayed weight loss and neurological symptoms, although levels of inflammation in the brain were similar to those of wild-type infection. Although the D355A mutation resulted in decreased antiviral gene expression and increased resistance to interferon in vitro, mice infected with the D355A mutant showed significantly reduced mortality and morbidity compared to mice infected with wild-type virus. Interestingly, expression of proinflammatory cytokines was found to be significantly decreased in mice infected with the D355A mutant, suggesting that capping efficiency and the production of ncgRNA are vital to eliciting pathogenic levels of inflammation. Collectively, these data indicate that the ncgRNA have important roles during alphaviral infection and suggest a novel mechanism by which noncapped viral RNAs aid in viral pathogenesis.
Collapse
|
38
|
Small-Molecule Inhibitors of Chikungunya Virus: Mechanisms of Action and Antiviral Drug Resistance. Antimicrob Agents Chemother 2020; 64:AAC.01788-20. [PMID: 32928738 PMCID: PMC7674028 DOI: 10.1128/aac.01788-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has spread to more than 60 countries worldwide. CHIKV infection leads to a febrile illness known as chikungunya fever (CHIKF), which is characterized by long-lasting and debilitating joint and muscle pain. CHIKV can cause large-scale epidemics with high attack rates, which substantiates the need for development of effective therapeutics suitable for outbreak containment. In this review, we highlight the different strategies used for developing CHIKV small-molecule inhibitors, ranging from high-throughput cell-based screening to in silico screens and enzymatic assays with purified viral proteins. Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has spread to more than 60 countries worldwide. CHIKV infection leads to a febrile illness known as chikungunya fever (CHIKF), which is characterized by long-lasting and debilitating joint and muscle pain. CHIKV can cause large-scale epidemics with high attack rates, which substantiates the need for development of effective therapeutics suitable for outbreak containment. In this review, we highlight the different strategies used for developing CHIKV small-molecule inhibitors, ranging from high-throughput cell-based screening to in silico screens and enzymatic assays with purified viral proteins. We further discuss the current status of the most promising molecules, including in vitro and in vivo findings. In particular, we focus on describing host and/or viral targets, mode of action, and mechanisms of antiviral drug resistance and associated mutations. Knowledge of the key molecular determinants of drug resistance will aid selection of the most promising antiviral agent(s) for clinical use. For these reasons, we also summarize the available information about drug-resistant phenotypes in Aedes mosquito vectors. From this review, it is evident that more of the active molecules need to be evaluated in preclinical and clinical models to address the current lack of antiviral treatment for CHIKF.
Collapse
|
39
|
Bozóki B, Mótyán JA, Hoffka G, Waugh DS, Tőzsér J. Specificity Studies of the Venezuelan Equine Encephalitis Virus Non-Structural Protein 2 Protease Using Recombinant Fluorescent Substrates. Int J Mol Sci 2020; 21:E7686. [PMID: 33081394 PMCID: PMC7593941 DOI: 10.3390/ijms21207686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
The non-structural protein 2 (nsP2) of alphavirus Venezuelan equine encephalitis virus (VEEV) is a cysteine protease that is responsible for processing of the viral non-structural polyprotein and is an important drug target owing to the clinical relevance of VEEV. In this study we designed two recombinant VEEV nsP2 constructs to study the effects of an N-terminal extension on the protease activity and to investigate the specificity of the elongated enzyme in vitro. The N-terminal extension was found to have no substantial effect on the protease activity. The amino acid preferences of the VEEV nsP2 protease were investigated on substrates representing wild-type and P5, P4, P2, P1, P1', and P2' variants of Semliki forest virus nsP1/nsP2 cleavage site, using a His6-MBP-mEYFP recombinant substrate-based protease assay which has been adapted for a 96-well plate-based format. The structural basis of enzyme specificity was also investigated in silico by analyzing a modeled structure of VEEV nsP2 complexed with oligopeptide substrate. To our knowledge, in vitro screening of P1' amino acid preferences of VEEV nsP2 protease remains undetermined to date, thus, our results may provide valuable information for studies and inhibitor design of different alphaviruses or other Group IV viruses.
Collapse
Affiliation(s)
- Beáta Bozóki
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.B.); (G.H.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.B.); (G.H.)
| | - Gyula Hoffka
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.B.); (G.H.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - David S. Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA;
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.B.); (G.H.)
| |
Collapse
|
40
|
Mutations on VEEV nsP1 relate RNA capping efficiency to ribavirin susceptibility. Antiviral Res 2020; 182:104883. [PMID: 32750467 DOI: 10.1016/j.antiviral.2020.104883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 11/22/2022]
Abstract
Alphaviruses are arthropod-borne viruses of public health concern. To date no efficient vaccine nor antivirals are available for safe human use. During viral replication the nonstructural protein 1 (nsP1) catalyzes capping of genomic and subgenomic RNAs. The capping reaction is unique to the Alphavirus genus. The whole three-step process follows a particular order: (i) transfer of a methyl group from S-adenosyl methionine (SAM) onto a GTP forming m7GTP; (ii) guanylylation of the enzyme to form a m7GMP-nsP1adduct; (iii) transfer of m7GMP onto 5'-diphosphate RNA to yield capped RNA. Specificities of these reactions designate nsP1 as a promising target for antiviral drug development. In the current study we performed a mutational analysis on two nsP1 positions associated with Sindbis virus (SINV) ribavirin resistance in the Venezuelan equine encephalitis virus (VEEV) context through reverse genetics correlated to enzyme assays using purified recombinant VEEV nsP1 proteins. The results demonstrate that the targeted positions are strongly associated to the regulation of the capping reaction by increasing the affinity between GTP and nsP1. Data also show that in VEEV the S21A substitution, naturally occurring in Chikungunya virus (CHIKV), is a hallmark of ribavirin susceptibility. These findings uncover the specific mechanistic contributions of these residues to nsp1-mediated methyl-transfer and guanylylation reactions.
Collapse
|
41
|
Novel Class of Chikungunya Virus Small Molecule Inhibitors That Targets the Viral Capping Machinery. Antimicrob Agents Chemother 2020; 64:AAC.00649-20. [PMID: 32340991 DOI: 10.1128/aac.00649-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the worldwide reemergence of the chikungunya virus (CHIKV) and the high morbidity associated with CHIKV infections, there is no approved vaccine or antiviral treatment available. Here, we aimed to identify the target of a novel class of CHIKV inhibitors, i.e., the CHVB series. CHVB compounds inhibit the in vitro replication of CHIKV isolates with 50% effective concentrations in the low-micromolar range. A CHVB-resistant variant (CHVBres) was selected that carried two mutations in the gene encoding nsP1 (responsible for viral RNA capping), one mutation in nsP2, and one mutation in nsP3. Reverse genetics studies demonstrated that both nsP1 mutations were necessary and sufficient to achieve ∼18-fold resistance, suggesting that CHVB targets viral mRNA capping. Interestingly, CHVBres was cross-resistant to the previously described CHIKV capping inhibitors from the MADTP series, suggesting they share a similar mechanism of action. In enzymatic assays, CHVB inhibited the methyltransferase and guanylyltransferase activities of alphavirus nsP1 proteins. To conclude, we identified a class of CHIKV inhibitors that targets the viral capping machinery. The potent anti-CHIKV activity makes this chemical scaffold a potential candidate for CHIKV drug development.
Collapse
|
42
|
Gottipati K, Woodson M, Choi KH. Membrane binding and rearrangement by chikungunya virus capping enzyme nsP1. Virology 2020; 544:31-41. [PMID: 32174512 PMCID: PMC7103501 DOI: 10.1016/j.virol.2020.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/17/2020] [Accepted: 02/23/2020] [Indexed: 01/20/2023]
Abstract
Alphavirus genome replication is carried out by the viral replication complex inside modified membrane structures called spherules. The viral nonstructural protein 1 (nsP1) is the only membrane-associated protein that anchors the replication complex to the cellular membranes. Although an internal amphipathic helix of nsP1 is critical for membrane association, the mechanism of nsP1 interaction with membranes and subsequent membrane reorganization is not well understood. We studied the membrane interaction of chikungunya virus (CHIKV) nsP1 and show that both the CHIKV nsP1 protein and the amphipathic peptide specifically bind to negatively charged phospholipid vesicles. Using cryo-electron microscopy, we further show that nsP1 forms a contiguous coat on lipid vesicles and induces structural reorganization, while the amphipathic peptide alone failed to deform the membrane bilayer. This suggests that although amphipathic helix of nsP1 is required for initial membrane binding, the remaining cytoplasmic domain of nsP1 is involved in the subsequent membrane reorganization.
Collapse
Affiliation(s)
- Keerthi Gottipati
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA.
| | - Michael Woodson
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| | - Kyung H Choi
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA.
| |
Collapse
|
43
|
6'-β-Fluoro-Homoaristeromycin and 6'-Fluoro-Homoneplanocin A Are Potent Inhibitors of Chikungunya Virus Replication through Their Direct Effect on Viral Nonstructural Protein 1. Antimicrob Agents Chemother 2020; 64:AAC.02532-19. [PMID: 31964798 PMCID: PMC7179274 DOI: 10.1128/aac.02532-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
Alphaviruses are arthropod-borne, positive-stranded RNA viruses capable of causing severe disease with high morbidity. Chikungunya virus (CHIKV) is an alphavirus that causes a febrile illness which can progress into chronic arthralgia. The current lack of vaccines and specific treatment for CHIKV infection underscores the need to develop new therapeutic interventions. To discover new antiviral agents, we performed a compound screen in cell culture-based infection models and identified two carbocyclic adenosine analogues, 6′-β-fluoro-homoaristeromycin (FHA) and 6′-fluoro-homoneplanocin A (FHNA), that displayed potent activity against CHIKV and Semliki Forest virus (SFV) with 50% effective concentrations in the nanomolar range at nontoxic concentrations. Alphaviruses are arthropod-borne, positive-stranded RNA viruses capable of causing severe disease with high morbidity. Chikungunya virus (CHIKV) is an alphavirus that causes a febrile illness which can progress into chronic arthralgia. The current lack of vaccines and specific treatment for CHIKV infection underscores the need to develop new therapeutic interventions. To discover new antiviral agents, we performed a compound screen in cell culture-based infection models and identified two carbocyclic adenosine analogues, 6′-β-fluoro-homoaristeromycin (FHA) and 6′-fluoro-homoneplanocin A (FHNA), that displayed potent activity against CHIKV and Semliki Forest virus (SFV) with 50% effective concentrations in the nanomolar range at nontoxic concentrations. The compounds, designed as inhibitors of the host enzyme S-adenosylhomocysteine (SAH) hydrolase, impeded postentry steps in CHIKV and SFV replication. Selection of FHNA-resistant mutants and reverse genetics studies demonstrated that the combination of mutations G230R and K299E in CHIKV nonstructural protein 1 (nsP1) conferred resistance to the compounds. Enzymatic assays with purified wild-type (wt) SFV nsP1 suggested that an oxidized (3′-keto) form, rather than FHNA itself, directly inhibited the MTase activity, while a mutant protein with the K231R and K299E substitutions was insensitive to the compound. Both wt nsP1 and the resistant mutant were equally sensitive to the inhibitory effect of SAH. Our combined data suggest that FHA and FHNA inhibit CHIKV and SFV replication by directly targeting the MTase activity of nsP1, rather than through an indirect effect on host SAH hydrolase. The high potency and selectivity of these novel alphavirus mRNA capping inhibitors warrant further preclinical investigation of these compounds.
Collapse
|
44
|
Skidmore AM, Adcock RS, Jonsson CB, Golden JE, Chung DH. Benzamidine ML336 inhibits plus and minus strand RNA synthesis of Venezuelan equine encephalitis virus without affecting host RNA production. Antiviral Res 2020; 174:104674. [PMID: 31816348 PMCID: PMC6935354 DOI: 10.1016/j.antiviral.2019.104674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Venezuelan equine encephalitis virus (VEEV) is an alphavirus that is endemic to the Americas. VEEV outbreaks occur periodically and cause encephalitis in both humans and equids. There are currently no therapeutics or vaccines for treatment of VEEV in humans. Our group has previously reported on the development of a benzamidine VEEV inhibitor, ML336, which shows potent antiviral activity in both in vitro and in vivo models of infection. In cell culture experiments, ML336 inhibits viral RNA synthesis when added 2-4 h post-infection, and mutations conferring resistance occur within the viral nonstructural proteins (nsP2 and nsP4). We hypothesized that ML336 targets an activity of the viral replicase complex and inhibits viral RNA synthesis. To test this hypothesis, we employed various biochemical and cellular assays. Using structural analogues of ML336, we demonstrate that the cellular antiviral activity of these compounds correlates with their inhibition of viral RNA synthesis. For instance, the IC50 of ML336 for VEEV RNA synthesis inhibition was determined as 1.1 nM, indicating potent anti-RNA synthesis activity in the low nanomolar range. While ML336 efficiently inhibited VEEV RNA synthesis, a much weaker effect was observed against the Old World alphavirus Chikungunya virus (IC50 > 4 μM), agreeing with previous data from a cell based assay. Using a tritium incorporation assay, we demonstrated that there was no significant inhibition of cellular transcription. With a combination of fluorography, strand-specific qRT-PCR, and tritium incorporation, we demonstrated that ML336 inhibits the synthesis of the positive sense genomic, negative sense template, and subgenomic RNAs of VEEV. Based on these results, we propose that the mechanism of action for this class of antiviral compounds is inhibition of viral RNA synthesis through interaction with the viral replicase complex.
Collapse
Affiliation(s)
- Andrew M Skidmore
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Room 642 C, Louisville, KY, USA.
| | - Robert S Adcock
- Center of Predictive Medicine, University of Louisville, 505 South Hancock St, Room 617, Louisville, KY, USA.
| | - Colleen B Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, 858 Madison Ave, Room 810 B, Memphis, TN, USA.
| | - Jennifer E Golden
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Dr, Room 7123, Madison, WI, USA.
| | - Dong-Hoon Chung
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Room 642 C, Louisville, KY, USA; Center of Predictive Medicine, University of Louisville, 505 South Hancock St, Room 617, Louisville, KY, USA.
| |
Collapse
|
45
|
Mutations in Hypervariable Domain of Venezuelan Equine Encephalitis Virus nsP3 Protein Differentially Affect Viral Replication. J Virol 2020; 94:JVI.01841-19. [PMID: 31694937 DOI: 10.1128/jvi.01841-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 11/20/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is one of the important human and animal pathogens. It forms replication enzyme complexes (RCs) containing viral nonstructural proteins (nsPs) that mediate the synthesis of virus-specific RNAs. The assembly and associated functions of RC also depend on the presence of a specific set of host proteins. Our study demonstrates that the hypervariable domain (HVD) of VEEV nsP3 interacts with the members of the FXR family of cellular proteins and also binds the Src homology 3 (SH3) domain-containing proteins CD2AP and SH3KBP1. Interactions with FXR family members are mediated by the C-terminal repeating peptide of HVD. A single short, minimal motif identified in this study is sufficient for driving efficient VEEV replication in the absence of HVD interactions with other host proteins. The SH3 domain-containing proteins bind to another fragment of VEEV HVD. They can promote viral replication in the absence of FXR-HVD interactions albeit less efficiently. VEEV replication can be also switched from an FXR-dependent to a chikungunya virus-specific, G3BP-dependent mode. The described modifications of VEEV HVD have a strong impact on viral replication in vitro and pathogenesis. Their effects on viral pathogenesis depend on mouse age and the genetic background of the virus.IMPORTANCE The replication of alphaviruses is determined by specific sets of cellular proteins, which mediate the assembly of viral replication complexes. Some of these critical host factors interact with the hypervariable domain (HVD) of alphavirus nsP3. In this study, we have explored binding sites of host proteins, which are specific partners of nsP3 HVD of Venezuelan equine encephalitis virus. We also define the roles of these interactions in viral replication both in vitro and in vivo A mechanistic understanding of the binding of CD2AP, SH3KBP1, and FXR protein family members to VEEV HVD uncovers important aspects of alphavirus evolution and determines new targets for the development of alphavirus-specific drugs and directions for viral attenuation and vaccine development.
Collapse
|
46
|
Puranik N, Rani R, Singh VA, Tomar S, Puntambekar HM, Srivastava P. Evaluation of the Antiviral Potential of Halogenated Dihydrorugosaflavonoids and Molecular Modeling with nsP3 Protein of Chikungunya Virus (CHIKV). ACS OMEGA 2019; 4:20335-20345. [PMID: 31815237 PMCID: PMC6893968 DOI: 10.1021/acsomega.9b02900] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Antiviral therapy is crucial for the circumvention of viral epidemics. The unavailability of a specific antiviral drug against the chikungunya virus (CHIKV) disease has created an alarming situation to identify or develop potent chemical molecules for remedial management of CHIKV. In the present investigation, in silico studies of dihydrorugosaflavonoid derivatives (5a-f) with non-structural protein-3 (nsP3) were carried out. nsP3 replication protein has recently been considered as a possible antiviral target in which crucial inhibitors fit into the adenosine-binding pocket of the macrodomain. The 4'-halogenated dihydrorugosaflavonoids displayed intrinsic binding with the nsp3 macrodomain (PDB ID: 3GPO) of CHIKV. Compounds 5c and 5d showed docking scores of -7.54 and -6.86 kcal mol-1, respectively. Various in vitro assays were performed to confirm their (5a-f) antiviral potential against CHIKV. The non-cytotoxic dose was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and was found to be <100 μM. The compounds 5c and 5d showed their inhibitory potential for CHIKV, which was determined through cytopathic effect assay and plaque reduction assay, which show inhibition up to 95 and 92% for 70 μM concentration of the compounds, respectively. The quantitative real-time polymerase chain reaction assay result confirmed the ability of 5c and 5d to reduce the viral RNA level at 70 μM concentration of compounds to nearly 95 and 93% concentration, respectively, in cells with CHIKV infection. Further, the CHIKV-inhibitory capacity of these compounds was corroborated by execution of immunofluorescence assay. The executed work will be meaningful for the future research of studied dihydrorugosaflavonoids against prime antiviral entrants, leading to remedial management to preclude CHIKV infection.
Collapse
Affiliation(s)
- Ninad
V. Puranik
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune 411004, Maharashtra, India
- Savitribai
Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Ruchi Rani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Vedita Anand Singh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Hemalata M. Puntambekar
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune 411004, Maharashtra, India
- Savitribai
Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Pratibha Srivastava
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune 411004, Maharashtra, India
- Savitribai
Phule Pune University, Ganeshkhind, Pune 411007, India
| |
Collapse
|
47
|
Mudgal R, Mahajan S, Tomar S. Inhibition of Chikungunya virus by an adenosine analog targeting the SAM-dependent nsP1 methyltransferase. FEBS Lett 2019; 594:678-694. [PMID: 31623018 PMCID: PMC7164056 DOI: 10.1002/1873-3468.13642] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 01/02/2023]
Abstract
Alphaviruses, including Chikungunya (CHIKV) and Venezuelan equine encephalitis virus (VEEV), are among the leading causes of recurrent epidemics all over the world. Alphaviral nonstructural protein 1 (nsP1) orchestrates the capping of nascent viral RNA via its S-adenosyl methionine-dependent N-7-methyltransferase (MTase) and guanylyltransferase activities. Here, we developed and validated a novel capillary electrophoresis (CE)-based assay for measuring the MTase activity of purified VEEV and CHIKV nsP1. We employed the assay to assess the MTase inhibition efficiency of a few adenosine analogs and identified 5-iodotubercidin (5-IT) as an inhibitor of nsP1. The antiviral potency of 5-IT was evaluated in vitro using a combination of cell-based assays, which suggest that 5-IT is efficacious against CHIKV in cell culture (EC50 : 0.409 µm).
Collapse
Affiliation(s)
- Rajat Mudgal
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Supreeti Mahajan
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| |
Collapse
|
48
|
Valdés López JF, Velilla PA, Urcuqui-Inchima S. Chikungunya Virus and Zika Virus, Two Different Viruses Examined with a Common Aim: Role of Pattern Recognition Receptors on the Inflammatory Response. J Interferon Cytokine Res 2019; 39:507-521. [DOI: 10.1089/jir.2019.0058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
| | - Paula Andrea Velilla
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
49
|
Design and Use of Chikungunya Virus Replication Templates Utilizing Mammalian and Mosquito RNA Polymerase I-Mediated Transcription. J Virol 2019; 93:JVI.00794-19. [PMID: 31217251 DOI: 10.1128/jvi.00794-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/18/2019] [Indexed: 01/20/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus. It has a positive-sense RNA genome that also serves as the mRNA for four nonstructural proteins (nsPs) representing subunits of the viral replicase. Coupling of nsP and RNA synthesis complicates analysis of viral RNA replication. We developed trans-replication systems, where production of replication-competent RNA and expression of viral replicase are uncoupled. Mammalian and mosquito RNA polymerase I promoters were used to produce noncapped RNA templates, which are poorly translated relative to CHIKV replicase-generated capped RNAs. It was found that, in human cells, constructs driven by RNA polymerase I promoters of human and Chinese hamster origin performed equally well. In contrast, RNA polymerase I promoters from Aedes mosquitoes exhibited strong species specificity. In both mammalian and mosquito cells, novel trans-replicase assays had exceptional sensitivity, with up to 105-fold higher reporter expression in the presence of replicase relative to background. Using this highly sensitive assay to analyze CHIKV nsP1 functionality, several mutations that severely reduced, but did not completely block, CHIKV replicase activity were identified: (i) nsP1 tagged at its N terminus with enhanced green fluorescent protein; (ii) mutations D63A and Y248A, blocking the RNA capping; and (iii) mutation R252E, affecting nsP1 membrane anchoring. In contrast, a mutation in the nsP1 palmitoylation site completely inactivated CHIKV replicase in both human and mosquito cells and was lethal for the virus. Our data confirm that this novel system provides a valuable tool to study CHIKV replicase, RNA replication, and virus-host interactions.IMPORTANCE Chikungunya virus (CHIKV) is a medically important pathogen responsible for recent large-scale epidemics. The development of efficient therapies against CHIKV has been hampered by gaps in our understanding of how nonstructural proteins (nsPs) function to form the viral replicase and replicate virus RNA. Here we describe an extremely sensitive assay to analyze the effects of mutations on the virus RNA synthesis machinery in cells of both mammalian (host) and mosquito (vector) origin. Using this system, several lethal mutations in CHIKV nsP1 were shown to reduce but not completely block the ability of its replicase to synthesize viral RNAs. However, in contrast to related alphaviruses, CHIKV replicase was completely inactivated by mutations preventing palmitoylation of nsP1. These data can be used to develop novel, virus-specific antiviral treatments.
Collapse
|
50
|
Ogino T, Green TJ. RNA Synthesis and Capping by Non-segmented Negative Strand RNA Viral Polymerases: Lessons From a Prototypic Virus. Front Microbiol 2019; 10:1490. [PMID: 31354644 PMCID: PMC6636387 DOI: 10.3389/fmicb.2019.01490] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/14/2019] [Indexed: 12/26/2022] Open
Abstract
Non-segmented negative strand (NNS) RNA viruses belonging to the order Mononegavirales are highly diversified eukaryotic viruses including significant human pathogens, such as rabies, measles, Nipah, and Ebola. Elucidation of their unique strategies to replicate in eukaryotic cells is crucial to aid in developing anti-NNS RNA viral agents. Over the past 40 years, vesicular stomatitis virus (VSV), closely related to rabies virus, has served as a paradigm to study the fundamental molecular mechanisms of transcription and replication of NNS RNA viruses. These studies provided insights into how NNS RNA viruses synthesize 5'-capped mRNAs using their RNA-dependent RNA polymerase L proteins equipped with an unconventional mRNA capping enzyme, namely GDP polyribonucleotidyltransferase (PRNTase), domain. PRNTase or PRNTase-like domains are evolutionally conserved among L proteins of all known NNS RNA viruses and their related viruses belonging to Jingchuvirales, a newly established order, in the class Monjiviricetes, suggesting that they may have evolved from a common ancestor that acquired the unique capping system to replicate in a primitive eukaryotic host. This article reviews what has been learned from biochemical and structural studies on the VSV RNA biosynthesis machinery, and then focuses on recent advances in our understanding of regulatory and catalytic roles of the PRNTase domain in RNA synthesis and capping.
Collapse
Affiliation(s)
- Tomoaki Ogino
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Todd J. Green
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|