1
|
Cencer CS, Robinson KL, Tyska MJ. Loss of intermicrovillar adhesion factor CDHR2 impairs basolateral junctional complexes in transporting epithelia. Mol Biol Cell 2024; 35:br21. [PMID: 39292922 DOI: 10.1091/mbc.e24-03-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Transporting epithelial cells in the gut and kidney rely on protocadherin-based apical adhesion complexes to organize microvilli that extend into luminal space. In these systems, CDHR2 and CDHR5 localize to the distal ends of microvilli, where they form an intermicrovillar adhesion complex (IMAC) that links the tips of these structures, promotes the formation of a well-ordered array of protrusions, and thus maximizes apical membrane surface area. Recently, we discovered that IMACs can also form between microvilli that extend from neighboring cells, across cell-cell junctions. As an additional point of physical contact between cells, transjunctional IMACs are well positioned to impact the integrity of canonical tight and adherens junctions that form more basolaterally. To begin to test this idea, we examined cell culture and mouse models that lacked CDHR2 expression and were unable to form IMACs. CDHR2 knockout perturbed cell and junction morphology, reduced key components from tight and adherens junctions, impaired barrier function, and increased the motility of single cells within established monolayers. These results support the hypothesis that, in addition to organizing apical microvilli, IMACs provide a layer of cell-cell contact that functions in parallel with canonical tight and adherens junctions to promote epithelial functions.
Collapse
Affiliation(s)
- Caroline S Cencer
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kianna L Robinson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
2
|
Acharya P, Thapa G, Liao X, Matoo S, Graves MJ, Atallah SY, Tipirneni AK, Nguyen T, Chhabra NM, Maschack J, Herod MR, Ohaezu FA, Robison A, Mudaliyar A, Bharaj J, Roeser N, Holmes K, Nayak V, Alsayed R, Perrin BJ, Crawley SW. Select autosomal dominant DFNA11 deafness mutations activate Myo7A in epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613491. [PMID: 39345484 PMCID: PMC11429914 DOI: 10.1101/2024.09.17.613491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Myosin-7A (Myo7A) is a motor protein crucial for the organization and function of stereocilia, specialized actin-rich protrusions on the surface of inner ear hair cells that mediate hearing. Mutations in Myo7A cause several forms of genetic hearing loss, including autosomal dominant DFNA11 deafness. Despite its importance, the structural elements of Myo7A that control its motor activity within cells are not well understood. In this study, we used cultured kidney epithelial cells to screen for mutations that activate the motor-dependent targeting of Myo7A to the tips of apical microvilli on these cells. Our findings reveal that Myo7A is regulated by specific IQ motifs within its lever arm, and that this regulation can function at least partially independent of its tail sequence. Importantly, we demonstrate that many of the DFNA11 deafness mutations reported in patients activate Myo7A targeting, providing a potential explanation for the autosomal dominant genetics of this form of deafness.
Collapse
|
3
|
Cao M, Yang W, Yang J, Zhao Y, Hu X, Xu X, Tian J, Chen Y, Jiang H, Ren R, Li C. Minocycline Inhibits Tick-Borne Encephalitis Virus and Protects Infected Cells via Multiple Pathways. Viruses 2024; 16:1055. [PMID: 39066217 PMCID: PMC11281541 DOI: 10.3390/v16071055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Tick-borne Encephalitis (TBE) is a zoonotic disease caused by the Tick-borne Encephalitis virus (TBEV), which affects the central nervous system of both humans and animals. Currently, there is no specific therapy for patients with TBE, with symptomatic treatment being the primary approach. In this study, the effects of minocycline (MIN), which is a kind of tetracycline antibiotic, on TBEV propagation and cellular protection in TBEV-infected cell lines were evaluated. Indirect immunofluorescence, virus titers, and RT-qPCR results showed that 48 h post-treatment with MIN, TBEV replication was significantly inhibited in a dose-dependent manner. In addition, the inhibitory effect of MIN on different TBEV multiplicities of infection (MOIs) in Vero cells was studied. Furthermore, the transcriptomic analysis and RT-qPCR results indicate that after incubation with MIN, the levels of TBEV and CALML4 were decreased, whereas the levels of calcium channel receptors, such as RYR2 and SNAP25, were significantly increased. MIN also regulated MAPK-ERK-related factors, including FGF2, PDGFRA, PLCB2, and p-ERK, and inhibited inflammatory responses. These data indicate that administering MIN to TBEV-infected cells can reduce the TBEV level, regulate calcium signaling pathway-associated proteins, and inhibit the MAPK-ERK signaling pathway and inflammatory responses. This research offers innovative strategies for the advancement of anti-TBEV therapy.
Collapse
Affiliation(s)
- Mengtao Cao
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou 510507, China; (M.C.); (X.H.); (J.T.); (Y.C.)
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.Y.); (Y.Z.); (H.J.)
| | - Wei Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.Y.); (Y.Z.); (H.J.)
| | - Jintao Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.Y.); (Y.Z.); (H.J.)
| | - Yanli Zhao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.Y.); (Y.Z.); (H.J.)
| | - Xiaoyu Hu
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou 510507, China; (M.C.); (X.H.); (J.T.); (Y.C.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoli Xu
- Instrument Analysis & Research Center, South China Agricultural University, Guangzhou 510642, China;
| | - Jing Tian
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou 510507, China; (M.C.); (X.H.); (J.T.); (Y.C.)
- Guangdong Arbovirus Diseases Emergency Technology Research Center, Guangzhou 510507, China
| | - Yue Chen
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou 510507, China; (M.C.); (X.H.); (J.T.); (Y.C.)
- Guangdong Arbovirus Diseases Emergency Technology Research Center, Guangzhou 510507, China
| | - Hongxia Jiang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.Y.); (Y.Z.); (H.J.)
| | - Ruiwen Ren
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou 510507, China; (M.C.); (X.H.); (J.T.); (Y.C.)
- Guangdong Arbovirus Diseases Emergency Technology Research Center, Guangzhou 510507, China
| | - Chunyuan Li
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou 510507, China; (M.C.); (X.H.); (J.T.); (Y.C.)
- Guangdong Arbovirus Diseases Emergency Technology Research Center, Guangzhou 510507, China
| |
Collapse
|
4
|
Liu X, Duan C, Yin X, Zhang L, Chen M, Zhao W, Li X, Liu Y, Zhang Y. Inhibition of Prolactin Affects Epididymal Morphology by Decreasing the Secretion of Estradiol in Cashmere Bucks. Animals (Basel) 2024; 14:1778. [PMID: 38929397 PMCID: PMC11201029 DOI: 10.3390/ani14121778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Yanshan Cashmere bucks are seasonal breeding animals and an important national genetic resource. This study aimed to investigate the involvement of prolactin (PRL) in the epididymal function of bucks. Twenty eleven-month-old Cashmere bucks were randomly divided into a control (CON) group and a bromocriptine (BCR, a prolactin inhibitor, 0.06 mg/kg body weight (BW)) treatment group. The experiment was conducted from September to October 2020 in Qinhuangdao City, China, and lasted for 30 days. Blood was collected on the last day before the BCR treatment (day 0) and on the 15th and 30th days after the BCR treatment (days 15 and 30). On the 30th day, all bucks were transported to the local slaughterhouse, where epididymal samples were collected immediately after slaughter. The left epididymis was preserved in 4% paraformaldehyde for histological observation, and the right epididymis was immediately preserved in liquid nitrogen for RNA sequencing (RNA-seq). The results show that the PRL inhibitor reduced the serum PRL and estradiol (E2) concentrations (p < 0.05) and tended to decrease luteinizing hormone (LH) concentrations (p = 0.052) by the 30th day, but no differences (p > 0.05) occurred by either day 0 or 15. There were no differences (p > 0.05) observed in the follicle-stimulating hormone (FSH), testosterone (T), and dihydrotestosterone (DHT) concentrations between the two groups. The PRL receptor (PRLR) protein was mainly located in the cytoplasm and intercellular substance of the epididymal epithelial cells. The PRL inhibitor decreased (p < 0.05) the expression of the PRLR protein in the epididymis. In the BCR group, the height of the epididymal epithelium in the caput and cauda increased, as did the diameter of the epididymal duct in the caput (p < 0.05). However, the diameter of the cauda epididymal duct decreased (p < 0.05). Thereafter, a total of 358 differentially expressed genes (DEGs) were identified in the epididymal tissues, among which 191 were upregulated and 167 were downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that ESR2, MAPK10, JUN, ACTL7A, and CALML4 were mainly enriched in the estrogen signaling pathway, steroid binding, calcium ion binding, the GnRH signaling pathway, the cAMP signaling pathway, and the chemical carcinogenesis-reactive oxygen species pathway, which are related to epididymal function. In conclusion, the inhibition of PRL may affect the structure of the epididymis by reducing the expression of the PRLR protein and the secretion of E2. ESR2, MAPK10, JUN, ACTL7A, and CALML4 could be the key genes of PRL in its regulation of epididymal reproductive function.
Collapse
Affiliation(s)
- Xiaona Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Chunhui Duan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Xuejiao Yin
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China; (X.Y.); (X.L.)
| | - Lechao Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Meijing Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Wen Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Xianglong Li
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China; (X.Y.); (X.L.)
| | - Yueqin Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Yingjie Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| |
Collapse
|
5
|
Deng Y, Qu X, Yao Y, Li M, He C, Guo S. Investigating the impact of pigmentation variation of breast muscle on growth traits, melanin deposition, and gene expression in Xuefeng black-bone chickens. Poult Sci 2024; 103:103691. [PMID: 38598910 PMCID: PMC11017053 DOI: 10.1016/j.psj.2024.103691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
The blackness traits, considered an important economic factor in the black-bone chicken industry, still exhibits a common phenomenon of significant difference in blackness of breast muscle. To improve this phenomenon, this study compared growth traits, blackness traits, and transcriptome of breast muscles between the High Blackness Group (H group) and Low Blackness Group (L group) in the Xuefeng black-bone chickens. The results are as follows: 1) There was no significant difference in growth traits between the H group and the L group (P > 0.05). 2) The skin/breast muscle L values in the H group were significantly lower than those in the L group, while the breast muscle melanin content exhibited the opposite trend (P < 0.05). 3) A significant negative correlation was observed between breast muscle melanin content and skin/breast muscle L value (P < 0.05), and skin L value exhibiting a significant positive correlation with breast muscle L value (P < 0.05). 4) The breast muscle transcriptome comparison between the H group and L group revealed 831 and 405 DEGs in female and male chickens, respectively. This included 37 shared DEGs significantly enriched in melanosome, pigment granule, and the melanogenesis pathway. Seven candidate genes (DCT, PMEL, MLANA, TYRP1, OCA2, EDNRB2, and CALML4) may play a crucial role in the melanin production of breast muscle in Xuefeng black-bone chicken. The findings could accelerate the breeding process for achieving desired levels of breast muscle blackness and contribute to the exploration of the mechanisms underlying melanin production in black-bone chickens.
Collapse
Affiliation(s)
- Yuying Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Xiangyong Qu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Yaling Yao
- Animal Husbandry and Aquatic Products Bureau of Huaihua City, Huaihua 418200, Hunan, China
| | - Meichun Li
- Hunan Yunfeifeng Agriculture Co. Ltd., Huaihua 418200, Hunan, China
| | - Changqing He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Songchang Guo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China.
| |
Collapse
|
6
|
Van Campen H, Bishop JV, Brink Z, Engle TE, Gonzalez-Berrios CL, Georges HM, Kincade JN, Murtazina DA, Hansen TR. Epigenetic Modifications of White Blood Cell DNA Caused by Transient Fetal Infection with Bovine Viral Diarrhea Virus. Viruses 2024; 16:721. [PMID: 38793603 PMCID: PMC11125956 DOI: 10.3390/v16050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Bovine viral diarrhea virus (BVDV) infections cause USD 1.5-2 billion in losses annually. Maternal BVDV after 150 days of gestation causes transient fetal infection (TI) in which the fetal immune response clears the virus. The impact of fetal TI BVDV infections on postnatal growth and white blood cell (WBC) methylome as an index of epigenetic modifications was examined by inoculating pregnant heifers with noncytopathic type 2 BVDV or media (sham-inoculated controls) on Day 175 of gestation to generate TI (n = 11) and control heifer calves (n = 12). Fetal infection in TI calves was confirmed by virus-neutralizing antibody titers at birth and control calves were seronegative. Both control and TI calves were negative for BVDV RNA in WBCs by RT-PCR. The mean weight of the TI calves was less than that of the controls (p < 0.05). DNA methyl seq analysis of WBC DNA demonstrated 2349 differentially methylated cytosines (p ≤ 0.05) including 1277 hypomethylated cytosines, 1072 hypermethylated cytosines, 84 differentially methylated regions based on CpGs in promoters, and 89 DMRs in islands of TI WBC DNA compared to controls. Fetal BVDV infection during late gestation resulted in epigenomic modifications predicted to affect fetal development and immune pathways, suggesting potential consequences for postnatal growth and health of TI cattle.
Collapse
Affiliation(s)
- Hana Van Campen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
| | - Jeanette V. Bishop
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
| | - Zella Brink
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
| | - Terry E. Engle
- Department of Animal Science, Colorado State University, Fort Collins, CO 80523, USA;
| | - Carolina L. Gonzalez-Berrios
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
| | - Hanah M. Georges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
- Currently at Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jessica N. Kincade
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
| | - Dilyara A. Murtazina
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
| | - Thomas R. Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
| |
Collapse
|
7
|
Cencer CS, Robinson KL, Tyska MJ. Loss of intermicrovillar adhesion impairs basolateral junctional complexes in transporting epithelia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585733. [PMID: 38562895 PMCID: PMC10983982 DOI: 10.1101/2024.03.19.585733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Transporting epithelial cells in the gut and kidney rely on protocadherin-based apical adhesion complexes to organize microvilli that extend into the luminal space. In these systems, CDHR2 and CDHR5 localize to the distal ends of microvilli, where they form an intermicrovillar adhesion complex (IMAC) that links the tips of these structures, promotes the formation of a well-ordered array of protrusions, and in turn maximizes apical membrane surface area. Recently, we discovered that IMACs can also form between microvilli that extend from neighboring cells, across cell-cell junctions. As an additional point of physical contact between cells, transjunctional IMACs are well positioned to impact the integrity of canonical tight and adherens junctions that form more basolaterally. Here, we sought to test this idea using cell culture and mouse models that lacked CDHR2 expression and were unable to form IMACs. CDHR2 knockout perturbed cell and junction morphology, led to loss of key components from tight and adherens junctions, and impaired barrier function and wound healing. These results indicate that, in addition to organizing apical microvilli, IMACs provide a layer of cell-cell contact that functions in parallel with canonical tight and adherens junctions to support the physiological functions of transporting epithelia.
Collapse
|
8
|
Matoo S, Graves MJ, Choi MS, Idris RAES, Acharya P, Thapa G, Nguyen T, Atallah SY, Tipirneni AK, Stevenson PJ, Crawley SW. The microvillar protocadherin CDHR5 associates with EBP50 to promote brush border assembly. Mol Biol Cell 2024; 35:ar36. [PMID: 38170579 PMCID: PMC10916864 DOI: 10.1091/mbc.e23-02-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/27/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Transporting epithelial cells of the gut and kidney interact with their luminal environment through a densely packed collection of apical microvilli known as a brush border (BB). Proper brush border assembly depends on the intermicrovillar adhesion complex (IMAC), a protocadherin-based adhesion complex found at the distal tips of microvilli that mediates adhesion between neighboring protrusions to promote their organized packing. Loss of the IMAC adhesion molecule Cadherin-related family member 5 (CDHR5) results in significant brush border defects, though the functional properties of this protocadherin have not been thoroughly explored. Here, we show that the cytoplasmic tail of CDHR5 contributes to its correct apical targeting and functional properties in an isoform-specific manner. Library screening identified the Ezrin-associated scaffolds EBP50 and E3KARP as cytoplasmic binding partners for CDHR5. Consistent with this, loss of EBP50 disrupted proper brush border assembly with cells exhibiting markedly reduced apical IMAC levels. Together, our results shed light on the apical targeting determinants of CDHR5 and further define the interactome of the IMAC involved in brush border assembly.
Collapse
Affiliation(s)
- Samaneh Matoo
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Maura J. Graves
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Myoung Soo Choi
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | | | - Prashun Acharya
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Garima Thapa
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Tram Nguyen
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Sarah Y. Atallah
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Ashna K. Tipirneni
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | | | - Scott W. Crawley
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| |
Collapse
|
9
|
Cencer CS, Silverman JB, Meenderink LM, Krystofiak ES, Millis BA, Tyska MJ. Adhesion-based capture stabilizes nascent microvilli at epithelial cell junctions. Dev Cell 2023; 58:2048-2062.e7. [PMID: 37832537 PMCID: PMC10615885 DOI: 10.1016/j.devcel.2023.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/21/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
To maximize solute transport, epithelial cells build an apical "brush border," where thousands of microvilli are linked to their neighbors by protocadherin-containing intermicrovillar adhesion complexes (IMACs). Previous studies established that the IMAC is needed to build a mature brush border, but how this complex contributes to the accumulation of new microvilli during differentiation remains unclear. We found that early in differentiation, mouse, human, and porcine epithelial cells exhibit a marginal accumulation of microvilli, which span junctions and interact with protrusions on neighboring cells using IMAC protocadherins. These transjunctional IMACs are highly stable and reinforced by tension across junctions. Finally, long-term live imaging showed that the accumulation of microvilli at cell margins consistently leads to accumulation in medial regions. Thus, nascent microvilli are stabilized by a marginal capture mechanism that depends on the formation of transjunctional IMACs. These results may offer insights into how apical specializations are assembled in diverse epithelial systems.
Collapse
Affiliation(s)
- Caroline S Cencer
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jennifer B Silverman
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Leslie M Meenderink
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA; United States Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN 37212, USA
| | - Evan S Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bryan A Millis
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37235, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
10
|
Mödl B, Awad M, Zwolanek D, Scharf I, Schwertner K, Milovanovic D, Moser D, Schmidt K, Pjevac P, Hausmann B, Krauß D, Mohr T, Svinka J, Kenner L, Casanova E, Timelthaler G, Sibilia M, Krieger S, Eferl R. Defects in microvillus crosslinking sensitize to colitis and inflammatory bowel disease. EMBO Rep 2023; 24:e57084. [PMID: 37691494 PMCID: PMC10561180 DOI: 10.15252/embr.202357084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023] Open
Abstract
Intestinal epithelial cells are covered by the brush border, which consists of densely packed microvilli. The Intermicrovillar Adhesion Complex (IMAC) links the microvilli and is required for proper brush border organization. Whether microvillus crosslinking is involved in the intestinal barrier function or colitis is currently unknown. We investigate the role of microvillus crosslinking in colitis in mice with deletion of the IMAC component CDHR5. Electron microscopy shows pronounced brush border defects in CDHR5-deficient mice. The defects result in severe mucosal damage after exposure to the colitis-inducing agent DSS. DSS increases the permeability of the mucus layer and brings bacteria in direct contact with the disorganized brush border of CDHR5-deficient mice. This correlates with bacterial invasion into the epithelial cell layer which precedes epithelial apoptosis and inflammation. Single-cell RNA sequencing data of patients with ulcerative colitis reveals downregulation of CDHR5 in enterocytes of diseased areas. Our results provide experimental evidence that a combination of microvillus crosslinking defects with increased permeability of the mucus layer sensitizes to inflammatory bowel disease.
Collapse
Affiliation(s)
- Bernadette Mödl
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Monira Awad
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Daniela Zwolanek
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Irene Scharf
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Katharina Schwertner
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Danijela Milovanovic
- Department of Experimental and Translational Pathology, Institute of Clinical PathologyMedical University of ViennaViennaAustria
| | - Doris Moser
- Department of Cranio‐Maxillofacial and Oral SurgeryMedical University of ViennaViennaAustria
| | - Katy Schmidt
- Cell Imaging & Ultrastructure ResearchUniversity of ViennaViennaAustria
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of ViennaViennaAustria
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of ViennaViennaAustria
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Dana Krauß
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Thomas Mohr
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
- Department of Analytical ChemistryUniversity of ViennaViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University ViennaViennaAustria
| | - Jasmin Svinka
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Lukas Kenner
- Department of Experimental and Translational Pathology, Institute of Clinical PathologyMedical University of ViennaViennaAustria
- Department of Laboratory Animal PathologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Emilio Casanova
- Center of Physiology and Pharmacology, Institute of PharmacologyMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Gerald Timelthaler
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Maria Sibilia
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Sigurd Krieger
- Department of Experimental and Translational Pathology, Institute of Clinical PathologyMedical University of ViennaViennaAustria
| | - Robert Eferl
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| |
Collapse
|
11
|
Holló A, Billington N, Takagi Y, Kengyel A, Sellers JR, Liu R. Molecular regulatory mechanism of human myosin-7a. J Biol Chem 2023; 299:105243. [PMID: 37690683 PMCID: PMC10579538 DOI: 10.1016/j.jbc.2023.105243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023] Open
Abstract
Myosin-7a is an actin-based motor protein essential for vision and hearing. Mutations of myosin-7a cause type 1 Usher syndrome, the most common and severe form of deafblindness in humans. The molecular mechanisms that govern its mechanochemistry remain poorly understood, primarily because of the difficulty of purifying stable intact protein. Here, we recombinantly produce the complete human myosin-7a holoenzyme in insect cells and characterize its biochemical and motile properties. Unlike the Drosophila ortholog that primarily associates with calmodulin (CaM), we found that human myosin-7a utilizes a unique combination of light chains including regulatory light chain, CaM, and CaM-like protein 4. Our results further reveal that CaM-like protein 4 does not function as a Ca2+ sensor but plays a crucial role in maintaining the lever arm's structural-functional integrity. Using our recombinant protein system, we purified two myosin-7a splicing isoforms that have been shown to be differentially expressed along the cochlear tonotopic axis. We show that they possess distinct mechanoenzymatic properties despite differing by only 11 amino acids at their N termini. Using single-molecule in vitro motility assays, we demonstrate that human myosin-7a exists as an autoinhibited monomer and can move processively along actin when artificially dimerized or bound to cargo adaptor proteins. These results suggest that myosin-7a can serve multiple roles in sensory systems such as acting as a transporter or an anchor/force sensor. Furthermore, our research highlights that human myosin-7a has evolved unique regulatory elements that enable precise tuning of its mechanical properties suitable for mammalian auditory functions.
Collapse
Affiliation(s)
- Alexandra Holló
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Biophysics, University of Pécs Medical School, Pécs, Hungary
| | - Neil Billington
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Biochemistry & Molecular Medicine, School of Medicine, West Virginia University, Morgantown, West Virginia, USA; Microscope Imaging Facility, West Virginia University, Morgantown, West Virginia, USA
| | - Yasuharu Takagi
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - András Kengyel
- Department of Biophysics, University of Pécs Medical School, Pécs, Hungary; Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - James R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Rong Liu
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Biochemistry & Molecular Medicine, School of Medicine, West Virginia University, Morgantown, West Virginia, USA.
| |
Collapse
|
12
|
Kildal ESM, Quintana DS, Szabo A, Tronstad C, Andreassen O, Nærland T, Hassel B. Heart rate monitoring to detect acute pain in non-verbal patients: a study protocol for a randomized controlled clinical trial. BMC Psychiatry 2023; 23:252. [PMID: 37060049 PMCID: PMC10103503 DOI: 10.1186/s12888-023-04757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Autism entails reduced communicative abilities. Approximately 30% of individuals with autism have intellectual disability (ID). Some people with autism and ID are virtually non-communicative and unable to notify their caregivers when they are in pain. In a pilot study, we showed that heart rate (HR) monitoring may identify painful situations in this patient group, as HR increases in acutely painful situations. OBJECTIVES This study aims to generate knowledge to reduce the number of painful episodes in non-communicative patients' everyday lives. We will 1) assess the effectiveness of HR as a tool for identifying potentially painful care procedures, 2) test the effect of HR-informed changes in potentially painful care procedures on biomarkers of pain, and 3) assess how six weeks of communication through HR affects the quality of communication between patient and caregiver. METHODS We will recruit 38 non-communicative patients with autism and ID residing in care homes. ASSESSMENTS HR is measured continuously to identify acutely painful situations. HR variability and pain-related cytokines (MCP-1, IL-1RA, IL-8, TGFβ1, and IL-17) are collected as measures of long-term pain. Caregivers will be asked to what degree they observe pain in their patients and how well they believe they understand their patient's expressions of emotion and pain. Pre-intervention: HR is measured 8 h/day over 2 weeks to identify potentially painful situations across four settings: physiotherapy, cast use, lifting, and personal hygiene. INTERVENTION Changes in procedures for identified painful situations are in the form of changes in 1) physiotherapy techniques, 2) preparations for putting on casts, 3) lifting techniques or 4) personal hygiene procedures. DESIGN Nineteen patients will start intervention in week 3 while 19 patients will continue data collection for another 2 weeks before procedure changes are introduced. This is done to distinguish between specific effects of changes in procedures and non-specific effects, such as caregivers increased attention. DISCUSSION This study will advance the field of wearable physiological sensor use in patient care. TRIAL REGISTRATION Registered prospectively at ClinicalTrials.gov (NCT05738278).
Collapse
Affiliation(s)
- Emilie S M Kildal
- K.G. Jebsen, Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Department of Psychiatry, Lovisenberg Diakonale Sykehus, Oslo, Norway.
| | - Daniel S Quintana
- K.G. Jebsen, Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
- NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- K.G. Jebsen, Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
| | - Christian Tronstad
- Department of Clinical and Biomedical Engineering, Oslo University Hospital, Oslo, Norway
| | - Ole Andreassen
- K.G. Jebsen, Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
| | - Terje Nærland
- K.G. Jebsen, Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
- NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway.
| | - Bjørnar Hassel
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
13
|
Zhang M, Chen H, Zhang W, Liu Y, Ding L, Gong J, Ma R, Zheng S, Zhang Y. Biomimetic Remodeling of Microglial Riboflavin Metabolism Ameliorates Cognitive Impairment by Modulating Neuroinflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300180. [PMID: 36799538 PMCID: PMC10131853 DOI: 10.1002/advs.202300180] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 05/07/2023]
Abstract
Neuroinflammation, for which microglia are the predominant contributors, is a significant risk factor for cognitive dysfunction. Riboflavin (also known as vitamin B2) ameliorates cognitive impairment via anti-oxidative stress and anti-inflammation properties; however, the underlying mechanisms linking riboflavin metabolism and microglial function in cognitive impairment remain unclear. Here, it is demonstrated that riboflavin kinase (RFK), a critical enzyme in riboflavin metabolism, is specifically expressed in microglia. An intermediate product of riboflavin, flavin mononucleotide (FMN), inhibited RFK expression via regulation of lysine-specific methyltransferase 2B (KMT2B). FMN supplementation attenuated the pro-inflammatory TNFR1/NF-κB signaling pathway, and this effect is abolished by KMT2B overexpression. To improve the limited anti-inflammatory efficiency of free FMN, a biomimetic microglial nanoparticle strategy (designated as MNPs@FMN) is established, which penetrated the blood brain barrier with enhanced microglial-targeted delivery efficiency. Notably, MNPs@FMN ameliorated cognitive impairment and dysfunctional synaptic plasticity in a lipopolysaccharide-induced inflammatory mouse model and in a 5xFAD mouse model of Alzheimer's disease. Taken together, biomimetic microglial delivery of FMN may serve as a potential therapeutic approach for inflammation-dependent cognitive decline.
Collapse
Affiliation(s)
- Mengran Zhang
- Department of NeurologyInstitute of NeuroscienceKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaThe Second Affiliated HospitalGuangzhou Medical UniversityGuangzhou510260China
| | - Huaqing Chen
- Shenzhen Key Laboratory of Gene and Antibody TherapyCenter for Biotechnology and BiomedicineState Key Laboratory of Chemical OncogenomicsState Key Laboratory of Health Sciences and TechnologyInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518055China
| | - Wenlong Zhang
- Department of NeurologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Yan Liu
- School of Traditional Chinese MedicineJinan UniversityGuangzhou510632China
| | - Liuyan Ding
- Department of NeurologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Junwei Gong
- Department of NeurologyInstitute of NeuroscienceKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaThe Second Affiliated HospitalGuangzhou Medical UniversityGuangzhou510260China
| | - Runfang Ma
- Department of NeurologyInstitute of NeuroscienceKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaThe Second Affiliated HospitalGuangzhou Medical UniversityGuangzhou510260China
| | - Shaohui Zheng
- Department of NeurologyInstitute of NeuroscienceKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaThe Second Affiliated HospitalGuangzhou Medical UniversityGuangzhou510260China
| | - Yunlong Zhang
- Department of NeurologyInstitute of NeuroscienceKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaThe Second Affiliated HospitalGuangzhou Medical UniversityGuangzhou510260China
| |
Collapse
|
14
|
Cencer CS, Silverman JB, Meenderink LM, Krystofiak ES, Millis BA, Tyska MJ. Adhesion-based capture stabilizes nascent microvilli at epithelial cell junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531705. [PMID: 36945471 PMCID: PMC10028856 DOI: 10.1101/2023.03.08.531705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Differentiated transporting epithelial cells present an extensive apical array of microvilli - a "brush border" - where neighboring microvilli are linked together by intermicrovillar adhesion complexes (IMACs) composed of protocadherins CDHR2 and CDHR5. Although loss-of-function studies provide strong evidence that IMAC function is needed to build a mature brush border, how the IMAC contributes to the stabilization and accumulation of nascent microvilli remains unclear. We found that, early in differentiation, the apical surface exhibits a marginal accumulation of microvilli, characterized by higher packing density relative to medial regions of the surface. While medial microvilli are highly dynamic and sample multiple orientations over time, marginal protrusions exhibit constrained motion and maintain a vertical orientation. Unexpectedly, we found that marginal microvilli span the junctional space and contact protrusions on neighboring cells, mediated by complexes of CDHR2/CDHR5. FRAP analysis indicated that these transjunctional IMACs are highly stable relative to adhesion complexes between medial microvilli, which explains the restricted motion of protrusions in the marginal zone. Finally, long-term live imaging revealed that the accumulation of microvilli at cell margins consistently leads to accumulation in medial regions of the cell. Collectively, our findings suggest that nascent microvilli are stabilized by a capture mechanism that is localized to cell margins and enabled by the transjunctional formation of IMACs. These results inform our understanding of how apical specializations are assembled in diverse epithelial systems.
Collapse
|
15
|
Sharkova M, Chow E, Erickson T, Hocking JC. The morphological and functional diversity of apical microvilli. J Anat 2023; 242:327-353. [PMID: 36281951 PMCID: PMC9919547 DOI: 10.1111/joa.13781] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
Sensory neurons use specialized apical processes to perceive external stimuli and monitor internal body conditions. The apical apparatus can include cilia, microvilli, or both, and is adapted for the functions of the particular cell type. Photoreceptors detect light through a large, modified cilium (outer segment), that is supported by a surrounding ring of microvilli-like calyceal processes (CPs). Although first reported 150 years ago, CPs remain poorly understood. As a basis for future study, we therefore conducted a review of existing literature about sensory cell microvilli, which can act either as the primary sensory detector or as support for a cilia-based detector. While all microvilli are finger-like cellular protrusions with an actin core, the processes vary across cell types in size, number, arrangement, dynamics, and function. We summarize the current state of knowledge about CPs and the characteristics of the microvilli found on inner ear hair cells (stereocilia) and cerebral spinal fluid-contacting neurons, with comparisons to the brush border of the intestinal and renal epithelia. The structure, stability, and dynamics of the actin core are regulated by a complement of actin-binding proteins, which includes both common components and unique features when compared across cell types. Further, microvilli are often supported by lateral links, a glycocalyx, and a defined extracellular matrix, each adapted to the function and environment of the cell. Our comparison of microvillar features will inform further research into how CPs support photoreceptor function, and also provide a general basis for investigations into the structure and functions of apical microvilli found on sensory neurons.
Collapse
Affiliation(s)
- Maria Sharkova
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Erica Chow
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Timothy Erickson
- Department of BiologyUniversity of New BrunswickFrederictonNew BrunswickCanada
| | - Jennifer C. Hocking
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Division of Anatomy, Department of Surgery, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Medical Genetics, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Women and Children's Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
16
|
Moreland ZG, Bird JE. Myosin motors in sensory hair bundle assembly. Curr Opin Cell Biol 2022; 79:102132. [PMID: 36257241 DOI: 10.1016/j.ceb.2022.102132] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 01/31/2023]
Abstract
Mechanosensory hair bundles are assembled from actin-based stereocilia that project from the apical surface of hair cells in the inner ear. Stereocilia architecture is critical for the transduction of sound and accelerations, and structural defects in these mechano-sensors are a clinical cause of hearing and balance disorders in humans. Unconventional myosin motors are central to the assembly and shaping of stereocilia architecture. A sub-group of myosin motors with MyTH4-FERM domains (MYO7A, MYO15A) are particularly important in these processes, and hypothesized to act as transporters delivering structural and actin-regulatory cargos, in addition to generating force and tension. In this review, we summarize existing evidence for how MYO7A and MYO15A operate and how their dysfunction leads to stereocilia pathology. We further highlight emerging properties of the MyTH4/FERM myosin family and speculate how these new functions might contribute towards the acquisition and maintenance of mechano-sensitivity.
Collapse
Affiliation(s)
- Zane G Moreland
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA; Myology Institute, University of Florida, Gainesville, FL, 32610, USA; Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, 32610, USA
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA; Myology Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
17
|
Dooley SA, Engevik KA, Digrazia J, Stubler R, Kaji I, Krystofiak E, Engevik AC. Myosin 5b is required for proper localization of the intermicrovillar adhesion complex in the intestinal brush border. Am J Physiol Gastrointest Liver Physiol 2022; 323:G501-G510. [PMID: 36218265 PMCID: PMC9639760 DOI: 10.1152/ajpgi.00212.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 01/31/2023]
Abstract
Intestinal enterocytes have an elaborate apical membrane of actin-rich protrusions known as microvilli. The organization of microvilli is orchestrated by the intermicrovillar adhesion complex (IMAC), which connects the distal tips of adjacent microvilli. The IMAC is composed of CDHR2 and CDHR5 as well as the scaffolding proteins USH1C, ANKS4B, and Myosin 7b (MYO7B). To create an IMAC, cells must transport the proteins to the apical membrane. Myosin 5b (MYO5B) is a molecular motor that traffics ion transporters to the apical membrane of enterocytes, and we hypothesized that MYO5B may also be responsible for the localization of IMAC proteins. To address this question, we used two different mouse models: 1) neonatal germline MYO5B knockout (MYO5B KO) mice and 2) adult intestinal-specific tamoxifen-inducible VillinCreERT2;MYO5Bflox/flox mice. In control mice, immunostaining revealed that CDHR2, CDHR5, USH1C, and MYO7B were highly enriched at the tips of the microvilli. In contrast, neonatal germline and adult MYO5B-deficient mice showed loss of apical CDHR2, CDHR5, and MYO7B in the brush border and accumulation in a subapical compartment. Colocalization analysis revealed decreased Mander's coefficients in adult inducible MYO5B-deficient mice compared with control mice for CDHR2, CDHR5, USH1C, and MYO7B. Scanning electron microscopy images further demonstrated aberrant microvilli packing in adult inducible MYO5B-deficient mouse small intestine. These data indicate that MYO5B is responsible for the delivery of IMAC components to the apical membrane.NEW & NOTEWORTHY The intestinal epithelium absorbs nutrients and water through an elaborate apical membrane of highly organized microvilli. Microvilli organization is regulated by the intermicrovillar adhesion complexes, which create links between neighboring microvilli and control microvilli packing and density. In this study, we report a new trafficking partner of the IMAC, Myosin 5b. Loss of Myosin 5b results in a disorganized brush border and failure of IMAC proteins to reach the distal tips of microvilli.
Collapse
Affiliation(s)
- Sarah A Dooley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Kristen A Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Jessica Digrazia
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Rachel Stubler
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Evan Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Cell Imaging Shared Resource, Vanderbilt University, Nashville, Tennessee
| | - Amy C Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
18
|
Engevik MA, Engevik AC. Myosins and membrane trafficking in intestinal brush border assembly. Curr Opin Cell Biol 2022; 77:102117. [PMID: 35870341 DOI: 10.1016/j.ceb.2022.102117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022]
Abstract
Myosins are a class of motors that participate in a wide variety of cellular functions including organelle transport, cell adhesion, endocytosis and exocytosis, movement of RNA, and cell motility. Among the emerging roles for myosins is regulation of the assembly, morphology, and function of actin protrusions such as microvilli. The intestine harbors an elaborate apical membrane composed of highly organized microvilli. Microvilli assembly and function are intricately tied to several myosins including Myosin 1a, non-muscle Myosin 2c, Myosin 5b, Myosin 6, and Myosin 7b. Here, we review the research progress made in our understanding of myosin mediated apical assembly.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina
| | - Amy C Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina.
| |
Collapse
|
19
|
Li H, Hu Y, Liu D, Wang J, Han P, Zhang N, Li Y. Bioinformatic Characterization of Whole Blood Neutrophils in Pelvic Inflammatory Disease: A Potential Prognostic Indicator for Transumbilical Single-Port Laparoscopic Pelvic Abscess Surgery. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2555603. [PMID: 35401780 PMCID: PMC8993565 DOI: 10.1155/2022/2555603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/19/2022]
Abstract
The purpose of this research is to determine the prognosis of patients treated with transumbilical single-port laparoscopic surgery for acute pelvic inflammatory illness. Postoperative data on 129 patients treated with laparoscopic surgery for acute pelvic inflammatory illness were obtained retrospectively. It was observed that the shorter the time required for postoperative leukocyte recovery to normal, the shorter the time required for postoperative pain and diet recovery, as well as hospital stay, in such individuals. CIBERSORT was used to examine patient data from GEO. The most significant difference between the normal and pelvic inflammatory groups was in neutrophil content. Association study found a substantial positive correlation between the quantity of neutrophils infiltrating the immune system and the abundance of monocyte M0 infiltrating the immune system. Neutrophil immune infiltration was strongly inversely linked with plasma cells, activated CD8+ Tm cells, and active CD4+ Tm cells. Four mRNAs linked with pelvic inflammatory illness were revealed to be strongly associated with neutrophil immune infiltration, notably CALML4, COQ10B, DCPS, and PPP2R1A. The ROC revealed that CALML4 (area under the curve (AUC): 0.769, 95% confidence interval (CI): 0.638-0.881), COQ10B (AUC: 0.742, 95% CI: 0.587-0.881), PPP2R1A (AUC: 0.733 95% CI: 0.593-0.857), and DCPS (AUC: 0.745, 95% CI: 0.571-0.900) were potential markers for predicting pelvic inflammatory disease. CALML4, COQ10B, PPP2R1A, and DCPS may be critical determinants determining the amount of preoperative neutrophil infiltration and the time required for leukocyte recovery after single-port laparoscopy in acute pelvic inflammatory illness.
Collapse
Affiliation(s)
- Haining Li
- General Hospital of Ningxia Medical University, China
| | | | - Dan Liu
- General Hospital of Ningxia Medical University, China
| | | | | | | | - Yan Li
- General Hospital of Ningxia Medical University, China
| |
Collapse
|
20
|
Matoo S, Graves MJ, Acharya P, Choi MS, Storad ZA, Idris RAES, Pickles BK, Arvay TO, Shinder PE, Gerts A, Papish JP, Crawley SW. Comparative analysis of the MyTH4-FERM myosins reveals insights into the determinants of actin track selection in polarized epithelia. Mol Biol Cell 2021; 32:ar30. [PMID: 34473561 PMCID: PMC8693963 DOI: 10.1091/mbc.e20-07-0494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
MyTH4-FERM (MF) myosins evolved to play a role in the creation and function of a variety of actin-based membrane protrusions that extend from cells. Here we performed an analysis of the MF myosins, Myo7A, Myo7B, and Myo10, to gain insight into how they select for their preferred actin networks. Using enterocytes that create spatially separated actin tracks in the form of apical microvilli and basal filopodia, we show that actin track selection is principally guided by the mode of oligomerization of the myosin along with the identity of the motor domain, with little influence from the specific composition of the lever arm. Chimeric variants of Myo7A and Myo7B fused to a leucine zipper parallel dimerization sequence in place of their native tails both selected apical microvilli as their tracks, while a truncated Myo10 used its native antiparallel coiled-coil to traffic to the tips of filopodia. Swapping lever arms between the Class 7 and 10 myosins did not change actin track preference. Surprisingly, fusing the motor-neck region of Myo10 to a leucine zipper or oligomerization sequences derived from the Myo7A and Myo7B cargo proteins USH1G and ANKS4B, respectively, re-encoded the actin track usage of Myo10 to apical microvilli with significant efficiency.
Collapse
Affiliation(s)
- Samaneh Matoo
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Maura J Graves
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Prashun Acharya
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Myoung Soo Choi
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Zachary A Storad
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | | | - Brooke K Pickles
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Taylen O Arvay
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Paula E Shinder
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Andrew Gerts
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Jacob P Papish
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Scott W Crawley
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| |
Collapse
|
21
|
Abstract
Filopodia, microvilli and stereocilia represent an important group of plasma membrane protrusions. These specialized projections are supported by parallel bundles of actin filaments and have critical roles in sensing the external environment, increasing cell surface area, and acting as mechanosensors. While actin-associated proteins are essential for actin-filament elongation and bundling in these protrusions, myosin motors have a surprising role in the formation and extension of filopodia and stereocilia and in the organization of microvilli. Actin regulators and specific myosins collaborate in controlling the length of these structures. Myosins can transport cargoes along the length of these protrusions, and, in the case of stereocilia and microvilli, interactions with adaptors and cargoes can also serve to anchor adhesion receptors to the actin-rich core via functionally conserved motor-adaptor complexes. This review highlights recent progress in understanding the diverse roles myosins play in filopodia, microvilli and stereocilia.
Collapse
Affiliation(s)
- Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75005 Paris, France.
| | - Margaret A Titus
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
22
|
Kapustina M, Cheney RE. A new light chain for myosin-7. J Biol Chem 2021; 295:9297-9298. [PMID: 32651283 DOI: 10.1074/jbc.h120.014595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Recent research has revealed that an adhesion complex based on cadherins and the motor protein myosin-7b (MYO7B) links the tips of intestinal microvilli. Choi et al. now report that a largely uncharacterized protein known as calmodulin-like protein 4 (CALML4) is a component of this adhesion complex and functions as a light chain for myosin-7b. Because the intermicrovillar adhesion complex is homologous to the myosin-7a (MYO7A)-based Usher syndrome complex and Choi et al. also report that CALML4 can bind to myosin-7a, this work also has important implications for research on myosin-7a and hereditary deaf-blindness.
Collapse
Affiliation(s)
- Maryna Kapustina
- Dept. of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Richard E Cheney
- Dept. of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
23
|
Weck ML, Crawley SW, Tyska MJ. A heterologous in-cell assay for investigating intermicrovillar adhesion complex interactions reveals a novel protrusion length-matching mechanism. J Biol Chem 2020; 295:16191-16206. [PMID: 33051206 DOI: 10.1074/jbc.ra120.015929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/30/2020] [Indexed: 01/18/2023] Open
Abstract
Solute transporting epithelial cells build arrays of microvilli on their apical surface to increase membrane scaffolding capacity and enhance function potential. In epithelial tissues such as the kidney and gut, microvilli are length-matched and assembled into tightly packed "brush borders," which are organized by ∼50-nm thread-like links that form between the distal tips of adjacent protrusions. Composed of protocadherins CDHR2 and CDHR5, adhesion links are stabilized at the tips by a cytoplasmic tripartite module containing the scaffolds USH1C and ANKS4B and the actin-based motor MYO7B. Because several questions about the formation and function of this "intermicrovillar adhesion complex" remain open, we devised a system that allows one to study individual binary interactions between specific complex components and MYO7B. Our approach employs a chimeric myosin consisting of the MYO10 motor domain fused to the MYO7B cargo-binding tail domain. When expressed in HeLa cells, which do not normally produce adhesion complex proteins, this chimera trafficked to the tips of filopodia and was also able to transport individual complex components to these sites. Unexpectedly, the MYO10-MYO7B chimera was able to deliver CDHR2 and CDHR5 to distal tips in the absence of USH1C or ANKS4B. Cells engineered to localize high levels of CDHR2 at filopodial tips acquired interfilopodial adhesion and exhibited a striking dynamic length-matching activity that aligned distal tips over time. These findings deepen our understanding of mechanisms that promote the distal tip accumulation of intermicrovillar adhesion complex components and also offer insight on how epithelial cells minimize microvillar length variability.
Collapse
Affiliation(s)
- Meredith L Weck
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Scott W Crawley
- Department of Biology, University of Toledo, Toledo, Ohio, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
24
|
Graves MJ, Matoo S, Choi MS, Storad ZA, El Sheikh Idris RA, Pickles BK, Acharya P, Shinder PE, Arvay TO, Crawley SW. A cryptic sequence targets the adhesion complex scaffold ANKS4B to apical microvilli to promote enterocyte brush border assembly. J Biol Chem 2020; 295:12588-12604. [PMID: 32636301 DOI: 10.1074/jbc.ra120.013790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/30/2020] [Indexed: 12/31/2022] Open
Abstract
Nutrient-transporting enterocytes interact with their luminal environment using a densely packed collection of apical microvilli known as the brush border. Assembly of the brush border is controlled by the intermicrovillar adhesion complex (IMAC), a protocadherin-based complex found at the tips of brush border microvilli that mediates adhesion between neighboring protrusions. ANKS4B is known to be an essential scaffold within the IMAC, although its functional properties have not been thoroughly characterized. We report here that ANKS4B is directed to the brush border using a noncanonical apical targeting sequence that maps to a previously unannotated region of the scaffold. When expressed on its own, this sequence targeted to microvilli in the absence of any direct interaction with the other IMAC components. Sequence analysis revealed a coiled-coil motif and a putative membrane-binding basic-hydrophobic repeat sequence within this targeting region, both of which were required for the scaffold to target and mediate brush border assembly. Size-exclusion chromatography of the isolated targeting sequence coupled with in vitro brush border binding assays suggests that it functions as an oligomer. We further show that the corresponding sequence found in the closest homolog of ANKS4B, the scaffold USH1G that operates in sensory epithelia as part of the Usher complex, lacks the inherent ability to target to microvilli. This study further defines the underlying mechanism of how ANKS4B targets to the apical domain of enterocytes to drive brush border assembly and identifies a point of functional divergence between the ankyrin repeat-based scaffolds found in the IMAC and Usher complex.
Collapse
Affiliation(s)
- Maura J Graves
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Samaneh Matoo
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Myoung Soo Choi
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Zachary A Storad
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | | | - Brooke K Pickles
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Prashun Acharya
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Paula E Shinder
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Taylen O Arvay
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Scott W Crawley
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|