1
|
Coll RC, Schroder K. Inflammasome components as new therapeutic targets in inflammatory disease. Nat Rev Immunol 2024:10.1038/s41577-024-01075-9. [PMID: 39251813 DOI: 10.1038/s41577-024-01075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/11/2024]
Abstract
Inflammation drives pathology in many human diseases for which there are no disease-modifying drugs. Inflammasomes are signalling platforms that can induce pathological inflammation and tissue damage, having potential as an exciting new class of drug targets. Small-molecule inhibitors of the NLRP3 inflammasome that are now in clinical trials have demonstrated proof of concept that inflammasomes are druggable, and so drug development programmes are now focusing on other key inflammasome molecules. In this Review, we describe the potential of inflammasome components as candidate drug targets and the novel inflammasome inhibitors that are being developed. We discuss how the signalling biology of inflammasomes offers mechanistic insights for therapeutic targeting. We also discuss the major scientific and technical challenges associated with drugging these molecules during preclinical development and clinical trials.
Collapse
Affiliation(s)
- Rebecca C Coll
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | - Kate Schroder
- Institute for Molecular Bioscience (IMB), The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
2
|
Delplanque M, Benech N, Rolhion N, Oeuvray C, Straube M, Galbert C, Brot L, Henry T, Jamilloux Y, Savey L, Grateau G, Sokol H, Georgin-Lavialle S. Gut microbiota alterations are associated with phenotype and genotype in familial Mediterranean fever. Rheumatology (Oxford) 2024; 63:1039-1048. [PMID: 37402619 DOI: 10.1093/rheumatology/kead322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/23/2023] [Accepted: 06/17/2023] [Indexed: 07/06/2023] Open
Abstract
OBJECTIVE FMF is the most common monogenic autoinflammatory disease associated with MEFV mutations. Disease phenotype and response to treatment vary from one patient to another, despite similar genotype, suggesting the role of environmental factors. The objective of this study was to analyse the gut microbiota of a large cohort of FMF patients in relation to disease characteristics. METHODS The gut microbiotas of 119 FMF patients and 61 healthy controls were analysed using 16 s rRNA gene sequencing. Associations between bacterial taxa, clinical characteristics, and genotypes were evaluated using multivariable association with linear models (MaAslin2), adjusting on age, sex, genotype, presence of AA amyloidosis (n = 17), hepatopathy (n = 5), colchicine intake, colchicine resistance (n = 27), use of biotherapy (n = 10), CRP levels, and number of daily faeces. Bacterial network structures were also analysed. RESULTS The gut microbiotas of FMF patients differ from those of controls in having increased pro-inflammatory bacteria, such as the Enterobacter, Klebsiella and Ruminococcus gnavus group. Disease characteristics and resistance to colchicine correlated with homozygous mutations and were associated with specific microbiota alteration. Colchicine treatment was associated with the expansion of anti-inflammatory taxa such as Faecalibacterium and Roseburia, while FMF severity was associated with expansion of the Ruminococcus gnavus group and Paracoccus. Colchicine-resistant patients exhibited an alteration of the bacterial network structure, with decreased intertaxa connectivity. CONCLUSION The gut microbiota of FMF patients correlates with disease characteristics and severity, with an increase in pro-inflammatory taxa in the most severe patients. This suggests a specific role for the gut microbiota in shaping FMF outcomes and response to treatment.
Collapse
Affiliation(s)
- Marion Delplanque
- Sorbonne Université, Service Médecine Interne, Centre de Référence des Maladies Autoinflammatoires et des Amyloses (CEREMAIA), APHP, Hôpital Tenon, Paris, France
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, French Group of Faecal Microbiota Transplantation (GFTF), Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Nicolas Benech
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, French Group of Faecal Microbiota Transplantation (GFTF), Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Nathalie Rolhion
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, French Group of Faecal Microbiota Transplantation (GFTF), Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Cyriane Oeuvray
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, French Group of Faecal Microbiota Transplantation (GFTF), Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Marjolène Straube
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, French Group of Faecal Microbiota Transplantation (GFTF), Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Chloé Galbert
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, French Group of Faecal Microbiota Transplantation (GFTF), Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Loic Brot
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, French Group of Faecal Microbiota Transplantation (GFTF), Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, Lyon, Rhônes, France
| | - Yvan Jamilloux
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, Lyon, Rhônes, France
| | - Léa Savey
- Sorbonne Université, Service Médecine Interne, Centre de Référence des Maladies Autoinflammatoires et des Amyloses (CEREMAIA), APHP, Hôpital Tenon, Paris, France
| | - Gilles Grateau
- Sorbonne Université, Service Médecine Interne, Centre de Référence des Maladies Autoinflammatoires et des Amyloses (CEREMAIA), APHP, Hôpital Tenon, Paris, France
| | - Harry Sokol
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, French Group of Faecal Microbiota Transplantation (GFTF), Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
- INRAE, UMR1319 Micalis & AgroParisTech, Jouy en Josas, Yvelines, France
| | - Sophie Georgin-Lavialle
- Sorbonne Université, Service Médecine Interne, Centre de Référence des Maladies Autoinflammatoires et des Amyloses (CEREMAIA), APHP, Hôpital Tenon, Paris, France
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, French Group of Faecal Microbiota Transplantation (GFTF), Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| |
Collapse
|
3
|
Wang L, Shi S, Unterreiner A, Kapetanovic R, Ghosh S, Sanchez J, Aslani S, Xiong Y, Hsu CL, Donovan KA, Farady CJ, Fischer ES, Bornancin F, Matthias P. HDAC6/aggresome processing pathway importance for inflammasome formation is context-dependent. J Biol Chem 2024; 300:105638. [PMID: 38199570 PMCID: PMC10850954 DOI: 10.1016/j.jbc.2024.105638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/19/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
The inflammasome is a large multiprotein complex that assembles in the cell cytoplasm in response to stress or pathogenic infection. Its primary function is to defend the cell and promote the secretion of pro-inflammatory cytokines, including IL-1β and IL-18. Previous research has shown that in immortalized bone marrow-derived macrophages (iBMDMs) inflammasome assembly is dependent on the deacetylase HDAC6 and the aggresome processing pathway (APP), a cellular pathway involved in the disposal of misfolded proteins. Here we used primary BMDMs from mice in which HDAC6 is ablated or impaired and found that inflammasome activation was largely normal. We also used human peripheral blood mononuclear cells and monocyte cell lines expressing a synthetic protein blocking the HDAC6-ubiquitin interaction and impairing the APP and found that inflammasome activation was moderately affected. Finally, we used a novel HDAC6 degrader and showed that inflammasome activation was partially impaired in human macrophage cell lines with depleted HDAC6. Our results therefore show that HDAC6 importance in inflammasome activation is context-dependent.
Collapse
Affiliation(s)
- Longlong Wang
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | - Shihua Shi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Ronan Kapetanovic
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sucheta Ghosh
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Jacint Sanchez
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Selma Aslani
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Yuan Xiong
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Chi-Lin Hsu
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Eric S Fischer
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Yu HY, Li Y, Zhang M, Zou ZB, Hao YJ, Xie MM, Li LS, Meng DL, Yang XW. Chemical Constituents of the Deep-sea Gammarid Shrimp-Derived Fungus Penicillium citrinum XIA-16. Chem Biodivers 2023; 20:e202301507. [PMID: 37847218 DOI: 10.1002/cbdv.202301507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
One new alkaloid, (S)-2-acetamido-4-(2-(methylamino)phenyl)-4-oxobutanoic acid (1), was isolated from the deep-sea-derived Penicillium citrinum XIA-16, together with 25 known compounds including ten polyketones (2-11), eight alkaloids (12-19), six steroids (20-25), and a fatty acid (26). Their planar and relative structures were determined by an analysis of 1D and 2D nuclear magnetic resonance (NMR) as well as high resolution electrospray ionization mass spectroscopy (HR-ESI-MS) data. The absolute configuration of 1 was determined by comparison of the experimental and calculated electronic circular dichroism (ECD) spectra. Penicitrinol B (6) significantly inhibited RSL3-induced ferroptosis (EC50 =2.0 μM) by reducing lipid peroxidation and heme oxygenase 1 (HMOX1) expression. Under the concentration of 10 μM, penicitrinol A (7) was able to inhibit cuproptosis with the cell viabilities of 68.2 % compared to the negative control (copper and elesclomol) with the cell viabilities of 14.8 %.
Collapse
Affiliation(s)
- Hao-Yu Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Yan Li
- The School of Basic Medical Sciences, Fujian Medical University, 1 Xueyuan Road, Fuzhou, 350122, China
| | - Meng Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Zheng-Biao Zou
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - You-Jia Hao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Ming-Min Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Li-Sheng Li
- The School of Basic Medical Sciences, Fujian Medical University, 1 Xueyuan Road, Fuzhou, 350122, China
| | - Da-Li Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| |
Collapse
|
5
|
Zhang J, Lyu A, Wang C. The molecular insights of bile acid homeostasis in host diseases. Life Sci 2023; 330:121919. [PMID: 37422071 DOI: 10.1016/j.lfs.2023.121919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Bile acids (BAs) function as detergents promoting nutrient absorption and as hormones regulating nutrient metabolism. Most BAs are key regulatory factors of physiological activities, which are involved in the regulation of glucose, lipid, and drug metabolisms. Hepatic and intestinal diseases have close connections with the systemic cycling disorders of BAs. The abnormal in BA absorption came up with overmuch BAs could be involved in the pathophysiology of liver and bowel and metabolic disorders such as fatty liver diseases and inflammatory bowel diseases. The primary BAs (PBAs), which are synthesized in the liver, can be transformed into the secondary BAs (SBAs) by gut microbiota. The transformation processes are tightly associated with the gut microbiome and the host endogenous metabolism. The BA biosynthesis gene cluster bile-acid-inducible operon is essential for modulating BA pool, gut microbiome composition, and the onset of intestinal inflammation. This forms a bidirectional interaction between the host and its gut symbiotic ecosystem. The subtle changes in the composition and abundance of BAs perturb the host physiological and metabolic activity. Therefore, maintaining the homeostasis of BAs pool contributes to the balance of the body's physiological and metabolic system. Our review aims to dissect the molecular mechanisms underlying the BAs homeostasis, assess the key factors sustaining the homeostasis and the role of BA acting on host diseases. By linking the BAs metabolic disorders and their associated diseases, we illustrate the effects of BAs homeostasis on health and potential clinical interventions can be taken under the latest research findings.
Collapse
Affiliation(s)
- Jinfang Zhang
- HKBU lnstitute for Research and Continuing Education, Shenzhen, China; Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lyu
- HKBU lnstitute for Research and Continuing Education, Shenzhen, China; Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Chao Wang
- HKBU lnstitute for Research and Continuing Education, Shenzhen, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China; The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
6
|
Wang L, Unterreiner A, Kapetanovic R, Aslani S, Xiong Y, Donovan KA, Farady CJ, Fischer ES, Bornancin F, Matthias P. HDAC6/aggresome processing pathway importance for inflammasome formation is context dependent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553363. [PMID: 37645730 PMCID: PMC10461986 DOI: 10.1101/2023.08.15.553363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The inflammasome is a large multiprotein complex that assembles in the cell cytoplasm in response to stress or pathogenic infection. Its primary function is to defend the cell and promote the secretion of pro-inflammatory cytokines, including IL-1β and IL-18. It was shown that in immortalized bone marrow derived macrophages (iBMDMs) inflammasome assembly is dependent on the deacetylase HDAC6 and the aggresome processing pathway (APP), a cellular pathway involved in the disposal of misfolded proteins. Here we used primary BMDMs from mice in which HDAC6 is ablated or impaired and found that inflammasome activation was largely normal. We also used human peripheral blood mononuclear cells and monocytes cell lines expressing a synthetic protein blocking HDAC6-ubiquitin interaction and impairing the APP and found that inflammasome activation was moderately affected. Finally, we used a novel HDAC6 degrader and showed that inflammasome activation was partially impaired in human macrophage cell lines with depleted HDAC6. Our results therefore show that HDAC6 importance in inflammasome activation is context dependent.
Collapse
Affiliation(s)
- Longlong Wang
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | - Ronan Kapetanovic
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Selma Aslani
- Novartis Institutes for Biomedical Research, 4056 Basel Switzerland
| | - Yuan Xiong
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, United States
| | - Katherine A Donovan
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, United States
| | | | - Eric S Fischer
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, United States
| | | | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
7
|
Chandra O, Sharma M, Pandey N, Jha IP, Mishra S, Kong SL, Kumar V. Patterns of transcription factor binding and epigenome at promoters allow interpretable predictability of multiple functions of non-coding and coding genes. Comput Struct Biotechnol J 2023; 21:3590-3603. [PMID: 37520281 PMCID: PMC10371796 DOI: 10.1016/j.csbj.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Understanding the biological roles of all genes only through experimental methods is challenging. A computational approach with reliable interpretability is needed to infer the function of genes, particularly for non-coding RNAs. We have analyzed genomic features that are present across both coding and non-coding genes like transcription factor (TF) and cofactor ChIP-seq (823), histone modifications ChIP-seq (n = 621), cap analysis gene expression (CAGE) tags (n = 255), and DNase hypersensitivity profiles (n = 255) to predict ontology-based functions of genes. Our approach for gene function prediction was reliable (>90% balanced accuracy) for 486 gene-sets. PubMed abstract mining and CRISPR screens supported the inferred association of genes with biological functions, for which our method had high accuracy. Further analysis revealed that TF-binding patterns at promoters have high predictive strength for multiple functions. TF-binding patterns at the promoter add an unexplored dimension of explainable regulatory aspects of genes and their functions. Therefore, we performed a comprehensive analysis for the functional-specificity of TF-binding patterns at promoters and used them for clustering functions to reveal many latent groups of gene-sets involved in common major cellular processes. We also showed how our approach could be used to infer the functions of non-coding genes using the CRISPR screens of coding genes, which were validated using a long non-coding RNA CRISPR screen. Thus our results demonstrated the generality of our approach by using gene-sets from CRISPR screens. Overall, our approach opens an avenue for predicting the involvement of non-coding genes in various functions.
Collapse
Affiliation(s)
- Omkar Chandra
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| | - Madhu Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| | - Neetesh Pandey
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| | - Indra Prakash Jha
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| | - Shreya Mishra
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| | - Say Li Kong
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Vibhor Kumar
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| |
Collapse
|
8
|
Chirita D, Bronnec P, Magnotti F, Dalmon S, Martin A, Popoff M, Gerfaud-Valentin M, Sève P, Belot A, Contis A, Duquesne A, Nocturne G, Lemelle I, Georgin-Lavialle S, Boursier G, Touitou I, Jamilloux Y, Henry T. Mutations in the B30.2 and the central helical scaffold domains of pyrin differentially affect inflammasome activation. Cell Death Dis 2023; 14:213. [PMID: 36966139 PMCID: PMC10039897 DOI: 10.1038/s41419-023-05745-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/27/2023]
Abstract
Familial Mediterranean Fever (FMF) is the most common monogenic autoinflammatory disorder. FMF is caused by mutations in the MEFV gene, encoding pyrin, an inflammasome sensor. The best characterized pathogenic mutations associated with FMF cluster in exon 10. Yet, mutations have been described along the whole MEFV coding sequence. Exon 10 encodes the B30.2 domain of the pyrin protein, but the function of this human-specific domain remains unclear. Pyrin is an inflammasome sensor detecting RhoA GTPase inhibition following exposure to bacterial toxins such as TcdA. Here, we demonstrate that the B30.2 domain is dispensable for pyrin inflammasome activation in response to this toxin. Deletion of the B30.2 domain mimics the most typical FMF-associated mutation and confers spontaneous inflammasome activation in response to pyrin dephosphorylation. Our results indicate that the B30.2 domain is a negative regulator of the pyrin inflammasome that acts independently from and downstream of pyrin dephosphorylation. In addition, we identify the central helical scaffold (CHS) domain of pyrin, which lies immediately upstream of the B30.2 domain as a second regulatory domain. Mutations affecting the CHS domain mimic pathogenic mutations in the B30.2 domain and render the pyrin inflammasome activation under the sole control of the dephosphorylation. In addition, specific mutations in the CHS domain strongly increase the cell susceptibility to steroid catabolites, recently described to activate pyrin, in both a cell line model and in monocytes from genotype-selected FMF patients. Taken together, our work reveals the existence of two distinct regulatory regions at the C-terminus of the pyrin protein, that act in a distinct manner to regulate positively or negatively inflammasome activation. Furthermore, our results indicate that different mutations in pyrin regulatory domains have different functional impacts on the pyrin inflammasome which could contribute to the diversity of pyrin-associated autoinflammatory diseases.
Collapse
Affiliation(s)
- Daria Chirita
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, LYON, France
| | - Pauline Bronnec
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, LYON, France
| | - Flora Magnotti
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, LYON, France
| | - Sarah Dalmon
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, LYON, France
| | - Amandine Martin
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, LYON, France
| | | | - Mathieu Gerfaud-Valentin
- Department of Internal Medicine, University Hospital Croix-Rousse, Lyon 1 University, Lyon, France
| | - Pascal Sève
- Department of Internal Medicine, University Hospital Croix-Rousse, Lyon 1 University, Lyon, France
| | - Alexandre Belot
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, LYON, France
- LIFE, Lyon Immunopathology FEderation, Lyon, France
- Department of Pediatric Nephrology, Rheumatology, Dermatology, Reference centre for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Hôpital Femme Mère Enfant, CHU Lyon, Bron, France
| | - Anne Contis
- Department of Internal Medicine, Saint André Hospital, CHU Bordeaux, Bordeaux, France
| | - Agnes Duquesne
- Department of Pediatric Nephrology, Rheumatology, Dermatology, Reference centre for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Hôpital Femme Mère Enfant, CHU Lyon, Bron, France
| | - Gaetane Nocturne
- Department of Rheumatology, Université Paris-Saclay, INSERM UMR1184: Center for immunology of viral infections and autoimmune diseases, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Irene Lemelle
- Paediatric onco-haematology, University Hospital of Nancy - Children's hospital, Vandoeuvre-Lès-Nancy, France
| | - Sophie Georgin-Lavialle
- Sorbonne University, department of internal medicine, Tenon hospital, DMU 3ID, AP-HP, National reference center for autoinflammatory diseases and inflammatory Amyloidosis (CeRéMAIA), INSERM U938, Paris, France
| | - Guilaine Boursier
- Department of Molecular genetics and Cytogenomics, CHU Montpellier, Univ Montpellier, Reference Center for Autoinflammatory Diseases and Amyloidosis (CeRéMAIA), Montpellier, France
| | - Isabelle Touitou
- Department of Molecular genetics and Cytogenomics, CHU Montpellier, Univ Montpellier, Reference Center for Autoinflammatory Diseases and Amyloidosis (CeRéMAIA), Montpellier, France
| | - Yvan Jamilloux
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, LYON, France
- Department of Internal Medicine, University Hospital Croix-Rousse, Lyon 1 University, Lyon, France
- LIFE, Lyon Immunopathology FEderation, Lyon, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, LYON, France.
| |
Collapse
|
9
|
Mirzaei M, Dodi G, Gardikiotis I, Pasca SA, Mirdamadi S, Subra G, Echalier C, Puel C, Morent R, Ghobeira R, Soleymanzadeh N, Moser M, Goriely S, Shavandi A. 3D high-precision melt electro written polycaprolactone modified with yeast derived peptides for wound healing. BIOMATERIALS ADVANCES 2023; 149:213361. [PMID: 36965401 DOI: 10.1016/j.bioadv.2023.213361] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2023] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
In this study melt electro written (MEW) scaffolds of poly(ε-caprolactone) PCL are decorated with anti-inflammatory yeast-derived peptide for skin wound healing. Initially, 13 different yeast-derived peptides were screened and analyzed using both in vitro and in vivo assays. The MEW scaffolds are functionalized with the selected peptide VLSTSFPPW (VW-9) with the highest activity in reducing pro-inflammatory cytokines and stimulating fibroblast proliferation, migration, and collagen production. The peptide was conjugated to the MEW scaffolds using carbodiimide (CDI) and thiol chemistry, with and without plasma treatment, as well as by directly mixing the peptide with the polymer before printing. The MEW scaffolds modified using CDI and thiol chemistry with plasma treatment showed improved fibroblast and macrophage penetration and adhesion, as well as increased cell proliferation and superior anti-inflammatory properties, compared to the other groups. When applied to full-thickness excisional wounds in rats, the peptide-modified MEW scaffold significantly enhanced the healing process compared to controls (p < 0.05). This study provides proof of concept for using yeast-derived peptides to functionalize biomaterials for skin wound healing.
Collapse
Affiliation(s)
- Mahta Mirzaei
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium; Centre for Food Chemistry and Technology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, South Korea; Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Gianina Dodi
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Romania; Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Romania
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Romania
| | - Sorin-Aurelian Pasca
- Pathology Department, Faculty of Veterinary Medicine, Ion Ionescu de la Brad Iasi University of Life Sciences, Romania
| | - Saeed Mirdamadi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Gilles Subra
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Chloé Puel
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Rino Morent
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Rouba Ghobeira
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Architecture and Engineering, Ghent University, St-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Nazila Soleymanzadeh
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Muriel Moser
- ULB Center for Research in Immunology (U-CRI), Laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium.
| | - Stanislas Goriely
- ULB Center for Research in Immunology (U-CRI), Laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium.
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
10
|
Wang J, Sun Z, Xie J, Ji W, Cui Y, Ai Z, Liang G. Inflammasome and pyroptosis in autoimmune liver diseases. Front Immunol 2023; 14:1150879. [PMID: 36969233 PMCID: PMC10030845 DOI: 10.3389/fimmu.2023.1150879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and IgG4-related sclerosing cholangitis (IgG4-SC) are the four main forms of autoimmune liver diseases (AILDs), which are all defined by an aberrant immune system attack on the liver. Most previous studies have shown that apoptosis and necrosis are the two major modes of hepatocyte death in AILDs. Recent studies have reported that inflammasome-mediated pyroptosis is critical for the inflammatory response and severity of liver injury in AILDs. This review summarizes our present understanding of inflammasome activation and function, as well as the connections among inflammasomes, pyroptosis, and AILDs, thus highlighting the shared features across the four disease models and gaps in our knowledge. In addition, we summarize the correlation among NLRP3 inflammasome activation in the liver-gut axis, liver injury, and intestinal barrier disruption in PBC and PSC. We summarize the differences in microbial and metabolic characteristics between PSC and IgG4-SC, and highlight the uniqueness of IgG4-SC. We explore the different roles of NLRP3 in acute and chronic cholestatic liver injury, as well as the complex and controversial crosstalk between various types of cell death in AILDs. We also discuss the most up-to-date developments in inflammasome- and pyroptosis-targeted medicines for autoimmune liver disorders.
Collapse
Affiliation(s)
- Jixuan Wang
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhiwen Sun
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jingri Xie
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wanli Ji
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Cui
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zongxiong Ai
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Guoying Liang, ; Zongxiong Ai,
| | - Guoying Liang
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Guoying Liang, ; Zongxiong Ai,
| |
Collapse
|
11
|
Bronnec P, Sousa J, Henry T. Inducing Pyroptosis Via the Pyrin Inflammasome. Methods Mol Biol 2023; 2641:37-47. [PMID: 37074640 DOI: 10.1007/978-1-0716-3040-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The pyrin inflammasome detects bacterial toxins and effectors that inhibit RhoA GTPases and triggers inflammatory cytokine release and a fast cell death termed pyroptosis. In addition, various endogenous molecules, drugs, synthetic molecules, or mutations can trigger pyrin inflammasome activation. The pyrin protein differs between humans and mice, and the repertoire of pyrin activators is also species-specific. Here, we present the various pyrin inflammasome activators, inhibitors, the kinetics of pyrin activation in response to the various activators, and their species specificity. In addition, we present different methods to monitor pyrin-mediated pyroptosis.
Collapse
Affiliation(s)
- Pauline Bronnec
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Jeremy Sousa
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France.
| |
Collapse
|
12
|
Mangan MSJ, Gorki F, Krause K, Heinz A, Pankow A, Ebert T, Jahn D, Hiller K, Hornung V, Maurer M, Schmidt FI, Gerhard R, Latz E. Transcriptional licensing is required for Pyrin inflammasome activation in human macrophages and bypassed by mutations causing familial Mediterranean fever. PLoS Biol 2022; 20:e3001351. [PMID: 36342970 PMCID: PMC9671422 DOI: 10.1371/journal.pbio.3001351] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/17/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
Pyrin is a cytosolic immune sensor that nucleates an inflammasome in response to inhibition of RhoA by bacterial virulence factors, triggering the release of inflammatory cytokines, including IL-1β. Gain-of-function mutations in the MEFV gene encoding Pyrin cause autoinflammatory disorders, such as familial Mediterranean fever (FMF) and Pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND). To precisely define the role of Pyrin in pathogen detection in human immune cells, we compared initiation and regulation of the Pyrin inflammasome response in monocyte-derived macrophages (hMDM). Unlike human monocytes and murine macrophages, we determined that hMDM failed to activate Pyrin in response to known Pyrin activators Clostridioides difficile (C. difficile) toxins A or B (TcdA or TcdB), as well as the bile acid analogue BAA-473. The Pyrin inflammasome response was enabled in hMDM by prolonged priming with either LPS or type I or II interferons and required an increase in Pyrin expression. Notably, FMF mutations lifted the requirement for prolonged priming for Pyrin activation in hMDM, enabling Pyrin activation in the absence of additional inflammatory signals. Unexpectedly, in the absence of a Pyrin response, we found that TcdB activated the NLRP3 inflammasome in hMDM. These data demonstrate that regulation of Pyrin activation in hMDM diverges from monocytes and highlights its dysregulation in FMF.
Collapse
Affiliation(s)
- Matthew S. J. Mangan
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Friederike Gorki
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Karoline Krause
- Institute of Allergology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Alexander Heinz
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Anne Pankow
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie AG Digitale Medizin in der Rheumatologie/ Rheumatologie 4.0 Charité—Universitätsmedizin Berlin (CCM), Berlin, Germany
| | - Thomas Ebert
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dieter Jahn
- Institute for Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Florian I. Schmidt
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department of Infectious Diseases & Immunology, UMass Medical School, Worcester, Massachusetts, United States of America
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
13
|
Magnotti F, Chirita D, Dalmon S, Martin A, Bronnec P, Sousa J, Helynck O, Lee W, Kastner DL, Chae JJ, McDermott MF, Belot A, Popoff M, Sève P, Georgin-Lavialle S, Munier-Lehmann H, Tran TA, De Langhe E, Wouters C, Jamilloux Y, Henry T. Steroid hormone catabolites activate the pyrin inflammasome through a non-canonical mechanism. Cell Rep 2022; 41:111472. [PMID: 36223753 PMCID: PMC9626387 DOI: 10.1016/j.celrep.2022.111472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 06/18/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
The pyrin inflammasome acts as a guard of RhoA GTPases and is central to immune defenses against RhoA-manipulating pathogens. Pyrin activation proceeds in two steps. Yet, the second step is still poorly understood. Using cells constitutively activated for the pyrin step 1, a chemical screen identifies etiocholanolone and pregnanolone, two catabolites of testosterone and progesterone, acting at low concentrations as specific step 2 activators. High concentrations of these metabolites fully and rapidly activate pyrin, in a human specific, B30.2 domain-dependent manner and without inhibiting RhoA. Mutations in MEFV, encoding pyrin, cause two distinct autoinflammatory diseases pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND) and familial Mediterranean fever (FMF). Monocytes from PAAND patients, and to a lower extent from FMF patients, display increased responses to these metabolites. This study identifies an unconventional pyrin activation mechanism, indicates that endogenous steroid catabolites can drive autoinflammation, through the pyrin inflammasome, and explains the "steroid fever" described in the late 1950s upon steroid injection in humans.
Collapse
Affiliation(s)
- Flora Magnotti
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, 69007 Lyon, France
| | - Daria Chirita
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, 69007 Lyon, France
| | - Sarah Dalmon
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, 69007 Lyon, France
| | - Amandine Martin
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, 69007 Lyon, France
| | - Pauline Bronnec
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, 69007 Lyon, France
| | - Jeremy Sousa
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, 69007 Lyon, France
| | - Olivier Helynck
- Institut Pasteur, Université de Paris Cité, CNRS UMR3523, Chemistry and Biocatalysis Unit, 75724 Paris Cedex 15, France
| | - Wonyong Lee
- Inflammatory Disease Section, Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Jae Jin Chae
- Inflammatory Disease Section, Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Leeds, UK
| | - Alexandre Belot
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, 69007 Lyon, France; Department of Pediatric Nephrology, Rheumatology, Dermatology, Reference Centre for Rheumatic, AutoImmune and Systemic Diseases in Children (RAISE), Hôpital Femme Mère Enfant, CHU Lyon, Lyon, France; LIFE, Lyon Immunopathology Federation, Lyon, France
| | | | - Pascal Sève
- Department of Internal Medicine, University Hospital Croix-Rousse, Lyon 1 University, Lyon, France
| | - Sophie Georgin-Lavialle
- Sorbonne University, Department of Internal Medicine, Tenon Hospital, DMU 3ID, AP-HP, National Reference Center for Autoinflammatory Diseases and Inflammatory Amyloidosis (CEREMAIA), INSERM U938, Paris, France
| | - Hélène Munier-Lehmann
- Institut Pasteur, Université de Paris Cité, CNRS UMR3523, Chemistry and Biocatalysis Unit, 75724 Paris Cedex 15, France
| | - Tu Anh Tran
- Department of Pediatrics, Carémeau Hospital, CHU Nîmes, Nîmes, France
| | - Ellen De Langhe
- Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium; Laboratory of Tissue Homeostasis and Disease, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Carine Wouters
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory of Adaptive Immunology & Immunobiology, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Yvan Jamilloux
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, 69007 Lyon, France; LIFE, Lyon Immunopathology Federation, Lyon, France; Department of Internal Medicine, University Hospital Croix-Rousse, Lyon 1 University, Lyon, France.
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, 69007 Lyon, France.
| |
Collapse
|
14
|
Lara-Reyna S, Caseley EA, Topping J, Rodrigues F, Jimenez Macias J, Lawler SE, McDermott MF. Inflammasome activation: from molecular mechanisms to autoinflammation. Clin Transl Immunology 2022; 11:e1404. [PMID: 35832835 PMCID: PMC9262628 DOI: 10.1002/cti2.1404] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammasomes are assembled by innate immune sensors that cells employ to detect a range of danger signals and respond with pro-inflammatory signalling. Inflammasomes activate inflammatory caspases, which trigger a cascade of molecular events with the potential to compromise cellular integrity and release the IL-1β and IL-18 pro-inflammatory cytokines. Several molecular mechanisms, working in concert, ensure that inflammasome activation is tightly regulated; these include NLRP3 post-translational modifications, ubiquitination and phosphorylation, as well as single-domain proteins that competitively bind to key inflammasome components, such as the CARD-only proteins (COPs) and PYD-only proteins (POPs). These diverse regulatory systems ensure that a suitable level of inflammation is initiated to counteract any cellular insult, while simultaneously preserving tissue architecture. When inflammasomes are aberrantly activated can drive excessive production of pro-inflammatory cytokines and cell death, leading to tissue damage. In several autoinflammatory conditions, inflammasomes are aberrantly activated with subsequent development of clinical features that reflect the degree of underlying tissue and organ damage. Several of the resulting disease complications may be successfully controlled by anti-inflammatory drugs and/or specific cytokine inhibitors, in addition to more recently developed small-molecule inhibitors. In this review, we will explore the molecular processes underlying the activation of several inflammasomes and highlight their role during health and disease. We also describe the detrimental effects of these inflammasome complexes, in some pathological conditions, and review current therapeutic approaches as well as future prospective treatments.
Collapse
Affiliation(s)
- Samuel Lara-Reyna
- Institute of Microbiology and Infection University of Birmingham Birmingham UK
| | - Emily A Caseley
- School of Biomedical Sciences, Faculty of Biological Sciences University of Leeds Leeds UK
| | - Joanne Topping
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital University of Leeds Leeds UK
| | - François Rodrigues
- AP-HP, Hôpital Tenon, Sorbonne Université, Service de Médecine interne Centre de Référence des Maladies Auto-inflammatoires et des Amyloses d'origine inflammatoire (CEREMAIA) Paris France
| | - Jorge Jimenez Macias
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA.,Brown Cancer Centre, Department of Pathology and Laboratory Medicine Brown University Providence Rhode Island USA
| | - Sean E Lawler
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA.,Brown Cancer Centre, Department of Pathology and Laboratory Medicine Brown University Providence Rhode Island USA
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital University of Leeds Leeds UK
| |
Collapse
|
15
|
Anionic exopolysaccharide from Cryptococcus laurentii 70766 as an alternative for alginate for biomedical hydrogels. Int J Biol Macromol 2022; 212:370-380. [PMID: 35613678 DOI: 10.1016/j.ijbiomac.2022.05.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022]
Abstract
Alginates are widely used polysaccharides for biomaterials engineering, which functional properties depend on guluronic and mannuronic acid as the building blocks. In this study, enzymatically crosslinked hydrogels based on sodium alginate (Na-Alg) and the exopolysaccharide (EPS) derived from Cryptococcus laurentii 70766 with glucuronic acid residues were synthesized and characterized as a new potential source of polysaccharide for biomaterials engineering. The EPS was extracted (1.05 ± 0.57 g/L) through ethanol precipitation. Then the EPS and Na-Alg were functionalized with tyramine hydrochloride to produce enzymatically crosslinked hydrogels in the presence of horseradish peroxidase (HRP) and H2O2. Major characteristics of the hydrogels such as gelling time, swelling ratio, rheology, cell viability, and biodegradability were studied. The swelling ratio and degradation profile of both hydrogels showed negative values, indicating an increased crosslinking degree and a lower water uptake percentage. The EPS hydrogel showed similar gelation kinetics compared to the Alg hydrogel. The EPS and its hydrogel were found cytocompatible. The results indicate the potential of EPS from C. laurentii 70766 for biomedical engineering due to its biocompatibility and degradability. Further studies are needed to confirm this EPS as an alternative for Alg in tissue engineering applications, particularly in the development of wound dressing products.
Collapse
|
16
|
Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol 2022; 19:432-450. [PMID: 35165436 DOI: 10.1038/s41575-021-00566-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Bile acids (BAs) can regulate their own metabolism and transport as well as other key aspects of metabolic homeostasis via dedicated (nuclear and G protein-coupled) receptors. Disrupted BA transport and homeostasis results in the development of cholestatic disorders and contributes to a wide range of liver diseases, including nonalcoholic fatty liver disease and hepatocellular and cholangiocellular carcinoma. Furthermore, impaired BA homeostasis can also affect the intestine, contributing to the pathogenesis of irritable bowel syndrome, inflammatory bowel disease, and colorectal and oesophageal cancer. Here, we provide a summary of the role of BAs and their disrupted homeostasis in the development of gastrointestinal and hepatic disorders and present novel insights on how targeting BA pathways might contribute to novel treatment strategies for these disorders.
Collapse
|
17
|
Hamidi M, Valentine Okoro O, Ianiri G, Jafari H, Rashidi K, Ghasemi S, Castoria R, Palmieri D, Delattre C, Pierre G, Mirzaei M, Nie L, Samadian H, Shavandi A. Exopolysaccharide from the yeast Papiliotrema terrestris PT22AV for skin wound healing. J Adv Res 2022; 46:61-74. [PMID: 35760297 PMCID: PMC10105244 DOI: 10.1016/j.jare.2022.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Exopolysaccharides (EPSs) are high-value functional biomaterials mainly produced by bacteria and fungi, with nutraceutical, therapeutic and industrial potentials. OBJECTIVES This study sought to characterize and assess the biological properties of the EPS produced by the yeast Papiliotrema terrestris PT22AV. METHODS After extracting the yeast's DNA and its molecular identification, the EPS from P. terrestris PT22AV strain was extracted and its physicochemical properties (structural, morphological, monosaccharide composition and molecular weight) were characterized. The EPS's in vitro biological activities and in vivo wound healing potential were also evaluated. RESULTS The obtained EPS was water-soluble and revealed an average molecular weight (Mw) of 202 kDa. Mannose and glucose with 97% and 3% molar percentages, respectively, constituted the EPS. In vitro antibacterial activity analysis of the extracted EPS exhibited antibacterial activity (>80%) against Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis at a concentration of 2 mg/mL. The EPS showed cytocompatibility against the human fibroblast and macrophage cell lines and the animal studies showed a dose-dependent wound healing capacity of the EPS with higher wound closure at 10 mg/mL compared to negative and positive control after 14 days. CONCLUSION The EPS from P. terrestris PT22AV could serve as a promising source of biocompatible macromolecules with potential for skin wound healing.
Collapse
Affiliation(s)
- Masoud Hamidi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles-BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium; Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles-BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Giuseppe Ianiri
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso, Italy
| | - Hafez Jafari
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles-BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Khodabakhsh Rashidi
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Ghasemi
- Department of Medicinal Chemistry, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Raffaello Castoria
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso, Italy
| | - Davide Palmieri
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso, Italy
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Guillaume Pierre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Mahta Mirzaei
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles-BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Hadi Samadian
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles-BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
18
|
Cai Z, He X, Liu S, Bai Y, Pan B, Wu K. Linear ubiquitination modification of NR6A1 by LUBAC inhibits RIPK3 kinase activity and attenuates apoptosis of vascular smooth muscle cells. J Biochem Mol Toxicol 2022; 36:e23091. [PMID: 35543488 DOI: 10.1002/jbt.23091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 11/30/2021] [Accepted: 04/19/2022] [Indexed: 11/12/2022]
Abstract
Nuclear receptor subfamily 6 group A member 1 (NR6A1) is involved in promoting the apoptotic process of vascular smooth muscle cells (VSMCs) which is a critical process involved in atherosclerosis, but the action mechanism remains to be determined. Therefore, we studied the underlying mechanisms by which NR6A1 accelerated VSMC apoptosis in atherosclerosis. An atherosclerosis model has been established in apolipoprotein E-deficient rats with a high-fat diet for 12 weeks, which was characterized by pathological aortic plaques, increased lipid deposition and collagen content in aortic tissues, and high cholesterol and triglycerides levels in the serum. NR6A1 was experimentally shown to increase at protein level rather than messenger RNA level in atherosclerotic rats. Immunofluorescence exhibited the main location of NR6A1 in the cell nucleus of rat aortic tissues. By performing ectopic expression experiments, NR6A1 was demonstrated to suppress the viability and expedite the apoptosis of VSMCs, corresponding to augmented caspase-3, caspase-8, and caspase-9 activities. It was further unraveled that NR6A1 could activate receptor-interacting serine/threonine-protein kinase 3 (RIPK3) by inducing its phosphorylation. Conversely, RIPK3 inhibitor GSK872 undermined the proapoptotic effect of NR6A1 on VSMCs. The co-immunoprecipitation assay identified that linear ubiquitin chain assembly complex (LUBAC) can be pulled down by NR6A1. Furthermore. LUBAC inhibited the expression of NR6A1 by promoting its linear ubiquitination, thereby dephosphorylating RIPK3 and consequently inhibiting the VSMC apoptosis. Overall, LUBAC-induced linear ubiquitination of NR6A1 can potentially arrest the apoptosis of VSMCs in atherosclerosis by downregulating RIPK3 and attenuating caspase activity. This finding suggests promising athero-protective targets by limiting VSMC apoptosis.
Collapse
Affiliation(s)
- Zhou Cai
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Xin He
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Shuai Liu
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Yang Bai
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Baihong Pan
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Kemin Wu
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| |
Collapse
|
19
|
Liu Y, Guan R, Yan J, Zhu Y, Sun S, Qu Y. Mesenchymal Stem Cell-Derived Extracellular Vesicle-Shuttled microRNA-302d-3p Represses Inflammation and Cardiac Remodeling Following Acute Myocardial Infarction. J Cardiovasc Transl Res 2022; 15:754-771. [PMID: 35194734 DOI: 10.1007/s12265-021-10200-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023]
Abstract
Our research intended to investigate the roles of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) in acute myocardial infarction (AMI) via delivery of microRNA (miR)-302d-3p. AMI mouse models were established. EVs isolated from MSCs with miR-302d-3p mimic were injected near the infarct area or co-cultured with hypoxic cardiomyocytes to evaluate their effects. The expression of NF-κB pathway-related genes and inflammatory factors was determined. AMI mice exhibited downregulated miR-302d-3p and elevated MD2 and BCL6 levels. BCL6 was negatively targeted by miR-302d-3p and could bind to MD2 promoter to upregulate MD2 expression. MSCs-EVs, MSCs-EVs carrying miR-302d-3p, or BCL6 or MD2 silencing inactivated the NF-κB pathway and alleviated infarcted area, myocardial fibrosis, inflammation, apoptosis, and cardiac dysfunction in AMI mice. Besides, MSCs-EVs, MSCs-EVs carrying miR-302d-3p, or BCL6 or MD2 silencing diminished viability and inflammation but augmented apoptosis of hypoxic cardiomyocytes. Conclusively, MSCs-EVs carrying miR-302d-3p repressed inflammation and cardiac remodeling after AMI via BCL6/MD2/NF-κB axis.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Clinical Laboratory, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, People's Republic of China
| | - Rongchun Guan
- Clinical Laboratory, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, People's Republic of China
| | - Jizhou Yan
- The Fifth Ward of Cardiovascular Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, People's Republic of China
| | - Yueping Zhu
- Clinical Laboratory, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, People's Republic of China
| | - Shiming Sun
- Clinical Laboratory, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, People's Republic of China
| | - Yan Qu
- Clinical Laboratory, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, People's Republic of China.
| |
Collapse
|
20
|
Heiser D, Rubert J, Unterreiner A, Maurer C, Kamke M, Bodendorf U, Farady CJ, Roediger B, Bornancin F. Evaluation of protein kinase D auto-phosphorylation as biomarker for NLRP3 inflammasome activation. PLoS One 2021; 16:e0248668. [PMID: 34767572 PMCID: PMC8589197 DOI: 10.1371/journal.pone.0248668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The NLRP3 inflammasome is a critical component of sterile inflammation, which is involved in many diseases. However, there is currently no known proximal biomarker for measuring NLRP3 activation in pathological conditions. Protein kinase D (PKD) has emerged as an important NLRP3 kinase that catalyzes the release of a phosphorylated NLRP3 species that is competent for inflammasome complex assembly. METHODS To explore the potential for PKD activation to serve as a selective biomarker of the NLRP3 pathway, we tested various stimulatory conditions in THP-1 and U937 cell lines, probing the inflammasome space beyond NLRP3. We analyzed the correlation between PKD activation (monitored by its auto-phosphorylation) and functional inflammasome readouts. RESULTS PKD activation/auto-phosphorylation always preceded cleavage of caspase-1 and gasdermin D, and treatment with the PKD inhibitor CRT0066101 could block NLRP3 inflammasome assembly and interleukin-1β production. Conversely, blocking NLRP3 either genetically or using the MCC950 inhibitor prevented PKD auto-phosphorylation, indicating a bidirectional functional crosstalk between NLRP3 and PKD. Further assessments of the pyrin and NLRC4 pathways, however, revealed that PKD auto-phosphorylation can be triggered by a broad range of stimuli unrelated to NLRP3 inflammasome assembly. CONCLUSION Although PKD and NLRP3 become functionally interconnected during NLRP3 activation, the promiscuous reactivity of PKD challenges its potential use for tracing the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Diane Heiser
- Autoimmunity, Transplantation & Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Joëlle Rubert
- Autoimmunity, Transplantation & Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Adeline Unterreiner
- Autoimmunity, Transplantation & Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Claudine Maurer
- Autoimmunity, Transplantation & Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Marion Kamke
- Autoimmunity, Transplantation & Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ursula Bodendorf
- Autoimmunity, Transplantation & Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christopher J. Farady
- Autoimmunity, Transplantation & Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ben Roediger
- Autoimmunity, Transplantation & Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Frédéric Bornancin
- Autoimmunity, Transplantation & Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
21
|
Engineering digitizer circuits for chemical and genetic screens in human cells. Nat Commun 2021; 12:6150. [PMID: 34686672 PMCID: PMC8536748 DOI: 10.1038/s41467-021-26359-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
Cell-based transcriptional reporters are invaluable in high-throughput compound and CRISPR screens for identifying compounds or genes that can impact a pathway of interest. However, many transcriptional reporters have weak activities and transient responses. This can result in overlooking therapeutic targets and compounds that are difficult to detect, necessitating the resource-consuming process of running multiple screens at various timepoints. Here, we present RADAR, a digitizer circuit for amplifying reporter activity and retaining memory of pathway activation. Reporting on the AP-1 pathway, our circuit identifies compounds with known activity against PKC-related pathways and shows an enhanced dynamic range with improved sensitivity compared to a classical reporter in compound screens. In the first genome-wide pooled CRISPR screen for the AP-1 pathway, RADAR identifies canonical genes from the MAPK and PKC pathways, as well as non-canonical regulators. Thus, our scalable system highlights the benefit and versatility of using genetic circuits in large-scale cell-based screening.
Collapse
|
22
|
FXR/TGR5 mediates inflammasome activation and host resistance to bacterial infection. Biochem Biophys Rep 2021; 27:101051. [PMID: 34179517 PMCID: PMC8214033 DOI: 10.1016/j.bbrep.2021.101051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/20/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Bacterial infections are a major cause of chronic infections and mortality. Innate immune control is crucial for protection against bacterial pathogens. Bile acids facilitate intestinal absorption of lipid-soluble nutrients and modulate various metabolic pathways through the farnesoid X receptor (FXR) and Takeda G-protein-coupled receptor 5 (TGR5). Here, we identified a new role of FXR and TGR5 in promoting inflammasome activation during bacterial infection. Caspase-1/11 activation and release of cleaved interleukin (IL)-1β in FXR- and TGR5-deficient mouse bone marrow-derived macrophages upon Listeria monocytogenes or Escherichia coli infection was significantly reduced. In contrast, FXR- or TGR5-deficiency did not affect the transcription of caspase-1/11 and IL-1β. Inflammasome activation is critical for host immune defense against bacterial infections. Consistent with this, the deletion of FXR or TGR5 impaired effective clearance of L. monocytogenes or E. coli in vitro and in vivo, which was associated with greater mortality and bacterial burden than that of wild-type mice. Pretreatment with an FXR agonist decreased bacterial burden in vitro and increased survival in vivo. Thus, FXR and TGR5 promote inflammasome-mediated antimicrobial responses and may represent novel antibacterial therapeutic targets. FXR- or TGR5-deficiency decreases inflammasome activation upon Listeria monocytogenes or Escherichia coli infection. FXR- or TGR5-deficiency impaired effective clearance of L. monocytogenes or E. coli. FXR and TGR5 promote inflammasome-mediated antimicrobial responses.
Collapse
|
23
|
Jimenez-Duran G, Triantafilou M. Metabolic regulators of enigmatic inflammasomes in autoimmune diseases and crosstalk with innate immune receptors. Immunology 2021; 163:348-362. [PMID: 33682108 PMCID: PMC8274167 DOI: 10.1111/imm.13326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
Nucleotide‐binding domain and leucine‐rich repeat receptor (NLR)‐mediated inflammasome activation is important in host response to microbes, danger‐associated molecular patterns (DAMPs) and metabolic disease. Some NLRs have been shown to interact with distinct cell metabolic pathways and cause negative regulation, tumorigenesis and autoimmune disorders, interacting with multiple innate immune receptors to modulate disease. NLR activation is therefore crucial in host response and in the regulation of metabolic pathways that can trigger a wide range of immunometabolic diseases or syndromes. However, the exact mode by which some of the less well‐studied NLR inflammasomes are activated, interact with other metabolites and immune receptors, and the role they play in the progression of metabolic diseases is still not fully elucidated. In this study, we review up‐to‐date evidence regarding NLR function in metabolic pathways and the interplay with other immune receptors involved in GPCR signalling, gut microbiota and the complement system, in order to gain a better understanding of its link to disease processes.
Collapse
Affiliation(s)
- Gisela Jimenez-Duran
- Immunology Network, GlaxoSmithKline, Stevenage, UK.,Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| | - Martha Triantafilou
- Immunology Network, GlaxoSmithKline, Stevenage, UK.,Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| |
Collapse
|
24
|
Khatri V, Kalyanasundaram R. Therapeutic implications of inflammasome in inflammatory bowel disease. FASEB J 2021; 35:e21439. [PMID: 33774860 PMCID: PMC8010917 DOI: 10.1096/fj.202002622r] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) remains a persistent health problem with a global burden surging over 6.8 million cases currently. Clinical pathology of IBD is complicated; however, hyperactive inflammatory and immune responses in the gut is shown to be one of the persistent causes of the disease. Human gut inflammasome, the activator of innate immune system is believed to be a primary underlying cause for the pathology and is largely associated with the progression of IBD. To manage IBD, there is a need to fully understand the role of inflammasome activation in IBD. Since inflammasome potentially play a significant role in IBD, systemic modulation of inflammasome may provide an effective therapeutic and clinical approach to control IBD symptoms. In this review, we have focused on this association between IBD and gut inflammasome, and recent advances in the research and therapeutic strategies for IBD. We have discussed inflammasomes and their components, outcomes from the experimental animals and human studies, inflammasome inhibitors, and developments in the inflammasome-targeted therapies for IBD.
Collapse
Affiliation(s)
- Vishal Khatri
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | | |
Collapse
|
25
|
Chen Y, Li Y, Guo L, Hong J, Zhao W, Hu X, Chang C, Liu W, Xiong K. Bibliometric Analysis of the Inflammasome and Pyroptosis in Brain. Front Pharmacol 2021; 11:626502. [PMID: 33551822 PMCID: PMC7854385 DOI: 10.3389/fphar.2020.626502] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Considering the pivotal role of inflammasome/pyroptosis in biological function, we visually analyzed the research hotspots of inflammasome/pyroptosis related to the brain in this work through the method of bibliometrics from the Web of Science (WOS) Core database over the past two decades. Methods: Documents were retrieved from WOS Core Collection on October 16, 2020. The search terms and strategies used for the WOS database are as follow: # 1, “pyroptosis”; # 2, “pyroptotic”; # 3, “inflammasome”; # 4, “pyroptosome”; # 5 “brain”; # 6, “# 1” OR “# 2” OR “# 3” OR “# 4”; # 7, “# 5” AND “# 6”. We selected articles and reviews published in English from 2000 to 2020. Visualization analysis and statistical analysis were performed by VOSviewer 1.6.15 and CiteSpace 5.7. R2. Results: 1,222 documents were selected for analysis. In the approximately 20 years since the pyroptosis was first presented, the publications regarding the inflammasome and pyroptosis in brain were presented since 2005. The number of annual publications increased gradually over a decade, which are involved in this work, and will continue to increase in 2020. The most prolific country was China with 523 documents but the United States was with 16,328 citations. The most influential author was Juan Pablo de Rivero Vaccari with 27 documents who worked at the University of Miami. The bibliometric analysis showed that inflammasome/pyroptosis involved a variety of brain cell types (microglia, astrocyte, neuron, etc.), physiological processes, ER stress, mitochondrial function, oxidative stress, and disease (traumatic brain injuries, stroke, Alzheimer’s disease, and Parkinson’s disease). Conclusion: The research of inflammasome/pyroptosis in brain will continue to be the hotspot. We recommend investigating the mechanism of mitochondrial molecules involved in the complex crosstalk of pyroptosis and regulated cell deaths (RCDs) in brain glial cells, which will facilitate the development of effective therapeutic strategies targeting inflammasome/pyroptosis and large-scale clinical trials. Thus, this study presents the trend and characteristic of inflammasome/pyroptosis in brain, which provided a helpful bibliometric analysis for researchers to further studies.
Collapse
Affiliation(s)
- Yuhua Chen
- Central Laboratory of Medicine School, Xi'an Peihua University, Xi'an, China.,Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China.,Department of Neurosurgery, First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yan Li
- Department of Histology and Embryology, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Limin Guo
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jun Hong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Wenjuan Zhao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Ximin Hu
- Clinical Medicine Eight-year Program, 02 Class, 17 Grade, Xiangya School of Medicine, Central South University, Changsha, China
| | - Cuicui Chang
- Central Laboratory of Medicine School, Xi'an Peihua University, Xi'an, China
| | - Wei Liu
- Department of Neurosurgery, First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
26
|
D. Goldenberg S, Merrick B. The role of faecal microbiota transplantation: looking beyond Clostridioides difficile infection. Ther Adv Infect Dis 2021; 8:2049936120981526. [PMID: 33614028 PMCID: PMC7841662 DOI: 10.1177/2049936120981526] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Faecal microbiota transplantation (FMT) is the transfer of screened and minimally processed faecal material from a 'healthy' donor to 'diseased' recipient. It has an established role, and is recommended as a therapeutic strategy, in the management of recurrent Clostridioides difficile infection (CDI). Recognition that gut dysbiosis is associated with, and may contribute to, numerous disease states has led to interest in exploiting FMT to 'correct' this microbial imbalance. Conditions for which it is proposed to be beneficial include inflammatory bowel disease, irritable bowel syndrome, liver disease and hepatic encephalopathy, neuropsychiatric conditions such as depression and anxiety, systemic inflammatory states like sepsis, and even coronavirus disease 2019. To understand what role, if any, FMT may play in the management of these conditions, it is important to consider the potential risks and benefits of the therapy. Regardless, there are several barriers to its more widespread adoption, which include incompletely understood mechanism of action (especially outside of CDI), inability to standardise treatment, disagreement on its active ingredients and how it should be regulated, and lack of long-term outcome and safety data. Whilst the transfer of faecal material from one individual to another to treat ailments or improve health has a history dating back thousands of years, there are fewer than 10 randomised controlled trials supporting its use. Moving forward, it will be imperative to gather as much data from FMT donors and recipients over as long a timeframe as possible, and for trials to be conducted with rigorous methodology, including appropriate control groups, in order to best understand the utility of FMT for indications beyond CDI. This review discusses the history of FMT, its appreciable mechanisms of action with reference to CDI, indications for FMT with an emerging evidence base above and beyond CDI, and future perspectives on the field.
Collapse
Affiliation(s)
- Simon D. Goldenberg
- Centre for Clinical Infection & Diagnostics Research, King’s College London and Guy’s & St. Thomas’ NHS Foundation Trust, 5th floor, North Wing, St Thomas’ hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Blair Merrick
- Centre for Clinical Infection & Diagnostics Research, King’s College London and Guy’s & St. Thomas’ NHS Foundation Trust, London, UK
| |
Collapse
|
27
|
Rutsch A, Kantsjö JB, Ronchi F. The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. Front Immunol 2020; 11:604179. [PMID: 33362788 PMCID: PMC7758428 DOI: 10.3389/fimmu.2020.604179] [Citation(s) in RCA: 365] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
The human microbiota has a fundamental role in host physiology and pathology. Gut microbial alteration, also known as dysbiosis, is a condition associated not only with gastrointestinal disorders but also with diseases affecting other distal organs. Recently it became evident that the intestinal bacteria can affect the central nervous system (CNS) physiology and inflammation. The nervous system and the gastrointestinal tract are communicating through a bidirectional network of signaling pathways called the gut-brain axis, which consists of multiple connections, including the vagus nerve, the immune system, and bacterial metabolites and products. During dysbiosis, these pathways are dysregulated and associated with altered permeability of the blood-brain barrier (BBB) and neuroinflammation. However, numerous mechanisms behind the impact of the gut microbiota in neuro-development and -pathogenesis remain poorly understood. There are several immune pathways involved in CNS homeostasis and inflammation. Among those, the inflammasome pathway has been linked to neuroinflammatory conditions such as multiple sclerosis, Alzheimer's and Parkinson's diseases, but also anxiety and depressive-like disorders. The inflammasome complex assembles upon cell activation due to exposure to microbes, danger signals, or stress and lead to the production of pro-inflammatory cytokines (interleukin-1β and interleukin-18) and to pyroptosis. Evidences suggest that there is a reciprocal influence of microbiota and inflammasome activation in the brain. However, how this influence is precisely working is yet to be discovered. Herein, we discuss the status of the knowledge and the open questions in the field focusing on the function of intestinal microbial metabolites or products on CNS cells during healthy and inflammatory conditions, such as multiple sclerosis, Alzheimer's and Parkinson's diseases, and also neuropsychiatric disorders. In particular, we focus on the innate inflammasome pathway as immune mechanism that can be involved in several of these conditions, upon exposure to certain microbes.
Collapse
Affiliation(s)
| | | | - Francesca Ronchi
- Maurice Müller Laboratories, Department of Biomedical Research, Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Berne, Berne, Switzerland
| |
Collapse
|
28
|
Bai B, Yang Y, Wang Q, Li M, Tian C, Liu Y, Aung LHH, Li PF, Yu T, Chu XM. NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis 2020; 11:776. [PMID: 32948742 PMCID: PMC7501262 DOI: 10.1038/s41419-020-02985-x] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022]
Abstract
Inflammasomes are a class of cytosolic protein complexes. They act as cytosolic innate immune signal receptors to sense pathogens and initiate inflammatory responses under physiological and pathological conditions. The NLR-family pyrin domain-containing protein 3 (NLRP3) inflammasome is the most characteristic multimeric protein complex. Its activation triggers the cleavage of pro-interleukin (IL)-1β and pro-IL-18, which are mediated by caspase-1, and secretes mature forms of these mediators from cells to promote the further inflammatory process and oxidative stress. Simultaneously, cells undergo pro-inflammatory programmed cell death, termed pyroptosis. The danger signals for activating NLRP3 inflammasome are very extensive, especially reactive oxygen species (ROS), which act as an intermediate trigger to activate NLRP3 inflammasome, exacerbating subsequent inflammatory cascades and cell damage. Vascular endothelium at the site of inflammation is actively involved in the regulation of inflammation progression with important implications for cardiovascular homeostasis as a dynamically adaptable interface. Endothelial dysfunction is a hallmark and predictor for cardiovascular ailments or adverse cardiovascular events, such as coronary artery disease, diabetes mellitus, hypertension, and hypercholesterolemia. The loss of proper endothelial function may lead to tissue swelling, chronic inflammation, and the formation of thrombi. As such, elimination of endothelial cell inflammation or activation is of clinical relevance. In this review, we provided a comprehensive perspective on the pivotal role of NLRP3 inflammasome activation in aggravating oxidative stress and endothelial dysfunction and the possible underlying mechanisms. Furthermore, we highlighted the contribution of noncoding RNAs to NLRP3 inflammasome activation-associated endothelial dysfunction, and outlined potential clinical drugs targeting NLRP3 inflammasome involved in endothelial dysfunction. Collectively, this summary provides recent developments and perspectives on how NLRP3 inflammasome interferes with endothelial dysfunction and the potential research value of NLRP3 inflammasome as a potential mediator of endothelial dysfunction.
Collapse
Affiliation(s)
- Baochen Bai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yanyan Yang
- Department of lmmunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Qi Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yan Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China.
- Department of Cardiac Ultrasound, The Affiliated hospital of Qingdao University, Qingdao, 266000, China.
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, 266032, China.
| |
Collapse
|
29
|
Carco C, Young W, Gearry RB, Talley NJ, McNabb WC, Roy NC. Increasing Evidence That Irritable Bowel Syndrome and Functional Gastrointestinal Disorders Have a Microbial Pathogenesis. Front Cell Infect Microbiol 2020; 10:468. [PMID: 33014892 PMCID: PMC7509092 DOI: 10.3389/fcimb.2020.00468] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract harbors most of the microbial cells inhabiting the body, collectively known as the microbiota. These microbes have several implications for the maintenance of structural integrity of the gastrointestinal mucosal barrier, immunomodulation, metabolism of nutrients, and protection against pathogens. Dysfunctions in these mechanisms are linked to a range of conditions in the gastrointestinal tract, including functional gastrointestinal disorders, ranging from irritable bowel syndrome, to functional constipation and functional diarrhea. Irritable bowel syndrome is characterized by chronic abdominal pain with changes in bowel habit in the absence of morphological changes. Despite the high prevalence of irritable bowel syndrome in the global population, the mechanisms responsible for this condition are poorly understood. Although alterations in the gastrointestinal microbiota, low-grade inflammation and immune activation have been implicated in the pathophysiology of functional gastrointestinal disorders, there is inconsistency between studies and a lack of consensus on what the exact role of the microbiota is, and how changes to it relate to these conditions. The complex interplay between host factors, such as microbial dysbiosis, immune activation, impaired epithelial barrier function and motility, and environmental factors, including diet, will be considered in this narrative review of the pathophysiology of functional gastrointestinal disorders.
Collapse
Affiliation(s)
- Caterina Carco
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition and Health Team, AgResearch Grasslands, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Wayne Young
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition and Health Team, AgResearch Grasslands, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Richard B Gearry
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Nicholas J Talley
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Liggins Institute, University of Auckland, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| |
Collapse
|
30
|
Di Ciaula A, Stella A, Bonfrate L, Wang DQH, Portincasa P. Gut Microbiota between Environment and Genetic Background in Familial Mediterranean Fever (FMF). Genes (Basel) 2020; 11:E1041. [PMID: 32899315 PMCID: PMC7563178 DOI: 10.3390/genes11091041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract hosts the natural reservoir of microbiota since birth. The microbiota includes various bacteria that establish a progressively mutual relationship with the host. Of note, the composition of gut microbiota is rather individual-specific and, normally, depends on both the host genotype and environmental factors. The study of the bacterial profile in the gut demonstrates that dominant and minor phyla are present in the gastrointestinal tract with bacterial density gradually increasing in oro-aboral direction. The cross-talk between bacteria and host within the gut strongly contributes to the host metabolism, to structural and protective functions. Dysbiosis can develop following aging, diseases, inflammatory status, and antibiotic therapy. Growing evidences show a possible link between the microbiota and Familial Mediterranean Fever (FMF), through a shift of the relative abundance in microbial species. To which extent such perturbations of the microbiota are relevant in driving the phenotypic manifestations of FMF with respect to genetic background, remains to be further investigated.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari BA, Italy; (A.D.C.); (L.B.)
| | - Alessandro Stella
- Section of Medical Genetics, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari BA, Italy;
| | - Leonilde Bonfrate
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari BA, Italy; (A.D.C.); (L.B.)
| | - David Q. H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Piero Portincasa
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari BA, Italy; (A.D.C.); (L.B.)
| |
Collapse
|
31
|
Sivcev S, Slavikova B, Ivetic M, Knezu M, Kudova E, Zemkova H. Lithocholic acid inhibits P2X2 and potentiates P2X4 receptor channel gating. J Steroid Biochem Mol Biol 2020; 202:105725. [PMID: 32652201 DOI: 10.1016/j.jsbmb.2020.105725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/21/2020] [Accepted: 07/05/2020] [Indexed: 02/02/2023]
Abstract
The family of ATP-gated purinergic P2X receptors comprises seven bunits (P2X1-7) that are unevenly distributed in the central and peripheral nervous systems as well as other organs. Endogenous modulators of P2X receptors are phospholipids, steroids and neurosteroids. Here, we analyzed whether bile acids, which are natural products derived from cholesterol, affect P2X receptor activity. We examined the effects of primary and secondary bile acids and newly synthesized derivatives of lithocholic acid on agonist-induced responses in HEK293T cells expressing rat P2X2, P2X4 and P2X7 receptors. Electrophysiology revealed that low micromolar concentrations of lithocholic acid and its structural analog 4-dafachronic acid strongly inhibit ATP-stimulated P2X2 but potentiate P2X4 responses, whereas primary bile acids and other secondary bile acids exhibit no or reduced effects only at higher concentrations. Agonist-stimulated P2X7 responses are significantly potentiated by lithocholic acid at moderate concentrations. Structural modifications of lithocholic acid at positions C-3, C-5 or C-17 abolish both inhibitory and potentiation effects to varying degrees, and the 3α-hydroxy group contributes to the ability of the molecule to switch between potentiation and inhibition. Lithocholic acid allosterically modulates P2X2 and P2X4 receptor sensitivity to ATP, reduces the rate of P2X4 receptor desensitization and antagonizes the effect of ivermectin on P2X4 receptor deactivation. Alanine-scanning mutagenesis of the upper halve of P2X4 transmembrane domain-1 revealed that residues Phe48, Val43 and Tyr42 are important for potentiating effect of lithocholic acid, indicating that modulatory sites for lithocholic acid and ivermectin partly overlap. Lithocholic acid also inhibits ATP-evoked currents in pituitary gonadotrophs expressing native P2X2, and potentiates ATP currents in nonidentified pituitary cells expressing P2X4 receptors. These results indicate that lithocholic acid is a bioactive steroid that may help to further unveil the importance of the P2X2, and P2X4 receptors in many physiological processes.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Slavikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Milorad Ivetic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Knezu
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
32
|
Malik HS, Bliska JB. The pyrin inflammasome and the Yersinia effector interaction. Immunol Rev 2020; 297:96-107. [PMID: 32721043 DOI: 10.1111/imr.12907] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Pyrin is a cytosolic pattern-recognition receptor that normally functions as a guard to trigger capase-1 inflammasome assembly in response to bacterial toxins and effectors that inactivate RhoA. The MEFV gene encoding human pyrin is preferentially expressed in phagocytes. Key domains in pyrin include a pyrin domain (PYD), a linker region, and a B30.2 domain. Binding of ASC to pyrin by a PYD-PYD interaction triggers inflammasome assembly. Pyrin is held in an inactive conformation by negative regulation mechanisms to avoid premature inflammasome assembly. One mechanism of negative regulation involves phosphorylation of the linker by PRK kinase which in turn is positively regulated by active RhoA. The B30.2 domain also negatively regulates pyrin. Gain of function mutations in MEFV responsible for the autoinflammatory disease Familial Mediterranean Fever (FMF) map to exon 10 encoding the B30.2 domain. Insights into pyrin regulation have come from studies of several Yersinia effectors, which are injected into phagocytes and interact with the RhoA-PRK-pyrin axis during infection. Two effectors, YopE and YopT, inactivate RhoA to disrupt phagocytic signaling. To counteract an effector-triggered immune response, a third effector, YopM, binds to and inhibits pyrin by hijacking PRK and RSK and directing linker phosphorylation. Inhibition of pyrin by YopM is required for virulence of Yersinia pestis, the agent of plague. Recent results from infection studies with human phagocytes and mice producing pyrin B30.2 FMF variants show that gain of function MEFV mutations bypass inhibition by YopM. Population genetic data suggest that MEFV mutations were selected for in individuals of Mediterranean decent during historic plague pandemics. This review discusses current concepts of pyrin regulation and its interaction with Yersinia effectors.
Collapse
Affiliation(s)
- Haleema S Malik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - James B Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
33
|
Zheng D, Liwinski T, Elinav E. Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov 2020; 6:36. [PMID: 32550001 PMCID: PMC7280307 DOI: 10.1038/s41421-020-0167-x] [Citation(s) in RCA: 506] [Impact Index Per Article: 126.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/05/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammasomes are cytoplasmic multiprotein complexes comprising a sensor protein, inflammatory caspases, and in some but not all cases an adapter protein connecting the two. They can be activated by a repertoire of endogenous and exogenous stimuli, leading to enzymatic activation of canonical caspase-1, noncanonical caspase-11 (or the equivalent caspase-4 and caspase-5 in humans) or caspase-8, resulting in secretion of IL-1β and IL-18, as well as apoptotic and pyroptotic cell death. Appropriate inflammasome activation is vital for the host to cope with foreign pathogens or tissue damage, while aberrant inflammasome activation can cause uncontrolled tissue responses that may contribute to various diseases, including autoinflammatory disorders, cardiometabolic diseases, cancer and neurodegenerative diseases. Therefore, it is imperative to maintain a fine balance between inflammasome activation and inhibition, which requires a fine-tuned regulation of inflammasome assembly and effector function. Recently, a growing body of studies have been focusing on delineating the structural and molecular mechanisms underlying the regulation of inflammasome signaling. In the present review, we summarize the most recent advances and remaining challenges in understanding the ordered inflammasome assembly and activation upon sensing of diverse stimuli, as well as the tight regulations of these processes. Furthermore, we review recent progress and challenges in translating inflammasome research into therapeutic tools, aimed at modifying inflammasome-regulated human diseases.
Collapse
Affiliation(s)
- Danping Zheng
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001 Israel
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Timur Liwinski
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001 Israel
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001 Israel
- Cancer-Microbiome Division Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
34
|
Gomez-Lopez N, Motomura K, Miller D, Garcia-Flores V, Galaz J, Romero R. Inflammasomes: Their Role in Normal and Complicated Pregnancies. THE JOURNAL OF IMMUNOLOGY 2020; 203:2757-2769. [PMID: 31740550 DOI: 10.4049/jimmunol.1900901] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Inflammasomes are cytoplasmic multiprotein complexes that coordinate inflammatory responses, including those that take place during pregnancy. Inflammasomes and their downstream mediators caspase-1 and IL-1β are expressed by gestational tissues (e.g., the placenta and chorioamniotic membranes) during normal pregnancy. Yet, only the activation of the NLRP3 inflammasome in the chorioamniotic membranes has been partially implicated in the sterile inflammatory process of term parturition. In vivo and ex vivo studies have consistently shown that the activation of the NLRP3 inflammasome is a mechanism whereby preterm labor and birth occur in the context of microbial- or alarmin-induced inflammation. In the placenta, the activation of the NLRP3 inflammasome is involved in the pathogenesis of preeclampsia and other pregnancy syndromes associated with placental inflammation. This evidence suggests that inhibition of the NLRP3 inflammasome or its downstream mediators may foster the development of novel anti-inflammatory therapies for the prevention or treatment of pregnancy complications.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201; .,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Kenichiro Motomura
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Derek Miller
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Jose Galaz
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824.,Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI 48201.,Detroit Medical Center, Detroit, MI 48201; and.,Department of Obstetrics and Gynecology, Florida International University, Miami, FL 33199
| |
Collapse
|
35
|
Frisbee AL, Petri WA. Considering the Immune System during Fecal Microbiota Transplantation for Clostridioides difficile Infection. Trends Mol Med 2020; 26:496-507. [PMID: 32359480 PMCID: PMC7198612 DOI: 10.1016/j.molmed.2020.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/05/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022]
Abstract
Our understanding and utilization of fecal microbiota transplantation (FMT) has jump-started over the past two decades. Recent technological advancements in sequencing and metabolomics have allowed for better characterization of our intestinal microbial counterparts, triggering a surge of excitement in the fields of mucosal immunology and microbiology. This excitement is well founded, as demonstrated by 90% relapse-free cure rates in FMT treatment for recurrent Clostridioides difficile infections. Growing evidence suggests that in addition to bacterial factors, the host immune response during C. difficile infection greatly influences disease severity. In this review, we discuss recent advancements in understanding the interplay between immune cells and the microbiota and how they may relate to recovery from C. difficile through FMT therapy.
Collapse
Affiliation(s)
- Alyse L Frisbee
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia 22908, USA.
| | - William A Petri
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia 22908, USA; Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908, USA; Department of Pathology, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| |
Collapse
|
36
|
Loeven NA, Medici NP, Bliska JB. The pyrin inflammasome in host-microbe interactions. Curr Opin Microbiol 2020; 54:77-86. [PMID: 32120337 PMCID: PMC7247927 DOI: 10.1016/j.mib.2020.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Pyrin is an inflammasome sensor in phagocytes that is activated in response to bacterial toxins and effectors that modify RhoA. Pathogen effector-triggered pyrin activation is analogous to an indirect guard mechanism in plants. Pyrin activation appears to be triggered when RhoA GTPases in a host cell are prevented from binding downstream signaling proteins (transducers). RhoA transducers that control this response include PRK kinases, which negatively regulate pyrin by phosphorylation and binding of 14-3-3 proteins. Microtubules regulate pyrin at different levels and may serve as a platform for inflammasome nucleation. Pyrin increases inflammation in the lung, gut or systemically during infection or intoxication in mouse models and protects against systemic infection by decreasing bacterial loads. Pathogenic Yersinia spp. overcome this protective response using effectors that inhibit the pyrin inflammasome. Gain of function mutations in MEFV, the gene encoding pyrin, cause the autoinflammatory disease Familial Mediterranean Fever. Yersinia pestis may have selected for gain of function MEFV mutations in the human population.
Collapse
Affiliation(s)
- Nicole A Loeven
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03768, United States
| | - Natasha P Medici
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03768, United States; Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, United States
| | - James B Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03768, United States.
| |
Collapse
|
37
|
Schmidt FI. From atoms to physiology: what it takes to really understand inflammasomes. J Physiol 2019; 597:5335-5348. [PMID: 31490557 DOI: 10.1113/jp277027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022] Open
Abstract
Rapid inflammatory responses to cytosolic threats are mediated by inflammasomes - large macromolecular signalling complexes that control the activation of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18, as well as cell death by pyroptosis. Different inflammasome sensors are activated by diverse direct and indirect signals, and subsequently nucleate the polymerization of the adaptor molecule ASC to form signalling platforms macroscopically observed as ASC specks. Caspase-1 is autocatalytically activated at these sites and subsequently matures pro-inflammatory cytokines and the pore-forming effector molecule gasdermin D. While most molecules and basic assembly principles have been deduced from reductionist experimental systems, we still lack fundamental information on the structure and regulation of these complexes in their physiological environment and in the interplay with other signalling pathways. In this review, novel experimental approaches are proposed, including some that rely on nanobodies and single domain antibodies, to understand inflammasome assembly and regulation in the context of the relevant tissues or cells.
Collapse
|
38
|
Falcone EL, Bryant C. Let's get this pyrin started! J Biol Chem 2019; 294:3367-3368. [PMID: 30850508 DOI: 10.1074/jbc.h119.007830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inflammasomes enable cells to respond to pathogens or biological damage, but the specific signals being used to convey these messages are not always clear. A new paper identifies two potential microbiota-derived metabolites, the bile acid analogues BAA485 and BAA473, as the first small molecules to activate the pyrin inflammasome. These results suggest that microbiota may be able to modulate this inflammatory process which, in turn, may contribute to the maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Emilia Liana Falcone
- From the Microbiome and Mucosal Defense Research Unit, Montreal Clinical Research Institute (IRCM), Montréal, Quebec H2W 1R7, Canada, .,Department of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada, and
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| |
Collapse
|