1
|
Umapathi P, Aggarwal A, Zahra F, Narayanan B, Zachara NE. The multifaceted role of intracellular glycosylation in cytoprotection and heart disease. J Biol Chem 2024; 300:107296. [PMID: 38641064 PMCID: PMC11126959 DOI: 10.1016/j.jbc.2024.107296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
The modification of nuclear, cytoplasmic, and mitochondrial proteins by O-linked β-N-actylglucosamine (O-GlcNAc) is an essential posttranslational modification that is common in metozoans. O-GlcNAc is cycled on and off proteins in response to environmental and physiological stimuli impacting protein function, which, in turn, tunes pathways that include transcription, translation, proteostasis, signal transduction, and metabolism. One class of stimulus that induces rapid and dynamic changes to O-GlcNAc is cellular injury, resulting from environmental stress (for instance, heat shock), hypoxia/reoxygenation injury, ischemia reperfusion injury (heart attack, stroke, trauma hemorrhage), and sepsis. Acute elevation of O-GlcNAc before or after injury reduces apoptosis and necrosis, suggesting that injury-induced changes in O-GlcNAcylation regulate cell fate decisions. However, prolonged elevation or reduction in O-GlcNAc leads to a maladaptive response and is associated with pathologies such as hypertrophy and heart failure. In this review, we discuss the impact of O-GlcNAc in both acute and prolonged models of injury with a focus on the heart and biological mechanisms that underpin cell survival.
Collapse
Affiliation(s)
- Priya Umapathi
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Akanksha Aggarwal
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fiddia Zahra
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bhargavi Narayanan
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
2
|
Yuan W, Xu W, Xu X, Qu B, Zhao F. Exploration of potential novel drug targets for diabetic retinopathy by plasma proteome screening. Sci Rep 2024; 14:11726. [PMID: 38778174 PMCID: PMC11111739 DOI: 10.1038/s41598-024-62069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
The aim of this study is to identify novel potential drug targets for diabetic retinopathy (DR). A bidirectional two-sample Mendelian randomization (MR) analysis was performed using protein quantitative trait loci (pQTL) of 734 plasma proteins as the exposures and clinically diagnosed DR as the outcome. Genetic instruments for 734 plasma proteins were obtained from recently published genome-wide association studies (GWAS), and external plasma proteome data was retrieved from the Icelandic Decoding Genetics Study and UK Biobank Pharma Proteomics Project. Summary-level data of GWAS for DR were obtained from the Finngen Consortium, comprising 14,584 cases and 202,082 population controls. Steiger filtering, Bayesian co-localization, and phenotype scanning were used to further verify the causal relationships calculated by MR. Three significant (p < 6.81 × 10-5) plasma protein-DR pairs were identified during the primary MR analysis, including CFH (OR = 0.8; 95% CI 0.75-0.86; p = 1.29 × 10-9), B3GNT8 (OR = 1.09; 95% CI 1.05-1.12; p = 5.9 × 10-6) and CFHR4 (OR = 1.11; 95% CI 1.06-1.16; p = 1.95 × 10-6). None of the three proteins showed reverse causation. According to Bayesian colocalization analysis, CFH (coloc.abf-PPH4 = 0.534) and B3GNT8 (coloc.abf-PPH4 = 0.638) in plasma shared the same variant with DR. All three identified proteins were validated in external replication cohorts. Our research shows a cause-and-effect connection between genetically determined levels of CFH, B3GNT8 and CFHR4 plasma proteins and DR. The discovery implies that these proteins hold potential as drug target in the process of developing drugs to treat DR.
Collapse
Affiliation(s)
- Weichen Yuan
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No. 102, Nanqi Road, Heping District, Shenyang, Liaoning, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Wei Xu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No. 102, Nanqi Road, Heping District, Shenyang, Liaoning, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Xin Xu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| | - Bo Qu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No. 102, Nanqi Road, Heping District, Shenyang, Liaoning, China.
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China.
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No. 102, Nanqi Road, Heping District, Shenyang, Liaoning, China.
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China.
| |
Collapse
|
3
|
Zhang C, Gu L, Xie H, Liu Y, Huang P, Zhang J, Luo D, Zhang J. Glucose transport, transporters and metabolism in diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166995. [PMID: 38142757 DOI: 10.1016/j.bbadis.2023.166995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Diabetic retinopathy (DR) is the most common reason for blindness in working-age individuals globally. Prolonged high blood glucose is a main causative factor for DR development, and glucose transport is prerequisite for the disturbances in DR caused by hyperglycemia. Glucose transport is mediated by its transporters, including the facilitated transporters (glucose transporter, GLUTs), the "active" glucose transporters (sodium-dependent glucose transporters, SGLTs), and the SLC50 family of uniporters (sugars will eventually be exported transporters, SWEETs). Glucose transport across the blood-retinal barrier (BRB) is crucial for nourishing the neuronal retina in the context of retinal physiology. This physiological process primarily relies on GLUTs and SGLTs, which mediate the glucose transportation across both the cell membrane of retinal capillary endothelial cells and the retinal pigment epithelium (RPE). Under diabetic conditions, increased accumulation of extracellular glucose enhances the retinal cellular glucose uptake and metabolism via both glycolysis and glycolytic side branches, which activates several biochemical pathways, including the protein kinase C (PKC), advanced glycation end-products (AGEs), polyol pathway and hexosamine biosynthetic pathway (HBP). These activated biochemical pathways further increase the production of reactive oxygen species (ROS), leading to oxidative stress and activation of Poly (ADP-ribose) polymerase (PARP). The activated PARP further affects all the cellular components in the retina, and finally resulting in microangiopathy, neurodegeneration and low-to-moderate grade inflammation in DR. This review aims to discuss the changes of glucose transport, glucose transporters, as well as its metabolism in DR, which influences the retinal neurovascular unit (NVU) and implies the possible therapeutic strategies for treating DR.
Collapse
Affiliation(s)
- Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Limin Gu
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, China.
| | - Hai Xie
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Yan Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Peirong Huang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Jingting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| |
Collapse
|
4
|
Starr CR, Zhylkibayev A, Mobley JA, Gorbatyuk MS. Proteomic analysis of diabetic retinas. Front Endocrinol (Lausanne) 2023; 14:1229089. [PMID: 37693346 PMCID: PMC10486886 DOI: 10.3389/fendo.2023.1229089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction As a metabolic disease, diabetes often leads to health complications such as heart failure, nephropathy, neurological disorders, and vision loss. Diabetic retinopathy (DR) affects as many as 100 million people worldwide. The mechanism of DR is complex and known to impact both neural and vascular components in the retina. While recent advances in the field have identified major cellular signaling contributing to DR pathogenesis, little has been reported on the protein post-translational modifications (PTM) - known to define protein localization, function, and activity - in the diabetic retina overall. Protein glycosylation is the enzymatic addition of carbohydrates to proteins, which can influence many protein attributes including folding, stability, function, and subcellular localization. O-linked glycosylation is the addition of sugars to an oxygen atom in amino acids with a free oxygen atom in their side chain (i.e., threonine, serine). To date, more than 100 congenital disorders of glycosylation have been described. However, no studies have identified the retinal O-linked glycoproteome in health or disease. With a critical need to expedite the discovery of PTMomics in diabetic retinas, we identified both global changes in protein levels and the retinal O-glycoproteome of control and diabetic mice. Methods We used liquid chromatography/mass spectrometry-based proteomics and high throughput screening to identify proteins differentially expressed and proteins differentially O-glycosylated in the retinas of wildtype and diabetic mice. Results Changes in both global expression levels of proteins and proteins differentially glycosylated in the retinas of wild-type and diabetic mice have been identified. We provide evidence that diabetes shifts both global expression levels and O-glycosylation of metabolic and synaptic proteins in the retina. Discussion Here we report changes in the retinal proteome of diabetic mice. We highlight alterations in global proteins involved in metabolic processes, maintaining cellular structure, trafficking, and neuronal processes. We then showed changes in O-linked glycosylation of individual proteins in the diabetic retina.
Collapse
Affiliation(s)
- Christopher R. Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Assylbek Zhylkibayev
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James A. Mobley
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marina S. Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Starr CR, Gorbatyuk MS. Posttranslational modifications of proteins in diseased retina. Front Cell Neurosci 2023; 17:1150220. [PMID: 37066080 PMCID: PMC10097899 DOI: 10.3389/fncel.2023.1150220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Posttranslational modifications (PTMs) are known to constitute a key step in protein biosynthesis and in the regulation of protein functions. Recent breakthroughs in protein purification strategies and current proteome technologies make it possible to identify the proteomics of healthy and diseased retinas. Despite these advantages, the research field identifying sets of posttranslationally modified proteins (PTMomes) related to diseased retinas is significantly lagging, despite knowledge of the major retina PTMome being critical to drug development. In this review, we highlight current updates regarding the PTMomes in three retinal degenerative diseases-namely, diabetic retinopathy (DR), glaucoma, and retinitis pigmentosa (RP). A literature search reveals the necessity to expedite investigations into essential PTMomes in the diseased retina and validate their physiological roles. This knowledge would accelerate the development of treatments for retinal degenerative disorders and the prevention of blindness in affected populations.
Collapse
Affiliation(s)
| | - Marina S. Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Fahie KMM, Papanicolaou KN, Zachara NE. Integration of O-GlcNAc into Stress Response Pathways. Cells 2022; 11:3509. [PMID: 36359905 PMCID: PMC9654274 DOI: 10.3390/cells11213509] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The modification of nuclear, mitochondrial, and cytosolic proteins by O-linked βN-acetylglucosamine (O-GlcNAc) has emerged as a dynamic and essential post-translational modification of mammalian proteins. O-GlcNAc is cycled on and off over 5000 proteins in response to diverse stimuli impacting protein function and, in turn, epigenetics and transcription, translation and proteostasis, metabolism, cell structure, and signal transduction. Environmental and physiological injury lead to complex changes in O-GlcNAcylation that impact cell and tissue survival in models of heat shock, osmotic stress, oxidative stress, and hypoxia/reoxygenation injury, as well as ischemic reperfusion injury. Numerous mechanisms that appear to underpin O-GlcNAc-mediated survival include changes in chaperone levels, impacts on the unfolded protein response and integrated stress response, improvements in mitochondrial function, and reduced protein aggregation. Here, we discuss the points at which O-GlcNAc is integrated into the cellular stress response, focusing on the roles it plays in the cardiovascular system and in neurodegeneration.
Collapse
Affiliation(s)
- Kamau M. M. Fahie
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kyriakos N. Papanicolaou
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Natasha E. Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Zhang S, Yang X, Jiang M, Ma L, Hu J, Zhang HH. Post-transcriptional control by RNA-binding proteins in diabetes and its related complications. Front Physiol 2022; 13:953880. [PMID: 36277184 PMCID: PMC9582753 DOI: 10.3389/fphys.2022.953880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Diabetes mellitus (DM) is a fast-growing chronic metabolic disorder that leads to significant health, social, and economic problems worldwide. Chronic hyperglycemia caused by DM leads to multiple devastating complications, including macrovascular complications and microvascular complications, such as diabetic cardiovascular disease, diabetic nephropathy, diabetic neuropathy, and diabetic retinopathy. Numerous studies provide growing evidence that aberrant expression of and mutations in RNA-binding proteins (RBPs) genes are linked to the pathogenesis of diabetes and associated complications. RBPs are involved in RNA processing and metabolism by directing a variety of post-transcriptional events, such as alternative splicing, stability, localization, and translation, all of which have a significant impact on RNA fate, altering their function. Here, we purposed to summarize the current progression and underlying regulatory mechanisms of RBPs in the progression of diabetes and its complications. We expected that this review will open the door for RBPs and their RNA networks as novel therapeutic targets for diabetes and its related complications.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Xiaohua Yang
- The Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Miao Jiang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Lianhua Ma
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Hong-Hong Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Cappuccio G, De Bernardi ML, Morlando A, Peduto C, Scala I, Pinelli M, Bellacchio E, Gallo FG, Magli A, Plaitano C, Serrano M, Pías L, Català J, Bolasell M, Torella A, Nigro V, Zanni G, Brunetti‐Pierri N. Postnatal microcephaly and retinal involvement expand the phenotype of RPL10-related disorder. Am J Med Genet A 2022; 188:3032-3040. [PMID: 35876338 PMCID: PMC9545381 DOI: 10.1002/ajmg.a.62911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/16/2022] [Accepted: 07/07/2022] [Indexed: 01/31/2023]
Abstract
Hemizygous missense variants in the RPL10 gene encoding a ribosomal unit are responsible for an X-linked syndrome presenting with intellectual disability (ID), autism spectrum disorder, epilepsy, dysmorphic features, and multiple congenital anomalies. Among 15 individuals with RPL10-related disorder reported so far, only one patient had retinitis pigmentosa and microcephaly was observed in approximately half of the cases. By exome sequencing, three Italian and one Spanish male children, from three independent families, were found to carry the same hemizygous novel missense variant p.(Arg32Leu) in RPL10, inherited by their unaffected mother in all cases. The variant, not reported in gnomAD, is located in the 28S rRNA binding region, affecting an evolutionary conserved residue and predicted to disrupt the salt-bridge between Arg32 and Asp28. In addition to features consistent with RPL10-related disorder, all four boys had retinal degeneration and postnatal microcephaly. Pathogenic variants in genes responsible for inherited retinal degenerations were ruled out in all the probands. A novel missense RPL10 variant was detected in four probands with a recurrent phenotype including ID, dysmorphic features, progressive postnatal microcephaly, and retinal anomalies. The presented individuals suggest that retinopathy and postnatal microcephaly are clinical clues of RPL10-related disorder, and at least the retinal defect might be more specific for the p.(Arg32Leu) RPL10 variant, suggesting a specific genotype/phenotype correlation.
Collapse
Affiliation(s)
- Gerarda Cappuccio
- Department of Translational Medicine, Section of PediatricsFederico II UniversityNaplesItaly,Telethon Institute of Genetics and MedicineNaplesItaly,Present address:
Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA
| | | | - Alessia Morlando
- Department of Translational Medicine, Section of PediatricsFederico II UniversityNaplesItaly
| | - Cristina Peduto
- Department of Precision HealthUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Iris Scala
- Department of Translational Medicine, Section of PediatricsFederico II UniversityNaplesItaly
| | - Michele Pinelli
- Department of Translational Medicine, Section of PediatricsFederico II UniversityNaplesItaly,Department of Molecular Medicine and Medical Biotechnology (DMMBM)Federico II UniversityNaplesItaly
| | - Emanuele Bellacchio
- Genetics and Rare Diseases Research DivisionBambino Gesù Children's HospitalRomeItaly
| | | | - Adriano Magli
- Department of Pediatric OphthalmologyUniversity of SalernoFiscianoItaly
| | - Carmen Plaitano
- Department of OphthalmologyA.O.U. San Giovanni Di Dio e Ruggi d'Aragona‐Scuola Medica SalernitanaSalernoItaly
| | - Mercedes Serrano
- Department of Ophthalmology and Department of Genetic and Molecular MedicineHospital Sant Joan de DéuBarcelonaSpain,U‐703 Centre for Biomedical Research on Rare Diseases (CIBER‐ER)Instituto de Salud Carlos IIIMadridSpain
| | - Leticia Pías
- Department of Ophthalmology and Department of Genetic and Molecular MedicineHospital Sant Joan de DéuBarcelonaSpain
| | - Jaume Català
- Department of Ophthalmology and Department of Genetic and Molecular MedicineHospital Sant Joan de DéuBarcelonaSpain
| | - Mercè Bolasell
- U‐703 Centre for Biomedical Research on Rare Diseases (CIBER‐ER)Instituto de Salud Carlos IIIMadridSpain
| | - Annalaura Torella
- Telethon Institute of Genetics and MedicineNaplesItaly,Department of Precision HealthUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Vincenzo Nigro
- Telethon Institute of Genetics and MedicineNaplesItaly,Department of Precision HealthUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Ginevra Zanni
- Unit of Muscular and Neurodegenerative Diseases, Department of NeurosciencesBambino Gesù Children's HospitalRomeItaly
| | - Nicola Brunetti‐Pierri
- Department of Translational Medicine, Section of PediatricsFederico II UniversityNaplesItaly,Telethon Institute of Genetics and MedicineNaplesItaly
| |
Collapse
|
9
|
O-GlcNAc Modification and Its Role in Diabetic Retinopathy. Metabolites 2022; 12:metabo12080725. [PMID: 36005597 PMCID: PMC9415332 DOI: 10.3390/metabo12080725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetic retinopathy (DR) is a leading complication in type 1 and type 2 diabetes and has emerged as a significant health problem. Currently, there are no effective therapeutic strategies owing to its inconspicuous early lesions and complex pathological mechanisms. Therefore, the mechanism of molecular pathogenesis requires further elucidation to identify potential targets that can aid in the prevention of DR. As a type of protein translational modification, O-linked β-N-acetylglucosamine (O-GlcNAc) modification is involved in many diseases, and increasing evidence suggests that dysregulated O-GlcNAc modification is associated with DR. The present review discusses O-GlcNAc modification and its molecular mechanisms involved in DR. O-GlcNAc modification might represent a novel alternative therapeutic target for DR in the future.
Collapse
|
10
|
Pöstyéni E, Ganczer A, Kovács-Valasek A, Gabriel R. Relevance of Peptide Homeostasis in Metabolic Retinal Degenerative Disorders: Curative Potential in Genetically Modified Mice. Front Pharmacol 2022; 12:808315. [PMID: 35095518 PMCID: PMC8793341 DOI: 10.3389/fphar.2021.808315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian retina contains approximately 30 neuropeptides that are synthetized by different neuronal cell populations, glia, and the pigmented epithelium. The presence of these neuropeptides leaves a mark on normal retinal molecular processes and physiology, and they are also crucial in fighting various pathologies (e.g., diabetic retinopathy, ischemia, age-related pathologies, glaucoma) because of their protective abilities. Retinal pathologies of different origin (metabolic, genetic) are extensively investigated by genetically manipulated in vivo mouse models that help us gain a better understanding of the molecular background of these pathomechanisms. These models offer opportunities to manipulate gene expression in different cell types to help reveal their roles in the preservation of retinal health or identify malfunction during diseases. In order to assess the current status of transgenic technologies available, we have conducted a literature survey focused on retinal disorders of metabolic origin, zooming in on the role of retinal neuropeptides in diabetic retinopathy and ischemia. First, we identified those neuropeptides that are most relevant to retinal pathologies in humans and the two clinically most relevant models, mice and rats. Then we continued our analysis with metabolic disorders, examining neuropeptide-related pathways leading to systemic or cellular damage and rescue. Last but not least, we reviewed the available literature on genetically modified mouse strains to understand how the manipulation of a single element of any given pathway (e.g., signal molecules, receptors, intracellular signaling pathways) could lead either to the worsening of disease conditions or, more frequently, to substantial improvements in retinal health. Most attention was given to studies which reported successful intervention against specific disorders. For these experiments, a detailed evaluation will be given and the possible role of converging intracellular pathways will be discussed. Using these converging intracellular pathways, curative effects of peptides could potentially be utilized in fighting metabolic retinal disorders.
Collapse
Affiliation(s)
- Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Alma Ganczer
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
11
|
Dierschke SK, Dennis MD. Retinal Protein O-GlcNAcylation and the Ocular Renin-angiotensin System: Signaling Cross-roads in Diabetic Retinopathy. Curr Diabetes Rev 2022; 18:e011121190177. [PMID: 33430751 PMCID: PMC8272735 DOI: 10.2174/1573399817999210111205933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 01/23/2023]
Abstract
It is well established that diabetes and its associated hyperglycemia negatively impact retinal function, yet we know little about the role played by augmented flux through the Hexosamine Biosynthetic Pathway (HBP). This offshoot of the glycolytic pathway produces UDP-Nacetyl- glucosamine, which serves as the substrate for post-translational O-linked modification of proteins in a process referred to as O-GlcNAcylation. HBP flux and subsequent protein O-GlcNAcylation serve as nutrient sensors, enabling cells to integrate metabolic information to appropriately modulate fundamental cellular processes including gene expression. Here we summarize the impact of diabetes on retinal physiology, highlighting recent studies that explore the role of O-GlcNAcylation- induced variation in mRNA translation in retinal dysfunction and the pathogenesis of Diabetic Retinopathy (DR). Augmented O-GlcNAcylation results in wide variation in the selection of mRNAs for translation, in part, due to O-GlcNAcylation of the translational repressor 4E-BP1. Recent studies demonstrate that 4E-BP1 plays a critical role in regulating O-GlcNAcylation-induced changes in the translation of the mRNAs encoding Vascular Endothelial Growth Factor (VEGF), a number of important mitochondrial proteins, and CD40, a key costimulatory molecule involved in diabetes-induced retinal inflammation. Remarkably, 4E-BP1/2 ablation delays the onset of diabetes- induced visual dysfunction in mice. Thus, pharmacological interventions to prevent the impact of O-GlcNAcylation on 4E-BP1 may represent promising therapeutics to address the development and progression of DR. In this regard, we discuss the potential interplay between retinal O-GlcNAcylation and the ocular renin-angiotensin system as a potential therapeutic target of future interventions.
Collapse
Affiliation(s)
- Sadie K. Dierschke
- Department of Cellular and Molecular Physiology, Penn State College of Medicine
| | - Michael D. Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine
- Department of Ophthalmology, Penn State College of Medicine
- Address correspondence to this author at the Department of Cellular and Molecular Physiology, H166, Penn State College of Medicine, 500 University Drive Hershey, PA 17033; Tel: (717)531-0003 Ext-282596; Fax: (717)531-7667;
| |
Collapse
|
12
|
Liu G, Wang Y, Keyal K, Feng L, Zhang C, Wang H, Wang F. Identification of connexin43 in diabetic retinopathy and its downregulation by O-GlcNAcylation to inhibit the activation of glial cells. Biochim Biophys Acta Gen Subj 2021; 1865:129955. [PMID: 34229069 DOI: 10.1016/j.bbagen.2021.129955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite advances in the treatments of diabetic complications, proliferative diabetic retinopathy (PDR) still remains a major cause leading to visual loss, mainly because of the lack of pathological mechanisms and complicated protein expressions in vivo. Current study aimed to investigate the patterns of connexin43 (Cx43) changes and the possible interactions with O-GlcNAcylation in DR. METHODS Clinical samples of vitreous and fibrovascular membranes were acquired from PDR patients during pars plana vitrectomy. Brown Norway rats were used to build diabetic animal models; to investigate the effects of O-GlcNAcylation on Cx43 expressions, total retinal O-GlcNAcylation was changed by intravitreal injections. Levels of protein expressions were examined by immunofluorescence staining and western blot. RESULTS Our results revealed increased Cx43 expressions in a vessel-shape pattern followed by the distribution of glial fibrillary acidic protein (GFAP) in diabetic fibrovascular membranes. Similarly, Cx43 and GFAP expressions were elevated in PDR vitreous and diabetic animal retinas. Retinal O-GlcNAcylation was effectively regulated by intravitreal injections, and the increase of Cx43 and GFAP was significantly suppressed by O-GlcNAcylation inhibition under hyperglycemia conditions. CONCLUSIONS We systemically proved the changes of Cx43 with different retinal cells, and reported the effective methods to regulate retinal O-GlcNAcylation by intravitreal injections, and clearly illustrated the downregulated effects of O-GlcNAcylation inhibition on Cx43 and GFAP expressions. GENERAL SIGNIFICANCE Targeting connexin43 in glial cells reveals a novel mechanism to understand the formation of diabetic fibrovascular membranes and offers a potential therapeutic strategy to interfere the development of PDR.
Collapse
Affiliation(s)
- Guodong Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai 200072, PR China
| | - Yanliang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai 200072, PR China
| | - Khusbu Keyal
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai 200072, PR China
| | - Le Feng
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai 200072, PR China
| | - Conghui Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai 200072, PR China
| | - Hao Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai 200072, PR China
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai 200072, PR China.
| |
Collapse
|
13
|
Lin CH, Liao CC, Chen MY, Chou TY. Feedback Regulation of O-GlcNAc Transferase through Translation Control to Maintain Intracellular O-GlcNAc Homeostasis. Int J Mol Sci 2021; 22:ijms22073463. [PMID: 33801653 PMCID: PMC8037101 DOI: 10.3390/ijms22073463] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Protein O-GlcNAcylation is a dynamic post-translational modification involving the attachment of N-acetylglucosamine (GlcNAc) to the hydroxyl groups of Ser/Thr residues on numerous nucleocytoplasmic proteins. Two enzymes are responsible for O-GlcNAc cycling on substrate proteins: O-GlcNAc transferase (OGT) catalyzes the addition while O-GlcNAcase (OGA) helps the removal of GlcNAc. O-GlcNAcylation modifies protein functions; therefore, dysregulation of O-GlcNAcylation affects cell physiology and contributes to pathogenesis. To maintain homeostasis of cellular O-GlcNAcylation, there exists feedback regulation of OGT and OGA expression responding to fluctuations of O-GlcNAc levels; yet, little is known about the molecular mechanisms involved. In this study, we investigated the O-GlcNAc-feedback regulation of OGT and OGA expression in lung cancer cells. Results suggest that, upon alterations in O-GlcNAcylation, the regulation of OGA expression occurs at the mRNA level and likely involves epigenetic mechanisms, while modulation of OGT expression is through translation control. Further analyses revealed that the eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) contributes to the downregulation of OGT induced by hyper-O-GlcNAcylation; the S5A/S6A O-GlcNAcylation-site mutant of 4E-BP1 cannot support this regulation, suggesting an important role of O-GlcNAcylation. The results provide additional insight into the molecular mechanisms through which cells may fine-tune intracellular O-GlcNAc levels to maintain homeostasis.
Collapse
Affiliation(s)
- Chia-Hung Lin
- Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Chen-Chung Liao
- Metabolomics-Proteomics Research Center, National Yang-Ming University, Taipei 11221, Taiwan;
- Metabolomics-Proteomics Research Center, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Mei-Yu Chen
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Cancer Progression Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Correspondence: (M.-Y.C.); (T.-Y.C.); Tel.: +886-2-2826-7269 (M.-Y.C.); +886-2-2875-7022 (T.-Y.C.)
| | - Teh-Ying Chou
- Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Cancer Progression Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Correspondence: (M.-Y.C.); (T.-Y.C.); Tel.: +886-2-2826-7269 (M.-Y.C.); +886-2-2875-7022 (T.-Y.C.)
| |
Collapse
|
14
|
Miller WP, Sunilkumar S, Dennis MD. The stress response protein REDD1 as a causal factor for oxidative stress in diabetic retinopathy. Free Radic Biol Med 2021; 165:127-136. [PMID: 33524531 PMCID: PMC7956244 DOI: 10.1016/j.freeradbiomed.2021.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Diabetic Retinopathy (DR) is a major cause of visual dysfunction, yet much remains unknown regarding the specific molecular events that contribute to diabetes-induced retinal pathophysiology. Herein, we review the impact of oxidative stress on DR, and explore evidence that supports a key role for the stress response protein regulated in development and DNA damage (REDD1) in the development of diabetes-induced oxidative stress and functional defects in vision. It is well established that REDD1 mediates the cellular response to a number of diverse stressors through repression of the central metabolic regulator known as mechanistic target of rapamycin complex 1 (mTORC1). A growing body of evidence also supports that REDD1 acts independent of mTORC1 to promote oxidative stress by both enhancing the production of reactive oxygen species and suppressing the antioxidant response. Collectively, there is strong preclinical data to support a key role for REDD1 in the development and progression of retinal complications caused by diabetes. Furthermore, early proof-of-concept clinical trials have found a degree of success in combating ischemic retinal disease through intravitreal delivery of an siRNA targeting the REDD1 mRNA. Overall, REDD1-associated signaling represents an intriguing target for novel clinical therapies that go beyond addressing the symptoms of diabetes by targeting the underlying molecular mechanisms that contribute to DR.
Collapse
Affiliation(s)
- William P Miller
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA; Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
15
|
Welles JE, Toro AL, Sunilkumar S, Stevens SA, Purnell CJ, Kimball SR, Dennis MD. Retinol-binding protein 4 mRNA translation in hepatocytes is enhanced by activation of mTORC1. Am J Physiol Endocrinol Metab 2021; 320:E306-E315. [PMID: 33284085 PMCID: PMC8260359 DOI: 10.1152/ajpendo.00494.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increased expression of the peptide hormone retinol-binding protein 4 (RBP4) has been implicated in the development of insulin resistance, type 2 diabetes, and visual dysfunction. Prior investigations of the mechanisms that influence RBP4 synthesis have focused solely on changes in mRNA abundance. Yet, the production of many secreted proteins is controlled at the level of mRNA translation, as it allows for a rapid and reversible change in expression. Herein, we evaluated Rbp4 mRNA translation using sucrose density gradient centrifugation. In the liver of fasted rodents, Rbp4 mRNA translation was low. In response to refeeding, Rbp4 mRNA translation was enhanced and RBP4 levels in serum were increased. In H4IIE cells, refreshing culture medium promoted Rbp4 mRNA translation and expression of the protein. Rbp4 mRNA abundance was not increased by either experimental manipulation. Enhanced Rbp4 mRNA translation was associated with activation of the kinase mechanistic target of rapamycin in complex 1 (mTORC1) and enhanced phosphorylation of the translational repressor eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). In H4IIE cells, expression of a 4E-BP1 variant that is unable to be phosphorylated by mTORC1 or suppression of mTORC1 with rapamycin attenuated activity of a luciferase reporter encoding the Rbp4 mRNA 5'-untranslated region (UTR). Purine substitutions to disrupt a terminal oligopyrimidine (TOP)-like sequence in the Rbp4 5'-UTR prevented the suppressive effect of rapamycin on reporter activity. Rapamycin also prevented upregulation of Rbp4 mRNA translation in the liver and reduced serum levels of RBP4 in response to feeding. Overall, the findings support a model in which nutrient-induced activation of mTORC1 upregulates Rbp4 mRNA translation to promote RBP4 synthesis.NEW & NOTEWORTHY RBP4 plays a critical role in metabolic disease, yet relatively little is known about the mechanisms that regulate its production. Herein, we provide evidence for translational control of RBP4 synthesis. We demonstrate that activation of the nutrient-sensitive kinase mTORC1 promotes hepatic Rbp4 mRNA translation. The findings support the possibility that targeting Rbp4 mRNA translation represents an alternative to current therapeutic interventions that lower serum RBP4 concentration by promoting urinary excretion of the protein.
Collapse
Affiliation(s)
- Jaclyn E Welles
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Allyson L Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Shaunaci A Stevens
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Carson J Purnell
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
16
|
Wulff-Fuentes E, Berendt RR, Massman L, Danner L, Malard F, Vora J, Kahsay R, Olivier-Van Stichelen S. The human O-GlcNAcome database and meta-analysis. Sci Data 2021; 8:25. [PMID: 33479245 PMCID: PMC7820439 DOI: 10.1038/s41597-021-00810-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Over the past 35 years, ~1700 articles have characterized protein O-GlcNAcylation. Found in almost all living organisms, this post-translational modification of serine and threonine residues is highly conserved and key to biological processes. With half of the primary research articles using human models, the O-GlcNAcome recently reached a milestone of 5000 human proteins identified. Herein, we provide an extensive inventory of human O-GlcNAcylated proteins, their O-GlcNAc sites, identification methods, and corresponding references ( www.oglcnac.mcw.edu ). In the absence of a comprehensive online resource for O-GlcNAcylated proteins, this list serves as the only database of O-GlcNAcylated proteins. Based on the thorough analysis of the amino acid sequence surrounding 7002 O-GlcNAc sites, we progress toward a more robust semi-consensus sequence for O-GlcNAcylation. Moreover, we offer a comprehensive meta-analysis of human O-GlcNAcylated proteins for protein domains, cellular and tissue distribution, and pathways in health and diseases, reinforcing that O-GlcNAcylation is a master regulator of cell signaling, equal to the widely studied phosphorylation.
Collapse
Affiliation(s)
| | - Rex R Berendt
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, USA
| | - Logan Massman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, USA
| | - Laura Danner
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, USA
| | - Florian Malard
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, USA
| | - Jeet Vora
- Department of Biochemistry & Molecular Medicine, The George Washington School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Robel Kahsay
- Department of Biochemistry & Molecular Medicine, The George Washington School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | | |
Collapse
|
17
|
Abstract
The emergence of genome-wide analyses to interrogate cellular DNA, RNA, and protein content has revolutionized the study of control networks that mediate cellular homeostasis. mRNA translation represents the last step of genetic flow and primarily defines the proteome. Translational regulation is thus critical for gene expression, in particular under nutrient excess or deficiency. Until recently, it was unclear how the global effects of translational control are orchestrated by nutrient signaling pathways. An emerging concept of translational reprogramming addresses how to maintain the expression of specific proteins during nutrient stress by translation of selective mRNAs. In this review, we describe recent advances in our understanding of translational control principles; nutrient-sensing mechanisms; and their dysregulation in human diseases such as diabetes, cancer, and aging. The mechanistic understanding of translational regulation in response to different nutrient conditions may help identify potential dietary and therapeutic targets to improve human health.
Collapse
Affiliation(s)
- Xin Erica Shu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Robert V. Swanda
- Graduate Field of Biomedical and Biological Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Biomedical and Biological Sciences, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
18
|
Dierschke SK, Toro AL, Miller WP, Sunilkumar S, Dennis MD. Diabetes enhances translation of Cd40 mRNA in murine retinal Müller glia via a 4E-BP1/2-dependent mechanism. J Biol Chem 2020; 295:10831-10841. [PMID: 32475820 DOI: 10.1074/jbc.ra120.013711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/27/2020] [Indexed: 11/06/2022] Open
Abstract
Activation of the immune costimulatory molecule cluster of differentiation 40 (CD40) in Müller glia has been implicated in the initiation of diabetes-induced retinal inflammation. Results from previous studies support that CD40 protein expression is elevated in Müller glia of diabetic mice; however, the mechanisms responsible for this increase have not been explored. Here, we evaluated the hypothesis that diabetes augments translation of the Cd40 mRNA. Mice receiving thiamet G (TMG), an inhibitor of the O-GlcNAc hydrolase O-GlcNAcase, exhibited enhanced retinal protein O-GlcNAcylation and increased Cd40 mRNA translation. TMG administration also promoted Cd40 mRNA association with Müller cell-specific ribosomes isolated from the retina of RiboTag mice. Similar effects on O-GlcNAcylation and Cd40 mRNA translation were also observed in the retina of a mouse model of type 1 diabetes. In cultured cells, TMG promoted sequestration of the cap-binding protein eIF4E (eukaryotic translation in initiation factor 4E) by 4E-BP1 (eIF4E-binding protein 1) and enhanced cap-independent Cd40 mRNA translation as assessed by a bicistronic reporter that contained the 5'-UTR of the Cd40 mRNA. Ablation of 4E-BP1/2 prevented the increase in Cd40 mRNA translation in TMG-exposed cells, and expression of a 4E-BP1 variant that constitutively sequesters eIF4E promoted reporter activity. Extending on the cell culture results, we found that in contrast to WT mice, diabetic 4E-BP1/2-deficient mice did not exhibit enhanced retinal Cd40 mRNA translation and failed to up-regulate expression of the inflammatory marker nitric-oxide synthase 2. These findings support a model wherein diabetes-induced O-GlcNAcylation of 4E-BP1 promotes Cd40 mRNA translation in Müller glia.
Collapse
Affiliation(s)
- Sadie K Dierschke
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Allyson L Toro
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - William P Miller
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA .,Department of Ophthalmology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
19
|
Dierschke SK, Toro AL, Barber AJ, Arnold AC, Dennis MD. Angiotensin-(1-7) Attenuates Protein O-GlcNAcylation in the Retina by EPAC/Rap1-Dependent Inhibition of O-GlcNAc Transferase. Invest Ophthalmol Vis Sci 2020; 61:24. [PMID: 32068794 PMCID: PMC7326568 DOI: 10.1167/iovs.61.2.24] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose O-GlcNAcylation of cellular proteins contributes to the pathophysiology of diabetes and evidence supports a role for augmented O-GlcNAcylation in diabetic retinopathy. The aim of this study was to investigate the impact of the renin-angiotensin system on retinal protein O-GlcNAcylation. Methods Mice fed a high-fat diet were treated chronically with the angiotensin-converting enzyme inhibitor captopril or captopril plus the angiotensin-(1-7) Mas receptor antagonist A779. Western blotting and quantitative polymerase chain reaction were used to analyze retinal homogenates. Similar analyses were performed on lysates from human MIO-M1 retinal Müller cell cultures exposed to media supplemented with angiotensin-(1-7). Culture conditions were manipulated to influence the hexosamine biosynthetic pathway and/or signaling downstream of the Mas receptor. Results In the retina of mice fed a high-fat diet, captopril attenuated protein O-GlcNAcylation in a manner dependent on Mas receptor activation. In MIO-M1 cells, angiotensin-(1-7) or adenylate cyclase activation were sufficient to enhance cyclic AMP (cAMP) levels and inhibit O-GlcNAcylation. The repressive effect of cAMP on O-GlcNAcylation was dependent on exchange protein activated by cAMP (EPAC), but not protein kinase A, and was recapitulated by a constitutively active variant of the small GTPase Rap1. We provide evidence that cAMP and angiotensin-(1-7) act to suppress O-GlcNAcylation by inhibition of O-GlcNAc transferase (OGT) activity. In cells exposed to an O-GlcNAcase inhibitor or hyperglycemic culture conditions, mitochondrial superoxide levels were elevated; however, angiotensin-(1-7) signaling prevented the effect. Conclusions Angiotensin-(1-7) inhibits retinal protein O-GlcNAcylation via an EPAC/Rap1/OGT signaling axis.
Collapse
Affiliation(s)
- Sadie K. Dierschke
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Allyson L. Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Alistair J. Barber
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States,Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania, United States,Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Amy C. Arnold
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Michael D. Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States,Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| |
Collapse
|