1
|
Hoque NJ, Rivera S, Young PG, Weinert EE, Liu Y. Heme pocket hydrogen bonding residue interactions within the Pectobacterium Diguanylate cyclase-containing globin coupled sensor: A resonance Raman study. J Inorg Biochem 2024; 260:112686. [PMID: 39106644 DOI: 10.1016/j.jinorgbio.2024.112686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
Heme-based sensor proteins are used by organisms to control signaling and physiological effects in response to their gaseous environment. Globin-coupled sensors (GCS) are oxygen-sensing proteins that are widely distributed in bacteria. These proteins consist of a heme globin domain linked by a middle domain to various output domains, including diguanylate cyclase domains, which are responsible for synthesizing c-di-GMP, a bacterial second messenger crucial for regulating biofilm formation. To understand the roles of heme pocket residues in controlling activity of the diguanylate cyclase domain, variants of the Pectobacterium carotovorum GCS (PccGCS) were characterized by enzyme kinetics and resonance Raman (rR) spectroscopy. Results of these studies have identified roles for hydrogen bonding and heme edge residues in modulating heme pocket conformation and flexibility. Better understanding of the ligand-dependent GCS signaling mechanism and the residues involved may allow for future development of methods to control O2-dependent c-di-GMP production.
Collapse
Affiliation(s)
- Nushrat J Hoque
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Shannon Rivera
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Paul G Young
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Emily E Weinert
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Yilin Liu
- Department of Chemistry, University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
2
|
Belot A, Puy H, Hamza I, Bonkovsky HL. Update on heme biosynthesis, tissue-specific regulation, heme transport, relation to iron metabolism and cellular energy. Liver Int 2024; 44:2235-2250. [PMID: 38888238 PMCID: PMC11625177 DOI: 10.1111/liv.15965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/20/2024]
Abstract
Heme is a primordial macrocycle upon which most aerobic life on Earth depends. It is essential to the survival and health of nearly all cells, functioning as a prosthetic group for oxygen-carrying proteins and enzymes involved in oxidation/reduction and electron transport reactions. Heme is essential for the function of numerous hemoproteins and has numerous other roles in the biochemistry of life. In mammals, heme is synthesised from glycine, succinyl-CoA, and ferrous iron in a series of eight steps. The first and normally rate-controlling step is catalysed by 5-aminolevulinate synthase (ALAS), which has two forms: ALAS1 is the housekeeping form with highly variable expression, depending upon the supply of the end-product heme, which acts to repress its activity; ALAS2 is the erythroid form, which is regulated chiefly by the adequacy of iron for erythroid haemoglobin synthesis. Abnormalities in the several enzymes of the heme synthetic pathway, most of which are inherited partial enzyme deficiencies, give rise to rare diseases called porphyrias. The existence and role of heme importers and exporters in mammals have been debated. Recent evidence established the presence of heme transporters. Such transporters are important for the transfer of heme from mitochondria, where the penultimate and ultimate steps of heme synthesis occur, and for the transfer of heme from cytoplasm to other cellular organelles. Several chaperones of heme and iron are known and important for cell health. Heme and iron, although promoters of oxidative stress and potentially toxic, are essential cofactors for cellular energy production and oxygenation.
Collapse
Affiliation(s)
- Audrey Belot
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Herve Puy
- Centre Français des Porphyries, Assistance Publique-Hôpitaux de Paris (APHP), Université de Paris Cité, INSERM U1149, Paris, France
| | - Iqbal Hamza
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Herbert L. Bonkovsky
- Section on Gastroenterology & Hepatology, Department of Medicine, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina, USA
| |
Collapse
|
3
|
Marson NA, Gallio AE, Mandal SK, Laskowski RA, Raven EL. In silico prediction of heme binding in proteins. J Biol Chem 2024; 300:107250. [PMID: 38569935 PMCID: PMC11101860 DOI: 10.1016/j.jbc.2024.107250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
The process of heme binding to a protein is prevalent in almost all forms of life to control many important biological properties, such as O2-binding, electron transfer, gas sensing or to build catalytic power. In these cases, heme typically binds tightly (irreversibly) to a protein in a discrete heme binding pocket, with one or two heme ligands provided most commonly to the heme iron by His, Cys or Tyr residues. Heme binding can also be used as a regulatory mechanism, for example in transcriptional regulation or ion channel control. When used as a regulator, heme binds more weakly, with different heme ligations and without the need for a discrete heme pocket. This makes the characterization of heme regulatory proteins difficult, and new approaches are needed to predict and understand the heme-protein interactions. We apply a modified version of the ProFunc bioinformatics tool to identify heme-binding sites in a test set of heme-dependent regulatory proteins taken from the Protein Data Bank and AlphaFold models. The potential heme binding sites identified can be easily visualized in PyMol and, if necessary, optimized with RosettaDOCK. We demonstrate that the methodology can be used to identify heme-binding sites in proteins, including in cases where there is no crystal structure available, but the methodology is more accurate when the quality of the structural information is high. The ProFunc tool, with the modification used in this work, is publicly available at https://www.ebi.ac.uk/thornton-srv/databases/profunc and can be readily adopted for the examination of new heme binding targets.
Collapse
Affiliation(s)
- Noa A Marson
- School of Chemistry, University of Bristol, Bristol, UK
| | | | | | - Roman A Laskowski
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Cambridge, UK
| | - Emma L Raven
- School of Chemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
4
|
De Simone G, di Masi A, Pasquadibisceglie A, Coletta A, Sebastiani F, Smulevich G, Coletta M, Ascenzi P. Nitrobindin versus myoglobin: A comparative structural and functional study. J Inorg Biochem 2024; 250:112387. [PMID: 37914583 DOI: 10.1016/j.jinorgbio.2023.112387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 11/03/2023]
Abstract
Most hemoproteins display an all-α-helical fold, showing the classical three on three (3/3) globin structural arrangement characterized by seven or eight α-helical segments that form a sandwich around the heme. Over the last decade, a completely distinct class of heme-proteins called nitrobindins (Nbs), which display an all-β-barrel fold, has been identified and characterized from both structural and functional perspectives. Nbs are ten-stranded anti-parallel all-β-barrel heme-proteins found across the evolutionary ladder, from bacteria to Homo sapiens. Myoglobin (Mb), commonly regarded as the prototype of monomeric all-α-helical globins, is involved along with the oligomeric hemoglobin (Hb) in diatomic gas transport, storage, and sensing, as well as in the detoxification of reactive nitrogen and oxygen species. On the other hand, the function(s) of Nbs is still obscure, even though it has been postulated that they might participate to O2/NO signaling and metabolism. This function might be of the utmost importance in poorly oxygenated tissues, such as the eye's retina, where a delicate balance between oxygenation and blood flow (regulated by NO) is crucial. Dysfunction in this balance is associated with several pathological conditions, such as glaucoma and diabetic retinopathy. Here a detailed comparison of the structural, spectroscopic, and functional properties of Mb and Nbs is reported to shed light on the similarities and differences between all-α-helical and all-β-barrel heme-proteins.
Collapse
Affiliation(s)
| | | | | | | | - Federico Sebastiani
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, 50019 Sesto Fiorentino, FI, Italy
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, 50019 Sesto Fiorentino, FI, Italy
| | | | - Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Università Roma Tre, 00146 Roma, Italy.
| |
Collapse
|
5
|
Rojas-Pirela M, Delgado A, Rondón-Guerrero YDC, Cáceres AJ, Michels PAM, Concepción JL, Quiñones W. A Trypanosoma cruzi phosphoglycerate kinase isoform with a Per-Arnt-Sim domain acts as a possible sensor for intracellular conditions. Exp Parasitol 2023:108574. [PMID: 37353138 DOI: 10.1016/j.exppara.2023.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Per-ARNT-Sim (PAS) domains constitute a family of domains present in a wide variety of prokaryotic and eukaryotic organisms. They form part of the structure of various proteins involved in diverse cellular processes. Regulation of enzymatic activity and adaptation to environmental conditions, by binding small ligands, are the main functions attributed to PAS-containing proteins. Recently, genes for a diverse set of proteins with a PAS domain were identified in the genomes of several protists belonging to the group of kinetoplastids, however, until now few of these proteins have been characterized. In this work, we characterize a phosphoglycerate kinase containing a PAS domain present in Trypanosoma cruzi (TcPAS-PGK). This PGK isoform is an active enzyme of 58 kDa with a PAS domain located at its N-terminal end. We identified the protein's localization within glycosomes of the epimastigote form of the parasite by differential centrifugation and selective permeabilization of its membranes with digitonin, as well as in an enriched mitochondrial fraction. Heterologous expression systems were developed for the protein with the N-terminal PAS domain (PAS-PGKc) and without it (PAS-PGKt), and the substrate affinities of both forms of the protein were determined. The enzyme does not exhibit standard Michaelis-Menten kinetics. When evaluating the dependence of the specific activity of the recombinant PAS-PGK on the concentration of its substrates 3-phosphoglycerate (3PGA) and ATP, two peaks of maximal activity were found for the complete enzyme with the PAS domain and a single peak for the enzyme without the domain. Km values measured for 3PGA were 219 ± 26 and 8.8 ± 1.3 μM, and for ATP 291 ± 15 and 38 ± 2.2 μM, for the first peak of PAS-PGKc and for PAS-PGKt, respectively, whereas for the second PAS-PGKc peak values of approximately 1.1-1.2 mM were estimated for both substrates. Both recombinant proteins show inhibition by high concentrations of their substrates, ATP and 3PGA. The presence of hemin and FAD exerts a stimulatory effect on PAS-PGKc, increasing the specific activity by up to 55%. This stimulation is not observed in the absence of the PAS domain. It strongly suggests that the PAS domain has an important function in vivo in T. cruzi in the modulation of the catalytic activity of this PGK isoform. In addition, the PAS-PGK through its PAS and PGK domains could act as a sensor for intracellular conditions in the parasite to adjust its intermediary metabolism.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Andrea Delgado
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Yossmayer D C Rondón-Guerrero
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Paul A M Michels
- School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FL, Scotland, United Kingdom
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela.
| |
Collapse
|
6
|
Ramos L. Dimorphic frataxin and its gene regulation by sex steroids in hamsters. Mol Genet Genomics 2023; 298:615-626. [PMID: 36929169 DOI: 10.1007/s00438-023-02004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
The role of frataxin (FXN) has been studied extensively in Friedreich ataxia patients, however, the molecular bases underlining the sex steroid-dependent gene expression profiles of FXN in adult tissues are unknown. I describe the molecular characterization of hamster FXN by examining the sexually dimorphic expression and its regulation by sex steroids. Sequence analysis of FXN cDNA showed 630 bp-long ORF encoding 209 amino acids. qPCR analysis revealed that FXN is detected in a wide range of tissues, with the highest expression in the heart, liver, and epididymis, and the weakest expression in the lung, spleen, uterus, and gut. In the male Harderian gland (HG), castration decreased FXN expression, while dihydrotestosterone (DHT) administration reestablished levels. FXN expression levels were higher in the male HG than the female HG. Expression levels in endocrine tissues showed a certain degree of sexual dimorphism; the transcript in the testis was significantly higher than those in the ovary. The effects of the estrous cycle on FXN expression remained unchanged in the HG, ovary, and adrenal glands; however, in the pancreas, the FXN mRNA was overexpressed during proestrus and exhibited sexual dimorphism as compared to the male pancreas. The mRNA expression results indicated that Harderian FXN may play a dynamic role in intracellular Fe of heme required for processing cytochromes and other hemeproteins, also suggesting that the moderate sexual dimorphism present in the HG and gonads could be regulated by androgens, while sexually dimorphic expression of FXN in the female pancreas may be controlled by sex steroids.
Collapse
Affiliation(s)
- L Ramos
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Av. Vasco de Quiroga #15, Tlalpan, C.P. 14080, México City, México.
| |
Collapse
|
7
|
Wilkinson IVL, Bottlinger M, El Harraoui Y, Sieber SA. Profiling the Heme-Binding Proteomes of Bacteria Using Chemical Proteomics. Angew Chem Int Ed Engl 2023; 62:e202212111. [PMID: 36495310 DOI: 10.1002/anie.202212111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Heme is a cofactor with myriad roles and essential to almost all living organisms. Beyond classical gas transport and catalytic functions, heme is increasingly appreciated as a tightly controlled signalling molecule regulating protein expression. However, heme acquisition, biosynthesis and regulation is poorly understood beyond a few model organisms, and the heme-binding proteome has not been fully characterised in bacteria. Yet as heme homeostasis is critical for bacterial survival, heme-binding proteins are promising drug targets. Herein we report a chemical proteomics method for global profiling of heme-binding proteins in live cells for the first time. Employing a panel of heme-based clickable and photoaffinity probes enabled the profiling of 32-54 % of the known heme-binding proteomes in Gram-positive and Gram-negative bacteria. This simple-to-implement profiling strategy could be interchangeably applied to different cell types and systems and fuel future research into heme biology.
Collapse
Affiliation(s)
- Isabel V L Wilkinson
- Centre for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85748, Garching, Germany
| | - Max Bottlinger
- Centre for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85748, Garching, Germany
| | - Yassmine El Harraoui
- Centre for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85748, Garching, Germany
| | - Stephan A Sieber
- Centre for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85748, Garching, Germany
| |
Collapse
|
8
|
Damodaran AR, Bhagi-Damodaran A. Integrating UV-Vis Spectroscopy and Oxygen Optode for Accurate Determination of Oxygen Affinity of Proteins. Methods Mol Biol 2023; 2648:1-10. [PMID: 37039981 DOI: 10.1007/978-1-0716-3080-8_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Protein-based oxygen sensors exhibit a wide range of affinity values ranging from low nanomolar to high micromolar. How proteins utilize different metals, cofactors, and macromolecular structure to regulate their oxygen affinity (Kd) to a value that is appropriate for their biological function is an important question in biochemistry and microbiology. In this chapter, we describe a simple setup that integrates a UV-Vis spectrometer with an oxygen optode for direct determination of Kd of heme-containing oxygen sensors. We provide details on how to set up the assay, acquire and fit data for accurate Kd determination using Cs H-NOX (Kd = 23 ± 2 nM) as an example, and also discuss tips and tricks to make the assay work for other oxygen-binding proteins.
Collapse
Affiliation(s)
- Anoop Rama Damodaran
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, MN, USA.
| | | |
Collapse
|
9
|
Castillo O, Mancillas J, Hughes W, Brancaleon L. Characterization of the interaction of metal-protoporphyrins photosensitizers with β- lactoglobulin. Biophys Chem 2023; 292:106918. [PMID: 36399946 DOI: 10.1016/j.bpc.2022.106918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
We investigated the interaction of a series of metal-protoporphyrins (PPIXs) with bovine β- lactoglobulin (BLG) using a combination of optical spectroscopy and computational simulations. Unlike other studies, the simulations were not merely used to rationalize the experimental data but were employed to refine the experimental data itself. The study was carried out at two pH values, 5 and 9, where BLG is known to have different conformation dictated by the so-called Tanford transition which occurs near pH 7.5. The transition is postulated to regulate access to the interior binding cavity of the protein, thus the pH variation was used as a parameter to investigate whether PPIXs access the central cavity of BLG. The results of our study show that indeed binding increases significantly at alkaline pH, however, the increased affinity is not due to the accessibility of the central cavity. Instead, binding appears to be determined by the tendency of PPIXs to form large inhomogeneous aggregates at acidic pH which hinders interactions with proteins. The binding site determined through a combination of experimental and computational methods is located at the interface between two BLG monomers where the long α-helix segment of the protein face each other. This region is rich in positively charged Lys residues that interact with the propionic acid chains of the protoporphyrins. Establishing the modality of binding between protoporphyrins and BLG would have important consequences for the use of BLG:PPIX complexes in applications such as artificial photoreceptors, artificial metallo-enzymes, delivery of photosensitizers for phototherapy and even solar energy conversion.
Collapse
Affiliation(s)
- Omar Castillo
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - James Mancillas
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - William Hughes
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Lorenzo Brancaleon
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
10
|
Roumenina LT, Dimitrov JD. Assessment of the breadth of binding promiscuity of heme towards human proteins. Biol Chem 2022; 403:1083-1090. [PMID: 36254402 DOI: 10.1515/hsz-2022-0226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/29/2022] [Indexed: 12/12/2022]
Abstract
Heme regulates important biological processes by transient interactions with many human proteins. The goal of the present study was to assess extends of protein binding promiscuity of heme. To this end we evaluated interaction of heme with >9000 human proteins. Heme manifested high binding promiscuity by binding to most of the proteins in the array. Nevertheless, some proteins have outstanding heme binding capacity. Bioinformatics analyses revealed that apart from typical haemoproteins, these proteins are frequently involved in metal binding or have the potential to recognize DNA. This study can contribute for understanding the regulatory functions of labile heme.
Collapse
Affiliation(s)
- Lubka T Roumenina
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers 15, rue de l'Ecole de Médecine, F-75006 Paris, France
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers 15, rue de l'Ecole de Médecine, F-75006 Paris, France
| |
Collapse
|
11
|
Wu G, Sharina I, Martin E. Soluble guanylyl cyclase: Molecular basis for ligand selectivity and action in vitro and in vivo. Front Mol Biosci 2022; 9:1007768. [PMID: 36304925 PMCID: PMC9592903 DOI: 10.3389/fmolb.2022.1007768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/27/2022] [Indexed: 01/14/2023] Open
Abstract
Nitric oxide (NO), carbon monoxide (CO), oxygen (O2), hydrogen sulfide (H2S) are gaseous molecules that play important roles in the physiology and pathophysiology of eukaryotes. Tissue concentrations of these physiologically relevant gases vary remarkable from nM range for NO to high μM range of O2. Various hemoproteins play a significant role in sensing and transducing cellular signals encoded by gaseous molecules or in transporting them. Soluble guanylyl cyclase (sGC) is a hemoprotein that plays vital roles in a wide range of physiological functions and combines the functions of gaseous sensor and signal transducer. sGC uniquely evolved to sense low non-toxic levels of NO and respond to elevated NO levels by increasing its catalytic ability to generate the secondary signaling messenger cyclic guanosine monophosphate (cGMP). This review discusses sGC's gaseous ligand selectivity and the molecular basis for sGC function as high-affinity and selectivity NO receptor. The effects of other gaseous molecules and small molecules of cellular origin on sGC's function are also discussed.
Collapse
Affiliation(s)
- Gang Wu
- Hematology-Oncology Division, Department of Internal Medicine, The University of Texas—McGovern Medical School, Houston, TX, United States,*Correspondence: Gang Wu, ; Emil Martin,
| | - Iraida Sharina
- Cardiology Division, Department of Internal Medicine, The University of Texas—McGovern Medical School, Houston, TX, United States
| | - Emil Martin
- Cardiology Division, Department of Internal Medicine, The University of Texas—McGovern Medical School, Houston, TX, United States,*Correspondence: Gang Wu, ; Emil Martin,
| |
Collapse
|
12
|
Homan RA, Jadhav AM, Conway LP, Parker CG. A Chemical Proteomic Map of Heme-Protein Interactions. J Am Chem Soc 2022; 144:15013-15019. [PMID: 35960875 PMCID: PMC9811995 DOI: 10.1021/jacs.2c06104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heme is an essential cofactor for many human proteins as well as the primary transporter of oxygen in blood. Recent studies have also established heme as a signaling molecule, imparting its effects through binding with protein partners rather than through reactivity of its metal center. However, the comprehensive annotation of such heme-binding proteins in the human proteome remains incomplete. Here, we describe a strategy which utilizes a heme-based photoaffinity probe integrated with quantitative proteomics to map heme-protein interactions across the proteome. In these studies, we identified 350+ unique heme-protein interactions, the vast majority of which were heretofore unknown and consist of targets from diverse functional classes, including transporters, receptors, enzymes, transcription factors, and chaperones. Among these proteins is the immune-related interleukin receptor-associated kinase 1 (IRAK1), where we provide preliminary evidence that heme agonizes its catalytic activity. Our findings should improve the current understanding of heme's regulation as well as its signaling functions and facilitate new insights of its roles in human disease.
Collapse
Affiliation(s)
- Rick A. Homan
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Appaso M. Jadhav
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Louis P. Conway
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Christopher G. Parker
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
13
|
Yien YY, Perfetto M. Regulation of Heme Synthesis by Mitochondrial Homeostasis Proteins. Front Cell Dev Biol 2022; 10:895521. [PMID: 35832791 PMCID: PMC9272004 DOI: 10.3389/fcell.2022.895521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022] Open
Abstract
Heme plays a central role in diverse, life-essential processes that range from ubiquitous, housekeeping pathways such as respiration, to highly cell-specific ones such as oxygen transport by hemoglobin. The regulation of heme synthesis and its utilization is highly regulated and cell-specific. In this review, we have attempted to describe how the heme synthesis machinery is regulated by mitochondrial homeostasis as a means of coupling heme synthesis to its utilization and to the metabolic requirements of the cell. We have focused on discussing the regulation of mitochondrial heme synthesis enzymes by housekeeping proteins, transport of heme intermediates, and regulation of heme synthesis by macromolecular complex formation and mitochondrial metabolism. Recently discovered mechanisms are discussed in the context of the model organisms in which they were identified, while more established work is discussed in light of technological advancements.
Collapse
|
14
|
Krüger A, Keppel M, Sharma V, Frunzke J. The diversity of heme sensor systems - heme-responsive transcriptional regulation mediated by transient heme protein interactions. FEMS Microbiol Rev 2022; 46:6506450. [PMID: 35026033 DOI: 10.1093/femsre/fuac002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Heme is a versatile molecule that is vital for nearly all cellular life by serving as prosthetic group for various enzymes or as nutritional iron source for diverse microbial species. However, elevated levels of heme molecule are toxic to cells. The complexity of this stimulus has shaped the evolution of diverse heme sensor systems, which are involved in heme-dependent transcriptional regulation in eukaryotes and prokaryotes. The functions of these systems are manifold - ranging from the specific control of heme detoxification or uptake systems to the global integration of heme and iron homeostasis. This review focuses on heme sensor systems, regulating heme homeostasis by transient heme protein interaction. We provide an overview of known heme-binding motifs in prokaryotic and eukaryotic transcription factors. Besides the central ligands, the surrounding amino acid environment was shown to play a pivotal role in heme binding. The diversity of heme-regulatory systems therefore illustrates that prediction based on pure sequence information is hardly possible and requires careful experimental validation. Comprehensive understanding of heme-regulated processes is not only important for our understanding of cellular physiology, but also provides a basis for the development of novel antibacterial drugs and metabolic engineering strategies.
Collapse
Affiliation(s)
- Aileen Krüger
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Marc Keppel
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Vikas Sharma
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Julia Frunzke
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| |
Collapse
|
15
|
Nomura K, Kitagawa Y, Aihara M, Ohki Y, Furuyama K, Hirokawa T. Heme-dependent recognition of 5-aminolevulinate synthase by the human mitochondrial molecular chaperone ClpX. FEBS Lett 2021; 595:3019-3029. [PMID: 34704252 DOI: 10.1002/1873-3468.14214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/21/2021] [Accepted: 10/15/2021] [Indexed: 11/08/2022]
Abstract
The caseinolytic mitochondrial matrix peptidase chaperone subunit (ClpX) plays an important role in the heme-dependent regulation of 5-aminolevulinate synthase (ALAS1), a key enzyme in heme biosynthesis. However, the mechanisms underlying the role of ClpX in this process remain unclear. In this in vitro study, we confirmed the direct binding between ALAS1 and ClpX in a heme-dependent manner. The substitution of C108 P109 [CP motif 3 (CP3)] with A108 A109 in ALAS1 resulted in a loss of ability to bind ClpX. Computational disorder analyses revealed that CP3 was located in a potential intrinsically disordered protein region (IDPR). Thus, we propose that conditional disorder-to-order transitions in the IDPRs of ALAS1 may represent key mechanisms underlying the heme-dependent recognition of ALAS1 by ClpX.
Collapse
Affiliation(s)
- Kazumi Nomura
- Department of Molecular Biochemistry, Iwate Medical University, Japan
| | - Yu Kitagawa
- Department of Molecular Biochemistry, Iwate Medical University, Japan
| | - Marina Aihara
- Department of Molecular Biochemistry, Iwate Medical University, Japan
| | - Yusuke Ohki
- Department of Molecular Biochemistry, Iwate Medical University, Japan
| | | | - Takatsugu Hirokawa
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Japan.,Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| |
Collapse
|
16
|
Silva MA, Salgueiro CA. Multistep Signaling in Nature: A Close-Up of Geobacter Chemotaxis Sensing. Int J Mol Sci 2021; 22:ijms22169034. [PMID: 34445739 PMCID: PMC8396549 DOI: 10.3390/ijms22169034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
Environmental changes trigger the continuous adaptation of bacteria to ensure their survival. This is possible through a variety of signal transduction pathways involving chemoreceptors known as methyl-accepting chemotaxis proteins (MCP) that allow the microorganisms to redirect their mobility towards favorable environments. MCP are two-component regulatory (or signal transduction) systems (TCS) formed by a sensor and a response regulator domain. These domains synchronize transient protein phosphorylation and dephosphorylation events to convert the stimuli into an appropriate cellular response. In this review, the variability of TCS domains and the most common signaling mechanisms are highlighted. This is followed by the description of the overall cellular topology, classification and mechanisms of MCP. Finally, the structural and functional properties of a new family of MCP found in Geobacter sulfurreducens are revisited. This bacterium has a diverse repertoire of chemosensory systems, which represents a striking example of a survival mechanism in challenging environments. Two G. sulfurreducens MCP—GSU0582 and GSU0935—are members of a new family of chemotaxis sensor proteins containing a periplasmic PAS-like sensor domain with a c-type heme. Interestingly, the cellular location of this domain opens new routes to the understanding of the redox potential sensing signaling transduction pathways.
Collapse
Affiliation(s)
- Marta A. Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Carlos A. Salgueiro
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Correspondence:
| |
Collapse
|
17
|
Wang T, Ashrafi A, Modareszadeh P, Deese AR, Chacon Castro MDC, Alemi PS, Zhang L. An Analysis of the Multifaceted Roles of Heme in the Pathogenesis of Cancer and Related Diseases. Cancers (Basel) 2021; 13:4142. [PMID: 34439295 PMCID: PMC8393563 DOI: 10.3390/cancers13164142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Heme is an essential prosthetic group in proteins and enzymes involved in oxygen utilization and metabolism. Heme also plays versatile and fascinating roles in regulating fundamental biological processes, ranging from aerobic respiration to drug metabolism. Increasing experimental and epidemiological data have shown that altered heme homeostasis accelerates the development and progression of common diseases, including various cancers, diabetes, vascular diseases, and Alzheimer's disease. The effects of heme on the pathogenesis of these diseases may be mediated via its action on various cellular signaling and regulatory proteins, as well as its function in cellular bioenergetics, specifically, oxidative phosphorylation (OXPHOS). Elevated heme levels in cancer cells intensify OXPHOS, leading to higher ATP generation and fueling tumorigenic functions. In contrast, lowered heme levels in neurons may reduce OXPHOS, leading to defects in bioenergetics and causing neurological deficits. Further, heme has been shown to modulate the activities of diverse cellular proteins influencing disease pathogenesis. These include BTB and CNC homology 1 (BACH1), tumor suppressor P53 protein, progesterone receptor membrane component 1 protein (PGRMC1), cystathionine-β-synthase (CBS), soluble guanylate cyclase (sGC), and nitric oxide synthases (NOS). This review provides an in-depth analysis of heme function in influencing diverse molecular and cellular processes germane to disease pathogenesis and the modes by which heme modulates the activities of cellular proteins involved in the development of cancer and other common diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (T.W.); (A.A.); (P.M.); (A.R.D.); (M.D.C.C.C.); (P.S.A.)
| |
Collapse
|
18
|
Orillard E, Anaya S, Johnson MS, Watts KJ. Oxygen-Induced Conformational Changes in the PAS-Heme Domain of the Pseudomonas aeruginosa Aer2 Receptor. Biochemistry 2021; 60:2610-2622. [PMID: 34383467 DOI: 10.1021/acs.biochem.1c00452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Aer2 receptor from Pseudomonas aeruginosa has an O2-binding PAS-heme domain that stabilizes O2 via a Trp residue in the distal heme pocket. Trp rotates ∼90° to bond with the ligand and initiate signaling. Although the isolated PAS domain is monomeric, both in solution and in a cyanide-bound crystal structure, an unliganded structure forms a dimer. An overlay of the two structures suggests possible signaling motions but also predicts implausible clashes at the dimer interface when the ligand is bound. Moreover, in a full-length Aer2 dimer, PAS is sandwiched between multiple N- and C-terminal HAMP domains, which would feasibly restrict PAS motions. To explore the PAS dimer interface and signal-induced motions in full-length Aer2, we introduced Cys substitutions and used thiol-reactive probes to examine in vivo accessibility and residue proximities under both aerobic and anaerobic conditions. In vivo, PAS dimers were retained in full-length Aer2 in the presence and absence of O2, and the dimer interface was consistent with the isolated PAS dimer structure. O2-mediated changes were also consistent with structural predictions in which the PAS N-terminal caps move apart and the C-terminal DxT region moves closer together. The DxT motif links PAS to the C-terminal HAMP domains and was critical for PAS-HAMP signaling. Removing the N-terminal HAMP domains altered the distal PAS dimer interface and prevented signaling, even after signal-on lesions were introduced into PAS. The N-terminal HAMP domains thus facilitate the O2-dependent shift of PAS to the signal-on conformation, clarifying their role upstream of the PAS-sensing domain.
Collapse
Affiliation(s)
- Emilie Orillard
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, California 92350, United States
| | - Selina Anaya
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, California 92350, United States
| | - Mark S Johnson
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, California 92350, United States
| | - Kylie J Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, California 92350, United States
| |
Collapse
|
19
|
Rondelli CM, Perfetto M, Danoff A, Bergonia H, Gillis S, O'Neill L, Jackson L, Nicolas G, Puy H, West R, Phillips JD, Yien YY. The ubiquitous mitochondrial protein unfoldase CLPX regulates erythroid heme synthesis by control of iron utilization and heme synthesis enzyme activation and turnover. J Biol Chem 2021; 297:100972. [PMID: 34280433 PMCID: PMC8361296 DOI: 10.1016/j.jbc.2021.100972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/19/2022] Open
Abstract
Heme plays a critical role in catalyzing life-essential redox reactions in all cells, and its synthesis must be tightly balanced with cellular requirements. Heme synthesis in eukaryotes is tightly regulated by the mitochondrial AAA+ unfoldase CLPX (caseinolytic mitochondrial matrix peptidase chaperone subunit X), which promotes heme synthesis by activation of δ-aminolevulinate synthase (ALAS/Hem1) in yeast and regulates turnover of ALAS1 in human cells. However, the specific mechanisms by which CLPX regulates heme synthesis are unclear. In this study, we interrogated the mechanisms by which CLPX regulates heme synthesis in erythroid cells. Quantitation of enzyme activity and protein degradation showed that ALAS2 stability and activity were both increased in the absence of CLPX, suggesting that CLPX primarily regulates ALAS2 by control of its turnover, rather than its activation. However, we also showed that CLPX is required for PPOX (protoporphyrinogen IX oxidase) activity and maintenance of FECH (ferrochelatase) levels, which are the terminal enzymes in heme synthesis, likely accounting for the heme deficiency and porphyrin accumulation observed in Clpx−/− cells. Lastly, CLPX is required for iron utilization for hemoglobin synthesis during erythroid differentiation. Collectively, our data show that the role of CLPX in yeast ALAS/Hem1 activation is not conserved in vertebrates as vertebrates rely on CLPX to regulate ALAS turnover as well as PPOX and FECH activity. Our studies reveal that CLPX mutations may cause anemia and porphyria via dysregulation of ALAS, FECH, and PPOX activities, as well as of iron metabolism.
Collapse
Affiliation(s)
- Catherine M Rondelli
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Mark Perfetto
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Pittsburgh Heart, Lung and Blood Vascular Medicine Institute and Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aidan Danoff
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Hector Bergonia
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Samantha Gillis
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Leah O'Neill
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Laurie Jackson
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Gael Nicolas
- Centre de Recherche sur l'inflammation, Université Paris Diderot, Site Bichat, Sorbonne Paris Cité, Paris, France
| | - Herve Puy
- Centre de Recherche sur l'inflammation, Université Paris Diderot, Site Bichat, Sorbonne Paris Cité, Paris, France; Centre Français des Porphyries, Hôpital Louis Mourier, APHP, Colombes, France
| | - Richard West
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - John D Phillips
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Yvette Y Yien
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Pittsburgh Heart, Lung and Blood Vascular Medicine Institute and Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
20
|
Fu J, Hall S, Boon EM. Recent evidence for multifactorial biofilm regulation by heme sensor proteins NosP and H-NOX. CHEM LETT 2021; 50:1095-1103. [PMID: 36051866 PMCID: PMC9432776 DOI: 10.1246/cl.200945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Heme is involved in signal transduction by either acting as a cofactor of heme-based gas/redox sensors or binding reversely to heme-responsive proteins. Bacteria respond to low concentrations of nitric oxide (NO) to modulate group behaviors such as biofilms through the well-characterized H-NOX family and the newly discovered heme sensor protein NosP. NosP shares functional similarities with H-NOX as a heme-based NO sensor; both regulate two-component systems and/or cyclic-di-GMP metabolizing enzymes, playing roles in processes such as quorum sensing and biofilm regulation. Interestingly, aside from its role in NO signaling, recent studies suggest that NosP may also sense labile heme. In this Highlight Review, we briefly summarize H-NOX-dependent NO signaling in bacteria, then focus on recent advances in NosP-mediated NO signaling and labile heme sensing.
Collapse
Affiliation(s)
| | | | - Elizabeth M. Boon
- To whom correspondence should be addressed: Elizabeth M. Boon: Tel.: (631) 632-7945. Fax: (631) 632-7960.
| |
Collapse
|
21
|
Mycobacterial and Human Ferrous Nitrobindins: Spectroscopic and Reactivity Properties. Int J Mol Sci 2021; 22:ijms22041674. [PMID: 33562340 PMCID: PMC7915275 DOI: 10.3390/ijms22041674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/24/2022] Open
Abstract
Structural and functional properties of ferrous Mycobacterium tuberculosis (Mt-Nb) and human (Hs-Nb) nitrobindins (Nbs) were investigated. At pH 7.0 and 25.0 °C, the unliganded Fe(II) species is penta-coordinated and unlike most other hemoproteins no pH-dependence of its coordination was detected over the pH range between 2.2 and 7.0. Further, despite a very open distal side of the heme pocket (as also indicated by the vanishingly small geminate recombination of CO for both Nbs), which exposes the heme pocket to the bulk solvent, their reactivity toward ligands, such as CO and NO, is significantly slower than in most hemoproteins, envisaging either a proximal barrier for ligand binding and/or crowding of H2O molecules in the distal side of the heme pocket which impairs ligand binding to the heme Fe-atom. On the other hand, liganded species display already at pH 7.0 and 25 °C a severe weakening (in the case of CO) and a cleavage (in the case of NO) of the proximal Fe-His bond, suggesting that the ligand-linked movement of the Fe(II) atom onto the heme plane brings about a marked lengthening of the proximal Fe-imidazole bond, eventually leading to its rupture. This structural evidence is accompanied by a marked enhancement of both ligands dissociation rate constants. As a whole, these data clearly indicate that structural–functional relationships in Nbs strongly differ from what observed in mammalian and truncated hemoproteins, suggesting that Nbs play a functional role clearly distinct from other eukaryotic and prokaryotic hemoproteins.
Collapse
|
22
|
Chiabrando D, Fiorito V, Petrillo S, Bertino F, Tolosano E. HEME: a neglected player in nociception? Neurosci Biobehav Rev 2021; 124:124-136. [PMID: 33545213 DOI: 10.1016/j.neubiorev.2021.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
Despite increasing progress in the understanding of the pathophysiology of pain, current management of pain syndromes is still unsatisfactory. The recent discovery of novel pathways associated with pain insensitivity in humans represents a unique opportunity to improve our knowledge on the pathophysiology of pain. Heme metabolism recently emerged as a crucial regulator of nociception. Of note, alteration of heme metabolism has been associated with pain insensitivity as well as with acute and chronic pain in porphyric neuropathy and hemolytic diseases. However, the molecular mechanisms linking heme to the pain pathways still remain unclear. The review focuses on the major heme-regulated processes relevant for sensory neurons' maintenance, peripheral and central sensitization as well as for pain comorbidities, like anxiety and depression. By discussing the body of knowledge on the topic, we provide a novel perspective on the molecular mechanisms linking heme to nociception.
Collapse
Affiliation(s)
- Deborah Chiabrando
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy.
| | - Veronica Fiorito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Francesca Bertino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| |
Collapse
|
23
|
Dulay H, Tabares M, Kashefi K, Reguera G. Cobalt Resistance via Detoxification and Mineralization in the Iron-Reducing Bacterium Geobacter sulfurreducens. Front Microbiol 2020; 11:600463. [PMID: 33324382 PMCID: PMC7726332 DOI: 10.3389/fmicb.2020.600463] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteria in the genus Geobacter thrive in iron- and manganese-rich environments where the divalent cobalt cation (CoII) accumulates to potentially toxic concentrations. Consistent with selective pressure from environmental exposure, the model laboratory representative Geobacter sulfurreducens grew with CoCl2 concentrations (1 mM) typically used to enrich for metal-resistant bacteria from contaminated sites. We reconstructed from genomic data canonical pathways for CoII import and assimilation into cofactors (cobamides) that support the growth of numerous syntrophic partners. We also identified several metal efflux pumps, including one that was specifically upregulated by CoII. Cells acclimated to metal stress by downregulating non-essential proteins with metals and thiol groups that CoII preferentially targets. They also activated sensory and regulatory proteins involved in detoxification as well as pathways for protein and DNA repair. In addition, G. sulfurreducens upregulated respiratory chains that could have contributed to the reductive mineralization of the metal on the cell surface. Transcriptomic evidence also revealed pathways for cell envelope modification that increased metal resistance and promoted cell-cell aggregation and biofilm formation in stationary phase. These complex adaptive responses confer on Geobacter a competitive advantage for growth in metal-rich environments that are essential to the sustainability of cobamide-dependent microbiomes and the sequestration of the metal in hitherto unknown biomineralization reactions.
Collapse
Affiliation(s)
- Hunter Dulay
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Marcela Tabares
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Kazem Kashefi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Gemma Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
24
|
A new paradigm for gaseous ligand selectivity of hemoproteins highlighted by soluble guanylate cyclase. J Inorg Biochem 2020; 214:111267. [PMID: 33099233 DOI: 10.1016/j.jinorgbio.2020.111267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and oxygen (O2) are important physiological messengers whose concentrations vary in a remarkable range, [NO] typically from nM to several μM while [O2] reaching to hundreds of μM. One of the machineries evolved in living organisms for gas sensing is sensor hemoproteins whose conformational change upon gas binding triggers downstream response cascades. The recently proposed "sliding scale rule" hypothesis provides a general interpretation for gaseous ligand selectivity of hemoproteins, identifying five factors that govern gaseous ligand selectivity. Hemoproteins have intrinsic selectivity for the three gases due to a neutral proximal histidine ligand while proximal strain of heme and distal steric hindrance indiscriminately adjust the affinity of these three gases for heme. On the other hand, multiple-step NO binding and distal hydrogen bond donor(s) specifically enhance affinity for NO and O2, respectively. The "sliding scale rule" hypothesis provides clear interpretation for dramatic selectivity for NO over O2 in soluble guanylate cyclase (sGC) which is an important example of sensor hemoproteins and plays vital roles in a wide range of physiological functions. The "sliding scale rule" hypothesis has so far been validated by all experimental data and it may guide future designs for heme-based gas sensors.
Collapse
|
25
|
Construction of a new T7 promoter compatible Escherichia coli Nissle 1917 strain for recombinant production of heme-dependent proteins. Microb Cell Fact 2020; 19:190. [PMID: 33023596 PMCID: PMC7542351 DOI: 10.1186/s12934-020-01447-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/25/2020] [Indexed: 11/10/2022] Open
Abstract
Background Heme proteins and heme-derived molecules are essential in numerous cellular processes. Research into their in vitro functionality requires the production of large amounts of protein. Unfortunately, high yield expression is hampered by the lack of E. coli strains naturally capable of taking up heme from the medium. We recently reported the use of the probiotic E. coli strain Nissle 1917 (EcN) to sufficiently produce heme containing proteins, as it encodes the outer membrane heme receptor, ChuA, which allows for natural uptake of heme. The EcN strain however lacks the gene for T7 RNA polymerase, which is necessary for the expression of genes under the control of the T7-promotor, widely used in expression vectors like the pET or pDuet series. Results A new T7-promoter compatible EcN strain was constructed by integrating the gene for T7-RNA polymerase under the control of a lacUV5 promoter into the malEFG operon of EcN. Test expressions of genes via T7 promoter-based vectors in the new EcN(T7) strain were successful. Expression in EcN(T7) resulted in the efficient production of recombinant heme proteins in which the heme cofactor was incorporated during protein production. In addition, the new EcN(T7) strain can be used to co-express genes for the production of heme-derived molecules like biliverdin or other linear tetrapyrroles. We demonstrate the successful recombinant production of the phytochromes BphP, from Pseudomonas aeruginosa, and Cph1, from Synechocystis sp. PCC6803, loaded with their linear tetrapyrrole cofactors, biliverdin and phycocyanobilin, respectively. Conclusion We present a new E. coli strain for efficient production of heme proteins and heme-derived molecules using T7-promoter based expression vectors. The new EcN(T7) strain enables the use of a broader spectrum of expression vectors, as well as the co-expression of genes using the pDuet expression vectors, for expressing heme containing proteins. By utilizing E. coli strains EcN and EcN(T7), capable of being fed heme, the rate limiting step of heme biosynthesis in E. coli is eliminated, thereby permitting higher heme saturation of heme proteins and also higher yields of heme-derived molecules.
Collapse
|
26
|
Samuel PP, Case DA. Atomistic Simulations of Heme Dissociation Pathways in Human Methemoglobins Reveal Hidden Intermediates. Biochemistry 2020; 59:4093-4107. [PMID: 32945658 DOI: 10.1021/acs.biochem.0c00607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heme dissociations disrupt function and structural integrity of human hemoglobin and trigger various cardiovascular complications. These events become significant in methemoglobins that have undergone autoxidation of ferrous into ferric heme. We have structurally characterized the heme disassociation pathways for adult tetrameric methemoglobins using all-atom molecular dynamics simulations. These reveal that bis-histidine hemichromes, characterized here by the coordination of heme iron to both the F8 (proximal) and E7 (distal) histidines, are seen as intermediates following dissociation of the water molecule distally bound to each heme iron. Later, the breaking of coordination between heme iron and proximal histidine disrupts the F helix and pushes it away from the heme cavity, enabling both bulk solvent penetration and disruption of tetramer interface interactions. The interactions inhibiting heme dissociation were then seen to be (i) either a direct or a water-molecule-mediated interaction between distal histidine and heme iron and (ii) stacking between heme and the αCE1/βCD1 phenylalanine residue. These interactions are less important in the β than in α subunits due to a more flexible β subunit CE loop region. The absence of a distal histidine interaction in the H(E7)L mutant and increased heme cavity volume in the V(E11)A mutant both promoted heme escape from the protein interior. Adult and fetal hemoglobins were seen to share a general heme disassociation pathway and intermediates due to the conservation of key heme pocket residues. The intermediates seen here are analyzed in light of experimental studies of heme dissociation and pathways of certain hemoglobinopathies.
Collapse
Affiliation(s)
- Premila P Samuel
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - David A Case
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States.,Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
27
|
Li M, Gašparovič H, Weng X, Chen S, Korduláková J, Jessen-Trefzer C. The Two-Component Locus MSMEG_0244/0246 Together With MSMEG_0243 Affects Biofilm Assembly in M. smegmatis Correlating With Changes in Phosphatidylinositol Mannosides Acylation. Front Microbiol 2020; 11:570606. [PMID: 33013801 PMCID: PMC7516205 DOI: 10.3389/fmicb.2020.570606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
Ferric and ferrous iron is an essential transition metal for growth of many bacterial species including mycobacteria. The genomic region msmeg_0234 to msmeg_0252 from Mycobacterium smegmatis is putatively involved in iron/heme metabolism. We investigate the genes encoding the presumed two component system MSMEG_0244/MSMEG_0246, the neighboring gene msmeg_0243 and their involvement in this process. We show that purified MSMEG_0243 indeed is a heme binding protein. Deletion of msmeg_0243/msmeg_0244/msmeg_0246 in Mycobacterium smegmatis leads to a defect in biofilm formation and colony growth on solid agar, however, this phenotype is independent of the supplied iron source. Further, analysis of the corresponding mutant and its lipids reveals that changes in morphology and biofilm formation correlate with altered acylation patterns of phosphatidylinositol mannosides (PIMs). We provide the first evidence that msmeg_0244/msmeg_0246 work in concert in cellular lipid homeostasis, especially in the maintenance of PIMs, with the heme-binding protein MSMEG_0243 as potential partner.
Collapse
Affiliation(s)
- Miaomaio Li
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Henrich Gašparovič
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Xing Weng
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Si Chen
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Claudia Jessen-Trefzer
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Sobh A, Loguinov A, Zhou J, Jenkitkasemwong S, Zeidan R, El Ahmadie N, Tagmount A, Knutson M, Fraenkel PG, Vulpe CD. Genetic screens reveal CCDC115 as a modulator of erythroid iron and heme trafficking. Am J Hematol 2020; 95:1085-1098. [PMID: 32510613 DOI: 10.1002/ajh.25899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/26/2022]
Abstract
Transferrin-bound iron (TBI), the physiological circulating iron form, is acquired by cells through the transferrin receptor (TfR1) by endocytosis. In erythroid cells, most of the acquired iron is incorporated into heme in the mitochondria. Cellular trafficking of heme is indispensable for erythropoiesis and many other essential biological processes. Comprehensive elucidation of molecular pathways governing and regulating cellular iron acquisition and heme trafficking is required to better understand physiological and pathological processes affecting erythropoiesis. Here, we report the first genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screens in human erythroid cells to identify determinants of iron and heme uptake, as well as heme-mediated erythroid differentiation. We identified several candidate modulators of TBI acquisition including TfR1, indicating that our approach effectively revealed players mechanistically relevant to the process. Interestingly, components of the endocytic pathway were also revealed as potential determinants of transferrin acquisition. We deciphered a role for the vacuolar-type H+ - ATPase (V- ATPase) assembly factor coiled-coil domain containing 115 (CCDC115) in TBI uptake and validated this role in CCDC115 deficient K562 cells. Our screen in hemin-treated cells revealed perturbations leading to cellular adaptation to heme, including those corresponding to trafficking mechanisms and transcription factors potentiating erythroid differentiation. Pathway analysis indicated that endocytosis and vesicle acidification are key processes for heme trafficking in erythroid precursors. Furthermore, we provided evidence that CCDC115, which we identified as required for TBI uptake, is also involved in cellular heme distribution. This work demonstrates a previously unappreciated common intersection in trafficking of transferrin iron and heme in the endocytic pathway of erythroid cells.
Collapse
Affiliation(s)
- Amin Sobh
- Department of Nutritional Sciences & Toxicology, Comparative Biochemistry Program University of California Berkeley Berkeley California
- Department of Physiological Sceinces University of Florida Gainesville Florida
| | - Alex Loguinov
- Department of Physiological Sceinces University of Florida Gainesville Florida
| | - Jie Zhou
- Department of Physiological Sceinces University of Florida Gainesville Florida
- Department of Food Science and Human Nutrition University of Florida Gainesville Florida
| | - Supak Jenkitkasemwong
- Department of Food Science and Human Nutrition University of Florida Gainesville Florida
| | - Rola Zeidan
- Department of Physiological Sceinces University of Florida Gainesville Florida
| | - Nader El Ahmadie
- Department of Physiological Sceinces University of Florida Gainesville Florida
| | | | - Mitchell Knutson
- Department of Food Science and Human Nutrition University of Florida Gainesville Florida
| | - Paula G. Fraenkel
- Division of Hematology/Oncology and Cancer Research Institute Beth Israel Deaconess Medical Center Boston Massachusetts
- Department of Medicine Harvard Medical School Boston Massachusetts
- Oncology Research and Development, Sanofi Cambridge Massachusetts
| | | |
Collapse
|
29
|
Femtosecond X-ray emission study of the spin cross-over dynamics in haem proteins. Nat Commun 2020; 11:4145. [PMID: 32811825 PMCID: PMC7434878 DOI: 10.1038/s41467-020-17923-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/21/2020] [Indexed: 12/27/2022] Open
Abstract
In haemoglobin the change from the low-spin (LS) hexacoordinated haem to the high spin (HS, S = 2) pentacoordinated domed deoxy-myoglobin (deoxyMb) form upon ligand detachment from the haem and the reverse process upon ligand binding are what ultimately drives the respiratory function. Here we probe them in the case of Myoglobin-NO (MbNO) using element- and spin-sensitive femtosecond Fe Kα and Kβ X-ray emission spectroscopy at an X-ray free-electron laser (FEL). We find that the change from the LS (S = 1/2) MbNO to the HS haem occurs in ~800 fs, and that it proceeds via an intermediate (S = 1) spin state. We also show that upon NO recombination, the return to the planar MbNO ground state is an electronic relaxation from HS to LS taking place in ~30 ps. Thus, the entire ligand dissociation-recombination cycle in MbNO is a spin cross-over followed by a reverse spin cross-over process. The change from low-spin hexacoordinated to high-spin pentacoordinated domed form in heam upon ligand detachment and the reverse process underlie the respiratory function. The authors, using femtosecond time-resolved X-ray emission spectroscopy, capture the transient states connecting the two forms in myoglobin-NO upon NO photoinduced detachment.
Collapse
|
30
|
De Simone G, di Masi A, Vita GM, Polticelli F, Pesce A, Nardini M, Bolognesi M, Ciaccio C, Coletta M, Turilli ES, Fasano M, Tognaccini L, Smulevich G, Abbruzzetti S, Viappiani C, Bruno S, Ascenzi P. Mycobacterial and Human Nitrobindins: Structure and Function. Antioxid Redox Signal 2020; 33:229-246. [PMID: 32295384 DOI: 10.1089/ars.2019.7874] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Aims: Nitrobindins (Nbs) are evolutionary conserved all-β-barrel heme-proteins displaying a highly solvent-exposed heme-Fe(III) atom. The physiological role(s) of Nbs is almost unknown. Here, the structural and functional properties of ferric Mycobacterium tuberculosis Nb (Mt-Nb(III)) and ferric Homo sapiens Nb (Hs-Nb(III)) have been investigated and compared with those of ferric Arabidopsis thaliana Nb (At-Nb(III), Rhodnius prolixus nitrophorins (Rp-NP(III)s), and mammalian myoglobins. Results: Data here reported demonstrate that Mt-Nb(III), At-Nb(III), and Hs-Nb(III) share with Rp-NP(III)s the capability to bind selectively nitric oxide, but display a very low reactivity, if any, toward histamine. Data obtained overexpressing Hs-Nb in human embryonic kidney 293 cells indicate that Hs-Nb localizes mainly in the cytoplasm and partially in the nucleus, thanks to a nuclear localization sequence encompassing residues Glu124-Leu154. Human Hs-Nb corresponds to the C-terminal domain of the human nuclear protein THAP4 suggesting that Nb may act as a sensor possibly modulating the THAP4 transcriptional activity residing in the N-terminal region. Finally, we provide strong evidence that both Mt-Nb(III) and Hs-Nb(III) are able to scavenge peroxynitrite and to protect free l-tyrosine against peroxynitrite-mediated nitration. Innovation: Data here reported suggest an evolutionarily conserved function of Nbs related to their role as nitric oxide sensors and components of antioxidant systems. Conclusion: Human THAP4 may act as a sensing protein that couples the heme-based Nb(III) reactivity with gene transcription. Mt-Nb(III) seems to be part of the pool of proteins required to scavenge reactive nitrogen and oxygen species produced by the host during the immunity response.
Collapse
Affiliation(s)
| | | | | | - Fabio Polticelli
- Dipartimento di Scienze, Università Roma Tre, Roma, Italy.,Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Roma, Italy
| | | | - Marco Nardini
- Dipartimento di Bioscienze, Università di Milano, Milano, Italy
| | - Martino Bolognesi
- Dipartimento di Bioscienze, Università di Milano, Milano, Italy.,Centro di Ricerche Pediatriche R.E. Invernizzi, Università di Milano, Milano, Italy
| | - Chiara Ciaccio
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Roma, Italy
| | - Massimo Coletta
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Roma, Italy
| | - Emily Samuela Turilli
- Dipartimento di Scienza ed Alta Tecnologia, Università dell'Insubria, Busto Arsizio, Italy
| | - Mauro Fasano
- Dipartimento di Scienza ed Alta Tecnologia, Università dell'Insubria, Busto Arsizio, Italy
| | - Lorenzo Tognaccini
- Dipartimento di Chimica Ugo Schiff, Università di Firenze, Sesto Fiorentino, Italy
| | - Giulietta Smulevich
- Dipartimento di Chimica Ugo Schiff, Università di Firenze, Sesto Fiorentino, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parma, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Paolo Ascenzi
- Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| |
Collapse
|
31
|
Cordeiro IR, Tanaka M. Environmental Oxygen is a Key Modulator of Development and Evolution: From Molecules to Ecology. Bioessays 2020; 42:e2000025. [DOI: 10.1002/bies.202000025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/09/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Ingrid Rosenburg Cordeiro
- Department of Life Science and Technology Tokyo Institute of Technology B‐17, 4259 Nagatsuta‐cho, Midori‐ku Yokohama 226‐8501 Japan
| | - Mikiko Tanaka
- Department of Life Science and Technology Tokyo Institute of Technology B‐17, 4259 Nagatsuta‐cho, Midori‐ku Yokohama 226‐8501 Japan
| |
Collapse
|
32
|
Sosna M, Leiva‐Eriksson N, Bülow L, Ferapontova EE. Electrochemical Characterization and Bioelectrocatalytic H2O2Sensing of Non‐Symbiotic Hexa‐Coordinated Sugar Beet Hemoglobins. ChemElectroChem 2020. [DOI: 10.1002/celc.202000358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Maciej Sosna
- Interdisciplinary Nanoscience Center (iNANO) Science and TechnologyAarhus University Gustav Wieds Vej 1590-14 8000 Aarhus C Denmark
| | | | - Leif Bülow
- Lund University P.O. Box 124 221 00 Lund Sweden
| | - Elena E. Ferapontova
- Interdisciplinary Nanoscience Center (iNANO) Science and TechnologyAarhus University Gustav Wieds Vej 1590-14 8000 Aarhus C Denmark
| |
Collapse
|
33
|
Pilorz V, Astiz M, Heinen KO, Rawashdeh O, Oster H. The Concept of Coupling in the Mammalian Circadian Clock Network. J Mol Biol 2020; 432:3618-3638. [PMID: 31926953 DOI: 10.1016/j.jmb.2019.12.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Abstract
The circadian clock network regulates daily rhythms in mammalian physiology and behavior to optimally adapt the organism to the 24-h day/night cycle. A central pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), coordinates subordinate cellular oscillators in the brain, as well as in peripheral organs to align with each other and external time. Stability and coordination of this vast network of cellular oscillators is achieved through different levels of coupling. Although coupling at the molecular level and across the SCN is well established and believed to define its function as pacemaker structure, the notion of coupling in other tissues and across the whole system is less well understood. In this review, we describe the different levels of coupling in the mammalian circadian clock system - from molecules to the whole organism. We highlight recent advances in gaining knowledge of the complex organization and function of circadian network regulation and its significance for the generation of stable but plastic intrinsic 24-h rhythms.
Collapse
Affiliation(s)
- Violetta Pilorz
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Mariana Astiz
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Keno Ole Heinen
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Oliver Rawashdeh
- The University of Queensland, School of Biomedical Sciences, Faculty of Medicine, St Lucia Qld, 4071, Australia
| | - Henrik Oster
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany.
| |
Collapse
|
34
|
Buhrke D, Hildebrandt P. Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy. Chem Rev 2019; 120:3577-3630. [PMID: 31814387 DOI: 10.1021/acs.chemrev.9b00429] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mechanistic understanding of protein functions requires insight into the structural and reaction dynamics. To elucidate these processes, a variety of experimental approaches are employed. Among them, time-resolved (TR) resonance Raman (RR) is a particularly versatile tool to probe processes of proteins harboring cofactors with electronic transitions in the visible range, such as retinal or heme proteins. TR RR spectroscopy offers the advantage of simultaneously providing molecular structure and kinetic information. The various TR RR spectroscopic methods can cover a wide dynamic range down to the femtosecond time regime and have been employed in monitoring photoinduced reaction cascades, ligand binding and dissociation, electron transfer, enzymatic reactions, and protein un- and refolding. In this account, we review the achievements of TR RR spectroscopy of nearly 50 years of research in this field, which also illustrates how the role of TR RR spectroscopy in molecular life science has changed from the beginning until now. We outline the various methodological approaches and developments and point out current limitations and potential perspectives.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
35
|
Heme oxygenase-1/carbon monoxide as modulators of autophagy and inflammation. Arch Biochem Biophys 2019; 678:108186. [PMID: 31704095 DOI: 10.1016/j.abb.2019.108186] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/10/2019] [Accepted: 11/04/2019] [Indexed: 12/29/2022]
Abstract
Heme oxygenase-1 (HO-1) catalyzes heme degradation to generate biliverdin-IXα, carbon monoxide (CO), and iron. The HO-1/CO system confers cytoprotection in animal models of organ injury and disease, via modulation of inflammation and apoptosis. Recent studies have uncovered novel anti-inflammatory targets of HO-1/CO including regulation of the autophagy and inflammasome pathways. Autophagy is a lysosome-dependent program for the turnover of cellular organelles such as mitochondria, proteins, and pathogens; which may downregulate inflammatory processes. Therapeutic modulation of autophagy by CO has been demonstrated in models of sepsis. The nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome regulates the maturation of pro-inflammatory cytokines. CO can regulate NLRP3 inflammasome activation and associated pro-inflammatory cytokines production and promote the resolution of inflammation by upregulating the synthesis of specialized pro-resolving mediators (SPMs). Mitochondria may represent a proximal target of HO-1/CO action. HO-1 may localize to mitochondria in response to stress, while CO can moderate mitochondrial dysfunction and regulate mitochondrial autophagy (mitophagy) and biogenesis. The interplay between mitochondrial autophagy, mitochondrial dysfunction, and the regulation and resolution of inflammation may make important contributions to the protection afforded by HO-1/CO in cellular and organ injury models. Recent studies have continued to explore the potential of CO for clinical applications.
Collapse
|
36
|
Yang F, Xue D, Tian F, Hutchins W, Yang CH, He C. Identification of c-di-GMP Signaling Components in Xanthomonas oryzae and Their Orthologs in Xanthomonads Involved in Regulation of Bacterial Virulence Expression. Front Microbiol 2019; 10:1402. [PMID: 31354637 PMCID: PMC6637768 DOI: 10.3389/fmicb.2019.01402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/04/2019] [Indexed: 11/13/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight of rice, one of the most devastating bacterial diseases of this staple crop worldwide. Xoo produces a range of virulence-related factors to facilitate its pathogenesis in rice, however, the regulatory mechanisms of Xoo virulence expression have been not fully elucidated. Recent studies have revealed that virulence factor production is regulated via cyclic dimeric guanosine monophosphate (c-di-GMP) signaling pathway that is well-conserved in Xoo and other Xanthomonas species. A set of GGDEF, EAL, HD-GYP, and PilZ domain proteins with diverse signal sensory domains for c-di-GMP synthesis, hydrolysis, and binding is encoded in the Xoo genome. Bioinformatic, genetic, and biochemical analysis has identified an array of diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), as well as degenerate GGDEF/EAL, PilZ domain proteins along with a transcription regulator. These signaling components have been characterized to regulate various bacterial cellular processes, such as virulence, exopolysaccharide (EPS) production, biofilm formation, motility, and adaptation at the transcriptional, post-translational, and protein-protein interaction levels. This review summarized the recent progress in understanding the importance and complexity of c-di-GMP signaling in regulating bacterial virulence expression, highlighting the identified key signal elements and orthologs found in Xanthomonads, discussing the diverse functions of GGDEF/EAL/HD-GYP domains, existence of a complicated multifactorial network between DGCs, PDEs, and effectors, and further exploration of the new c-di-GMP receptor domains. These findings and knowledge lay the groundwork for future experimentation to further elucidate c-di-GMP regulatory circuits involved in regulation of bacterial pathogenesis.
Collapse
Affiliation(s)
- Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dingrong Xue
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - William Hutchins
- Department of Biology, Carthage College, Kenosha, WI, United States
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Chenyang He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
37
|
Sudan K, Vijayan V, Madyaningrana K, Gueler F, Igarashi K, Foresti R, Motterlini R, Immenschuh S. TLR4 activation alters labile heme levels to regulate BACH1 and heme oxygenase-1 expression in macrophages. Free Radic Biol Med 2019; 137:131-142. [PMID: 31026585 DOI: 10.1016/j.freeradbiomed.2019.04.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/22/2019] [Accepted: 04/20/2019] [Indexed: 02/07/2023]
Abstract
Heme oxygenase (HO)-1, a stress-inducible enzyme that converts heme into carbon monoxide (CO), iron and biliverdin, exerts important anti-inflammatory effects in activated macrophages. HO-1 expression is mainly governed by a mutual interplay between the transcriptional factor NRF2 and the nuclear repressor BTB and CNC homology 1 (BACH1), a heme sensor protein. In the current study we hypothesized that alterations in the levels of intracellular labile heme in macrophages stimulated by lipopolysaccharide (LPS), a prototypical pro-inflammatory Toll-like receptor (TLR)4 agonist, are responsible for BACH1-dependent HO-1 expression. To this end, labile heme was determined in both mouse bone marrow-derived macrophages (mBMDMs) and human monocyte-derived macrophages (hMDMs) using an apo-horseradish peroxidase-based assay. We found that LPS raised the levels of labile heme, depressed BACH1 protein and up-regulated HO-1 in mBMDMs. In contrast, in hMDMs LPS decreased labile heme levels while increasing BACH1 expression and down-regulating HO-1. These effects were abolished by the TLR4 antagonist TAK-242, suggesting that TLR4 activation triggers the signaling cascade leading to changes in the labile heme pool. Studies using mBMDMs from BACH1-/- and NRF2-/- mice revealed that regulation of HO-1 and levels of labile heme after LPS stimulation are strictly dependent on BACH1, but not NRF2. A strong interplay between BACH1-mediated HO-1 expression and intracellular levels of labile heme was also confirmed in hMDMs with siRNA knockdown studies and following inhibition of de novo heme synthesis with succinylacetone. Finally, CORM-401, a compound that liberates CO, counteracted LPS-dependent down-regulation of HO-1 and restored levels of labile heme in hMDMs. In conclusion, alterations of labile heme levels in macrophages following TLR4 stimulation play a crucial role in BACH1-mediated regulation of HO-1 expression.
Collapse
Affiliation(s)
- Kritika Sudan
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Vijith Vijayan
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Kukuh Madyaningrana
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Roberta Foresti
- INSERM U955, Team 12, Faculty of Medicine, University Paris Est, Creteil, France
| | - Roberto Motterlini
- INSERM U955, Team 12, Faculty of Medicine, University Paris Est, Creteil, France
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
38
|
Arabidopsis ABCG28 is required for the apical accumulation of reactive oxygen species in growing pollen tubes. Proc Natl Acad Sci U S A 2019; 116:12540-12549. [PMID: 31152136 DOI: 10.1073/pnas.1902010116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tip-focused accumulation of reactive oxygen species (ROS) is tightly associated with pollen tube growth and is thus critical for fertilization. However, it is unclear how tip-growing cells establish such specific ROS localization. Polyamines have been proposed to function in tip growth as precursors of the ROS, hydrogen peroxide. The ABC transporter AtABCG28 may regulate ROS status, as it contains multiple cysteine residues, a characteristic of proteins involved in ROS homeostasis. In this study, we found that AtABCG28 was specifically expressed in the mature pollen grains and pollen tubes. AtABCG28 was localized to secretory vesicles inside the pollen tube that moved toward and fused with the plasma membrane of the pollen tube tip. Knocking out AtABCG28 resulted in defective pollen tube growth, failure to localize polyamine and ROS to the growing pollen tube tip, and complete male sterility, whereas ectopic expression of this gene in root hair could recover ROS accumulation at the tip and improved the growth under high-pH conditions, which normally prevent ROS accumulation and tip growth. Together, these data suggest that AtABCG28 is critical for localizing polyamine and ROS at the growing tip. In addition, this function of AtABCG28 is likely to protect the pollen tube from the cytotoxicity of polyamine and contribute to the delivery of polyamine to the growing tip for incorporation into the expanding cell wall.
Collapse
|
39
|
Guix FX, Sartório CL, Ill-Raga G. BACE1 Translation: At the Crossroads Between Alzheimer's Disease Neurodegeneration and Memory Consolidation. J Alzheimers Dis Rep 2019; 3:113-148. [PMID: 31259308 PMCID: PMC6597968 DOI: 10.3233/adr-180089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human life unfolds not only in time and space, but also in the recollection and interweaving of memories. Therefore, individual human identity depends fully on a proper access to the autobiographical memory. Such access is hindered under pathological conditions such as Alzheimer’s disease, which affects millions of people worldwide. Unfortunately, no effective cure exists to prevent this disorder, the impact of which will rise alarmingly within the next decades. While Alzheimer’s disease is largely considered to be the outcome of amyloid-β (Aβ) peptide accumulation in the brain, conceiving this complex disorder strictly as the result of Aβ-neurotoxicity is perhaps a too straight-line simplification. Instead, complementary to this view, the tableau of molecular disarrangements in the Alzheimer’s disease brain may be reflecting, at least in part, a loss of function phenotype in memory processing. Here we take BACE1 translation and degradation as a gateway to study molecular mechanisms putatively involved in the transition between memory and neurodegeneration. BACE1 participates in the excision of Aβ-peptide from its precursor holoprotein, but plays a role in synaptic plasticity too. Its translation is governed by eIF2α phosphorylation: a hub integrating cellular responses to stress, but also a critical switch in memory consolidation. Paralleling these dualities, the eIF2α-kinase HRI has been shown to be a nitric oxide-dependent physiological activator of hippocampal BACE1 translation. Finally, beholding BACE1 as a representative protease active in the CNS, we venture a new perspective on the cellular basis of memory, which may incorporate neurodegeneration in itself as a drift in memory consolidating systems.
Collapse
Affiliation(s)
- Francesc X Guix
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa-CSIC, Madrid, Spain
| | - Carmem L Sartório
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Gerard Ill-Raga
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
40
|
Novel combinations of experimental and computational analysis tested on the binding of metalloprotoporphyrins to albumin. Int J Biol Macromol 2019; 134:445-457. [PMID: 31078597 DOI: 10.1016/j.ijbiomac.2019.05.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 02/02/2023]
Abstract
The evidence that Human Serum Albumin (HSA) binds metal ions and organometallic compounds has generated interest in its physiological role as a metalloprotein and as a vehicle for synthetic biology applications (e.g., synthetic blood and solar energy conversion). HSA has been shown to bind metallo-porphyrins, however, the structural details of such interactions are available only for the HSA:heme complex. A typical challenge for studying the interaction of proteins with metalloporphyrins is the poor solubility of the ligands that affect the characterization the complexes. The manuscript shows that a combination of dialysis and centrifugation yields aqueous solutions that contain >90% HSA:porphyrin complexes and virtually eliminate aggregated ligands. The removal of aggregates increases the quality of the optical spectroscopy data which, in turn, yield more accurate binding constants (~0.1 and 2.1 × 106 M-1) and reveal FRET between Trp214 and the porphyrins. The Trp-porphyrin distance was estimated to be within the 28-34 Å range and was used to guide the search of binding sites through a novel feedback approach with docking simulations. Results suggest while some protoporphyrins (metal-free, Fe(III)PPIX and Mg(II)PPIX) bind HSA at the heme site, others (Zn(II)PPIX, Mn(III)PPIX and Sn(IV)PPIX) are more likely to bind the Cys34.
Collapse
|
41
|
PAS domain-containing phosphoglycerate kinase deficiency in Leishmania major results in increased autophagosome formation and cell death. Biochem J 2019; 476:1303-1321. [PMID: 30988012 DOI: 10.1042/bcj20190041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 11/17/2022]
Abstract
Per-Arnt-Sim (PAS) domains are structurally conserved and present in numerous proteins throughout all branches of the phylogenetic tree. Although PAS domain-containing proteins are major players for the adaptation to environmental stimuli in both prokaryotic and eukaryotic organisms, these types of proteins are still uncharacterized in the trypanosomatid parasites, Trypanosome and Leishmania In addition, PAS-containing phosphoglycerate kinase (PGK) protein is uncharacterized in the literature. Here, we report a PAS domain-containing PGK (LmPAS-PGK) in the unicellular pathogen Leishmania The modeled structure of N-terminal of this protein exhibits four antiparallel β sheets centrally flanked by α helices, which is similar to the characteristic signature of PAS domain. Activity measurements suggest that acidic pH can directly stimulate PGK activity. Localization studies demonstrate that the protein is highly enriched in the glycosome and its presence can also be seen in the lysosome. Gene knockout, overexpression and complement studies suggest that LmPAS-PGK plays a fundamental role in cell survival through autophagy. Furthermore, the knockout cells display a marked decrease in virulence when host macrophage and BALB/c mice were infected with them. Our work begins to clarify how acidic pH-dependent ATP generation by PGK is likely to function in cellular adaptability of Leishmania.
Collapse
|
42
|
Yamanaka M, Nakayama R, Fujii S, Wakai S, Sambongi Y, Hirota S. Conferment of CO-Controlled Dimer–Monomer Transition Property to Thermostable Cytochromec′ by Mutation in the Subunit–Subunit Interface. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masaru Yamanaka
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Ryoko Nakayama
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Sotaro Fujii
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Satoshi Wakai
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Yoshihiro Sambongi
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
43
|
Fiege K, Frankenberg‐Dinkel N. Thiol‐based redox sensing in the methyltransferase associated sensor kinase RdmS in
Methanosarcina acetivorans. Environ Microbiol 2019; 21:1597-1610. [DOI: 10.1111/1462-2920.14541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Kerstin Fiege
- Technische Universität Kaiserslautern, Fachbereich BiologieAbteilung Mikrobiologie Paul‐Ehrlich‐Str. 23, 67663, Kaiserslautern Germany
| | - Nicole Frankenberg‐Dinkel
- Technische Universität Kaiserslautern, Fachbereich BiologieAbteilung Mikrobiologie Paul‐Ehrlich‐Str. 23, 67663, Kaiserslautern Germany
| |
Collapse
|
44
|
Shimizu T, Lengalova A, Martínek V, Martínková M. Heme: emergent roles of heme in signal transduction, functional regulation and as catalytic centres. Chem Soc Rev 2019; 48:5624-5657. [DOI: 10.1039/c9cs00268e] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular mechanisms of unprecedented functions of exchangeable/labile heme and heme proteins including transcription, DNA binding, protein kinase activity, K+ channel functions, cis–trans isomerization, N–N bond formation, and other functions are described.
Collapse
Affiliation(s)
- Toru Shimizu
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Alzbeta Lengalova
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Václav Martínek
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Markéta Martínková
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| |
Collapse
|
45
|
De Simone G, di Masi A, Polticelli F, Ascenzi P. Human nitrobindin: the first example of an all-β-barrel ferric heme-protein that catalyzes peroxynitrite detoxification. FEBS Open Bio 2018; 8:2002-2010. [PMID: 30524950 PMCID: PMC6275384 DOI: 10.1002/2211-5463.12534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 08/29/2018] [Accepted: 09/26/2018] [Indexed: 11/12/2022] Open
Abstract
Nitrobindins (Nbs), constituting a heme‐protein family spanning from bacteria to Homo sapiens, display an all‐β‐barrel structural organization. Human Nb has been described as a domain of the nuclear protein named THAP4, whose physiological function is still unknown. We report the first evidence of the heme‐Fe(III)‐based detoxification of peroxynitrite by the all‐β‐barrel C‐terminal Nb‐like domain of THAP4. Ferric human Nb (Nb(III)) catalyzes the conversion of peroxynitrite to NO3− and impairs the nitration of free l‐tyrosine. The rate of human Nb(III)‐mediated scavenging of peroxynitrite is similar to those of all‐α‐helical horse heart and sperm whale myoglobin and human hemoglobin, generally taken as the prototypes of all‐α‐helical heme‐proteins. The heme‐Fe(III) reactivity of all‐β‐barrel human Nb(III) and all‐α‐helical prototypical heme‐proteins possibly reflects the out‐to‐in‐plane transition of the heme‐Fe(III)‐atom preceding peroxynitrite binding. Human Nb(III) not only catalyzes the detoxification of peroxynitrite but also binds NO, possibly representing a target of reactive nitrogen species.
Collapse
Affiliation(s)
| | | | - Fabio Polticelli
- Department of Sciences Roma Tre University Italy.,National Institute of Nuclear Physics Roma Tre Section Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy Roma Tre University Italy
| |
Collapse
|
46
|
Lechuga GC, Pereira MCS, Bourguignon SC. Heme metabolism as a therapeutic target against protozoan parasites. J Drug Target 2018; 27:767-779. [DOI: 10.1080/1061186x.2018.1536982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Guilherme Curty Lechuga
- Laboratório de Interação celular e molecular, Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Rua Outeiro São João Batista, Rio de Janeiro, Brazil
- Fundação Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, Brazil
- Instituto de Biologia, Programa de Pós-graduação em Ciências e Biotecnologia (PPBI), Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Mirian C. S. Pereira
- Fundação Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, Brazil
| | - Saulo C. Bourguignon
- Laboratório de Interação celular e molecular, Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Rua Outeiro São João Batista, Rio de Janeiro, Brazil
- Instituto de Biologia, Programa de Pós-graduação em Ciências e Biotecnologia (PPBI), Universidade Federal Fluminense, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Yien YY, Shi J, Chen C, Cheung JTM, Grillo AS, Shrestha R, Li L, Zhang X, Kafina MD, Kingsley PD, King MJ, Ablain J, Li H, Zon LI, Palis J, Burke MD, Bauer DE, Orkin SH, Koehler CM, Phillips JD, Kaplan J, Ward DM, Lodish HF, Paw BH. FAM210B is an erythropoietin target and regulates erythroid heme synthesis by controlling mitochondrial iron import and ferrochelatase activity. J Biol Chem 2018; 293:19797-19811. [PMID: 30366982 DOI: 10.1074/jbc.ra118.002742] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/11/2018] [Indexed: 01/01/2023] Open
Abstract
Erythropoietin (EPO) signaling is critical to many processes essential to terminal erythropoiesis. Despite the centrality of iron metabolism to erythropoiesis, the mechanisms by which EPO regulates iron status are not well-understood. To this end, here we profiled gene expression in EPO-treated 32D pro-B cells and developing fetal liver erythroid cells to identify additional iron regulatory genes. We determined that FAM210B, a mitochondrial inner-membrane protein, is essential for hemoglobinization, proliferation, and enucleation during terminal erythroid maturation. Fam210b deficiency led to defects in mitochondrial iron uptake, heme synthesis, and iron-sulfur cluster formation. These defects were corrected with a lipid-soluble, small-molecule iron transporter, hinokitiol, in Fam210b-deficient murine erythroid cells and zebrafish morphants. Genetic complementation experiments revealed that FAM210B is not a mitochondrial iron transporter but is required for adequate mitochondrial iron import to sustain heme synthesis and iron-sulfur cluster formation during erythroid differentiation. FAM210B was also required for maximal ferrochelatase activity in differentiating erythroid cells. We propose that FAM210B functions as an adaptor protein that facilitates the formation of an oligomeric mitochondrial iron transport complex, required for the increase in iron acquisition for heme synthesis during terminal erythropoiesis. Collectively, our results reveal a critical mechanism by which EPO signaling regulates terminal erythropoiesis and iron metabolism.
Collapse
Affiliation(s)
- Yvette Y Yien
- From the Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, .,the Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jiahai Shi
- the Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Caiyong Chen
- the Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jesmine T M Cheung
- the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Anthony S Grillo
- the Department of Chemistry and Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Rishna Shrestha
- the Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Liangtao Li
- the Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Xuedi Zhang
- From the Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Martin D Kafina
- the Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Paul D Kingsley
- the Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York 14642
| | - Matthew J King
- the Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Julien Ablain
- the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Hojun Li
- the Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Leonard I Zon
- the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, and
| | - James Palis
- the Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York 14642
| | - Martin D Burke
- the Department of Chemistry and Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Daniel E Bauer
- the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Stuart H Orkin
- the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Carla M Koehler
- the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - John D Phillips
- the Division of Hematology and Hematologic Malignancy, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Jerry Kaplan
- the Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Diane M Ward
- the Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Harvey F Lodish
- the Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Barry H Paw
- the Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, and
| |
Collapse
|
48
|
Fiege K, Querebillo CJ, Hildebrandt P, Frankenberg-Dinkel N. Improved Method for the Incorporation of Heme Cofactors into Recombinant Proteins Using Escherichia coli Nissle 1917. Biochemistry 2018; 57:2747-2755. [DOI: 10.1021/acs.biochem.8b00242] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kerstin Fiege
- Technische Universität Kaiserslautern, Fachbereich Biologie, Abt. Mikrobiologie, Erwin-Schrödinger-Straße 56, D-67663 Kaiserslautern, Germany
| | - Christine Joy Querebillo
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Nicole Frankenberg-Dinkel
- Technische Universität Kaiserslautern, Fachbereich Biologie, Abt. Mikrobiologie, Erwin-Schrödinger-Straße 56, D-67663 Kaiserslautern, Germany
| |
Collapse
|
49
|
Uchida T, Funamizu T, Chen M, Tanaka Y, Ishimori K. Heme Binding to Porphobilinogen Deaminase from Vibrio cholerae Decelerates the Formation of 1-Hydroxymethylbilane. ACS Chem Biol 2018; 13:750-760. [PMID: 29360345 DOI: 10.1021/acschembio.7b00934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Porphobilinogen deaminase (PBGD) is an enzyme that catalyzes the formation of hydroxymethylbilane, a tetrapyrrole intermediate, during heme biosynthesis through the stepwise polymerization of four molecules of porphobilinogen. PBGD from Vibrio cholerae was expressed in Escherichia coli and characterized in this study. Unexpectedly, spectroscopic measurements revealed that PBGD bound one equivalent of heme with a dissociation constant of 0.33 ± 0.01 μM. The absorption and resonance Raman spectra suggested that heme is a mixture of the 5-coordinate and 6-coordinate hemes. Mutational studies indicated that the 5-coordinate heme possessed Cys105 as a heme axial ligand, and His227 was coordinated to form the 6-coordinate heme. Upon heme binding, the deamination activity decreased by approximately 15%. The crystal structure of PBGD revealed that His227 was located near Cys105, but the side chain of His227 did not point toward Cys105. The addition of the cyanide ion to heme-PBGD abolished the effect of heme binding on the enzymatic activity. Therefore, coordination of His227 to heme appeared to induce reorientation of the domains containing Cys105, leading to a decrease in the enzymatic activity. This is the first report indicating that the PBGD activity is controlled by heme, the final product of heme biosynthesis. This finding improves our understanding of the mechanism by which heme biosynthesis is regulated.
Collapse
Affiliation(s)
- Takeshi Uchida
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takumi Funamizu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Minghao Chen
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yoshikazu Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- PRESTO, Japan Science and Technology Agency, Sapporo 060-0810, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
50
|
Choby JE, Grunenwald CM, Celis AI, Gerdes SY, DuBois JL, Skaar EP. Staphylococcus aureus HemX Modulates Glutamyl-tRNA Reductase Abundance To Regulate Heme Biosynthesis. mBio 2018; 9:e02287-17. [PMID: 29437922 PMCID: PMC5801465 DOI: 10.1128/mbio.02287-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus is responsible for a significant amount of devastating disease. Its ability to colonize the host and cause infection is supported by a variety of proteins that are dependent on the cofactor heme. Heme is a porphyrin used broadly across kingdoms and is synthesized de novo from common cellular precursors and iron. While heme is critical to bacterial physiology, it is also toxic in high concentrations, requiring that organisms encode regulatory processes to control heme homeostasis. In this work, we describe a posttranscriptional regulatory strategy in S. aureus heme biosynthesis. The first committed enzyme in the S. aureus heme biosynthetic pathway, glutamyl-tRNA reductase (GtrR), is regulated by heme abundance and the integral membrane protein HemX. GtrR abundance increases dramatically in response to heme deficiency, suggesting a mechanism by which S. aureus responds to the need to increase heme synthesis. Additionally, HemX is required to maintain low levels of GtrR in heme-proficient cells, and inactivation of hemX leads to increased heme synthesis. Excess heme synthesis in a ΔhemX mutant activates the staphylococcal heme stress response, suggesting that regulation of heme synthesis is critical to reduce self-imposed heme toxicity. Analysis of diverse organisms indicates that HemX is widely conserved among heme-synthesizing bacteria, suggesting that HemX is a common factor involved in the regulation of GtrR abundance. Together, this work demonstrates that S. aureus regulates heme synthesis by modulating GtrR abundance in response to heme deficiency and through the activity of the broadly conserved HemX.IMPORTANCEStaphylococcus aureus is a leading cause of skin and soft tissue infections, endocarditis, bacteremia, and osteomyelitis, making it a critical health care concern. Development of new antimicrobials against S. aureus requires knowledge of the physiology that supports this organism's pathogenesis. One component of staphylococcal physiology that contributes to growth and virulence is heme. Heme is a widely utilized cofactor that enables diverse chemical reactions across many enzyme families. S. aureus relies on many critical heme-dependent proteins and is sensitive to excess heme toxicity, suggesting S. aureus must maintain proper intracellular heme homeostasis. Because S. aureus provides heme for heme-dependent enzymes via synthesis from common precursors, we hypothesized that regulation of heme synthesis is one mechanism to maintain heme homeostasis. In this study, we identify that S. aureus posttranscriptionally regulates heme synthesis by restraining abundance of the first heme biosynthetic enzyme, GtrR, via heme and the broadly conserved membrane protein HemX.
Collapse
Affiliation(s)
- Jacob E Choby
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Graduate Program in Microbiology & Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Caroline M Grunenwald
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Arianna I Celis
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | | | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|