1
|
Kawada K, Takahashi I, Takei S, Nomura A, Seto Y, Fukui K, Asami T. The Evaluation of Debranone Series Strigolactone Agonists for Germination Stimulants in Orobanche Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19517-19525. [PMID: 39155455 DOI: 10.1021/acs.jafc.4c05797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Strigolactones (SLs) are plant hormones that regulate shoot branching. In addition, SLs act as compounds that stimulate the germination of root parasitic weeds, such as Striga spp. and Orobanche spp., which cause significant damage to agriculture worldwide. Thus, SL agonists have the potential to induce suicidal germination, thereby reducing the seed banks of root parasitic weeds in the soil. Particularly, phenoxyfuranone-type SL agonists, known as debranones, exhibit SL-like activity in rice and Striga hermonthica. However, little is known about their effects on Orobanche spp. In this study, we evaluated the germination-inducing activity of debranones against Orobanche minor. Analysis of structure-activity relationships revealed that debranones with electron-withdrawing substituents at the 2,4- or 2,6-position strongly induced the germination of Orobanche minor. Lastly, biological assays indicated that 5-(2-fluoro-4-nitrophenoxy)-3-methylfuran-2(5H)-one (test compound 61) induced germination to a comparable or even stronger extent than GR24, a well-known synthetic SL. Altogether, our data allowed us to infer that this enhanced activity was due to the recognition of compound 61 by the SLs receptor, KAI 2d, in Orobanche minor.
Collapse
Affiliation(s)
- Kojiro Kawada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Saori Takei
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Akifumi Nomura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshiya Seto
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kosuke Fukui
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
2
|
Daignan-Fornier S, Keita A, Boyer FD. Chemistry of Strigolactones, Key Players in Plant Communication. Chembiochem 2024; 25:e202400133. [PMID: 38607659 DOI: 10.1002/cbic.202400133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/13/2024]
Abstract
Today, the use of artificial pesticides is questionable and the adaptation to global warming is a necessity. The promotion of favorable natural interactions in the rhizosphere offers interesting perspectives for changing the type of agriculture. Strigolactones (SLs), the latest class of phytohormones to be discovered, are also chemical mediators in the rhizosphere. We present in this review the diversity of natural SLs, their analogs, mimics, and probes essential for the biological studies of this class of compounds. Their biosynthesis and access by organic synthesis are highlighted especially concerning noncanonical SLs, the more recently discovered natural SLs. Organic synthesis of analogs, stable isotope-labeled standards, mimics, and probes are also reviewed here. In the last part, the knowledge about the SL perception is described as well as the different inhibitors of SL receptors that have been developed.
Collapse
Affiliation(s)
- Suzanne Daignan-Fornier
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| | - Antoinette Keita
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Chen J, Shukla D. Effect of histidine covalent modification on strigolactone receptor activation and selectivity. Biophys J 2023; 122:1219-1228. [PMID: 36798027 PMCID: PMC10111262 DOI: 10.1016/j.bpj.2023.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/17/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The parasitic weed Striga has led to billions of dollars' worth of agricultural productivity loss worldwide. Striga detects host plants using compounds of the strigolactone class of phytohormones. Early steps in the strigolactone signaling pathway involve substrate binding and hydrolysis followed by a conformational change to an "active" or "closed" state, after which it associates with a MAX2-family downstream signaling partner. The structures of the inactive and active states of strigolactone receptors are known through X-ray crystallography, and the transition pathway from the inactive to active state in apo receptors has previously been characterized using molecular dynamics simulations. However, it also has been suggested that a covalent butenolide modification of the receptor on the catalytic histidine through substrate hydrolysis promotes formation of the active state. Using molecular dynamics simulations, we show that the presence of the covalent butenolide enhances activation in both AtD14, a receptor found in Arabidopsis, and ShHTL7, a receptor found in Striga, but the enhancement is ∼50 times greater in ShHTL7. We also show that several conserved interactions with the covalent butenolide modification promote transition to the active state in both AtD14 (non-parasite) and ShHTL7 (parasite). Finally, we demonstrate that the enhanced activation of ShHTL7 likely results from disruption of ShHTL7-specific histidine interactions that inhibited activation in the apo case. These results provide a possible explanation for difference in strigolactone sensitivity seen between different strigolactone-sensitive proteins and can be used to aid the design of selective modulators to control Striga parasites.
Collapse
Affiliation(s)
- Jiming Chen
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois; Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, Illinois; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
4
|
Ito S. Recent advances in the regulation of root parasitic weed damage by strigolactone-related chemicals. Biosci Biotechnol Biochem 2023; 87:247-255. [PMID: 36610999 DOI: 10.1093/bbb/zbac208] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Root parasitic weeds such as Striga spp. and Orobanche spp. dramatically reduce the yields of important agricultural crops and cause economic losses of over billions of US dollars worldwide. One reason for the damage by root parasitic weeds is that they germinate after specifically recognizing the host cues, strigolactones (SLs). SLs were identified ˃50 years ago as germination stimulants for root parasitic weeds, and various studies have been conducted to control parasitic weeds using SLs and related chemicals. Recently, biochemical and molecular biological approaches have revealed the SL biosynthesis and SL receptors; using these findings, various SL-related chemicals have been developed. This review summarizes recent research on SLs and their related chemicals for controlling root parasitic weeds.
Collapse
Affiliation(s)
- Shinsaku Ito
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, Japan
| |
Collapse
|
5
|
Kawada K, Koyama T, Takahashi I, Nakamura H, Asami T. Emerging technologies for the chemical control of root parasitic weeds. JOURNAL OF PESTICIDE SCIENCE 2022; 47:101-110. [PMID: 36479457 PMCID: PMC9706279 DOI: 10.1584/jpestics.d22-045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 06/17/2023]
Abstract
Parasitic plants in the Orobanchaceae family include devastating weed species, such as Striga, Orobanche, and Phelipanche, which parasitize major crops, drastically reduces crop yields and cause economic losses of over a billion US dollars worldwide. Advances in basic research on molecular and cellular processes responsible for parasitic relationships has now achieved steady progress through advances in genome analysis, biochemical analysis and structural biology. On the basis of these advances it is now possible to develop chemicals that control parasitism and reduce agricultural damage. In this review we summarized the recent development of chemicals that can control each step of parasitism from strigolactone biosynthesis in host plants to haustorium formation.
Collapse
Affiliation(s)
- Kojiro Kawada
- Graduade School of Agricultural and Life Sciences, The University of Tokyo
| | - Tomoyuki Koyama
- Graduade School of Agricultural and Life Sciences, The University of Tokyo
| | - Ikuo Takahashi
- Graduade School of Agricultural and Life Sciences, The University of Tokyo
| | - Hidemitsu Nakamura
- Graduade School of Agricultural and Life Sciences, The University of Tokyo
| | - Tadao Asami
- Graduade School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
6
|
de Saint Germain A, Clavé G, Schouveiler P, Pillot JP, Singh AV, Chevalier A, Daignan Fornier S, Guillory A, Bonhomme S, Rameau C, Boyer FD. Expansion of the Strigolactone Profluorescent Probes Repertory: The Right Probe for the Right Application. FRONTIERS IN PLANT SCIENCE 2022; 13:887347. [PMID: 35720613 PMCID: PMC9201908 DOI: 10.3389/fpls.2022.887347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/02/2022] [Indexed: 05/29/2023]
Abstract
Strigolactones (SLs) are intriguing phytohormones that not only regulate plant development and architecture but also interact with other organisms in the rhizosphere as root parasitic plants (Striga, Orobanche, and Phelipanche) and arbuscular mycorrhizal fungi. Starting with a pioneering work in 2003 for the isolation and identification of the SL receptor in parasitic weeds, fluorescence labeling of analogs has proven a major strategy to gain knowledge in SL perception and signaling. Here, we present novel chemical tools for understanding the SL perception based on the enzymatic properties of SL receptors. We designed different profluorescent SL Guillaume Clavé (GC) probes and performed structure-activity relationship studies on pea, Arabidopsis thaliana, and Physcomitrium (formerly Physcomitrella) patens. The binding of the GC probes to PsD14/RMS3, AtD14, and OsD14 proteins was tested. We demonstrated that coumarin-based profluorescent probes were highly bioactive and well-adapted to dissect the enzymatic properties of SL receptors in pea and a resorufin profluorescent probe in moss, contrary to the commercially available fluorescein profluorescent probe, Yoshimulactone Green (YLG). These probes offer novel opportunities for the studies of SL in various plants.
Collapse
Affiliation(s)
| | - Guillaume Clavé
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Paul Schouveiler
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Jean-Paul Pillot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Abhay-Veer Singh
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Arnaud Chevalier
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Suzanne Daignan Fornier
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Ambre Guillory
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sandrine Bonhomme
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Catherine Rameau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - François-Didier Boyer
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Fiorilli V, Forgia M, de Saint Germain A, D’Arrigo G, Cornu D, Le Bris P, Al‐Babili S, Cardinale F, Prandi C, Spyrakis F, Boyer F, Turina M, Lanfranco L. A structural homologue of the plant receptor D14 mediates responses to strigolactones in the fungal phytopathogen Cryphonectria parasitica. THE NEW PHYTOLOGIST 2022; 234:1003-1017. [PMID: 35119708 PMCID: PMC9306968 DOI: 10.1111/nph.18013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 05/27/2023]
Abstract
Strigolactones (SLs) are plant hormones and important signalling molecules required to promote arbuscular mycorrhizal (AM) symbiosis. While in plants an α/β-hydrolase, DWARF14 (D14), was shown to act as a receptor that binds and cleaves SLs, the fungal receptor for SLs is unknown. Since AM fungi are currently not genetically tractable, in this study, we used the fungal pathogen Cryphonectria parasitica, for which gene deletion protocols exist, as a model, as we have previously shown that it responds to SLs. By means of computational, biochemical and genetic analyses, we identified a D14 structural homologue, CpD14. Molecular homology modelling and docking support the prediction that CpD14 interacts with and hydrolyses SLs. The recombinant CpD14 protein shows α/β hydrolytic activity in vitro against the SLs synthetic analogue GR24; its enzymatic activity requires an intact Ser/His/Asp catalytic triad. CpD14 expression in the d14-1 loss-of-function Arabidopsis thaliana line did not rescue the plant mutant phenotype. However, gene inactivation by knockout homologous recombination reduced fungal sensitivity to SLs. These results indicate that CpD14 is involved in SLs responses in C. parasitica and strengthen the role of SLs as multifunctional molecules acting in plant-microbe interactions.
Collapse
Affiliation(s)
- Valentina Fiorilli
- Dipartimento di Scienze della Vita e Biologia dei SistemiUniversità di TorinoViale P.A. Mattioli 25Torino10125Italy
| | - Marco Forgia
- Istituto per la Protezione Sostenibile delle Piante – CNRStrada delle Cacce 7310135TorinoItaly
| | | | - Giulia D’Arrigo
- Dipartimento di Scienza e Tecnologia del FarmacoUniversità di Torinovia P. Giuria 1110125TorinoItaly
| | - David Cornu
- CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Université Paris‐Saclay1 Avenue de la Terrasse91198Gif‐sur‐YvetteFrance
| | - Philippe Le Bris
- INRAE, AgroParisTechInstitut Jean‐Pierre Bourgin (IJPB)Université Paris‐Saclay78000VersaillesFrance
| | - Salim Al‐Babili
- Division of Biological and Environmental Science and EngineeringKing Abdullah University of Science and TechnologyThuwal23955‐6900Saudi Arabia
| | - Francesca Cardinale
- Dipartimento di Scienze Agrarie, Forestali e AlimentariUniversità di TorinoLargo Braccini 210095GrugliascoItaly
| | - Cristina Prandi
- Dipartimento di ChimicaUniversità di Torinovia P. Giuria 710125TorinoItaly
| | - Francesca Spyrakis
- Dipartimento di Scienza e Tecnologia del FarmacoUniversità di Torinovia P. Giuria 1110125TorinoItaly
| | - François‐Didier Boyer
- CNRSInstitut de Chimie des Substances NaturellesUPR 2301Université Paris‐Saclay1 Avenue de la Terrasse91198Gif‐sur‐YvetteFrance
| | - Massimo Turina
- Istituto per la Protezione Sostenibile delle Piante – CNRStrada delle Cacce 7310135TorinoItaly
| | - Luisa Lanfranco
- Dipartimento di Scienze della Vita e Biologia dei SistemiUniversità di TorinoViale P.A. Mattioli 25Torino10125Italy
| |
Collapse
|
8
|
Sepulveda C, Guzmán MA, Li Q, Villaécija-Aguilar JA, Martinez SE, Kamran M, Khosla A, Liu W, Gendron JM, Gutjahr C, Waters MT, Nelson DC. KARRIKIN UP-REGULATED F-BOX 1 (KUF1) imposes negative feedback regulation of karrikin and KAI2 ligand metabolism in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2022; 119:e2112820119. [PMID: 35254909 PMCID: PMC8931227 DOI: 10.1073/pnas.2112820119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
SignificanceKarrikins are chemicals in smoke that stimulate regrowth of many plants after fire. However, karrikin responses are not limited to species from fire-prone environments and can affect growth after germination. Putatively, this is because karrikins mimic an unknown signal in plants, KAI2 ligand (KL). Karrikins likely require modification in plants to become bioactive. We identify a gene, KUF1, that appears to negatively regulate biosynthesis of KL and metabolism of a specific karrikin. KUF1 expression increases in response to karrikin or KL signaling, thus forming a negative feedback loop that limits further activation of the signaling pathway. This discovery will advance understanding of how karrikins are perceived and how smoke-activated germination evolved. It will also aid identification of the elusive KL.
Collapse
Affiliation(s)
- Claudia Sepulveda
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Michael A. Guzmán
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Qingtian Li
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | | | - Stephanie E. Martinez
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Muhammad Kamran
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Aashima Khosla
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Wei Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511
| | - Joshua M. Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich, Freising, 85354 Germany
| | - Mark T. Waters
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - David C. Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| |
Collapse
|
9
|
White ARF, Mendez JA, Khosla A, Nelson DC. Rapid analysis of strigolactone receptor activity in a Nicotiana benthamiana dwarf14 mutant. PLANT DIRECT 2022; 6:e389. [PMID: 35355884 PMCID: PMC8948499 DOI: 10.1002/pld3.389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/03/2021] [Accepted: 02/17/2022] [Indexed: 05/29/2023]
Abstract
DWARF14 (D14) is an ɑ/β-hydrolase and receptor for the plant hormone strigolactone (SL) in angiosperms. Upon SL perception, D14 works with MORE AXILLARY GROWTH2 (MAX2) to trigger polyubiquitination and degradation of DWARF53(D53)-type proteins in the SUPPRESSOR OF MAX2 1-LIKE (SMXL) family. We used CRISPR-Cas9 to generate knockout alleles of the two homoeologous D14 genes in the Nicotiana benthamiana genome. The Nbd14a,b double mutant had several phenotypes that are consistent with the loss of SL perception in other plants, including increased axillary bud outgrowth, reduced height, shortened petioles, and smaller leaves. A ratiometric fluorescent reporter system was used to monitor degradation of SMXL7 from Arabidopsis thaliana (AtSMXL7) after transient expression in N. benthamiana and treatment with the strigolactone analog GR24. AtSMXL7 was degraded after treatment with GR245DS, which has the stereochemical configuration of natural SLs, as well as its enantiomer GR24 ent-5DS. In Nbd14a,b leaves, AtSMXL7 abundance was unaffected by rac-GR24 or either GR24 stereoisomer. Transient coexpression of AtD14 with the AtSMXL7 reporter in Nbd14a,b restored the degradation response to rac-GR24, but required an active catalytic triad. We used this platform to evaluate the ability of several AtD14 mutants that had not been characterized in plants to target AtSMXL7 for degradation.
Collapse
Affiliation(s)
- Alexandra R. F. White
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCaliforniaUSA
| | - Jose A. Mendez
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCaliforniaUSA
| | - Aashima Khosla
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCaliforniaUSA
| | - David C. Nelson
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
10
|
Anteyi WO, Klaiber I, Rasche F. Diacetoxyscirpenol, a Fusarium exometabolite, prevents efficiently the incidence of the parasitic weed Striga hermonthica. BMC PLANT BIOLOGY 2022; 22:84. [PMID: 35209839 PMCID: PMC8867772 DOI: 10.1186/s12870-022-03471-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/14/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND Certain Fusarium exometabolites have been reported to inhibit seed germination of the cereal-parasitizing witchweed, Striga hermonthica, in vitro. However, it is unknown if these exometabolites will consistently prevent S. hermonthica incidence in planta. The study screened a selection of known, highly phytotoxic Fusarium exometabolites, in identifying the most potent/efficient candidate (i.e., having the greatest effect at minimal concentration) to completely hinder S. hermonthica seed germination in vitro and incidence in planta, without affecting the host crop development and yield. RESULTS In vitro germination assays of the tested Fusarium exometabolites (i.e., 1,4-naphthoquinone, equisetin, fusaric acid, hymeglusin, neosolaniol (Neo), T-2 toxin (T-2) and diacetoxyscirpenol (DAS)) as pre-Striga seed conditioning treatments at 1, 5, 10, 20, 50 and 100 µM, revealed that only DAS, out of all tested exometabolites, completely inhibited S. hermonthica seed germination at each concentration. It was followed by T-2 and Neo, as from 10 to 20 µM respectively. The remaining exometabolites reduced S. hermonthica seed germination as from 20 µM (P < 0. 0001). In planta assessment (in a S. hermonthica-sorghum parasitic system) of the exometabolites at 20 µM showed that, although, none of the tested exometabolites affected sorghum aboveground dry biomass (P > 0.05), only DAS completely prevented S. hermonthica incidence. Following a 14-d incubation of DAS in the planting soil substrate, bacterial 16S ribosomal RNA (rRNA) and fungal 18S rRNA gene copy numbers of the soil microbial community were enhanced; which coincided with complete degradation of DAS in the substrate. Metabolic footprinting revealed that the S. hermonthica mycoherbicidal agent, Fusarium oxysporum f. sp. strigae (isolates Foxy-2, FK3), did not produce DAS; a discovery that corresponded with underexpression of key genes (Tri5, Tri4) necessary for Fusarium trichothecene biosynthesis (P < 0.0001). CONCLUSIONS Among the tested Fusarium exometabolites, DAS exhibited the most promising herbicidal potential against S. hermonthica. Thus, it could serve as a new biocontrol agent for efficient S. hermonthica management. Further examination of DAS specific mode of action against the target weed S. hermonthica at low concentrations (≤ 20 µM), as opposed to non-target soil organisms, is required.
Collapse
Affiliation(s)
- Williams Oyifioda Anteyi
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, 70593, Stuttgart, Germany
| | - Iris Klaiber
- Core Facility Hohenheim, University of Hohenheim, 70593, Stuttgart, Germany
| | - Frank Rasche
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
11
|
Arellano-Saab A, McErlean CSP, Lumba S, Savchenko A, Stogios PJ, McCourt P. A novel strigolactone receptor antagonist provides insights into the structural inhibition, conditioning, and germination of the crop parasite Striga. J Biol Chem 2022; 298:101734. [PMID: 35181340 PMCID: PMC9035408 DOI: 10.1016/j.jbc.2022.101734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/14/2023] Open
Abstract
Crop parasites of the Striga genera are a major biological deterrent to food security in Africa and are one of the largest obstacles to poverty alleviation on the continent. Striga seeds germinate by sensing small-molecule hormones, strigolactones (SLs), that emanate from host roots. Although SL receptors (Striga hermonthica HYPOSENSITIVE TO LIGHT [ShHTL]) have been identified, discerning their function has been difficult because these parasites cannot be easily grown under laboratory conditions. Moreover, many Striga species are obligate outcrossers that are not transformable, hence not amenable to genetic analysis. By combining phenotypic screening with ShHTL structural information and hybrid drug discovery methods, we discovered a potent SL perception inhibitor for Striga, dormirazine (DOZ). Structural analysis of this piperazine-based antagonist reveals a novel binding mechanism, distinct from that of known SLs, blocking access of the hormone to its receptor. Furthermore, DOZ reduces the flexibility of protein–protein interaction domains important for receptor signaling to downstream partners. In planta, we show, via temporal additions of DOZ, that SL receptors are required at a specific time during seed conditioning. This conditioning is essential to prime seed germination at the right time; thus, this SL-sensitive stage appears to be critical for adequate receptor signaling. Aside from uncovering a function for ShHTL during seed conditioning, these results suggest that future Ag-Biotech Solutions to Striga infestations will need to carefully time the application of antagonists to exploit receptor availability and outcompete natural SLs, critical elements for successful parasitic plant invasions.
Collapse
Affiliation(s)
- Amir Arellano-Saab
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto M5S 3B2, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto. Toronto, ON. M5S 3E5, Canada
| | | | - Shelley Lumba
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto M5S 3B2, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto. Toronto, ON. M5S 3E5, Canada; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto. Toronto, ON. M5S 3E5, Canada
| | - Peter McCourt
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto M5S 3B2, Canada
| |
Collapse
|
12
|
Hu A, Zhao Q, Chen L, Zhao J, Wang Y, Feng K, Wu L, Xie M, Zhou X, Xiao L, Ming Z, Zhang M, Yao R. Identification of Conserved and Divergent Strigolactone Receptors in Sugarcane Reveals a Key Residue Crucial for Plant Branching Control. FRONTIERS IN PLANT SCIENCE 2021; 12:747160. [PMID: 34858455 PMCID: PMC8632500 DOI: 10.3389/fpls.2021.747160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/12/2021] [Indexed: 05/29/2023]
Abstract
Strigolactones (SLs) are a class of important plant hormones mainly regulating plant architecture such as branching, which is crucial for crop yield. It is valuable to study SL signaling pathway and its physiological function in sugarcane, the most important sugar crop, for further molecular breeding. Here, two putative SL receptors SsD14a/b and the interacting F-box protein SsMAX2 were identified in Saccharum spontaneum. SL induced both SsD14a and SsD14b to interact with SsMAX2 in yeast. SsD14a, but not SsD14b, could bind with AtMAX2 and AtSMXL7/SsSMXL7. Overexpression of SsD14a or SsMAX2 rescued the increased branching phenotypes of Arabidopsis thaliana d14-1 or max2-3 mutants, respectively. Moreover, the crystal structure of N-terminal truncated SsD14a was solved, with an overall structure identical to AtD14 and OsD14 in the open state, consistent with its conserved branching suppression capacity in Arabidopsis. In line with the biochemical observations, SsD14b could not completely complement in d14-1 although these two SsD14 proteins have almost identical primary sequences except for very few residues. Complement with the combination of SsD14b and SsMAX2 still failed to rescue the d14-1 max2-3 double mutant multi-branching phenotype, indicating SsD14b-AtSMXL7 complex formation is required for regulating branching. Mutagenesis analyses revealed that residue R310 at α10 helix of SsD14a was crucial for the binding with SsSMXL7/AtSMXL7 but not SsMAX2. The site-equivalent single-residue P304R substitution enabled SsD14b to bind with AtMAX2 and AtSMXL7/SsSMXL7 and to rescue the phenotype of d14-1 max2-3 together with SsMAX2. Moreover, this conserved Arg residue across species including rice and Arabidopsis determined the activity of SL receptors through maintaining their interaction with SMXL repressors. Taken together, our work identified conserved and divergent strigolactone receptors in sugarcane core SL signaling pathway and revealed a key residue crucial for plant branching control.
Collapse
Affiliation(s)
- Anqi Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Qiaoqiao Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio Resources, Guangxi Key Laboratory for Sugarcane Biology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Li Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Jinping Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
- Hunan Province Key Laboratory of Phytohormones and Growth Development, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, China
| | - Yuehua Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Kuiliang Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Ling Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Miao Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Xuemei Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Langtao Xiao
- Hunan Province Key Laboratory of Phytohormones and Growth Development, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, China
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio Resources, Guangxi Key Laboratory for Sugarcane Biology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Meng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
13
|
Andersson I, Carlsson GH, Hasse D. Structural Analysis of Strigolactone-Related Gene Products. Methods Mol Biol 2021; 2309:245-257. [PMID: 34028692 DOI: 10.1007/978-1-0716-1429-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Structural knowledge of biological macromolecules is essential for understanding their function and for modifying that function by engineering. Protein crystallography is a powerful method for elucidating molecular structures of proteins, but it is essential that the investigator has a basic knowledge of good practices and of the major pitfalls in the technique. Here we describe issues specific for the case of structural studies of strigolactone (SL) receptor structure and function, and in particular the difficulties associated with capturing complexes of SL receptors with the SL hormone ligand in the crystal.
Collapse
Affiliation(s)
- Inger Andersson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden. .,Arctic University of Norway, Tromsø, Norway. .,Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.
| | - Gunilla H Carlsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Dirk Hasse
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Nelson DC. The mechanism of host-induced germination in root parasitic plants. PLANT PHYSIOLOGY 2021; 185:1353-1373. [PMID: 33793958 PMCID: PMC8133615 DOI: 10.1093/plphys/kiab043] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/25/2021] [Indexed: 05/25/2023]
Abstract
Chemical signals known as strigolactones (SLs) were discovered more than 50 years ago as host-derived germination stimulants of parasitic plants in the Orobanchaceae. Strigolactone-responsive germination is an essential adaptation of obligate parasites in this family, which depend upon a host for survival. Several species of obligate parasites, including witchweeds (Striga, Alectra spp.) and broomrapes (Orobanche, Phelipanche spp.), are highly destructive agricultural weeds that pose a significant threat to global food security. Understanding how parasites sense SLs and other host-derived stimulants will catalyze the development of innovative chemical and biological control methods. This review synthesizes the recent discoveries of strigolactone receptors in parasitic Orobanchaceae, their signaling mechanism, and key steps in their evolution.
Collapse
Affiliation(s)
- David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521 USA
| |
Collapse
|
15
|
Hamiaux C, Janssen BJ, Snowden KC. The Use of Differential Scanning Fluorimetry to Assess Strigolactone Receptor Function. Methods Mol Biol 2021; 2309:233-243. [PMID: 34028691 DOI: 10.1007/978-1-0716-1429-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Differential scanning fluorimetry (DSF) is a method used for assessing the interaction of ligands with proteins. In most cases binding of a ligand to proteins tends to increase the melting temperature (Tm) of the protein involved. However, in the case of strigolactone receptors (e.g., D14, AtD14, DAD2, RMS3) from plants, the Tm tends to be reduced in the presence of strigolactones. This is likely due to increased flexibility of the receptors in the presence of hormone ligands.DSF experiments are simple, fast, amenable to high-throughput formats, and cost effective. They have therefore gained in popularity, including within the field of SL signaling. Typically in DSF the receptor protein is purified and incubated with the ligand (strigolactone, agonist, or antagonist) and a (fluorescent) reporter dye. The mixture is then placed in a quantitative PCR instrument and subjected to an increasing temperature gradient. Changes in fluorescence are recorded along the gradient, as the dye interacts with unfolded portions of the protein becoming accessible when the protein "melts". Differences in the temperature at which the protein unfolds in the absence and in the presence of the ligand are interpreted as indicating interactions between the ligand and the receptor.
Collapse
Affiliation(s)
- Cyril Hamiaux
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Bart J Janssen
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Kimberley C Snowden
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.
| |
Collapse
|
16
|
Omoarelojie LO, Kulkarni MG, Finnie JF, Pospíšil T, Strnad M, Van Staden J. Synthetic strigolactone (rac-GR24) alleviates the adverse effects of heat stress on seed germination and photosystem II function in lupine seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:965-979. [PMID: 32977141 DOI: 10.1016/j.plaphy.2020.07.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 05/14/2023]
Abstract
There is increasing experimental evidence that strigolactones, a class of carotenoid-derived sesquiterpenoid hormones, and their downstream signal components play a role in plant resilience to abiotic stress. Strigolactones positively influence plant coping mechanisms in response to abiotic stressors like drought and high salinity. In this study, we examined the effects of rac-GR24 (a synthetic strigolactone analog) and strigolactone inhibitors on the physiological and molecular responses associated with thermotolerance during seed germination and seedling development in Lupinus angustifolius under heat stress. Photosystem I & II functions were also evaluated via Chl a fluorescence transient analysis in heat stressed lupine seedlings. Our results suggest a putative role for GR24 in mediating tolerance to heat stress during seed germination and seedling development albeit these responses appeared independent of D14-mediated signalling. Seeds primed with GR24 had the highest of all germination indices, enhanced proline content and reduced peroxidation of lipids. GR24 also enhanced the activities of enzymes of the antioxidant and glyoxalase systems in lupine seedlings. The JIP-test indicated that GR24 conferred resistance to heat stress-induced damage to the oxygen evolution complex while also preventing the inactivation of PSII reaction centres thus ensuring PSII thermotolerance.
Collapse
Affiliation(s)
- Luke O Omoarelojie
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa
| | - Manoj G Kulkarni
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa
| | - Jeffrey F Finnie
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa
| | - Tomáš Pospíšil
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Johannes Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
17
|
Bürger M, Chory J. In-silico analysis of the strigolactone ligand-receptor system. PLANT DIRECT 2020; 4:e00263. [PMID: 32995702 PMCID: PMC7507525 DOI: 10.1002/pld3.263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 05/17/2023]
Abstract
Strigolactones (SLs) are a diverse class of butenolide-bearing plant hormones associated with several processes of major agricultural concern. SLs initiate symbiosis between plants and arbuscular mycorrhizal fungi, cause germination of crop-devastating parasitic plants, and inhibit shoot branching in vascular plants. SLs are perceived by dual receptor-hydrolase proteins, and capturing the intact ligand inside the receptor remains a key challenge for structural biologists. In addition, many discovered SLs are hard to obtain and too unstable to work with. In a computer-based approach, we investigated the interaction of 20 different SL molecules with nine crystal structures of SL receptors. Our results suggest an important role of the active site for ligand binding and orientation, and that the parasitic plant Striga hermonthica has developed both promiscuous and type-specific SL receptors as part of its host recognition strategy.
Collapse
Affiliation(s)
- Marco Bürger
- Plant Biology LaboratorySalk Institute for Biological StudiesLa JollaCAUSA
| | - Joanne Chory
- Plant Biology LaboratorySalk Institute for Biological StudiesLa JollaCAUSA
- Howard Hughes Medical InstituteSalk Institute for Biological StudiesLa JollaCAUSA
| |
Collapse
|
18
|
Lee HW, Sharma P, Janssen BJ, Drummond RSM, Luo Z, Hamiaux C, Collier T, Allison JR, Newcomb RD, Snowden KC. Flexibility of the petunia strigolactone receptor DAD2 promotes its interaction with signaling partners. J Biol Chem 2020; 295:4181-4193. [PMID: 32071083 PMCID: PMC7105320 DOI: 10.1074/jbc.ra119.011509] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/13/2020] [Indexed: 11/06/2022] Open
Abstract
Strigolactones (SLs) are terpenoid-derived plant hormones that regulate various developmental processes, particularly shoot branching, root development, and leaf senescence. The SL receptor has an unusual mode of action. Upon binding SL, it hydrolyzes the hormone, and then covalently binds one of the hydrolytic products. These initial events enable the SL receptor DAD2 (in petunia) to interact with the F-box protein PhMAX2A of the Skp-Cullin-F-box (SCF) complex and/or a repressor of SL signaling, PhD53A. However, it remains unclear how binding and hydrolysis structurally alters the SL receptor to enable its engagement with signaling partners. Here, we used mutagenesis to alter DAD2 and affect SL hydrolysis or DAD2's ability to interact with its signaling partners. We identified three DAD2 variants whose hydrolytic activity had been separated from the receptor's interactions with PhMAX2A or PhD53A. Two variants, DAD2N242I and DAD2F135A, having substitutions in the core α/β hydrolase-fold domain and the hairpin, exhibited hormone-independent interactions with PhMAX2A and PhD53A, respectively. Conversely, the DAD2D166A variant could not interact with PhMAX2A in the presence of SL, but its interaction with PhD53A remained unaffected. Structural analyses of DAD2N242I and DAD2D166A revealed only small differences compared with the structure of the WT receptor. Results of molecular dynamics simulations of the DAD2N242I structure suggested that increased flexibility is a likely cause for its SL-independent interaction with PhMAX2A. Our results suggest that PhMAX2A and PhD53A have distinct binding sites on the SL receptor and that its flexibility is a major determinant of its interactions with these two downstream regulators.
Collapse
Affiliation(s)
- Hui Wen Lee
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Prachi Sharma
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Bart J Janssen
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Revel S M Drummond
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Zhiwei Luo
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Cyril Hamiaux
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Thomas Collier
- School of Natural and Computational Sciences, Massey University Albany, Auckland, New Zealand
| | - Jane R Allison
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Digital Life Institute & Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand; Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Richard D Newcomb
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kimberley C Snowden
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.
| |
Collapse
|
19
|
Divergent receptor proteins confer responses to different karrikins in two ephemeral weeds. Nat Commun 2020; 11:1264. [PMID: 32152287 PMCID: PMC7062792 DOI: 10.1038/s41467-020-14991-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 02/12/2020] [Indexed: 11/08/2022] Open
Abstract
Wildfires can encourage the establishment of invasive plants by releasing potent germination stimulants, such as karrikins. Seed germination of Brassica tournefortii, a noxious weed of Mediterranean climates, is strongly stimulated by KAR1, the archetypal karrikin produced from burning vegetation. In contrast, the closely-related yet non-fire-associated ephemeral Arabidopsisthaliana is unusual because it responds preferentially to KAR2. The α/β-hydrolase KARRIKIN INSENSITIVE 2 (KAI2) is the putative karrikin receptor identified in Arabidopsis. Here we show that B. tournefortii expresses three KAI2 homologues, and the most highly-expressed homologue is sufficient to confer enhanced responses to KAR1 relative to KAR2 when expressed in Arabidopsis. We identify two amino acid residues near the KAI2 active site that explain the ligand selectivity, and show that this combination has arisen independently multiple times within dicots. Our results suggest that duplication and diversification of KAI2 proteins could confer differential responses to chemical cues produced by environmental disturbance, including fire. Karrikins are germination stimulants perceived by KAI2 in Arabidopsis. Here the authors show that Brassica tournefortii, a close relative to Arabidopsis, has multiple copies of KAI2 with amino acid substitutions that confer responsiveness to the specific karrikin compounds found in wildfire smoke.
Collapse
|
20
|
Miyakawa T, Xu Y, Tanokura M. Molecular basis of strigolactone perception in root-parasitic plants: aiming to control its germination with strigolactone agonists/antagonists. Cell Mol Life Sci 2020; 77:1103-1113. [PMID: 31587093 PMCID: PMC11104851 DOI: 10.1007/s00018-019-03318-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/27/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
The genus Striga, also called "witchweed", is a member of the family Orobanchaceae, which is a major family of root-parasitic plants. Striga can lead to the formation of seed stocks in the soil and to explosive expansion with enormous seed production and stability once the crops they parasitize are cultivated. Understanding the molecular mechanism underlying the communication between Striga and their host plants through natural seed germination stimulants, "strigolactones (SLs)", is required to develop the technology for Striga control. This review outlines recent findings on the SL perception mechanism, which have been accumulated in Striga hermonthica by the similarity of the protein components that regulate SL signaling in nonparasitic model plants, including Arabidopsis and rice. HTL/KAI2 homologs were identified as SL receptors in the process of Striga seed germination. Recently, this molecular basis has further promoted the development of various types of SL agonists/antagonists as seed germination stimulants or inhibitors. Such chemical compounds are also useful to elucidate the dynamic behavior of SL receptors and the regulation of SL signaling.
Collapse
Affiliation(s)
- Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuqun Xu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
21
|
Chowdhury S, Nandi SK, Podder D, Haldar D. Conformational Heterogeneity and Self-Assembly of α,β,γ-Hybrid Peptides Containing Fenamic Acid: Multistimuli-Responsive Phase-Selective Gelation. ACS OMEGA 2020; 5:2287-2294. [PMID: 32064390 PMCID: PMC7017408 DOI: 10.1021/acsomega.9b03532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
The effect of fenamic acid-α-aminoisobutyric acid corner motif in α,β,γ-hybrid peptides has been reported. From X-ray single-crystal diffraction studies, it is observed that Phe-containing peptide 1 has an "S"-shaped conformation that is stabilized by two consecutive intramolecular N-H···N hydrogen bonds. However, the tyrosine analogue peptide 2 has an "S"-shaped conformation, which is stabilized by consecutive intramolecular six-member N-H···N and seven-member N-H···O hydrogen bonds. The asymmetric unit of peptide 3 containing m-aminobenzoic acid has two molecules which are stabilized by multiple intermolecular hydrogen-bonding interactions. There are also π-π stacking interactions between the aromatic rings of fenamic acid. The peptides 1 and 2 have a polydisperse microsphere morphology, but peptide 3 has an entangled fiber-like morphology. Peptides 1-3 do not form organogels. However, in the presence of water, the peptide 3 forms a phase-selective instant gel in xylene. The gel exhibits high stability and thermal reversibility. The phase-selective gel of peptide 3 is highly responsive to H2SO4.
Collapse
|
22
|
Teixeira MG, Alvarenga ES, Lopes DT, Oliveira DF. Herbicidal activity of isobenzofuranones and in silico identification of their enzyme target. PEST MANAGEMENT SCIENCE 2019; 75:3331-3339. [PMID: 31026360 DOI: 10.1002/ps.5456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/23/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Given the weed resistance to various herbicides with different mechanisms of action, the search for new compounds that are more effective and exhibit low levels of impact to other species in nature has been imperative in the field of the agriculture. For this purpose, 16 phthalides, and furan-2(5H)-one were synthetized and evaluated for their effectiveness as herbicides in seeds of Sorghum bicolor (sorghum), Cucumis sativus (cucumber), and Allium cepa (onion). Furthermore, a preliminary in silico study was carried out to identify the enzyme target of the most active compounds. RESULTS In the assays with S. bicolor, the mixture rac-(3aR,4R,5S,6S,7S,7aS)-5,6-dibromohexahydro-4,7-methanoisobenzofuran-1(3H)-one + rac-(3aR,4R,5R,6R,7S,7aS)-5,6-dibromohexahydro-4,7-methanoisobenzofuran-1(3H)-one (15a + 15b) showed comparable inhibitory activity to (S)-metolachlor, which was used as control herbicide at concentrations ranging from 50 μm to 1000 μm. The developments of the seeds evaluated were altered by all 17 compounds, either stimulating or inhibiting. The best results were presented by compounds 15a, and 15b, either in their pure form or as a mixture. CONCLUSION The results presented by 15a, and 15b were superior to the activity of the commercial herbicide (S)-metolachlor in the assays with C. sativus, and A. cepa. The in silico study provides strong evidence that the most active compounds bind to strigolactones esterases D14 through the same binding site of (5R)-5-hydroxy-3-methylfuran-2(5H)-one (H3M), which is one of the strigolactones (SLs) cleavage products. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Milena G Teixeira
- Departament of Chemistry, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Elson S Alvarenga
- Departament of Chemistry, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Dayane T Lopes
- Departament of Chemistry, Universidade Federal de Viçosa, Viçosa, Brazil
| | | |
Collapse
|
23
|
Masteling R, Lombard L, de Boer W, Raaijmakers JM, Dini-Andreote F. Harnessing the microbiome to control plant parasitic weeds. Curr Opin Microbiol 2019; 49:26-33. [PMID: 31654911 PMCID: PMC6906922 DOI: 10.1016/j.mib.2019.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022]
Abstract
Plant microbiomes have an unexplored potential to control root parasitic weeds. Understanding the mechanisms by which microbes can control parasitic weeds is largely elusive. Members of the root microbiome can interfere with host-parasite chemical communication. Direct and indirect modes of action can work synergistically in microbe-mediated weed control.
Microbiomes can significantly expand the genomic potential of plants, contributing to nutrient acquisition, plant growth promotion and tolerance to (a)biotic stresses. Among biotic stressors, root parasitic weeds (RPWs), mainly of the genera Orobanche, Phelipanche and Striga, are major yield-limiting factors of a wide range of staple crops, particularly in developing countries. Here, we provide a conceptual synthesis of putative mechanisms by which soil and plant microbiomes could be harnessed to control RPWs. These mechanisms are partitioned in direct and indirect modes of action and discussed in the context of past and present studies on microbe-mediated suppression of RPWs. Specific emphasis is given to the large but yet unexplored potential of root-associated microorganisms to interfere with the chemical signalling cascade between the host plant and the RPWs. We further provide concepts and ideas for future research directions and prospective designs of novel control strategies.
Collapse
Affiliation(s)
- Raul Masteling
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Institute of Biology, Leiden University, Leiden, The Netherlands.
| | - Lorenzo Lombard
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Chair Group Soil Biology, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Institute of Biology, Leiden University, Leiden, The Netherlands.
| | - Francisco Dini-Andreote
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Department of Plant Science, The Pennsylvania State University, University Park, PA, USA; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
24
|
Chemical synthesis and characterization of a new quinazolinedione competitive antagonist for strigolactone receptors with an unexpected binding mode. Biochem J 2019; 476:1843-1856. [PMID: 31186286 DOI: 10.1042/bcj20190288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
Strigolactones (SLs) are multifunctional plant hormones regulating essential physiological processes affecting growth and development. In vascular plants, SLs are recognized by α/β hydrolase-fold proteins from the D14/DAD2 (Dwarf14/Decreased Apical Dominance 2) family in the initial step of the signaling pathway. We have previously discovered that N-phenylanthranilic acid derivatives (e.g. tolfenamic acid) are potent antagonists of SL receptors, prompting us to design quinazolinone and quinazolinedione derivatives (QADs and QADDs, respectively) as second-generation antagonists. Initial in silico docking studies suggested that these compounds would bind to DAD2, the petunia SL receptor, with higher affinity than the first-generation compounds. However, only one of the QADs/QADDs tested in in vitro assays acted as a competitive antagonist of SL receptors, with reduced affinity and potency compared with its N-phenylanthranilic acid 'parent'. X-ray crystal structure analysis revealed that the binding mode of the active QADD inside DAD2's cavity was not that predicted in silico, highlighting a novel inhibition mechanism for SL receptors. Despite a ∼10-fold difference in potency in vitro, the QADD and tolfenamic acid had comparable activity in planta, suggesting that the QADD compensates for lower potency with increased bioavailability. Altogether, our results establish this QADD as a novel lead compound towards the development of potent and bioavailable antagonists of SL receptors.
Collapse
|
25
|
Waters MT. Spoilt for Choice: New Options for Inhibitors of Strigolactone Signaling. MOLECULAR PLANT 2019; 12:21-23. [PMID: 30513350 DOI: 10.1016/j.molp.2018.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Mark T Waters
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
26
|
Nakamura H, Hirabayashi K, Miyakawa T, Kikuzato K, Hu W, Xu Y, Jiang K, Takahashi I, Niiyama R, Dohmae N, Tanokura M, Asami T. Triazole Ureas Covalently Bind to Strigolactone Receptor and Antagonize Strigolactone Responses. MOLECULAR PLANT 2019; 12:44-58. [PMID: 30391752 DOI: 10.1016/j.molp.2018.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/21/2018] [Accepted: 10/25/2018] [Indexed: 05/20/2023]
Abstract
Strigolactones, a class of plant hormones with multiple functions, mediate plant-plant and plant-microorganism communications in the rhizosphere. In this study, we developed potent strigolactone antagonists, which covalently bind to the strigolactone receptor D14, by preparing an array of triazole urea compounds. Using yeast two-hybrid and rice-tillering assays, we identified a triazole urea compound KK094 as a potent inhibitor of strigolactone receptors. Liquid chromatography-tandem mass spectrometry analysis and X-ray crystallography revealed that KK094 was hydrolyzed by D14, and that a reaction product of this degradation covalently binds to the Ser residue of the catalytic triad of D14. Furthermore, we identified two triazole urea compounds KK052 and KK073, whose effects on D14-D53/D14-SLR1 complex formation were opposite due to the absence (KK052) or presence (KK073) of a trifluoromethyl group on their phenyl ring. These results demonstrate that triazole urea compounds are potentially powerful tools for agricultural application and may be useful for the elucidation of the complicated mechanism underlying strigolactone perception.
Collapse
Affiliation(s)
- Hidemitsu Nakamura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kei Hirabayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takuya Miyakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ko Kikuzato
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Wenqian Hu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuqun Xu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kai Jiang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ruri Niiyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Masaru Tanokura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
27
|
Jamil M, Kountche B, Haider I, Wang J, Aldossary F, Zarban R, Jia KP, Yonli D, Shahul Hameed U, Takahashi I, Ota T, Arold S, Asami T, Al-Babili S. Methylation at the C-3' in D-Ring of Strigolactone Analogs Reduces Biological Activity in Root Parasitic Plants and Rice. FRONTIERS IN PLANT SCIENCE 2019; 10:353. [PMID: 31001294 PMCID: PMC6455008 DOI: 10.3389/fpls.2019.00353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/07/2019] [Indexed: 05/04/2023]
Abstract
Strigolactones (SLs) regulate plant development and induce seed germination in obligate root parasitic weeds, e.g. Striga spp. Because organic synthesis of natural SLs is laborious, there is a large need for easy-to-synthesize and efficient analogs. Here, we investigated the effect of a structural modification of the D-ring, a conserved structural element in SLs. We synthesized and investigated the activity of two analogs, MP13 and MP26, which differ from previously published AR8 and AR36 only in the absence of methylation at C-3'. The de-methylated MP13 and MP26 were much more efficient in regulating plant development and inducing Striga seed germination, compared with AR8. Hydrolysis assays performed with purified Striga SL receptor and docking of AR8 and MP13 to the corresponding active site confirmed and explained the higher activity. Field trials performed in a naturally Striga-infested African farmer's field unraveled MP13 as a promising candidate for combating Striga by inducing germination in host's absence. Our findings demonstrate that methylation of the C-3' in D-ring in SL analogs has a negative impact on their activity and identify MP13 and, particularly, MP26 as potent SL analogs with simple structures, which can be employed to control Striga, a major threat to global food security.
Collapse
Affiliation(s)
- Muhammad Jamil
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Boubacar A. Kountche
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Imran Haider
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jian You Wang
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Faisal Aldossary
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Randa A. Zarban
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kun-Peng Jia
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Djibril Yonli
- Institute of Environment and Agricultural Research (INERA), Ouagadougou, Burkina Faso
| | - Umar F. Shahul Hameed
- Computational Bioscience Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Ota
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Stefan T. Arold
- Computational Bioscience Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Salim Al-Babili
- The BioActives Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- *Correspondence: Salim Al-Babili,
| |
Collapse
|
28
|
Yao R, Chen L, Xie D. Irreversible strigolactone recognition: a non-canonical mechanism for hormone perception. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:155-161. [PMID: 30014890 DOI: 10.1016/j.pbi.2018.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 05/24/2023]
Abstract
Unveiling of hormone perception is central to comprehending hormone action. It is generally recognized that an active hormone molecule binds its receptor to initiate hormone signaling, subsequently dissociates from its receptor without being changed, and then initiates the next round of hormone perception. However, recent studies discovered that the α/β hydrolase DWARF14 serves as a non-canonical receptor for the plant hormone strigolactone (SL) to generate the active form of SL which remains covalently bound in an irreversible manner, triggering SL signal transduction. In this short review, we will discuss the recent advances in uncovering this unprecedented non-canonical mechanism for hormone perception.
Collapse
Affiliation(s)
- Ruifeng Yao
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Chen
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Daoxin Xie
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
29
|
Tsuchiya Y. Small Molecule Toolbox for Strigolactone Biology. PLANT & CELL PHYSIOLOGY 2018; 59:1511-1519. [PMID: 29931079 DOI: 10.1093/pcp/pcy119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Strigolactones (SLs) are plant hormones associated with diverse developmental processes including plant architecture and stress responses. SLs are exuded to the soil as an ecological signal to attract symbiotic arbuscular-mycorrhizal fungi. This ecological mechanism is also used by parasitic plants to detect the presence of host plants and initiate germination. The functional diversity of SLs makes SL biology so extensive that a single methodology is not sufficient to comprehend it. This review describes the theoretical and practical aspects of the design of small molecule probes that have been used to elucidate the functions of SLs. The lessons from the development of small molecules to tackle the unique questions in SL biology might be instructive in the extending field of chemical biology in plants.
Collapse
Affiliation(s)
- Yuichiro Tsuchiya
- Institute of Transformative Bio-Molecules, Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
30
|
Takahashi I, Asami T. Target-based selectivity of strigolactone agonists and antagonists in plants and their potential use in agriculture. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2241-2254. [PMID: 29635308 DOI: 10.1093/jxb/ery126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/29/2018] [Indexed: 05/08/2023]
Abstract
Strigolactones (SLs) are small carotenoid-derived molecules that possess a wide spectrum of functions, including plant hormonal activities and chemical mediation of rhizosphere communication with both root parasitic plants and symbiotic arbuscular mycorrhizal fungi. Chemicals that regulate the functions of SLs may therefore have the potential to become widely used in agricultural applications. For example, various SL analogs and mimics have been developed to reduce the seed banks of root parasites in the field. Other analogs and mimics act selectively to suppress branching, with weak, or no stimulation, of germination in root parasites. In addition, some antagonists for SL receptors have been developed based on the mechanisms of SL perception. A better understanding of the modes of action of SL perception by various receptors will help to support the design of SL analogs, mimics, and antagonists with high activity and selectivity. Here, we review the compounds reported so far from the viewpoint of their selectivity to their targets, and the possibilities for their use in agriculture.
Collapse
Affiliation(s)
- Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Bioactive Natural Products Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|