1
|
Pavel MA, Chen H, Hill M, Sridhar A, Barney M, DeSantiago J, Owais A, Sandu S, Darbar FA, Ornelas-Loredo A, Al-Azzam B, Chalazan B, Rehman J, Darbar D. A Titin Missense Variant Causes Atrial Fibrillation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.06.24318402. [PMID: 39677424 PMCID: PMC11643245 DOI: 10.1101/2024.12.06.24318402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Rare and common genetic variants contribute to the risk of atrial fibrillation (AF). Although ion channels were among the first AF candidate genes identified, rare loss-of-function variants in structural genes such as TTN have also been implicated in AF pathogenesis partly by the development of an atrial myopathy, but the underlying mechanisms are poorly understood. While TTN truncating variants (TTNtvs) have been causally linked to arrhythmia and cardiomyopathy syndromes, the role of missense variants (mvs) remains unclear. We report that rare TTNmvs are associated with adverse clinical outcomes in AF patients and we have identified a mechanism by which a TTNmv (T32756I) causes AF. Modeling the TTN-T32756I variant using human induced pluripotent stem cell-derived atrial cardiomyocytes (iPSC-aCMs) revealed that the mutant cells display aberrant contractility, increased activity of a cardiac potassium channel (KCNQ1, Kv7.1), and dysregulated calcium homeostasis without compromising the sarcomeric integrity of the atrial cardiomyocytes. We also show that a titin-binding protein, the Four-and-a-Half Lim domains 2 (FHL2), has increased binding with KCNQ1 and its modulatory subunit KCNE1 in the TTN-T32756I-iPSC-aCMs, enhancing the slow delayed rectifier potassium current (I ks). Suppression of FHL2 in mutant iPSC-aCMs normalized the I ks, supporting FHL2 as an I ks modulator. Our findings demonstrate that a single amino acid change in titin not only affects function but also causes ion channel remodeling and AF. These findings emphasize the need for high-throughput screening to evaluate the pathogenicity of TTNmvs and establish a mechanistic link between titin, potassium ion channels, and sarcomeric proteins that may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Mahmud Arif Pavel
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Hanna Chen
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Michael Hill
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Arvind Sridhar
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Miles Barney
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Jaime DeSantiago
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Asia Owais
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Shashank Sandu
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Faisal A. Darbar
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Aylin Ornelas-Loredo
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Bahaa Al-Azzam
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Brandon Chalazan
- Division of Genetics, Genomics, and Metabolism, Department of Pediatrics, Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Jalees Rehman
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, IL, USA
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Department of Pharmacology, University of Illinois Chicago, Chicago, IL, USA
- Jesse Brown Veterans Administration Medical Center, Chicago, IL, USA
| |
Collapse
|
2
|
Briganti F, Wang Z. Alternative Splicing in the Heart: The Therapeutic Potential of Regulating the Regulators. Int J Mol Sci 2024; 25:13023. [PMID: 39684734 DOI: 10.3390/ijms252313023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Alternative splicing allows a single gene to produce a variety of protein isoforms. Changes in splicing isoform usage characterize virtually every stage of the differentiation process and define the physiological differences between cardiomyocytes with different function, at different stages of development, and pathological function. Recent identification of cardiac splicing factors provided insights into the mechanisms underlying alternative splicing and revealed how these splicing factors impact functional properties of the heart. Alterations of the splicing of sarcomeric genes, cell signaling proteins, and ion channels have been associated with the development of pathological conditions such as cardiomyopathy and arrhythmia. RBM20, RBM24, PTBP1, RBFOX, and QKI play key roles in cardiac development and pathology. A better understanding of their regulation will yield insights into healthy cardiac development and inform the development of molecular therapeutics.
Collapse
Affiliation(s)
- Francesca Briganti
- Division of Genetics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Division of Cardiology, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Zilu Wang
- Division of Genetics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Perrin A, Garcia-Uzquiano R, Stojkovic T, Tard C, Metay C, Bergougnoux A, Van Goethem C, Thèze C, Larrieux M, Faure-Gautron H, Laporte J, Lefebvre G, Krahn M, Juntas-Morales R, Titin's Network Collaborators, Koenig M, Quijano-Roy S, Carlier RY, Cossée M. Congenital Titinopathies Linked to Mutations in TTN Metatranscript-Only Exons. Int J Mol Sci 2024; 25:12994. [PMID: 39684706 DOI: 10.3390/ijms252312994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Congenital titinopathies reported to date show autosomal recessive inheritance and are caused by a variety of genomic variants, most of them located in metatranscript (MTT)-only exons. The aim of this study was to describe additional patients and establish robust genotype-phenotype associations in titinopathies. This study involved analyzing molecular, clinical, pathological, and muscle imaging features in 20 patients who had at least one pathogenic or likely pathogenic TTN variant in MTT-only exons, with onset occurring antenatally or in the early postnatal stages. The 20 patients with recessive inheritance exhibited a heterogeneous range of phenotypes. These included fetal lethality, progressive weakness, cardiac or respiratory complications, hyper-CKemia, or dystrophic muscle biopsies. MRI revealed variable abnormalities in different muscles. All patients presented severe congenital myopathy at birth, characterized by arthrogryposis (either multiplex or axial-distal) or neonatal hypotonia in most cases. This study provides detailed genotype-phenotype correlations in congenital titinopathies caused by mutations in MTT-only exons. The findings highlight the variability in clinical presentation and the severity of phenotypes associated with these specific genetic alterations. RNA-seq analyses provided valuable insights into the molecular consequences of TTN variants, particularly in relation to splicing defects and nonsense-mediated RNA decay. In conclusion, this study reinforces the genotype-phenotype correlations between congenital myopathies and variants in TTN MTT-only exons, improves their molecular diagnosis, and provides a better understanding of their pathophysiology.
Collapse
Affiliation(s)
- Aurélien Perrin
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France
- PhyMedExp, INSERM, CNRS, Université de Montpellier, 34093 Montpellier, France
| | - Rocio Garcia-Uzquiano
- AP-HP, GHU Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, 92380 Garches, France
| | - Tanya Stojkovic
- AP-HP, Centre de Référence des Maladies Neuromusculaires Nord/Est/Île-de-France, Sorbonne Université, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Céline Tard
- Département de Neurologie et des Troubles du Mouvement, U1172, Centre Hospitalo Universitaire (CHU) de Lille, CT, Centre de Référence des Maladies Neuromusculaires Nord/Est/Île-de-France, 59000 Lille, France
| | - Corinne Metay
- AP-HP, UF Molecular Cardiogenetics and Myogenetics, Sorbonne Université and Sorbonne Université UPMC Paris 06, Inserm UMRS974, Research Center in Myology, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Anne Bergougnoux
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France
- PhyMedExp, INSERM, CNRS, Université de Montpellier, 34093 Montpellier, France
| | - Charles Van Goethem
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France
| | - Corinne Thèze
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France
| | - Marion Larrieux
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France
| | - Héloise Faure-Gautron
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France
- PhyMedExp, INSERM, CNRS, Université de Montpellier, 34093 Montpellier, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, 67400 Illkirch, France
| | - Guillaume Lefebvre
- Service d'Imagerie Musculo-Squelettique, CCIAL, CHU de Lille, Rue Emile Laine, 59037 Lille, France
| | - Martin Krahn
- INSERM, Marseille Medical Genetics, U1251, Aix-Marseille Université, 13385 Marseille, France
- Département de Génétique Médicale, Hôpital Timone Enfants, APHM, 13385 Marseille, France
| | - Raul Juntas-Morales
- Neurology Department, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
| | | | - Michel Koenig
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France
- PhyMedExp, INSERM, CNRS, Université de Montpellier, 34093 Montpellier, France
| | - Susana Quijano-Roy
- AP-HP, GHU Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, 92380 Garches, France
- U1179 INSERM-UVSQ, Université de Versailles, 78180 Montigny, France
| | - Robert-Yves Carlier
- U1179 INSERM-UVSQ, Université de Versailles, 78180 Montigny, France
- AP-HP, GHU Université Paris-Saclay, DMU Smart Imaging, Radiology Department, Raymond Poincaré Teaching Hospital, 92380 Garches, France
| | - Mireille Cossée
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France
- PhyMedExp, INSERM, CNRS, Université de Montpellier, 34093 Montpellier, France
| |
Collapse
|
4
|
Salgado JCS, Alnoch RC, Polizeli MDLTDM, Ward RJ. Microenzymes: Is There Anybody Out There? Protein J 2024; 43:393-404. [PMID: 38507106 DOI: 10.1007/s10930-024-10193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Biological macromolecules are found in different shapes and sizes. Among these, enzymes catalyze biochemical reactions and are essential in all organisms, but is there a limit size for them to function properly? Large enzymes such as catalases have hundreds of kDa and are formed by multiple subunits, whereas most enzymes are smaller, with molecular weights of 20-60 kDa. Enzymes smaller than 10 kDa could be called microenzymes and the present literature review brings together evidence of their occurrence in nature. Additionally, bioactive peptides could be a natural source for novel microenzymes hidden in larger peptides and molecular downsizing could be useful to engineer artificial enzymes with low molecular weight improving their stability and heterologous expression. An integrative approach is crucial to discover and determine the amino acid sequences of novel microenzymes, together with their genomic identification and their biochemical biological and evolutionary functions.
Collapse
Affiliation(s)
- Jose Carlos Santos Salgado
- Department of Chemistry, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), University of São Paulo, Ribeirão Preto, 14040-900, São Paulo, Brazil.
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), University of São Paulo, Ribeirão Preto, 14040-901, São Paulo, Brazil.
| | - Robson Carlos Alnoch
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), University of São Paulo, Ribeirão Preto, 14040-901, São Paulo, Brazil
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Maria de Lourdes Teixeira de Moraes Polizeli
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), University of São Paulo, Ribeirão Preto, 14040-901, São Paulo, Brazil
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Richard John Ward
- Department of Chemistry, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), University of São Paulo, Ribeirão Preto, 14040-900, São Paulo, Brazil
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, 14049-900, São Paulo, Brazil
| |
Collapse
|
5
|
Qin Z, Yang J, Zhang K, Gao X, Ran Q, Xu Y, Wang Z, Lou D, Huang C, Zellmer L, Meng G, Chen N, Ma H, Wang Z, Liao DJ. Updating mRNA variants of the human RSK4 gene and their expression in different stressed situations. Heliyon 2024; 10:e27475. [PMID: 38560189 PMCID: PMC10980951 DOI: 10.1016/j.heliyon.2024.e27475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/11/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
We determined RNA spectrum of the human RSK4 (hRSK4) gene (also called RPS6KA6) and identified 29 novel mRNA variants derived from alternative splicing, which, plus the NCBI-documented ones and the five we reported previously, totaled 50 hRSK4 RNAs that, by our bioinformatics analyses, encode 35 hRSK4 protein isoforms of 35-762 amino acids. Many of the mRNAs are bicistronic or tricistronic for hRSK4. The NCBI-normalized NM_014496.5 and the protein it encodes are designated herein as the Wt-1 mRNA and protein, respectively, whereas the NM_001330512.1 and the long protein it encodes are designated as the Wt-2 mRNA and protein, respectively. Many of the mRNA variants responded differently to different situations of stress, including serum starvation, a febrile temperature, treatment with ethanol or ethanol-extracted clove buds (an herbal medicine), whereas the same stressed situation often caused quite different alterations among different mRNA variants in different cell lines. Mosifloxacin, an antibiotics and also a functional inhibitor of hRSK4, could inhibit the expression of certain hRSK4 mRNA variants. The hRSK4 gene likely uses alternative splicing as a handy tool to adapt to different stressed situations, and the mRNA and protein multiplicities may partly explain the incongruous literature on its expression and comports.
Collapse
Affiliation(s)
- Zhenwei Qin
- Section of Forensic Science and Pathology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dong-Qing-Nan Road, Guiyang, 550025, Guizhou Province, China
| | - Jianglin Yang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, 4 Beijing Rd, Guiyang, 550004, Guizhou Province, China
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Keyin Zhang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou Province, China
| | - Xia Gao
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou Province, China
| | - Qianchuan Ran
- Section of Forensic Science and Pathology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dong-Qing-Nan Road, Guiyang, 550025, Guizhou Province, China
| | - Yuanhong Xu
- Section of Forensic Science and Pathology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dong-Qing-Nan Road, Guiyang, 550025, Guizhou Province, China
| | - Zhi Wang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou Province, China
| | - Didong Lou
- Section of Forensic Science and Pathology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dong-Qing-Nan Road, Guiyang, 550025, Guizhou Province, China
| | - Chunhua Huang
- Section of Forensic Science and Pathology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dong-Qing-Nan Road, Guiyang, 550025, Guizhou Province, China
| | - Lucas Zellmer
- Department of Medicine, Hennepin County Medical Center, 730 South 8th St., Minneapolis, MN, 55415, USA
| | - Guangxue Meng
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, 9 Beijing Road, Guiyang, 550004, Guizhou Province, China
| | - Na Chen
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, 9 Beijing Road, Guiyang, 550004, Guizhou Province, China
| | - Hong Ma
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, 9 Beijing Road, Guiyang, 550004, Guizhou Province, China
| | - Zhe Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Dezhong Joshua Liao
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, 4 Beijing Rd, Guiyang, 550004, Guizhou Province, China
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| |
Collapse
|
6
|
Fröhlich K, Furrer R, Schori C, Handschin C, Schmidt A. Robust, Precise, and Deep Proteome Profiling Using a Small Mass Range and Narrow Window Data-Independent-Acquisition Scheme. J Proteome Res 2024; 23:1028-1038. [PMID: 38275131 PMCID: PMC10913089 DOI: 10.1021/acs.jproteome.3c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
In recent years, a plethora of different data-independent acquisition methods have been developed for proteomics to cover a wide range of requirements. Current deep proteome profiling methods rely on fractionations, elaborate chromatography, and mass spectrometry setups or display suboptimal quantitative precision. We set out to develop an easy-to-use one shot DIA method that achieves high quantitative precision and high proteome coverage. We achieve this by focusing on a small mass range of 430-670 m/z using small isolation windows without overlap. With this new method, we were able to quantify >9200 protein groups in HEK lysates with an average coefficient of variance of 3.2%. To demonstrate the power of our newly developed narrow mass range method, we applied it to investigate the effect of PGC-1α knockout on the skeletal muscle proteome in mice. Compared to a standard data-dependent acquisition method, we could double proteome coverage and, most importantly, achieve a significantly higher quantitative precision, as compared to a previously proposed DIA method. We believe that our method will be especially helpful in quantifying low abundant proteins in samples with a high dynamic range. All raw and result files are available at massive.ucsd.edu (MSV000092186).
Collapse
Affiliation(s)
- Klemens Fröhlich
- Proteomics
Core Facility, Biozentrum Basel, University
of Basel, 4056 Basel, Switzerland
| | - Regula Furrer
- Biozentrum
Basel, University of Basel, 4056 Basel, Switzerland
| | - Christian Schori
- Proteomics
Core Facility, Biozentrum Basel, University
of Basel, 4056 Basel, Switzerland
| | | | - Alexander Schmidt
- Proteomics
Core Facility, Biozentrum Basel, University
of Basel, 4056 Basel, Switzerland
| |
Collapse
|
7
|
Inafuku DA, Kirkpatrick KL, Osuagwu O, An Q, Brewster DA, Nakib MZ. Channel capacity of the ribosome. Phys Rev E 2023; 108:044404. [PMID: 37978643 DOI: 10.1103/physreve.108.044404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/09/2023] [Indexed: 11/19/2023]
Abstract
Translation is one of the most fundamental processes in the biological cell. Because of the central role that translation plays across all domains of life, the enzyme that carries out this process, the ribosome, is required to process information with high accuracy. This accuracy often approaches values near unity experimentally. In this paper, we model the ribosome as an information channel and demonstrate mathematically that this biological machine has information-processing capabilities that have not been recognized previously. In particular, we calculate bounds on the ribosome's theoretical Shannon capacity and numerically approximate this capacity. Finally, by incorporating estimates on the ribosome's operation time, we show that the ribosome operates at speeds safely below its capacity, allowing the ribosome to process information with an arbitrary degree of error. Our results show that the ribosome achieves a high accuracy in line with purely information-theoretic means.
Collapse
Affiliation(s)
- Daniel A Inafuku
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kay L Kirkpatrick
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Onyema Osuagwu
- Electrical and Computer Engineering Department, Morgan State University, Baltimore, Maryland 21251, USA
- Cybersecurity Assurance and Policy Center, Morgan State University, Baltimore, Maryland 21251, USA
| | - Qier An
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - David A Brewster
- Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Mayisha Zeb Nakib
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
8
|
Ciesielski SJ, Young C, Ciesielska EJ, Ciesielski GL. The Hsp70 and JDP proteins: Structure-function perspective on molecular chaperone activity. Enzymes 2023; 54:221-245. [PMID: 37945173 DOI: 10.1016/bs.enz.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Proteins are the most structurally diverse cellular biomolecules that act as molecular machines driving essential activities of all living organisms. To be functional, most of the proteins need to fold into a specific three-dimensional structure, which on one hand should be stable enough to oppose disruptive conditions and on the other hand flexible enough to allow conformational dynamics necessary for their biological functions. This compromise between stability and dynamics makes proteins susceptible to stress-induced misfolding and aggregation. Moreover, the folding process itself is intrinsically prone to conformational errors. Molecular chaperones are proteins that mitigate folding defects and maintain the structural integrity of the cellular proteome. Promiscuous Hsp70 chaperones are central to these processes and their activity depends on the interaction with obligatory J-domain protein (JDP) partners. In this review, we discuss structural aspects of Hsp70s, JDPs, and their interaction in the context of biological activities.
Collapse
Affiliation(s)
- Szymon J Ciesielski
- Department of Chemistry and Biochemistry, University of North Florida, Jacksonville, FL, United States.
| | - Cameron Young
- Department of Chemistry and Biochemistry, University of North Florida, Jacksonville, FL, United States
| | - Elena J Ciesielska
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States; Department of Biology, University of North Florida, Jacksonville, FL, United States
| | - Grzegorz L Ciesielski
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States; Department of Biology, University of North Florida, Jacksonville, FL, United States
| |
Collapse
|
9
|
Rees M, Nikoopour R, Alexandrovich A, Pfuhl M, Lopes LR, Akhtar MM, Syrris P, Elliott P, Carr-White G, Gautel M. Structure determination and analysis of titin A-band fibronectin type III domains provides insights for disease-linked variants and protein oligomerisation. J Struct Biol 2023; 215:108009. [PMID: 37549721 PMCID: PMC10862085 DOI: 10.1016/j.jsb.2023.108009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/06/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Titin is the largest protein found in nature and spans half a sarcomere in vertebrate striated muscle. The protein has multiple functions, including in the organisation of the thick filament and acting as a molecular spring during the muscle contraction cycle. Missense variants in titin have been linked to both cardiac and skeletal myopathies. Titin is primarily composed of tandem repeats of immunoglobulin and fibronectin type III (Fn3) domains in a variety of repeat patterns; however, the vast majority of these domains have not had their high-resolution structure determined experimentally. Here, we present the crystal structures of seven wild type titin Fn3 domains and two harbouring rare missense variants reported in hypertrophic cardiomyopathy (HCM) patients. All domains present the typical Fn3 fold, with the domains harbouring variants reported in HCM patients retaining the wild-type conformation. The effect on domain folding and stability were assessed for five rare missense variants found in HCM patients: four caused thermal destabilization of between 7 and 13 °C and one prevented the folding of its domain. The structures also allowed us to locate the positions of residues whose mutations have been linked to congenital myopathies and rationalise how they convey their deleterious effects. We find no evidence of physiological homodimer formation, excluding one hypothesised mechanism as to how titin variants could exert pathological effects.
Collapse
Affiliation(s)
- Martin Rees
- Randall Centre for Cell and Molecular Biophysics, King's College London BHF Centre of Research Excellence, United Kingdom.
| | - Roksana Nikoopour
- Randall Centre for Cell and Molecular Biophysics, King's College London BHF Centre of Research Excellence, United Kingdom
| | - Alexander Alexandrovich
- Randall Centre for Cell and Molecular Biophysics, King's College London BHF Centre of Research Excellence, United Kingdom
| | - Mark Pfuhl
- Randall Centre for Cell and Molecular Biophysics, King's College London BHF Centre of Research Excellence, United Kingdom; School of Cardiovascular Sciences and Medicine, King's College London, United Kingdom
| | - Luis R Lopes
- Institute of Cardiovascular Science, University College London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom
| | - Mohammed M Akhtar
- Institute of Cardiovascular Science, University College London, United Kingdom
| | - Petros Syrris
- Institute of Cardiovascular Science, University College London, United Kingdom
| | - Perry Elliott
- Institute of Cardiovascular Science, University College London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom
| | - Gerry Carr-White
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom; School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, St Thomas' Hospital, London, United Kingdom
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, King's College London BHF Centre of Research Excellence, United Kingdom.
| |
Collapse
|
10
|
Nakhaei-Rad S, Haghighi F, Bazgir F, Dahlmann J, Busley AV, Buchholzer M, Kleemann K, Schänzer A, Borchardt A, Hahn A, Kötter S, Schanze D, Anand R, Funk F, Kronenbitter AV, Scheller J, Piekorz RP, Reichert AS, Volleth M, Wolf MJ, Cirstea IC, Gelb BD, Tartaglia M, Schmitt JP, Krüger M, Kutschka I, Cyganek L, Zenker M, Kensah G, Ahmadian MR. Molecular and cellular evidence for the impact of a hypertrophic cardiomyopathy-associated RAF1 variant on the structure and function of contractile machinery in bioartificial cardiac tissues. Commun Biol 2023; 6:657. [PMID: 37344639 PMCID: PMC10284840 DOI: 10.1038/s42003-023-05013-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
Noonan syndrome (NS), the most common among RASopathies, is caused by germline variants in genes encoding components of the RAS-MAPK pathway. Distinct variants, including the recurrent Ser257Leu substitution in RAF1, are associated with severe hypertrophic cardiomyopathy (HCM). Here, we investigated the elusive mechanistic link between NS-associated RAF1S257L and HCM using three-dimensional cardiac bodies and bioartificial cardiac tissues generated from patient-derived induced pluripotent stem cells (iPSCs) harboring the pathogenic RAF1 c.770 C > T missense change. We characterize the molecular, structural, and functional consequences of aberrant RAF1-associated signaling on the cardiac models. Ultrastructural assessment of the sarcomere revealed a shortening of the I-bands along the Z disc area in both iPSC-derived RAF1S257L cardiomyocytes and myocardial tissue biopsies. The aforementioned changes correlated with the isoform shift of titin from a longer (N2BA) to a shorter isoform (N2B) that also affected the active force generation and contractile tensions. The genotype-phenotype correlation was confirmed using cardiomyocyte progeny of an isogenic gene-corrected RAF1S257L-iPSC line and was mainly reversed by MEK inhibition. Collectively, our findings uncovered a direct link between a RASopathy gene variant and the abnormal sarcomere structure resulting in a cardiac dysfunction that remarkably recapitulates the human disease.
Collapse
Affiliation(s)
- Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Stem Cell Biology and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fereshteh Haghighi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Clinic for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Farhad Bazgir
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Dahlmann
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Institute of Human Genetics, University Hospital, Otto von Guericke-University, Magdeburg, Germany
| | - Alexandra Viktoria Busley
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells", University of Göttingen, Göttingen, Germany
| | - Marcel Buchholzer
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karolin Kleemann
- Clinic for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Borchardt
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Sebastian Kötter
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Denny Schanze
- Institute of Human Genetics, University Hospital, Otto von Guericke-University, Magdeburg, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Florian Funk
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Annette Vera Kronenbitter
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marianne Volleth
- Institute of Human Genetics, University Hospital, Otto von Guericke-University, Magdeburg, Germany
| | - Matthew J Wolf
- Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ion Cristian Cirstea
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Joachim P Schmitt
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martina Krüger
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ingo Kutschka
- Clinic for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Lukas Cyganek
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells", University of Göttingen, Göttingen, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital, Otto von Guericke-University, Magdeburg, Germany.
| | - George Kensah
- Clinic for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany.
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
11
|
Fukuda N, Granzier H, Ishiwata S, Morimoto S. Editorial: Recent Advances on Myocardium Physiology, Volume II. Front Physiol 2023; 14:1170396. [PMID: 37008018 PMCID: PMC10053225 DOI: 10.3389/fphys.2023.1170396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Affiliation(s)
- Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- *Correspondence: Norio Fukuda,
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Shin’ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Sachio Morimoto
- School of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
12
|
Pérez-Benito Á, Huerta-López C, Alegre-Cebollada J, García-Aznar JM, Hervas-Raluy S. Computational modelling of the mechanical behaviour of protein-based hydrogels. J Mech Behav Biomed Mater 2023; 138:105661. [PMID: 36630754 DOI: 10.1016/j.jmbbm.2023.105661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Protein-based hydrogels have been extensively studied in the field of biomaterials given their ability to mimic living tissues and their special resemblance to the extracellular matrix. Despite this, the methods used for the control of mechanical properties of hydrogels are very limited, focusing mainly on their elasticity, with an often unrealistic characterization of mechanical properties such as extensibility, stiffness and viscoelasticity. Being able to control these properties is essential for the development of new biomaterials, since it has been demonstrated that mechanical properties affect cell behaviour and biological processes. To better understand the mechanical behaviour of these biopolymers, a computational model is here developed to characterize the mechanical behaviour of two different protein-based hydrogels. Strain-stress tests and stress-relaxation tests are evaluated computationally and compared to the results obtained experimentally in a previous work. To achieve this goal the Finite Element Method is used, combining hyperelastic and viscoelastic models. Different hyperelastic constitutive models (Mooney-Rivlin, Neo-Hookean, first and third order Ogden, and Yeoh) are proposed to estimate the mechanical properties of the protein-based hydrogels by least-square fitting of the in-vitro uniaxial test results. Among these models, the first order Ogden model with a viscoelastic model defined in Prony parameters better reproduces the strain-stress response and the change of stiffness with strain observed in the in-vitro tests.
Collapse
Affiliation(s)
- Ángela Pérez-Benito
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigacion en Ingenieria de Aragon(I3A), University of Zaragoza, Zaragoza, 50014, Spain
| | - Carla Huerta-López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | | | - José Manuel García-Aznar
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigacion en Ingenieria de Aragon(I3A), University of Zaragoza, Zaragoza, 50014, Spain
| | - Silvia Hervas-Raluy
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigacion en Ingenieria de Aragon(I3A), University of Zaragoza, Zaragoza, 50014, Spain.
| |
Collapse
|
13
|
Martin AA, Thompson BR, Hahn D, Angulski ABB, Hosny N, Cohen H, Metzger JM. Cardiac Sarcomere Signaling in Health and Disease. Int J Mol Sci 2022; 23:16223. [PMID: 36555864 PMCID: PMC9782806 DOI: 10.3390/ijms232416223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The cardiac sarcomere is a triumph of biological evolution wherein myriad contractile and regulatory proteins assemble into a quasi-crystalline lattice to serve as the central point upon which cardiac muscle contraction occurs. This review focuses on the many signaling components and mechanisms of regulation that impact cardiac sarcomere function. We highlight the roles of the thick and thin filament, both as necessary structural and regulatory building blocks of the sarcomere as well as targets of functionally impactful modifications. Currently, a new focus emerging in the field is inter-myofilament signaling, and we discuss here the important mediators of this mechanism, including myosin-binding protein C and titin. As the understanding of sarcomere signaling advances, so do the methods with which it is studied. This is reviewed here through discussion of recent live muscle systems in which the sarcomere can be studied under intact, physiologically relevant conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
Marcello M, Cetrangolo V, Savarese M, Udd B. Use of animal models to understand titin physiology and pathology. J Cell Mol Med 2022; 26:5103-5112. [PMID: 36065969 PMCID: PMC9575118 DOI: 10.1111/jcmm.17533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/01/2022] Open
Abstract
In recent years, increasing attention has been paid to titin (TTN) and its mutations. Heterozygous TTN truncating variants (TTNtv) increase the risk of a cardiomyopathy. At the same time, TTNtv and few missense variants have been identified in patients with mainly recessive skeletal muscle diseases. The pathogenic mechanisms underlying titin‐related diseases are still partly unknown. Similarly, the titin mechanical and functional role in the muscle contraction are far from being exhaustively clarified. In the last few years, several animal models carrying variants in the titin gene have been developed and characterized to study the structural and mechanical properties of specific titin domains or to mimic patients' mutations. This review describes the main animal models so far characterized, including eight mice models and three fish models (Medaka and Zebrafish) and discusses the useful insights provided by a thorough characterization of the cell‐, tissue‐ and organism‐phenotypes in these models.
Collapse
Affiliation(s)
| | | | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
15
|
Sun M, Jin Y, Zhang Y, Gregorich ZR, Ren J, Ge Y, Guo W. SR Protein Kinases Regulate the Splicing of Cardiomyopathy-Relevant Genes via Phosphorylation of the RSRSP Stretch in RBM20. Genes (Basel) 2022; 13:1526. [PMID: 36140694 PMCID: PMC9498672 DOI: 10.3390/genes13091526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: RNA binding motif 20 (RBM20) regulates mRNA splicing specifically in muscle tissues. Missense mutations in the arginine/serine (RS) domain of RBM20 lead to abnormal gene splicing and have been linked to severe dilated cardiomyopathy (DCM) in human patients and animal models. Interestingly, many of the reported DCM-linked missense mutations in RBM20 are in a highly conserved RSRSP stretch within the RS domain. Recently, it was found that the two Ser residues within this stretch are constitutively phosphorylated, yet the identity of the kinase(s) responsible for phosphorylating these residues, as well as the function of RSRSP phosphorylation, remains unknown. (2) Methods: The ability of three known SR protein kinases (SRPK1, CLK1, and AKT2) to phosphorylate the RBM20 RSRSP stretch and regulate target gene splicing was evaluated by using both in vitro and in vivo approaches. (3) Results: We found that all three kinases phosphorylated S638 and S640 in the RSRSP stretch and regulated RBM20 target gene splicing. While SRPK1 and CLK1 were both capable of directly phosphorylating the RS domain in RBM20, whether AKT2-mediated control of the RS domain phosphorylation is direct or indirect could not be determined. (4) Conclusions: Our results indicate that SR protein kinases regulate the splicing of a cardiomyopathy-relevant gene by modulating phosphorylation of the RSRSP stretch in RBM20. These findings suggest that SR protein kinases may be potential targets for the treatment of RBM20 cardiomyopathy.
Collapse
Affiliation(s)
- Mingming Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yanghai Zhang
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zachery R Gregorich
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wei Guo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
16
|
Kötter S, Krüger M. Protein Quality Control at the Sarcomere: Titin Protection and Turnover and Implications for Disease Development. Front Physiol 2022; 13:914296. [PMID: 35846001 PMCID: PMC9281568 DOI: 10.3389/fphys.2022.914296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
Sarcomeres are mainly composed of filament and signaling proteins and are the smallest molecular units of muscle contraction and relaxation. The sarcomere protein titin serves as a molecular spring whose stiffness mediates myofilament extensibility in skeletal and cardiac muscle. Due to the enormous size of titin and its tight integration into the sarcomere, the incorporation and degradation of the titin filament is a highly complex task. The details of the molecular processes involved in titin turnover are not fully understood, but the involvement of different intracellular degradation mechanisms has recently been described. This review summarizes the current state of research with particular emphasis on the relationship between titin and protein quality control. We highlight the involvement of the proteasome, autophagy, heat shock proteins, and proteases in the protection and degradation of titin in heart and skeletal muscle. Because the fine-tuned balance of degradation and protein expression can be disrupted under pathological conditions, the review also provides an overview of previously known perturbations in protein quality control and discusses how these affect sarcomeric proteins, and titin in particular, in various disease states.
Collapse
|
17
|
Yang Z, Chen J, Li H, Lin Y. Genotype-Phenotype Associations with Restrictive Cardiomyopathy Induced by Pathogenic Genetic Mutations. Rev Cardiovasc Med 2022; 23:185. [PMID: 39077162 PMCID: PMC11273878 DOI: 10.31083/j.rcm2306185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 07/31/2024] Open
Abstract
Restrictive cardiomyopathy (RCM) is an uncommon cardiac muscle disease characterized by impaired ventricular filling and severe diastolic dysfunction with or without systolic dysfunction. The patients with RCM present poor prognosis and high prevalence of sudden cardiac death, especially in the young. The etiology of RCM may be idiopathic, familial or acquired predispositions from various systemic diseases. The genetic background of familial RCM is often caused by mutations in genes encoding proteins of sarcomeres and a significant minority by mutations in non-sarcomeric proteins and transthyretin proteins. It is important to identify the associations between genotype and phenotype to guide clinical diagnosis and treatment. Here, we have summarized the reported index cases with RCM involving genetic etiology to date and highlighted the most significant phenotype results.
Collapse
Affiliation(s)
- Zhe Yang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, 523710 Dongguan, Guangdong, China
- Department of Endocrinology and Metabolism, Zhuhai Hospital Affiliated to Jinan University; The First Hospital Affiliated to Medical College of Macao University of Science and Technology, 519000 Zhuhai, Guangdong, China
| | - Jia Chen
- The Second Department of Cardiology, The Second People's Hospital of Guangdong Province, 510310 Guangzhou, Guangdong, China
| | - Hong Li
- The First Dongguan Affiliated Hospital, Guangdong Medical University, 523710 Dongguan, Guangdong, China
| | - Yubi Lin
- The First Dongguan Affiliated Hospital, Guangdong Medical University, 523710 Dongguan, Guangdong, China
| |
Collapse
|
18
|
Boukil A, Marciniak A, Mezdour S, Pouliot Y, Doyen A. Effect of High Hydrostatic Pressure Intensity on Structural Modifications in Mealworm (Tenebrio molitor) Proteins. Foods 2022; 11:foods11070956. [PMID: 35407046 PMCID: PMC8997566 DOI: 10.3390/foods11070956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/10/2022] Open
Abstract
Processing edible insects into protein extracts may improve consumer acceptability. However, a better understanding of the effects of food processing on the proteins is needed to facilitate their incorporation into food matrices. In this study, soluble proteins from Tenebrio molitor (10% w/v) were pressurized using high hydrostatic pressure (HHP) at 70–600 MPa for 5 min and compared to a non-pressurized control (0.1 MPa). Protein structural modifications were evaluated using turbidity measurement, particle-size distribution, intrinsic fluorescence, surface hydrophobicity, gel electrophoresis coupled with mass spectrometry, and transmission electron microscopy (TEM). The observed decrease in fluorescence intensity, shift in the maximum emission wavelength, and increase in surface hydrophobicity reflected the unfolding of mealworm proteins. The formation of large protein aggregates consisting mainly of hexamerin 2 and ⍺-amylase were confirmed by protein profiles on gel electrophoresis, dynamic light scattering, and TEM analysis. The typical aggregate shape and network observed by TEM after pressurization indicated the potential involvement of myosin and actin in aggregate formation, and these were detected by mass spectrometry. For the first time, the identification of mealworm proteins involved in protein aggregation phenomena under HHP was documented. This work is the first step in understanding the mealworm protein–protein interactions necessary for the development of innovative insect-based ingredients in food formulations.
Collapse
Affiliation(s)
- Abir Boukil
- Department of Food Science, Université Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (Y.P.)
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Alice Marciniak
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Samir Mezdour
- AgroParisTech, UMR782 Paris Saclay Food and Bioproduct Engineering, 1 Rue des Olympiades, 91077 Massy, France;
| | - Yves Pouliot
- Department of Food Science, Université Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (Y.P.)
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Alain Doyen
- Department of Food Science, Université Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (Y.P.)
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
19
|
Panwar D, Singh KG, Mathur S, Prasad B, Joshi A, Lal V, Thatai A. Heterozygous missense variant in the TTN gene causing Tibial muscular dystrophy. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Tibial muscular dystrophy (TMD), tardive, is a dominantly inherited mild degenerative disorder of anterior tibial muscles. Mutations of Titin (TTN) have been reported in patients with different phenotypes such as skeletal muscular abnormalities or complex overlapping disorders of muscles. Titin (TTN) is a large 363 exon gene that encodes an abundant protein (the longest polypeptide known in nature) expressed in the heart and skeletal muscles.
Methods
DNA from peripheral blood sample was extracted, whole exome sequencing (WES) was performed, and a neuromuscular disorders related gene-filtering strategy was used to analyse the disease-causing mutations. Further, sanger sequencing was applied to confirm the variant.
Results
A novel missense variant (c.41529G > C;p.Arg13843Ser) of TTN gene was identified in a patient with lower limb weakness, occasional tongue fasciculation and mild scoliosis. This variant leads to a substitution of arginine with serine, causing structural changes in titin protein that is responsible for the TMD disease.
Conclusion
The novel variant detected has widened the genetic spectrum of TTN-associated diseases, further functional studies will aid in establishing the clinical diagnosis.
Collapse
|
20
|
Attwaters M, Hughes SM. Cellular and molecular pathways controlling muscle size in response to exercise. FEBS J 2022; 289:1428-1456. [PMID: 33755332 DOI: 10.1111/febs.15820] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/27/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
From the discovery of ATP and motor proteins to synaptic neurotransmitters and growth factor control of cell differentiation, skeletal muscle has provided an extreme model system in which to understand aspects of tissue function. Muscle is one of the few tissues that can undergo both increase and decrease in size during everyday life. Muscle size depends on its contractile activity, but the precise cellular and molecular pathway(s) by which the activity stimulus influences muscle size and strength remain unclear. Four correlates of muscle contraction could, in theory, regulate muscle growth: nerve-derived signals, cytoplasmic calcium dynamics, the rate of ATP consumption and physical force. Here, we summarise the evidence for and against each stimulus and what is known or remains unclear concerning their molecular signal transduction pathways and cellular effects. Skeletal muscle can grow in three ways, by generation of new syncytial fibres, addition of nuclei from muscle stem cells to existing fibres or increase in cytoplasmic volume/nucleus. Evidence suggests the latter two processes contribute to exercise-induced growth. Fibre growth requires increase in sarcolemmal surface area and cytoplasmic volume at different rates. It has long been known that high-force exercise is a particularly effective growth stimulus, but how this stimulus is sensed and drives coordinated growth that is appropriately scaled across organelles remains a mystery.
Collapse
Affiliation(s)
- Michael Attwaters
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| |
Collapse
|
21
|
Pitsch M, Kant S, Mytzka C, Leube RE, Krusche CA. Autophagy and Endoplasmic Reticulum Stress during Onset and Progression of Arrhythmogenic Cardiomyopathy. Cells 2021; 11:96. [PMID: 35011658 PMCID: PMC8750195 DOI: 10.3390/cells11010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a heritable, potentially lethal disease without a causal therapy. AC is characterized by focal cardiomyocyte death followed by inflammation and progressive formation of connective tissue. The pathomechanisms leading to structural disease onset and progression, however, are not fully elucidated. Recent studies revealed that dysregulation of autophagy and endoplasmic/sarcoplasmic reticulum (ER/SR) stress plays an important role in cardiac pathophysiology. We therefore examined the temporal and spatial expression patterns of autophagy and ER/SR stress indicators in murine AC models by qRT-PCR, immunohistochemistry, in situ hybridization and electron microscopy. Cardiomyocytes overexpressing the autophagy markers LC3 and SQSTM1/p62 and containing prominent autophagic vacuoles were detected next to regions of inflammation and fibrosis during onset and chronic disease progression. mRNAs of the ER stress markers Chop and sXbp1 were elevated in both ventricles at disease onset. During chronic disease progression Chop mRNA was upregulated in right ventricles. In addition, reduced Ryr2 mRNA expression together with often drastically enlarged ER/SR cisternae further indicated SR dysfunction during this disease phase. Our observations support the hypothesis that locally altered autophagy and enhanced ER/SR stress play a role in AC pathogenesis both at the onset and during chronic progression.
Collapse
Affiliation(s)
| | | | | | - Rudolf E. Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; (M.P.); (S.K.); (C.M.)
| | - Claudia A. Krusche
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; (M.P.); (S.K.); (C.M.)
| |
Collapse
|
22
|
Influence of the Season and Region Factor on Phosphoproteome of Stallion Epididymal Sperm. Animals (Basel) 2021; 11:ani11123487. [PMID: 34944263 PMCID: PMC8697920 DOI: 10.3390/ani11123487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Epididymal maturation can be defined as a scope of changes occurring during epididymal transit that prepare spermatozoa to undergo capacitation. One of the most common post-translational modifications involved in the sperm maturation process and their ability to fertilise an oocyte is the phosphorylation of sperm proteins. The aim of this study was to compare tyrosine, serine, and threonine phosphorylation patterns of sperm proteins isolated from three subsequent segments of the stallion epididymis, during and out of the breeding season. Intensities of phosphorylation signals and phosphoproteins profiles varied in consecutive regions of the epididymis. However, significant differences in the phosphorylation status were demonstrated in case of endoplasmic reticulum chaperone BiP (75 and 32 kDa), protein disulfide-isomerase A3 (50 kDa), nesprin-1 (23 kDa), peroxiredoxin-5 (17 kDa), and protein bicaudal D homolog (15 kDa) for season x type of phosphorylated residues variables. Significant differences in the phosphorylation status were also demonstrated in case of endoplasmic reticulum chaperone BiP and albumin (61 kDa), protein disulfide-isomerase A3 (50 kDa), and protein bicaudal D homolog (15 kDa) for region x type of phosphorylated residues variables.
Collapse
|
23
|
Mahdavi M, Mohsen-Pour N, Maleki M, Hesami M, Naderi N, Houshmand G, Rasouli Jazi HR, Shahzadi H, Kalayinia S. Whole-exome sequencing identified compound heterozygous variants in the TTN gene causing Salih myopathy with dilated cardiomyopathy in an Iranian family. Cardiol Young 2021; 32:1-6. [PMID: 34782032 DOI: 10.1017/s1047951121004455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Salih myopathy, characterised by both congenital myopathy and fatal dilated cardiomyopathy, is an inherited muscle disorder that affects skeletal and cardiac muscles. TTN has been identified as the main cause of this myopathy, the enormous size of this gene poses a formidable challenge to molecular genetic diagnostics. METHOD In the present study, whole-exome sequencing, cardiac MRI, and metabolic parameter assessment were performed to investigate the genetic causes of Salih myopathy in a consanguineous Iranian family who presented with titinopathy involving both skeletal and heart muscles in an autosomal recessive inheritance pattern. RESULTS Two missense variants of TTN gene (NM_001267550.2), namely c.61280A>C (p. Gln20427Pro) and c.54970G>A (p. Gly18324Ser), were detected and segregations were confirmed by polymerase chain reaction-based Sanger sequencing. CONCLUSIONS The compound heterozygous variants, c.61280A>C, (p. Gln20427Pro) and c.54970G>A, (p. Gly18324Ser) in the TTN gene appear to be the cause of Salih myopathy and dilated cardiomyopathy in the family presented. Whole-exome sequencing is an effective molecular diagnostic tool to identify the causative genetic variants of large genes such as TTN.
Collapse
Affiliation(s)
- Mohammad Mahdavi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Mohsen-Pour
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hesami
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Golnaz Houshmand
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid R Rasouli Jazi
- Biotechnology Research Center, Malek Ashtar University of Technology, Tehran, Iran
| | - Hossein Shahzadi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Ito M, Morita H. Titin Truncation Variant in Dilated Cardiomyopathy. Int Heart J 2021; 62:221-223. [PMID: 33790133 DOI: 10.1536/ihj.21-053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Masamichi Ito
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
25
|
Why exercise builds muscles: titin mechanosensing controls skeletal muscle growth under load. Biophys J 2021; 120:3649-3663. [PMID: 34389312 PMCID: PMC8456289 DOI: 10.1016/j.bpj.2021.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/29/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022] Open
Abstract
Muscles sense internally generated and externally applied forces, responding to these in a coordinated hierarchical manner at different timescales. The center of the basic unit of the muscle, the sarcomeric M-band, is perfectly placed to sense the different types of load to which the muscle is subjected. In particular, the kinase domain of titin (TK) located at the M-band is a known candidate for mechanical signaling. Here, we develop a quantitative mathematical model that describes the kinetics of TK-based mechanosensitive signaling and predicts trophic changes in response to exercise and rehabilitation regimes. First, we build the kinetic model for TK conformational changes under force: opening, phosphorylation, signaling, and autoinhibition. We find that TK opens as a metastable mechanosensitive switch, which naturally produces a much greater signal after high-load resistance exercise than an equally energetically costly endurance effort. Next, for the model to be stable and give coherent predictions, in particular for the lag after the onset of an exercise regime, we have to account for the associated kinetics of phosphate (carried by ATP) and for the nonlinear dependence of protein synthesis rates on muscle fiber size. We suggest that the latter effect may occur via the steric inhibition of ribosome diffusion through the sieve-like myofilament lattice. The full model yields a steady-state solution (homeostasis) for muscle cross-sectional area and tension and, a quantitatively plausible hypertrophic response to training, as well as atrophy after an extended reduction in tension.
Collapse
|
26
|
Adewale AO, Ahn YH. Titin N2A Domain and Its Interactions at the Sarcomere. Int J Mol Sci 2021; 22:ijms22147563. [PMID: 34299183 PMCID: PMC8305307 DOI: 10.3390/ijms22147563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
Titin is a giant protein in the sarcomere that plays an essential role in muscle contraction with actin and myosin filaments. However, its utility goes beyond mechanical functions, extending to versatile and complex roles in sarcomere organization and maintenance, passive force, mechanosensing, and signaling. Titin’s multiple functions are in part attributed to its large size and modular structures that interact with a myriad of protein partners. Among titin’s domains, the N2A element is one of titin’s unique segments that contributes to titin’s functions in compliance, contraction, structural stability, and signaling via protein–protein interactions with actin filament, chaperones, stress-sensing proteins, and proteases. Considering the significance of N2A, this review highlights structural conformations of N2A, its predisposition for protein–protein interactions, and its multiple interacting protein partners that allow the modulation of titin’s biological effects. Lastly, the nature of N2A for interactions with chaperones and proteases is included, presenting it as an important node that impacts titin’s structural and functional integrity.
Collapse
|
27
|
Huerta-López C, Alegre-Cebollada J. Protein Hydrogels: The Swiss Army Knife for Enhanced Mechanical and Bioactive Properties of Biomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1656. [PMID: 34202469 PMCID: PMC8307158 DOI: 10.3390/nano11071656] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/31/2022]
Abstract
Biomaterials are dynamic tools with many applications: from the primitive use of bone and wood in the replacement of lost limbs and body parts, to the refined involvement of smart and responsive biomaterials in modern medicine and biomedical sciences. Hydrogels constitute a subtype of biomaterials built from water-swollen polymer networks. Their large water content and soft mechanical properties are highly similar to most biological tissues, making them ideal for tissue engineering and biomedical applications. The mechanical properties of hydrogels and their modulation have attracted a lot of attention from the field of mechanobiology. Protein-based hydrogels are becoming increasingly attractive due to their endless design options and array of functionalities, as well as their responsiveness to stimuli. Furthermore, just like the extracellular matrix, they are inherently viscoelastic in part due to mechanical unfolding/refolding transitions of folded protein domains. This review summarizes different natural and engineered protein hydrogels focusing on different strategies followed to modulate their mechanical properties. Applications of mechanically tunable protein-based hydrogels in drug delivery, tissue engineering and mechanobiology are discussed.
Collapse
Affiliation(s)
- Carla Huerta-López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | |
Collapse
|
28
|
Maimaiti R, Zhu C, Zhang Y, Ding Q, Guo W. RBM20-Mediated Pre-mRNA Splicing Has Muscle-Specificity and Differential Hormonal Responses between Muscles and in Muscle Cell Cultures. Int J Mol Sci 2021; 22:2928. [PMID: 33805770 PMCID: PMC7999644 DOI: 10.3390/ijms22062928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
Pre-mRNA splicing plays an important role in muscle function and diseases. The RNA binding motif 20 (RBM20) is a splicing factor that is predominantly expressed in muscle tissues and primarily regulates pre-mRNA splicing of Ttn, encoding a giant muscle protein titin that is responsible for muscle function and diseases. RBM20-mediated Ttn splicing has been mostly studied in heart muscle, but not in skeletal muscle. In this study, we investigated splicing specificity in different muscle types in Rbm20 knockout rats and hormonal effects on RBM20-mediated splicing both in cellulo and in vivo studies. The results revealed that RBM20 is differentially expressed across muscles and RBM20-mediated splicing is muscle-type specific. In the presence of RBM20, Ttn splicing responds to hormones in a muscle-type dependent manner, while in the absence of RBM20, Ttn splicing is not affected by hormones. In differentiated and undifferentiated C2C12 cells, RBM20-mediated splicing in response to hormonal effects is mainly through genomic signaling pathway. The knowledge gained from this study may help further understand muscle-specific gene splicing in response to hormone stimuli in different muscle types.
Collapse
Affiliation(s)
- Rexiati Maimaiti
- Animal Science Department, University of Wyoming, Laramie, WY 82071, USA; (R.M.); (C.Z.)
| | - Chaoqun Zhu
- Animal Science Department, University of Wyoming, Laramie, WY 82071, USA; (R.M.); (C.Z.)
| | - Yanghai Zhang
- Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (Q.D.)
| | - Qiyue Ding
- Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (Q.D.)
| | - Wei Guo
- Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (Q.D.)
| |
Collapse
|
29
|
Rees M, Nikoopour R, Fukuzawa A, Kho AL, Fernandez-Garcia MA, Wraige E, Bodi I, Deshpande C, Özdemir Ö, Daimagüler HS, Pfuhl M, Holt M, Brandmeier B, Grover S, Fluss J, Longman C, Farrugia ME, Matthews E, Hanna M, Muntoni F, Sarkozy A, Phadke R, Quinlivan R, Oates EC, Schröder R, Thiel C, Reimann J, Voermans N, Erasmus C, Kamsteeg EJ, Konersman C, Grosmann C, McKee S, Tirupathi S, Moore SA, Wilichowski E, Hobbiebrunken E, Dekomien G, Richard I, Van den Bergh P, Domínguez-González C, Cirak S, Ferreiro A, Jungbluth H, Gautel M. Making sense of missense variants in TTN-related congenital myopathies. Acta Neuropathol 2021; 141:431-453. [PMID: 33449170 PMCID: PMC7882473 DOI: 10.1007/s00401-020-02257-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/20/2020] [Accepted: 12/20/2020] [Indexed: 12/15/2022]
Abstract
Mutations in the sarcomeric protein titin, encoded by TTN, are emerging as a common cause of myopathies. The diagnosis of a TTN-related myopathy is, however, often not straightforward due to clinico-pathological overlap with other myopathies and the prevalence of TTN variants in control populations. Here, we present a combined clinico-pathological, genetic and biophysical approach to the diagnosis of TTN-related myopathies and the pathogenicity ascertainment of TTN missense variants. We identified 30 patients with a primary TTN-related congenital myopathy (CM) and two truncating variants, or one truncating and one missense TTN variant, or homozygous for one TTN missense variant. We found that TTN-related myopathies show considerable overlap with other myopathies but are strongly suggested by a combination of certain clinico-pathological features. Presentation was typically at birth with the clinical course characterized by variable progression of weakness, contractures, scoliosis and respiratory symptoms but sparing of extraocular muscles. Cardiac involvement depended on the variant position. Our biophysical analyses demonstrated that missense mutations associated with CMs are strongly destabilizing and exert their effect when expressed on a truncating background or in homozygosity. We hypothesise that destabilizing TTN missense mutations phenocopy truncating variants and are a key pathogenic feature of recessive titinopathies that might be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Martin Rees
- Randall Centre for Cell and Molecular Biophysics, Muscle Biophysics, King's College London BHF Centre of Research Excellence, London, UK
| | - Roksana Nikoopour
- Randall Centre for Cell and Molecular Biophysics, Muscle Biophysics, King's College London BHF Centre of Research Excellence, London, UK
| | - Atsushi Fukuzawa
- Randall Centre for Cell and Molecular Biophysics, Muscle Biophysics, King's College London BHF Centre of Research Excellence, London, UK
| | - Ay Lin Kho
- Randall Centre for Cell and Molecular Biophysics, Muscle Biophysics, King's College London BHF Centre of Research Excellence, London, UK
| | - Miguel A Fernandez-Garcia
- Department of Paediatric Neurology, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Elizabeth Wraige
- Department of Paediatric Neurology, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Istvan Bodi
- Department of Clinical Neuropathology, King's College Hospital, London, UK
| | | | - Özkan Özdemir
- Centre for Molecular Medicine, University of Cologne, Cologne, Germany
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Hülya-Sevcan Daimagüler
- Centre for Molecular Medicine, University of Cologne, Cologne, Germany
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Mark Pfuhl
- Randall Centre for Cell and Molecular Biophysics, Muscle Biophysics, King's College London BHF Centre of Research Excellence, London, UK
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre of Research Excellence, London, UK
| | - Mark Holt
- Randall Centre for Cell and Molecular Biophysics, Muscle Biophysics, King's College London BHF Centre of Research Excellence, London, UK
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre of Research Excellence, London, UK
| | - Birgit Brandmeier
- Randall Centre for Cell and Molecular Biophysics, Muscle Biophysics, King's College London BHF Centre of Research Excellence, London, UK
| | - Sarah Grover
- Randall Centre for Cell and Molecular Biophysics, Muscle Biophysics, King's College London BHF Centre of Research Excellence, London, UK
| | - Joël Fluss
- Pediatric Neurology Unit, Paediatrics Subspecialties Service, Geneva Children's Hospital, Geneva, Switzerland
| | - Cheryl Longman
- West of Scotland Regional Genetics Service, Laboratory Medicine Building, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Emma Matthews
- MRC Neuromuscular Centre, National Hospital for Neurology and Neurosurgery, Queen's Square, London, UK
| | - Michael Hanna
- MRC Neuromuscular Centre, National Hospital for Neurology and Neurosurgery, Queen's Square, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, Great Ormond Street Hospital Trust, London, UK
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children, London, UK
| | - Rahul Phadke
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children, London, UK
| | - Ros Quinlivan
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children, London, UK
| | - Emily C Oates
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children, London, UK
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sidney, Australia
- Kids Neuroscience Centre, Kids Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Thiel
- Department of Genetics, University of Erlangen, Erlangen, Germany
| | - Jens Reimann
- Muscle Laboratory, Department of Neurology, University of Bonn Medical Centre, Bonn, Germany
| | - Nicol Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Corrie Erasmus
- Department of Paediatric Neurology, Radboud University, Nijmegen, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chaminda Konersman
- UCSD, Rady Children's Hospital, and VA San Diego Healthcare System, San Diego, USA
| | | | - Shane McKee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, UK
| | - Sandya Tirupathi
- Department of Paediatric Neurology, Royal Belfast Hospital for Sick Children, Belfast, UK
| | - Steven A Moore
- Department of Pathology, The University of Iowa, Iowa City, IA, USA
| | | | - Elke Hobbiebrunken
- Department of Paediatric Neurology, University of Göttingen, Göttingen, Germany
| | | | - Isabelle Richard
- Genethon and UMR_S951, INSERM, Université Evry, Université Paris Saclay, Evry, 91002, Evry, France
| | - Peter Van den Bergh
- Neuromuscular Reference Centre, Department of Neurology, University Hospital Saint-Luc, Brussels, Belgium
| | | | - Sebahattin Cirak
- Centre for Molecular Medicine, University of Cologne, Cologne, Germany
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- Centre for Rare Diseases (ZSEK), University of Cologne, Cologne, Germany
| | - Ana Ferreiro
- Basic and Translational Myology Laboratory, Université de Paris, Paris, France
- Centre de Référence Des Maladies Neuromusculaires, APHP, Institut of Myology, GHU Pitié Salpêtrière- Charles Foix, Paris, France
| | - Heinz Jungbluth
- Randall Centre for Cell and Molecular Biophysics, Muscle Biophysics, King's College London BHF Centre of Research Excellence, London, UK
- Department of Paediatric Neurology, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
- Department of Clinical and Basic Neuroscience, IoPPN, King's College London, London, UK
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, Muscle Biophysics, King's College London BHF Centre of Research Excellence, London, UK.
| |
Collapse
|
30
|
Jiang H, Hooper C, Kelly M, Steeples V, Simon JN, Beglov J, Azad AJ, Leinhos L, Bennett P, Ehler E, Kalisch-Smith JI, Sparrow DB, Fischer R, Heilig R, Isackson H, Ehsan M, Patone G, Huebner N, Davies B, Watkins H, Gehmlich K. Functional analysis of a gene-edited mouse model to gain insights into the disease mechanisms of a titin missense variant. Basic Res Cardiol 2021; 116:14. [PMID: 33637999 PMCID: PMC7910237 DOI: 10.1007/s00395-021-00853-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/10/2021] [Indexed: 11/03/2022]
Abstract
Titin truncating variants are a well-established cause of cardiomyopathy; however, the role of titin missense variants is less well understood. Here we describe the generation of a mouse model to investigate the underlying disease mechanism of a previously reported titin A178D missense variant identified in a family with non-compaction and dilated cardiomyopathy. Heterozygous and homozygous mice carrying the titin A178D missense variant were characterised in vivo by echocardiography. Heterozygous mice had no detectable phenotype at any time point investigated (up to 1 year). By contrast, homozygous mice developed dilated cardiomyopathy from 3 months. Chronic adrenergic stimulation aggravated the phenotype. Targeted transcript profiling revealed induction of the foetal gene programme and hypertrophic signalling pathways in homozygous mice, and these were confirmed at the protein level. Unsupervised proteomics identified downregulation of telethonin and four-and-a-half LIM domain 2, as well as the upregulation of heat shock proteins and myeloid leukaemia factor 1. Loss of telethonin from the cardiac Z-disc was accompanied by proteasomal degradation; however, unfolded telethonin accumulated in the cytoplasm, leading to a proteo-toxic response in the mice.We show that the titin A178D missense variant is pathogenic in homozygous mice, resulting in cardiomyopathy. We also provide evidence of the disease mechanism: because the titin A178D variant abolishes binding of telethonin, this leads to its abnormal cytoplasmic accumulation. Subsequent degradation of telethonin by the proteasome results in proteasomal overload, and activation of a proteo-toxic response. The latter appears to be a driving factor for the cardiomyopathy observed in the mouse model.
Collapse
Affiliation(s)
- He Jiang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU, UK
| | - Charlotte Hooper
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU, UK
| | - Matthew Kelly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU, UK
| | - Violetta Steeples
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU, UK
| | - Jillian N Simon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU, UK
| | - Julia Beglov
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU, UK
| | - Amar J Azad
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU, UK
| | - Lisa Leinhos
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU, UK
| | - Pauline Bennett
- Randall Centre for Cell and Molecular Biophysics, School of Cardiovascular Medicine and Sciences, King's College London BHF Centre of Research Excellence, London, UK
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Cardiovascular Medicine and Sciences, King's College London BHF Centre of Research Excellence, London, UK
| | | | - Duncan B Sparrow
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Roman Fischer
- Nuffield Department of Clinical Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Raphael Heilig
- Nuffield Department of Clinical Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Henrik Isackson
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Mehroz Ehsan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU, UK
| | - Giannino Patone
- Max Delbrueck Centre for Molecular Medicine, Berlin, Germany
| | - Norbert Huebner
- Max Delbrueck Centre for Molecular Medicine, Berlin, Germany
| | - Benjamin Davies
- Transgenic Core, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU, UK.
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
31
|
Abstract
The 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase type I (cGKI aka PKGI) is a major cardiac effector acting downstream of nitric oxide (NO)-sensitive soluble guanylyl cyclase and natriuretic peptides (NPs), which signal through transmembrane guanylyl cyclases. Consistent with the wide distribution of the cGMP-generating guanylyl cyclases, cGKI, which usually elicits its cellular effects by direct phosphorylation of its targets, is present in multiple cardiac cell types including cardiomyocytes (CMs). Although numerous targets of cGMP/cGKI in heart were identified in the past, neither their exact patho-/physiological functions nor cell-type specific roles are clear. Herein, we inform about the current knowledge on the signal transduction downstream of CM cGKI. We believe that better insights into the specific actions of cGMP and cGKI in these cells will help to guide future studies in the search for predictive biomarkers for the response to pharmacological cGMP pathway modulation. In addition, targets downstream of cGMP/cGKI may be exploited for refined and optimized diagnostic and therapeutic strategies in different types of heart disease and their causes. Importantly, key functions of these proteins and particularly sites of regulatory phosphorylation by cGKI should, at least in principle, remain intact, although upstream signaling through the second messenger cGMP is impaired or dysregulated in a stressed or diseased heart state.
Collapse
|
32
|
Taverne YJHJ, Sadeghi A, Bartelds B, Bogers AJJC, Merkus D. Right ventricular phenotype, function, and failure: a journey from evolution to clinics. Heart Fail Rev 2020; 26:1447-1466. [PMID: 32556672 PMCID: PMC8510935 DOI: 10.1007/s10741-020-09982-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The right ventricle has long been perceived as the "low pressure bystander" of the left ventricle. Although the structure consists of, at first glance, the same cardiomyocytes as the left ventricle, it is in fact derived from a different set of precursor cells and has a complex three-dimensional anatomy and a very distinct contraction pattern. Mechanisms of right ventricular failure, its detection and follow-up, and more specific different responses to pressure versus volume overload are still incompletely understood. In order to fully comprehend right ventricular form and function, evolutionary biological entities that have led to the specifics of right ventricular physiology and morphology need to be addressed. Processes responsible for cardiac formation are based on very ancient cardiac lineages and within the first few weeks of fetal life, the human heart seems to repeat cardiac evolution. Furthermore, it appears that most cardiogenic signal pathways (if not all) act in combination with tissue-specific transcriptional cofactors to exert inductive responses reflecting an important expansion of ancestral regulatory genes throughout evolution and eventually cardiac complexity. Such molecular entities result in specific biomechanics of the RV that differs from that of the left ventricle. It is clear that sole descriptions of right ventricular contraction patterns (and LV contraction patterns for that matter) are futile and need to be addressed into a bigger multilayer three-dimensional picture. Therefore, we aim to present a complete picture from evolution, formation, and clinical presentation of right ventricular (mal)adaptation and failure on a molecular, cellular, biomechanical, and (patho)anatomical basis.
Collapse
Affiliation(s)
- Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus University Medical Center, Room Rg627, Dr. Molewaterplein 40, 3015, GD, Rotterdam, The Netherlands. .,Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands. .,Unit for Cardiac Morphology and Translational Electrophysiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Amir Sadeghi
- Department of Cardiothoracic Surgery, Erasmus University Medical Center, Room Rg627, Dr. Molewaterplein 40, 3015, GD, Rotterdam, The Netherlands
| | - Beatrijs Bartelds
- Division of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ad J J C Bogers
- Department of Cardiothoracic Surgery, Erasmus University Medical Center, Room Rg627, Dr. Molewaterplein 40, 3015, GD, Rotterdam, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
33
|
Gao S, Nanaei HA, Wei B, Wang Y, Wang X, Li Z, Dai X, Wang Z, Jiang Y, Shao J. Comparative Transcriptome Profiling Analysis Uncovers Novel Heterosis-Related Candidate Genes Associated with Muscular Endurance in Mules. Animals (Basel) 2020; 10:ani10060980. [PMID: 32512843 PMCID: PMC7341310 DOI: 10.3390/ani10060980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/24/2020] [Accepted: 06/02/2020] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Mules have better and greater muscle endurance than hinnies and their parents. However, the molecular mechanisms underlying heterosis in their muscles are still much less understood. In this study, we conducted comparative transcriptome and alternative splicing analysis on the heterosis mechanism of muscular endurance in mules. Our results showed that 8 genes were significantly enriched in the “muscle contraction” pathway. In addition, 68% of the genes with alternative splicing events from the mule muscle tissue were validated by the long transcript reads generated from PacBio sequencing platform. Our findings provide a research foundation for studying the genetic basis of heterosis in mules. Abstract Heterosis has been widely exploited in animal and plant breeding programs to enhance the productive traits of hybrid progeny from two breeds or species. However, its underlying genetic mechanisms remain enigmatic. Transcriptome profiling analysis can be used as a method for exploring the mechanism of heterosis. Here, we performed genome-wide gene expression and alternative splicing (AS) analyses in different tissues (muscle, brain, and skin) from crosses between donkeys and horses. Our results indicated that 86.1% of the differentially expressed genes (DEGs) and 87.2% of the differential alternative splicing (DAS) genes showed over-dominance and dominance in muscle. Further analysis showed that the “muscle contraction” pathway was significantly enriched for both the DEGs and DAS genes in mule muscle tissue. Taken together, these DEGs and DAS genes could provide an index for future studies of the genetic and molecular mechanism of heterosis in the hybrids of donkey and horse.
Collapse
|
34
|
Huang S, Liu S, Niu Y, Fu L. Scriptaid/exercise-induced lysine acetylation is another type of posttranslational modification occurring in titin. J Appl Physiol (1985) 2020; 128:276-285. [DOI: 10.1152/japplphysiol.00617.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Titin serves important functions in skeletal muscle during exercise, and posttranslational modifications of titin participate in the regulation of titin-based sarcomeric functions. Scriptaid has exercise-like effects through the inhibition of HDAC and regulatory acetylation of proteins. However, it remains mostly unclear if exercise could result in titin’s acetylation and whether Scriptaid could regulate acetylation of titin. We treated C57BL/6 mice with 6-wk treadmill exercise and 6-wk Scriptaid administration to explore Scriptaid’s effects on mice exercise capacity and whether Scriptaid administration/exercise could induce titin’s acetylation modification. An exercise endurance test was conducted to explore their effects on mice exercise capacity, and proteomic studies were conducted with gastrocnemius muscle tissue of mice from different groups to explore titin’s acetylation modification. We found that Scriptaid and exercise did not change titin’s protein expression, but they did induce acetylation modification changes of titin. In total, 333 acetylated lysine sites were identified. Exercise changed the acetylation levels of 33 lysine sites of titin, whereas Scriptaid changed acetylation levels of 31 titin lysine sites. Exercise treatment and Scriptaid administration shared 11 lysine sites. In conclusion, Scriptaid increased exercise endurance of mice by increasing the time mice spent running to fatigue. Acetylation is a common type of posttranslational modification of titin, and exercise/Scriptaid changed the acetylation levels of titin and titin-interacting proteins. Most importantly, titin may be a mediator through which Scriptaid and exercise modulate the properties and functions of exercise-induced skeletal muscle at the molecular level. NEW & NOTEWORTHY Scriptaid administration increased mouse exercise endurance. Acetylation is another type of posttranslational modification of titin. Scriptaid/exercise changed acetylation levels of titin and titin-interacting proteins. Titin may mediate exercise-induced skeletal muscle properties and functions.
Collapse
Affiliation(s)
- Song Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Sujuan Liu
- Department of Anatomy and Embryology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yanmei Niu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Li Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
35
|
Watanabe D, Lamboley CR, Lamb GD. Effects of S-glutathionylation on the passive force-length relationship in skeletal muscle fibres of rats and humans. J Muscle Res Cell Motil 2019; 41:239-250. [PMID: 31679105 DOI: 10.1007/s10974-019-09563-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/26/2019] [Indexed: 12/14/2022]
Abstract
This study investigated the effect of S-glutathionylation on passive force in skeletal muscle fibres, to determine whether activity-related redox reactions could modulate the passive force properties of muscle. Mechanically-skinned fibres were freshly obtained from human and rat muscle, setting sarcomere length (SL) by laser diffraction. Larger stretches were required to produce passive force in human fibres compared to rat fibres, but there were no fibre-type differences in either species. When fibres were exposed to glutathione disulfide (GSSG; 20 mM, 15 min) whilst stretched (at a SL where passive force reached ~ 20% of maximal Ca2+-activated force, denoted as SL20 % max), passive force was subsequently decreased at all SLs in both type I and type II fibres of rat and human (e.g., passive force at SL20 % max decreased by 12 to 25%). This decrease was fully reversed by subsequent reducing treatment with dithiothreitol (DTT; 10 mM for 10 min). If freshly skinned fibres were initially treated with DTT, there was an increase in passive force in type II fibres (by 10 ± 3% and 9 ± 2% in rat and human fibres, respectively), but not in type I fibres. These results indicate that (i) S-glutathionylation, presumably in titin, causes a decrease in passive force in skeletal muscle fibres, but the reduction is relatively smaller than that reported in cardiac muscle, (ii) in rested muscle in vivo, there appears to be some level of reversible oxidative modification, probably involving S-glutathionylation of titin, in type II fibres, but not in type I fibres.
Collapse
Affiliation(s)
- Daiki Watanabe
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia. .,Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.
| | - Cedric R Lamboley
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Graham D Lamb
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
| |
Collapse
|
36
|
Ciferri A, Crumbliss AL. A Supramolecular Polymerization Approach to the Growth of the Myofibril. Front Chem 2019; 7:487. [PMID: 31380341 PMCID: PMC6646515 DOI: 10.3389/fchem.2019.00487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/25/2019] [Indexed: 11/13/2022] Open
Abstract
Extended linear structures self-assemble by the multi-stage-open-association mechanism of supramolecular polymerization (MSOA). Application of the model requires the identification of a repeating unit, the main-chain supramolecular bond, and the binding constant. The strength of the bond and the degree of polymerization become extremely large when multiple sites for non-covalent interactions occur. These expectations had been previously verified in the case of the neuronal axon, for which the above parameters were assessed from its known molecular structure. The more complex case of the myofibril is analyzed here. The specific interactions that connect neighboring sarcomers have been a matter of debate. Recent work has focused on the bond between titin and α-actinin localized at the terminal Z-zones of each sarcomer. Elaboration of literature data suggests that titin-α-actinin interactions do bridge neighboring sarcomers, promoting the polymerization of myofibrils that attain macroscopic dimensions consistently with the MSOA predictions. The rationale for the complex structuration of single sarcomers is discussed.
Collapse
Affiliation(s)
- Alberto Ciferri
- Chemistry Department, Duke University, Durham, NC, United States
| | | |
Collapse
|
37
|
Through thick and thin: dual regulation of insect flight muscle and cardiac muscle compared. J Muscle Res Cell Motil 2019; 40:99-110. [PMID: 31292801 PMCID: PMC6726838 DOI: 10.1007/s10974-019-09536-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/02/2019] [Indexed: 01/15/2023]
Abstract
Both insect flight muscle and cardiac muscle contract rhythmically, but the way in which repetitive contractions are controlled is different in the two types of muscle. We have compared the flight muscle of the water bug, Lethocerus, with cardiac muscle. Both have relatively high resting elasticity and are activated by an increase in sarcomere length or a quick stretch. The larger response of flight muscle is attributed to the highly ordered lattice of thick and thin filaments and to an isoform of troponin C that has no exchangeable Ca2+-binding site. The Ca2+ sensitivity of cardiac muscle and flight muscle can be manipulated so that cardiac muscle responds to Ca2+ like flight muscle, and flight muscle responds like cardiac muscle, showing the malleability of regulation. The interactions of the subunits in flight muscle troponin are described; a model of the complex, using the structure of cardiac troponin as a template, shows an overall similarity of cardiac and flight muscle troponin complexes. The dual regulation by thick and thin filaments in skeletal and cardiac muscle is thought to operate in flight muscle. The structure of inhibited myosin heads folded back on the thick filament in relaxed Lethocerus fibres has not been seen in other species and may be an adaptation to the rapid contractions of flight muscle. A scheme for regulation by thick and thin filaments during oscillatory contraction is described. Cardiac and flight muscle have much in common, but the differing mechanical requirements mean that regulation by both thick and thin filaments is adapted to the particular muscle.
Collapse
|
38
|
Azad A, Poloni G, Sontayananon N, Jiang H, Gehmlich K. The giant titin: how to evaluate its role in cardiomyopathies. J Muscle Res Cell Motil 2019; 40:159-167. [PMID: 31147888 PMCID: PMC6726704 DOI: 10.1007/s10974-019-09518-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/28/2019] [Indexed: 01/02/2023]
Abstract
Titin, the largest protein known, has attracted a lot of interest in the cardiovascular field in recent years, since the discovery that truncating variants in titin are commonly found in patients with dilated cardiomyopathy. This review will discuss the contribution of variants in titin to inherited cardiac conditions (cardiomyopathies) and how model systems, such as animals and cellular systems, can help to provide insights into underlying disease mechanisms. It will also give an outlook onto exciting technological developments, such as in the field of CRISPR, which may facilitate future research on titin variants and their contributions to cardiomyopathies.
Collapse
Affiliation(s)
- Amar Azad
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
- Swansea University Medical School, Swansea, SA2 8PP, UK
| | - Giulia Poloni
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - Naeramit Sontayananon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - He Jiang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK.
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
39
|
Koser F, Loescher C, Linke WA. Posttranslational modifications of titin from cardiac muscle: how, where, and what for? FEBS J 2019; 286:2240-2260. [PMID: 30989819 PMCID: PMC6850032 DOI: 10.1111/febs.14854] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/27/2019] [Accepted: 04/13/2019] [Indexed: 12/11/2022]
Abstract
Titin is a giant elastic protein expressed in the contractile units of striated muscle cells, including the sarcomeres of cardiomyocytes. The last decade has seen enormous progress in our understanding of how titin molecular elasticity is modulated in a dynamic manner to help cardiac sarcomeres adjust to the varying hemodynamic demands on the heart. Crucial events mediating the rapid modulation of cardiac titin stiffness are post‐translational modifications (PTMs) of titin. In this review, we first recollect what is known from earlier and recent work on the molecular mechanisms of titin extensibility and force generation. The main goal then is to provide a comprehensive overview of current insight into the relationship between titin PTMs and cardiomyocyte stiffness, notably the effect of oxidation and phosphorylation of titin spring segments on titin stiffness. A synopsis is given of which type of oxidative titin modification can cause which effect on titin stiffness. A large part of the review then covers the mechanically relevant phosphorylation sites in titin, their location along the elastic segment, and the protein kinases and phosphatases known to target these sites. We also include a detailed coverage of the complex changes in phosphorylation at specific titin residues, which have been reported in both animal models of heart disease and in human heart failure, and their correlation with titin‐based stiffness alterations. Knowledge of the relationship between titin PTMs and titin elasticity can be exploited in the search for therapeutic approaches aimed at softening the pathologically stiffened myocardium in heart failure patients.
Collapse
|
40
|
Majerle A, Schmieden DT, Jerala R, Meyer AS. Synthetic Biology for Multiscale Designed Biomimetic Assemblies: From Designed Self-Assembling Biopolymers to Bacterial Bioprinting. Biochemistry 2019; 58:2095-2104. [PMID: 30957491 DOI: 10.1021/acs.biochem.8b00922] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nature is based on complex self-assembling systems that span from the nanoscale to the macroscale. We have already begun to design biomimetic systems with properties that have not evolved in nature, based on designed molecular interactions and regulation of biological systems. Synthetic biology is based on the principle of modularity, repurposing diverse building modules to design new types of molecular and cellular assemblies. While we are currently able to use techniques from synthetic biology to design self-assembling molecules and re-engineer functional cells, we still need to use guided assembly to construct biological assemblies at the macroscale. We review the recent strategies for designing biological systems ranging from molecular assemblies based on self-assembly of (poly)peptides to the guided assembly of patterned bacteria, spanning 7 orders of magnitude.
Collapse
Affiliation(s)
- Andreja Majerle
- Department of Synthetic Biology and Immunology , National Institute of Chemistry , Hajdrihova 19 , 1000 Ljubljana , Slovenia
| | - Dominik T Schmieden
- Department of Bionanoscience, Kavli Institute of Nanoscience , Delft University of Technology , 2629 HZ Delft , The Netherlands
| | - Roman Jerala
- Department of Synthetic Biology and Immunology , National Institute of Chemistry , Hajdrihova 19 , 1000 Ljubljana , Slovenia
| | - Anne S Meyer
- Department of Biology , University of Rochester , Rochester , New York 14627 , United States
| |
Collapse
|
41
|
Recessive mutations in proximal I-band of TTN gene cause severe congenital multi-minicore disease without cardiac involvement. Neuromuscul Disord 2019; 29:350-357. [PMID: 31053406 DOI: 10.1016/j.nmd.2019.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/10/2019] [Indexed: 11/22/2022]
Abstract
Titin, encoded by the gene TTN, is one of the main sarcomere components. It is involved in not only maintaining the structure of cardiac and skeletal muscles, but also in their development, extensibility, elasticity, and signaling events. Congenital titinopathy increasingly appears an important and common form of axial predominant congenital myopathy. The pathophysiological role of TTN in congenital titinopathy and pediatric heart diseases is yet to be explored. Here, we delineate the phenotype of two female siblings who developed severe congenital multi-minicore disease without cardiac involvement. Genetic investigation by whole exome sequencing demonstrated compound heterozygous TTN mutations (c.15496+1G>A, p.5166_5258del; c.18597_18598insC, p.Thr6200Hisfs*15), corresponding to the Ig domain of the proximal I-band. Aberrant splicing causing exon skipping was verified by in vitro minigene analysis. Our results suggest that TTN mutations affecting the Ig domain of the proximal I-band may be a cause of severe congenital defect in skeletal muscles without severe cardiac involvement, thereby providing evidence for the hypothesis that congenital titinopathy patients carrying biallelic N2BA only mutations are at lower cardiac risk than those with other combinations of mutations. Meanwhile, this study confirm the hypothesis on recessive truncating variants of TTN experimentally and thus support earlier reported genotype-phenotype correlations.
Collapse
|
42
|
Zubac D, Paravlic A, Reale R, Jelaska I, Morrison SA, Ivancev V. Fluid balance and hydration status in combat sport Olympic athletes: a systematic review with meta-analysis of controlled and uncontrolled studies. Eur J Nutr 2019; 58:497-514. [DOI: 10.1007/s00394-019-01937-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/22/2019] [Indexed: 11/28/2022]
|
43
|
van der Velden J, Stienen GJM. Cardiac Disorders and Pathophysiology of Sarcomeric Proteins. Physiol Rev 2019; 99:381-426. [PMID: 30379622 DOI: 10.1152/physrev.00040.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The sarcomeric proteins represent the structural building blocks of heart muscle, which are essential for contraction and relaxation. During recent years, it has become evident that posttranslational modifications of sarcomeric proteins, in particular phosphorylation, tune cardiac pump function at rest and during exercise. This delicate, orchestrated interaction is also influenced by mutations, predominantly in sarcomeric proteins, which cause hypertrophic or dilated cardiomyopathy. In this review, we follow a bottom-up approach starting from a description of the basic components of cardiac muscle at the molecular level up to the various forms of cardiac disorders at the organ level. An overview is given of sarcomere changes in acquired and inherited forms of cardiac disease and the underlying disease mechanisms with particular reference to human tissue. A distinction will be made between the primary defect and maladaptive/adaptive secondary changes. Techniques used to unravel functional consequences of disease-induced protein changes are described, and an overview of current and future treatments targeted at sarcomeric proteins is given. The current evidence presented suggests that sarcomeres not only form the basis of cardiac muscle function but also represent a therapeutic target to combat cardiac disease.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Ger J M Stienen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| |
Collapse
|
44
|
The power of the force: mechano-physiology of the giant titin. Emerg Top Life Sci 2018; 2:681-686. [PMID: 33530662 DOI: 10.1042/etls20180046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 01/18/2023]
Abstract
Titin - the largest protein in the human body - spans half of the muscle sarcomere from the Z-disk to the M-band through a single polypeptide chain. More than 30 000 amino acid residues coded from a single gene (TTN, in humans Q8WZ42) form a long filamentous protein organized in individual globular domains concatenated in tandem. Owing to its location and close interaction with the other muscle filaments, titin is considered the third filament of muscle, after the thick-myosin and the thin-actin filaments.
Collapse
|
45
|
Herrero-Galán E, Martínez-Martín I, Alegre-Cebollada J. Redox regulation of protein nanomechanics in health and disease: Lessons from titin. Redox Biol 2018; 21:101074. [PMID: 30584979 PMCID: PMC6305763 DOI: 10.1016/j.redox.2018.101074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/22/2018] [Accepted: 12/07/2018] [Indexed: 01/11/2023] Open
Abstract
The nanomechanics of sarcomeric proteins is a key contributor to the mechanical output of muscle. Among them, titin emerges as a main target for the regulation of the stiffness of striated muscle. In the last years, single-molecule experiments by Atomic Force Microscopy (AFM) have demonstrated that redox posttranslational modifications are strong modulators of the mechanical function of titin. Here, we provide an overview of the recent development of the redox mechanobiology of titin, and suggest avenues of research to better understand how the stiffness of molecules, cells and tissues are modulated by redox signaling in health and disease.
Collapse
|
46
|
Kramer PA, Duan J, Gaffrey MJ, Shukla AK, Wang L, Bammler TK, Qian WJ, Marcinek DJ. Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle. Redox Biol 2018; 17:367-376. [PMID: 29857311 PMCID: PMC6007084 DOI: 10.1016/j.redox.2018.05.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 02/08/2023] Open
Abstract
Protein S-glutathionylation is an important reversible post-translational modification implicated in redox signaling. Oxidative modifications to protein thiols can alter the activity of metabolic enzymes, transcription factors, kinases, phosphatases, and the function of contractile proteins. However, the extent to which muscle contraction induces oxidative modifications in redox sensitive thiols is not known. The purpose of this study was to determine the targets of S-glutathionylation redox signaling following fatiguing contractions. Anesthetized adult male CB6F1 (BALB/cBy × C57BL/6) mice were subjected to acute fatiguing contractions for 15 min using in vivo stimulations. The right (stimulated) and left (unstimulated) gastrocnemius muscleswere collected 60 min after the last stimulation and processed for redox proteomics assay of S-glutathionylation. Using selective reduction with a glutaredoxin enzyme cocktail and resin-assisted enrichment technique, we quantified the levels of site-specific protein S-glutathionylation at rest and following fatiguing contractions. Redox proteomics revealed over 2200 sites of S-glutathionylation modifications, of which 1290 were significantly increased after fatiguing contractions. Muscle contraction leads to the greatest increase in S-glutathionylation in the mitochondria (1.03%) and the smallest increase in the nucleus (0.47%). Regulatory cysteines were significantly S-glutathionylated on mitochondrial complex I and II, GAPDH, MDH1, ACO2, and mitochondrial complex V among others. Similarly, S-glutathionylation of RYR1, SERCA1, titin, and troponin I2 are known to regulate muscle contractility and were significantly S-glutathionylated after just 15 min of fatiguing contractions. The largest fold changes (> 1.6) in the S-glutathionylated proteome after fatigue occurred on signaling proteins such as 14-3-3 protein gamma and MAP2K4, as well as proteins like SERCA1, and NDUV2 of mitochondrial complex I, at previously unknown glutathionylation sites. These findings highlight the important role of redox control over muscle physiology, metabolism, and the exercise adaptive response. This study lays the groundwork for future investigation into the altered exercise adaptation associated with chronic conditions, such as sarcopenia. A single bout of fatiguing contractions increase muscle protein S-glutathionylation. Mitochondrial proteins are sensitive to oxidative modifications following fatigue. The glutathionylated proteome includes cysteines of known functional importance.
Collapse
Affiliation(s)
- Philip A Kramer
- Department of Radiology, University of Washington, Seattle, WA 98105, United States
| | - Jicheng Duan
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Matthew J Gaffrey
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Anil K Shukla
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Lu Wang
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98105, United States
| | - Theo K Bammler
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98105, United States
| | - Wei-Jun Qian
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States.
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA 98105, United States.
| |
Collapse
|
47
|
Hopf AE, Andresen C, Kötter S, Isić M, Ulrich K, Sahin S, Bongardt S, Röll W, Drove F, Scheerer N, Vandekerckhove L, De Keulenaer GW, Hamdani N, Linke WA, Krüger M. Diabetes-Induced Cardiomyocyte Passive Stiffening Is Caused by Impaired Insulin-Dependent Titin Modification and Can Be Modulated by Neuregulin-1. Circ Res 2018; 123:342-355. [PMID: 29760016 DOI: 10.1161/circresaha.117.312166] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 05/05/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022]
Abstract
RATIONALE Increased titin-dependent cardiomyocyte tension is a hallmark of heart failure with preserved ejection fraction associated with type-2 diabetes mellitus. However, the insulin-related signaling pathways that modify titin-based cardiomyocyte tension, thereby contributing to modulation of diastolic function, are largely unknown. OBJECTIVE We aimed to determine how impaired insulin signaling affects titin expression and phosphorylation and thus increases passive cardiomyocyte tension, and whether metformin or neuregulin-1 (NRG-1) can correct disturbed titin modifications and increased titin-based stiffness. METHODS AND RESULTS We used cardiac biopsies from human diabetic (n=23) and nondiabetic patients (n=19), cultured rat cardiomyocytes, left ventricular tissue from apolipoprotein E-deficient mice with streptozotocin-induced diabetes mellitus (n=12-22), and ZSF1 (obese diabetic Zucker fatty/spontaneously hypertensive heart failure F1 hybrid) rats (n=5-6) and analyzed insulin-dependent signaling pathways that modulate titin phosphorylation. Titin-based passive tension was measured using permeabilized cardiomyocytes. In human diabetic hearts, we detected titin hypophosphorylation at S4099 and hyperphosphorylation at S11878, suggesting altered activity of protein kinases; cardiomyocyte passive tension was significantly increased. When applied to cultured cardiomyocytes, insulin and metformin increased titin phosphorylation at S4010, S4099, and S11878 via enhanced ERK1/2 (extracellular signal regulated kinase 1/2) and PKCα (protein kinase Cα) activity; NRG-1 application enhanced ERK1/2 activity but reduced PKCα activity. In apolipoprotein E-deficient mice, chronic treatment of streptozotocin-induced diabetes mellitus with NRG-1 corrected titin phosphorylation via increased PKG (protein kinase G) and ERK1/2 activity and reduced PKCα activity, which reversed the diabetes mellitus-associated changes in titin-based passive tension. Acute application of NRG-1 to obese ZSF1 rats with type-2 diabetes mellitus reduced end-diastolic pressure. CONCLUSIONS Mechanistically, we found that impaired cGMP-PKG signaling and elevated PKCα activity are key modulators of titin-based cardiomyocyte stiffening in diabetic hearts. We conclude that by restoring normal kinase activities of PKG, ERK1/2, and PKCα, and by reducing cardiomyocyte passive tension, chronic NRG-1 application is a promising approach to modulate titin properties in heart failure with preserved ejection fraction associated with type-2 diabetes mellitus.
Collapse
Affiliation(s)
- Anna-Eliane Hopf
- From the Medical Faculty, Department of Cardiovascular Physiology, Heinrich-Heine-University, Düsseldorf, Germany (A.-E.H., C.A., S.K., M.I., S.S., S.B., M.K.)
| | - Christian Andresen
- From the Medical Faculty, Department of Cardiovascular Physiology, Heinrich-Heine-University, Düsseldorf, Germany (A.-E.H., C.A., S.K., M.I., S.S., S.B., M.K.)
| | - Sebastian Kötter
- From the Medical Faculty, Department of Cardiovascular Physiology, Heinrich-Heine-University, Düsseldorf, Germany (A.-E.H., C.A., S.K., M.I., S.S., S.B., M.K.)
| | - Małgorzata Isić
- From the Medical Faculty, Department of Cardiovascular Physiology, Heinrich-Heine-University, Düsseldorf, Germany (A.-E.H., C.A., S.K., M.I., S.S., S.B., M.K.)
| | - Kamila Ulrich
- Department of Systems Physiology, Ruhr-University Bochum, Germany (K.U., N.H.)
| | - Senem Sahin
- From the Medical Faculty, Department of Cardiovascular Physiology, Heinrich-Heine-University, Düsseldorf, Germany (A.-E.H., C.A., S.K., M.I., S.S., S.B., M.K.)
| | - Sabine Bongardt
- From the Medical Faculty, Department of Cardiovascular Physiology, Heinrich-Heine-University, Düsseldorf, Germany (A.-E.H., C.A., S.K., M.I., S.S., S.B., M.K.)
| | - Wilhelm Röll
- Department of Cardiovascular Surgery, University Clinic Bonn, Germany (W.R.)
| | - Felicitas Drove
- Bayer AG, Drug Discovery, Pharmaceuticals, Wuppertal, Germany (F.D., N.S.)
| | - Nina Scheerer
- Bayer AG, Drug Discovery, Pharmaceuticals, Wuppertal, Germany (F.D., N.S.)
| | - Leni Vandekerckhove
- Department of Pharmaceutical Sciences, Laboratory of Physiopharmacology, Campus Drie Eiken, University of Antwerp, Belgium (L.V., G.W.D.)
| | - Gilles W De Keulenaer
- Department of Pharmaceutical Sciences, Laboratory of Physiopharmacology, Campus Drie Eiken, University of Antwerp, Belgium (L.V., G.W.D.)
| | - Nazha Hamdani
- Department of Systems Physiology, Ruhr-University Bochum, Germany (K.U., N.H.)
| | - Wolfgang A Linke
- Institute of Physiology II, University of Munster, Germany (W.A.L.)
| | - Martina Krüger
- From the Medical Faculty, Department of Cardiovascular Physiology, Heinrich-Heine-University, Düsseldorf, Germany (A.-E.H., C.A., S.K., M.I., S.S., S.B., M.K.)
| |
Collapse
|
48
|
Zubac D, Reale R, Karnincic H, Sivric A, Jelaska I. Urine specific gravity as an indicator of dehydration in Olympic combat sport athletes; considerations for research and practice. Eur J Sport Sci 2018; 18:920-929. [PMID: 29746803 DOI: 10.1080/17461391.2018.1468483] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Urine specific gravity (USG) is the most commonly reported biochemical marker used in research and applied settings to detect fluid deficits in athletes, including those participating in combat sports. Despite the popularity of its use, there has been a growing debate regarding the diagnostic accuracy and the applicability of USG in characterizing whole-body fluid status and fluctuations. Moreover, recent investigations report universally high prevalence of hypohydration (∼90%) via USG assessment in combat sport athletes, often in spite of stable body-mass. Given the widespread use in both research and practice, and its use in a regulatory sense as a 'hydration test' in combat sports as a means to detect dehydration at the time of weigh-in; understanding the limitations and applicability of USG assessment is of paramount importance. Inconsistencies in findings of USG readings, possibly as a consequence of diverse methodological research approaches and/or overlooked confounding factors, preclude a conclusive position stand within current combat sports research and practice. Thus the primary aim of this paper is to critically review the literature regarding USG assessment of hydration status in combat sports research and practice. When taken on balance, the existing literature suggests: the use of laboratory derived benchmarks in applied settings, inconsistent sampling methodologies, the incomplete picture of how various confounding factors affect end-point readings, and the still poorly understood potential of renal adaptation to dehydration in combat athletes; make the utility of hydration assessment via USG measurement quite problematic, particularly when diet and training is not controlled.
Collapse
Affiliation(s)
- Damir Zubac
- a Science and Research Center Koper , Institute for Kinesiology Research , Koper , Slovenia.,c Faculty of Kinesiology , University of Split , Split , Croatia
| | - Reid Reale
- b Gatorade Sports Science Institute , Bradenton , FL , USA
| | - Hrvoje Karnincic
- c Faculty of Kinesiology , University of Split , Split , Croatia
| | | | - Igor Jelaska
- c Faculty of Kinesiology , University of Split , Split , Croatia
| |
Collapse
|
49
|
Williams RM, Franke B, Wilkinson M, Fleming JR, Rigden DJ, Benian GM, Eyers PA, Mayans O. Autophosphorylation Is a Mechanism of Inhibition in Twitchin Kinase. J Mol Biol 2018; 430:793-805. [PMID: 29408381 DOI: 10.1016/j.jmb.2018.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 11/17/2022]
Abstract
Titin-like kinases are muscle-specific kinases that regulate mechanical sensing in the sarcomere. Twitchin kinase (TwcK) is the best-characterized member of this family, both structurally and enzymatically. TwcK activity is auto-inhibited by a dual intrasteric mechanism, in which N- and C-terminal tail extensions wrap around the kinase domain, blocking the hinge region, the ATP binding pocket and the peptide substrate binding groove. Physiologically, kinase activation is thought to occur by a stretch-induced displacement of the inhibitory tails from the kinase domain. Here, we now show that TwcK inhibits its catalysis even in the absence of regulatory tails, by undergoing auto-phosphorylation at mechanistically important elements of the kinase fold. Using mass spectrometry, site-directed mutagenesis and catalytic assays on recombinant samples, we identify residues T212, T301, T316 and T401 as primary auto-phosphorylation sites in TwcK in vitro. Taken together, our results suggest that residue T316, located in the peptide substrate binding P+1 loop, is the dominantly regulatory site in TwcK. Based on these findings, we conclude that TwcK is regulated through a triple-inhibitory mechanism consisting of phosphorylation and intrasteric blockage, which is responsive not only to mechanical cues but also to biochemical modulation. This implies that mechanically stretched conformations of TwcK do not necessarily correspond to catalytically active states, as previously postulated. This further suggests a phosphorylation-dependent desensitization of the TwcK-mediated mechanoresponse of the sarcomere in vivo.
Collapse
Affiliation(s)
- Rhys M Williams
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany; Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Barbara Franke
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany; Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Mark Wilkinson
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | | | - Daniel J Rigden
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Guy M Benian
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Olga Mayans
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany; Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| |
Collapse
|
50
|
Savarese M, Sarparanta J, Vihola A, Udd B, Hackman P. Increasing Role of Titin Mutations in Neuromuscular Disorders. J Neuromuscul Dis 2018; 3:293-308. [PMID: 27854229 PMCID: PMC5123623 DOI: 10.3233/jnd-160158] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The TTN gene with 363 coding exons encodes titin, a giant muscle protein spanning from the Z-disk to the M-band within the sarcomere. Mutations in the TTN gene have been associated with different genetic disorders, including hypertrophic and dilated cardiomyopathy and several skeletal muscle diseases. Before the introduction of next generation sequencing (NGS) methods, the molecular analysis of TTN has been laborious, expensive and not widely used, resulting in a limited number of mutations identified. Recent studies however, based on the use of NGS strategies, give evidence of an increasing number of rare and unique TTN variants. The interpretation of these rare variants of uncertain significance (VOUS) represents a challenge for clinicians and researchers. The main aim of this review is to describe the wide spectrum of muscle diseases caused by TTN mutations so far determined, summarizing the molecular findings as well as the clinical data, and to highlight the importance of joint efforts to respond to the challenges arising from the use of NGS. An international collaboration through a clinical and research consortium and the development of a single accessible database listing variants in the TTN gene, identified by high throughput approaches, may be the key to a better assessment of titinopathies and to systematic genotype– phenotype correlation studies.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland.,Albert Einstein College of Medicine, Departments of Medicine- Endocrinology and Molecular Pharmacology, Bronx, NY, USA
| | - Anna Vihola
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland.,Neuromuscular Research Center, University of Tampere and Tampere University Hospital, Tampere, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| | - Peter Hackman
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|