1
|
Chiso K, Yamashino T, Suzuki R, Gans T, Trogu S, Hughes J, Aoki S. Light responses during early day phases of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and PSEUDO-RESPONSE REGULATOR (PRR) homologous genes in the moss Physcomitrium patens. Photochem Photobiol 2024. [PMID: 39727145 DOI: 10.1111/php.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/07/2024] [Accepted: 11/06/2024] [Indexed: 12/28/2024]
Abstract
Circadian clocks facilitate organisms' adaptation to the day-night environmental cycle. Some of the component genes of the clocks ("clock genes") respond directly to changes in ambient light, supposedly allowing the clocks to synchronize to and/or oscillate robustly in the environmental cycle. In the dicotyledonous model plant Arabidopsis thaliana, the clock genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY) and PSEUDO-RESPONSE REGULATOR 9 (PRR9) show transient expression in response to the morning light. Here we studied light responses of CCA1a/CCA1b and PRR2, homologous genes to CCA1/LHY and PRR9, respectively, in the moss Physcomitrium patens. We found that light of different wavelengths induced PRR2 while they repressed CCA1a/CCA1b. A disruption strain lacking all phytochrome genes lost PRR2 induction, but still maintained CCA1a/CCA1b repression. The remaining light repression of CCA1a/CCA1b was impaired by the photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Probably therefore, a phytochrome signaling induces PRR2, whereas a photosynthesis-mediated signaling represses CCA1a/CCA1b. Conservation and divergence in the clock gene responses between P. patens and A. thaliana are discussed.
Collapse
Affiliation(s)
- Katsuhiro Chiso
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | | | - Ryo Suzuki
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Tanja Gans
- Institute for Plant Physiology, Justus Liebig University, Giessen, Germany
| | - Silvia Trogu
- Institute for Plant Physiology, Justus Liebig University, Giessen, Germany
| | - Jon Hughes
- Institute for Plant Physiology, Justus Liebig University, Giessen, Germany
| | - Setsuyuki Aoki
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Stevenson EL, Mehalow AK, Loros JJ, Kelliher CM, Dunlap JC. A Compensated Clock: Temperature and Nutritional Compensation Mechanisms Across Circadian Systems. Bioessays 2024:e202400211. [PMID: 39696884 DOI: 10.1002/bies.202400211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Circadian rhythms are ∼24-h biological oscillations that enable organisms to anticipate daily environmental cycles, so that they may designate appropriate day/night functions that align with these changes. The molecular clock in animals and fungi consists of a transcription-translation feedback loop, the plant clock is comprised of multiple interlocking feedback-loops, and the cyanobacterial clock is driven by a phosphorylation cycle involving three main proteins. Despite the divergent core clock mechanisms across these systems, all circadian clocks are able to buffer period length against changes in the ambient growth environment, such as temperature and nutrients. This defining capability, termed compensation, is critical to proper timekeeping, yet the underlying mechanism(s) remain elusive. Here we examine the known players in, and the current models for, compensation across five circadian systems. While compensation models across these systems are not yet unified, common themes exist across them, including regulation via temperature-dependent changes in post-translational modifications.
Collapse
Affiliation(s)
- Elizabeth-Lauren Stevenson
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Adrienne K Mehalow
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jennifer J Loros
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Christina M Kelliher
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Jay C Dunlap
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
3
|
Cai YD, Liu X, Chow GK, Hidalgo S, Jackson KC, Vasquez CD, Gao ZY, Lam VH, Tabuloc CA, Zheng H, Zhao C, Chiu JC. Alternative splicing of Clock transcript mediates the response of circadian clocks to temperature changes. Proc Natl Acad Sci U S A 2024; 121:e2410680121. [PMID: 39630861 DOI: 10.1073/pnas.2410680121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Circadian clocks respond to temperature changes over the calendar year, allowing organisms to adjust their daily biological rhythms to optimize health and fitness. In Drosophila, seasonal adaptations are regulated by temperature-sensitive alternative splicing (AS) of period (per) and timeless (tim) genes that encode key transcriptional repressors of clock gene expression. Although Clock (Clk) gene encodes the critical activator of circadian gene expression, AS of its transcripts and its potential role in temperature regulation of clock function have not been explored. Here, we observed that Clk transcripts undergo temperature-sensitive AS. Specifically, cold temperature leads to the production of an alternative Clk transcript, hereinafter termed Clk-cold, which encodes a CLK isoform with an in-frame deletion of four amino acids proximal to the DNA binding domain. Notably, serine 13 (S13), which we found to be a CK1α-dependent phosphorylation site, is deleted in CLK-cold protein. We demonstrated that upon phosphorylation at CLK(S13), CLK-DNA interaction is reduced, thus decreasing transcriptional activity of CLK. This is in agreement with our findings that CLK occupancy at clock genes and transcriptional output are elevated at cold temperature likely due to higher amounts of CLK-cold isoforms that lack S13 residue. Finally, we showed that PER promotes CK1α-dependent phosphorylation of CLK(S13), supporting kinase-scaffolding role of repressor proteins as a conserved feature in the regulation of eukaryotic circadian clocks. This study provides insights into the complex collaboration between AS and phospho-regulation in shaping temperature responses of the circadian clock.
Collapse
Affiliation(s)
- Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616
| | - Xianhui Liu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Gary K Chow
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616
| | - Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616
| | - Kiya C Jackson
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616
| | - Cameron D Vasquez
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616
| | - Zita Y Gao
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616
| | - Vu H Lam
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616
| | - Christine A Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School and Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Caifeng Zhao
- Biological Mass Spectrometry Facility, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School and Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616
| |
Collapse
|
4
|
Köbler C, Schmelling NM, Wiegard A, Pawlowski A, Pattanayak GK, Spät P, Scheurer NM, Sebastian KN, Stirba FP, Berwanger LC, Kolkhof P, Maček B, Rust MJ, Axmann IM, Wilde A. Two KaiABC systems control circadian oscillations in one cyanobacterium. Nat Commun 2024; 15:7674. [PMID: 39227593 PMCID: PMC11372060 DOI: 10.1038/s41467-024-51914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
The circadian clock of cyanobacteria, which predicts daily environmental changes, typically includes a standard oscillator consisting of proteins KaiA, KaiB, and KaiC. However, several cyanobacteria have diverse Kai protein homologs of unclear function. In particular, Synechocystis sp. PCC 6803 harbours, in addition to a canonical kaiABC gene cluster (named kaiAB1C1), two further kaiB and kaiC homologs (kaiB2, kaiB3, kaiC2, kaiC3). Here, we identify a chimeric KaiA homolog, named KaiA3, encoded by a gene located upstream of kaiB3. At the N-terminus, KaiA3 is similar to response-regulator receiver domains, whereas its C-terminal domain resembles that of KaiA. Homology analysis shows that a KaiA3-KaiB3-KaiC3 system exists in several cyanobacteria and other bacteria. Using the Synechocystis sp. PCC 6803 homologs, we observe circadian oscillations in KaiC3 phosphorylation in vitro in the presence of KaiA3 and KaiB3. Mutations of kaiA3 affect KaiC3 phosphorylation, leading to growth defects under both mixotrophic and chemoheterotrophic conditions. KaiC1 and KaiC3 exhibit phase-locked free-running phosphorylation rhythms. Deletion of either system (∆kaiAB1C1 or ∆kaiA3B3C3) alters the period of the cellular backscattering rhythm. Furthermore, both oscillators are required to maintain high-amplitude, self-sustained backscatter oscillations with a period of approximately 24 h, indicating their interconnected nature.
Collapse
Affiliation(s)
- Christin Köbler
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Nicolas M Schmelling
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Anika Wiegard
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Alice Pawlowski
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Gopal K Pattanayak
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Philipp Spät
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Nina M Scheurer
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Kim N Sebastian
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Florian P Stirba
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lutz C Berwanger
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Petra Kolkhof
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Boris Maček
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Ilka M Axmann
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Annegret Wilde
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
5
|
Zhang T, Liu D, Zhang Y, Chen L, Zhang W, Sun T. Biomedical engineering utilizing living photosynthetic cyanobacteria and microalgae: Current status and future prospects. Mater Today Bio 2024; 27:101154. [PMID: 39113912 PMCID: PMC11304071 DOI: 10.1016/j.mtbio.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Cyanobacteria are the only prokaryotes capable of performing oxygenic photosynthesis on Earth. Besides their traditional roles serving as primary producers, cyanobacteria also synthesize abundant secondary metabolites including carotenoids, alkaloids, peptides, which have been reported to possess medicinal potentials. More importantly, the advancement of synthetic biology technology has further expanded their potential biomedical applications especially using living/engineered cyanobacteria, providing promising and attractive strategies for future disease treatments. To improve the understanding and to facilitate future applications, this review aims to discuss the current status and future prospects of cyanobacterial-based biomedical engineering. Firstly, specific properties of cyanobacteria related with biomedical applications like their natural products of bioactive compounds and heavy metal adsorption were concluded. Subsequently, based on these properties of cyanobacteria, we discussed the progress of their applications in various disease models like hypoxia microenvironment alleviation, wound healing, drug delivery, and so on. Finally, the future prospects including further exploration of cyanobacteria secondary metabolites, the integration of bioactive compounds synthesized by cyanobacteria in situ with medical diagnosis and treatment, and the optimization of in vivo application were critically presented. The review will promote the studies related with cyanobacteria-based biomedical engineering and its practical application in clinical trials in the future.
Collapse
Affiliation(s)
- Tong Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Dailin Liu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
6
|
Le VV, Tran QG, Ko SR, Oh HM, Ahn CY. Insights into cyanobacterial blooms through the lens of omics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173028. [PMID: 38723963 DOI: 10.1016/j.scitotenv.2024.173028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
Cyanobacteria are oxygen-producing photosynthetic bacteria that convert carbon dioxide into biomass upon exposure to sunlight. However, favorable conditions cause harmful cyanobacterial blooms (HCBs), which are the dense accumulation of biomass at the water surface or subsurface, posing threats to freshwater ecosystems and human health. Understanding the mechanisms underlying cyanobacterial bloom formation is crucial for effective management. In this regard, recent advancements in omics technologies have provided valuable insights into HCBs, which have raised expectations to develop more effective control methods in the near future. This literature review aims to present the genomic architecture, adaptive mechanisms, microbial interactions, and ecological impacts of HCBs through the lens of omics. Genomic analysis indicates that the genome plasticity of cyanobacteria has enabled their resilience and effective adaptation to environmental changes. Transcriptomic investigations have revealed that cyanobacteria use various strategies for adapting to environmental stress. Additionally, metagenomic and metatranscriptomic analyses have emphasized the significant role of the microbial community in regulating HCBs. Finally, we offer perspectives on potential opportunities for further research in this field.
Collapse
Affiliation(s)
- Ve Van Le
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | | | - So-Ra Ko
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
7
|
Gevin M, Latifi A, Talla E. The modular architecture of sigma factors in cyanobacteria: a framework to assess their diversity and understand their evolution. BMC Genomics 2024; 25:512. [PMID: 38783209 PMCID: PMC11119718 DOI: 10.1186/s12864-024-10415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Bacterial RNA polymerase holoenzyme requires sigma70 factors to start transcription by identifying promoter elements. Cyanobacteria possess multiple sigma70 factors to adapt to a wide variety of ecological niches. These factors are grouped into two categories: primary sigma factor initiates transcription of housekeeping genes during normal growth conditions, while alternative sigma factors initiate transcription of specific genes under particular conditions. However, the present classification does not consider the modular organization of their structural domains, introducing therefore multiple functional and structural biases. A comprehensive analysis of this protein family in cyanobacteria is needed to address these limitations. RESULTS We investigated the structure and evolution of sigma70 factors in cyanobacteria, analyzing their modular architecture and variation among unicellular, filamentous, and heterocyst-forming morphotypes. 4,193 sigma70 homologs were found with 59 distinct modular patterns, including six essential and 29 accessory domains, such as DUF6596. 90% of cyanobacteria typically have 5 to 17 sigma70 homologs and this number likely depends on the strain morphotype, the taxonomic order and the genome size. We classified sigma70 factors into 12 clans and 36 families. According to taxonomic orders and phenotypic traits, the number of homologs within the 14 main families was variable, with the A.1 family including the primary sigma factor since this family was found in all cyanobacterial species. The A.1, A.5, C.1, E.1, J.1, and K.1 families were found to be key sigma families that distinguish heterocyst-forming strains. To explain the diversification and evolution of sigma70, we propose an evolutionary scenario rooted in the diversification of a common ancestor of the A1 family. This scenario is characterized by evolutionary events including domain losses, gains, insertions, and modifications. The high occurrence of the DUF6596 domain in bacterial sigma70 proteins, and its association with the highest prevalence observed in Actinobacteria, suggests that this domain might be important for sigma70 function. It also implies that the domain could have emerged in Actinobacteria and been transferred through horizontal gene transfer. CONCLUSION Our analysis provides detailed insights into the modular domain architecture of sigma70, introducing a novel robust classification. It also proposes an evolutionary scenario explaining their diversity across different taxonomical orders.
Collapse
Affiliation(s)
- Marine Gevin
- Aix Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne, LCB, IMM, Marseille, France
| | - Amel Latifi
- Aix Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne, LCB, IMM, Marseille, France.
| | - Emmanuel Talla
- Aix Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne, LCB, IMM, Marseille, France.
| |
Collapse
|
8
|
Cai YD, Chow GK, Hidalgo S, Liu X, Jackson KC, Vasquez CD, Gao ZY, Lam VH, Tabuloc CA, Zheng H, Zhao C, Chiu JC. Alternative splicing of clock transcript mediates the response of circadian clocks to temperature changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593646. [PMID: 38766142 PMCID: PMC11100826 DOI: 10.1101/2024.05.10.593646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Circadian clocks respond to temperature changes over the calendar year, allowing organisms to adjust their daily biological rhythms to optimize health and fitness. In Drosophila, seasonal adaptations and temperature compensation are regulated by temperature-sensitive alternative splicing (AS) of period (per) and timeless (tim) genes that encode key transcriptional repressors of clock gene expression. Although clock (clk) gene encodes the critical activator of clock gene expression, AS of its transcripts and its potential role in temperature regulation of clock function have not been explored. We therefore sought to investigate whether clk exhibits AS in response to temperature and the functional changes of the differentially spliced transcripts. We observed that clk transcripts indeed undergo temperature-sensitive AS. Specifically, cold temperature leads to the production of an alternative clk transcript, hereinafter termed clk-cold, which encodes a CLK isoform with an in-frame deletion of four amino acids proximal to the DNA binding domain. Notably, serine 13 (S13), which we found to be a CK1α-dependent phosphorylation site, is among the four amino acids deleted in CLK-cold protein. Using a combination of transgenic fly, tissue culture, and in vitro experiments, we demonstrated that upon phosphorylation at CLK(S13), CLK-DNA interaction is reduced, thus decreasing CLK occupancy at clock gene promoters. This is in agreement with our findings that CLK occupancy at clock genes and transcriptional output are elevated at cold temperature, which can be explained by the higher amounts of CLK-cold isoforms that lack S13 residue. This study provides new insights into the complex collaboration between AS and phospho-regulation in shaping temperature responses of the circadian clock.
Collapse
Affiliation(s)
- Yao D. Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Gary K. Chow
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Kiya C. Jackson
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Cameron D. Vasquez
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Zita Y. Gao
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Vu H. Lam
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Christine A. Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
9
|
Del Olmo M, Legewie S, Brunner M, Höfer T, Kramer A, Blüthgen N, Herzel H. Network switches and their role in circadian clocks. J Biol Chem 2024; 300:107220. [PMID: 38522517 PMCID: PMC11044057 DOI: 10.1016/j.jbc.2024.107220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
Circadian rhythms are generated by complex interactions among genes and proteins. Self-sustained ∼24 h oscillations require negative feedback loops and sufficiently strong nonlinearities that are the product of molecular and network switches. Here, we review common mechanisms to obtain switch-like behavior, including cooperativity, antagonistic enzymes, multisite phosphorylation, positive feedback, and sequestration. We discuss how network switches play a crucial role as essential components in cellular circadian clocks, serving as integral parts of transcription-translation feedback loops that form the basis of circadian rhythm generation. The design principles of network switches and circadian clocks are illustrated by representative mathematical models that include bistable systems and negative feedback loops combined with Hill functions. This work underscores the importance of negative feedback loops and network switches as essential design principles for biological oscillations, emphasizing how an understanding of theoretical concepts can provide insights into the mechanisms generating biological rhythms.
Collapse
Affiliation(s)
- Marta Del Olmo
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Stefan Legewie
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany; Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Michael Brunner
- Biochemistry Center, Universität Heidelberg, Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Universität Heidelberg, Heidelberg, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Institute for Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Blüthgen
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Berlin, Germany; Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Chawla S, O’Neill J, Knight MI, He Y, Wang L, Maronde E, Rodríguez SG, van Ooijen G, Garbarino-Pico E, Wolf E, Dkhissi-Benyahya O, Nikhat A, Chakrabarti S, Youngstedt SD, Zi-Ching Mak N, Provencio I, Oster H, Goel N, Caba M, Oosthuizen M, Duffield GE, Chabot C, Davis SJ. Timely Questions Emerging in Chronobiology: The Circadian Clock Keeps on Ticking. J Circadian Rhythms 2024; 22:2. [PMID: 38617710 PMCID: PMC11011957 DOI: 10.5334/jcr.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 04/16/2024] Open
Abstract
Chronobiology investigations have revealed much about cellular and physiological clockworks but we are far from having a complete mechanistic understanding of the physiological and ecological implications. Here we present some unresolved questions in circadian biology research as posed by the editorial staff and guest contributors to the Journal of Circadian Rhythms. This collection of ideas is not meant to be comprehensive but does reveal the breadth of our observations on emerging trends in chronobiology and circadian biology. It is amazing what could be achieved with various expected innovations in technologies, techniques, and mathematical tools that are being developed. We fully expect strengthening mechanistic work will be linked to health care and environmental understandings of circadian function. Now that most clock genes are known, linking these to physiological, metabolic, and developmental traits requires investigations from the single molecule to the terrestrial ecological scales. Real answers are expected for these questions over the next decade. Where are the circadian clocks at a cellular level? How are clocks coupled cellularly to generate organism level outcomes? How do communities of circadian organisms rhythmically interact with each other? In what way does the natural genetic variation in populations sculpt community behaviors? How will methods development for circadian research be used in disparate academic and commercial endeavors? These and other questions make it a very exciting time to be working as a chronobiologist.
Collapse
Affiliation(s)
| | - John O’Neill
- MRC Laboratory of Molecular Biology Cambridge, UK
| | | | - Yuqing He
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, China National Botanical Garden, Beijing 100093, CN
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, China National Botanical Garden, Beijing 100093, CN
| | - Erik Maronde
- Institut für Anatomie II, Dr. Senckenbergische Anatomie, Goethe-Universität Frankfurt, Theodor-Stern-Kai-7, 60590 Frankfurt, DE
| | - Sergio Gil Rodríguez
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Eduardo Garbarino-Pico
- Universidad Nacional de Córdoba (UNC), Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, AR
- CONICET-UNC, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, AR
| | - Eva Wolf
- Institute of Molecular Physiology (IMP), Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch- Weg 17, 55128 Mainz, DE
| | - Ouria Dkhissi-Benyahya
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, UniversitéClaude Bernard Lyon 1, 18 Avenue du Doyen Lépine, 69500, Bron, FR
| | - Anjoom Nikhat
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bangalore, Karnataka 560065, IN
| | - Shaon Chakrabarti
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bangalore, Karnataka 560065, IN
| | - Shawn D. Youngstedt
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, US
- Department of Medicine, University of Arizona, Tucson, AZ, US
| | | | - Ignacio Provencio
- Department of Biology and Department of Ophthalmology, University of Virginia, Charlottesville, VA, US
| | - Henrik Oster
- Institute of Neurobiology, Center for Brain, Behavior & Metabolism (CBBM), University of Luebeck, 23562 Luebeck, DE
| | - Namni Goel
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, US
| | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Ver., MX
| | - Maria Oosthuizen
- Department of Zoology and Entomology, University of Pretoria, Pretoria, ZA
- Mammal Research Institute, University of Pretoria, Hatfield, ZA
| | - Giles E. Duffield
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, US
| | - Christopher Chabot
- Department of Biological Sciences, Plymouth State University, Plymouth, NH 03264, US
| | - Seth J. Davis
- Department of Biology, University of York, York YO105DD, UK
- State Key Laboratory of Crop Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, CN
| |
Collapse
|
11
|
Leech G, Melcher L, Chiu M, Nugent M, Burton L, Kang J, Kim SJ, Roy S, Farhadi L, Ross JL, Das M, Rust MJ, Robertson-Anderson RM. Timed material self-assembly controlled by circadian clock proteins. ARXIV 2024:arXiv:2303.00779v2. [PMID: 36911279 PMCID: PMC10002811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Active biological molecules present a powerful, yet largely untapped, opportunity to impart autonomous regulation to materials. Because these systems can function robustly to regulate when and where chemical reactions occur, they have the ability to bring complex, life-like behavior to synthetic materials. Here, we achieve this design feat by using functionalized circadian clock proteins, KaiB and KaiC, to engineer time-dependent crosslinking of colloids. The resulting material self-assembles with programmable kinetics, producing macroscopic changes in material properties, via molecular assembly of KaiB-KaiC complexes. We show that colloid crosslinking depends strictly on the phosphorylation state of KaiC, with kinetics that are synced with KaiB-KaiC complexing. Our microscopic image analyses and computational models indicate that the stability of colloidal super-structures depends sensitively on the number of Kai complexes per colloid connection. Consistent with our model predictions, a high concentration stabilizes the material against dissolution after a robust self-assembly phase, while a low concentration allows circadian oscillation of material structure. This work introduces the concept of harnessing biological timers to control synthetic materials; and, more generally, opens the door to using protein-based reaction networks to endow synthetic systems with life-like functional properties.
Collapse
Affiliation(s)
- Gregor Leech
- Department of Physics and Biophysics, University of San Diego, San Diego, California 92110, United States
| | - Lauren Melcher
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Michelle Chiu
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, Illinois 60637, United States
| | - Maya Nugent
- Department of Physics and Biophysics, University of San Diego, San Diego, California 92110, United States
| | - Lily Burton
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, Illinois 60637, United States
| | - Janet Kang
- Department of Molecular Genetics and Cell Biology and Department of Physics, University of Chicago, Chicago, Illinois 60637, United States
| | - Soo Ji Kim
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, Illinois 60637, United States
| | - Sourav Roy
- Department of Physics, Syracuse University, Syracuse, New York 13244, United States
| | - Leila Farhadi
- Department of Physics, Syracuse University, Syracuse, New York 13244, United States
| | - Jennifer L Ross
- Department of Physics, Syracuse University, Syracuse, New York 13244, United States
| | - Moumita Das
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, United States
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology and Department of Physics, University of Chicago, Chicago, Illinois 60637, United States
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, San Diego, California 92110, United States
| |
Collapse
|
12
|
Matallana-Surget S, Geron A, Decroo C, Wattiez R. Diel Cycle Proteomics: Illuminating Molecular Dynamics in Purple Bacteria for Optimized Biotechnological Applications. Int J Mol Sci 2024; 25:2934. [PMID: 38474181 DOI: 10.3390/ijms25052934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Circadian rhythms, characterized by approximately 24 h cycles, play a pivotal role in enabling various organisms to synchronize their biological activities with daily variations. While ubiquitous in Eukaryotes, circadian clocks remain exclusively characterized in Cyanobacteria among Prokaryotes. These rhythms are regulated by a core oscillator, which is controlled by a cluster of three genes: kaiA, kaiB, and kaiC. Interestingly, recent studies revealed rhythmic activities, potentially tied to a circadian clock, in other Prokaryotes, including purple bacteria such as Rhodospirillum rubrum, known for its applications in fuel and plastic bioproduction. However, the pivotal question of how light and dark cycles influence protein dynamics and the expression of putative circadian clock genes remains unexplored in purple non-sulfur bacteria. Unraveling the regulation of these molecular clocks holds the key to unlocking optimal conditions for harnessing the biotechnological potential of R. rubrum. Understanding how its proteome responds to different light regimes-whether under continuous light or alternating light and dark cycles-could pave the way for precisely fine-tuning bioproduction processes. Here, we report for the first time the expressed proteome of R. rubrum grown under continuous light versus light and dark cycle conditions using a shotgun proteomic analysis. In addition, we measured the impact of light regimes on the expression of four putative circadian clock genes (kaiB1, kaiB2, kaiC1, kaiC2) at the transcriptional and translational levels using RT-qPCR and targeted proteomic (MRM-MS), respectively. The data revealed significant effects of light conditions on the overall differential regulation of the proteome, particularly during the early growth stages. Notably, several proteins were found to be differentially regulated during the light or dark period, thus impacting crucial biological processes such as energy conversion pathways and the general stress response. Furthermore, our study unveiled distinct regulation of the four kai genes at both the mRNA and protein levels in response to varying light conditions. Deciphering the impact of the diel cycle on purple bacteria not only enhances our understanding of their ecology but also holds promise for optimizing their applications in biotechnology, providing valuable insights into the origin and evolution of prokaryotic clock mechanisms.
Collapse
Affiliation(s)
- Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Augustin Geron
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
- Proteomic and Microbiology Department, University of Mons, B-7000 Mons, Belgium
| | - Corentin Decroo
- Proteomic and Microbiology Department, University of Mons, B-7000 Mons, Belgium
| | - Ruddy Wattiez
- Proteomic and Microbiology Department, University of Mons, B-7000 Mons, Belgium
| |
Collapse
|
13
|
Zhang H, Zhou Z, Guo J. The Function, Regulation, and Mechanism of Protein Turnover in Circadian Systems in Neurospora and Other Species. Int J Mol Sci 2024; 25:2574. [PMID: 38473819 DOI: 10.3390/ijms25052574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Circadian clocks drive a large array of physiological and behavioral activities. At the molecular level, circadian clocks are composed of positive and negative elements that form core oscillators generating the basic circadian rhythms. Over the course of the circadian period, circadian negative proteins undergo progressive hyperphosphorylation and eventually degrade, and their stability is finely controlled by complex post-translational pathways, including protein modifications, genetic codon preference, protein-protein interactions, chaperon-dependent conformation maintenance, degradation, etc. The effects of phosphorylation on the stability of circadian clock proteins are crucial for precisely determining protein function and turnover, and it has been proposed that the phosphorylation of core circadian clock proteins is tightly correlated with the circadian period. Nonetheless, recent studies have challenged this view. In this review, we summarize the research progress regarding the function, regulation, and mechanism of protein stability in the circadian clock systems of multiple model organisms, with an emphasis on Neurospora crassa, in which circadian mechanisms have been extensively investigated. Elucidation of the highly complex and dynamic regulation of protein stability in circadian clock networks would greatly benefit the integrated understanding of the function, regulation, and mechanism of protein stability in a wide spectrum of other biological processes.
Collapse
Affiliation(s)
- Haoran Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zengxuan Zhou
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinhu Guo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
14
|
Lumian J, Grettenberger C, Jungblut AD, Mackey TJ, Hawes I, Alatorre-Acevedo E, Sumner DY. Genomic profiles of four novel cyanobacteria MAGs from Lake Vanda, Antarctica: insights into photosynthesis, cold tolerance, and the circadian clock. Front Microbiol 2024; 14:1330602. [PMID: 38282730 PMCID: PMC10812107 DOI: 10.3389/fmicb.2023.1330602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/29/2023] [Indexed: 01/30/2024] Open
Abstract
Cyanobacteria in polar environments face environmental challenges, including cold temperatures and extreme light seasonality with small diurnal variation, which has implications for polar circadian clocks. However, polar cyanobacteria remain underrepresented in available genomic data, and there are limited opportunities to study their genetic adaptations to these challenges. This paper presents four new Antarctic cyanobacteria metagenome-assembled genomes (MAGs) from microbial mats in Lake Vanda in the McMurdo Dry Valleys in Antarctica. The four MAGs were classified as Leptolyngbya sp. BulkMat.35, Pseudanabaenaceae cyanobacterium MP8IB2.15, Microcoleus sp. MP8IB2.171, and Leptolyngbyaceae cyanobacterium MP9P1.79. The MAGs contain 2.76 Mbp - 6.07 Mbp, and the bin completion ranges from 74.2-92.57%. Furthermore, the four cyanobacteria MAGs have average nucleotide identities (ANIs) under 90% with each other and under 77% with six existing polar cyanobacteria MAGs and genomes. This suggests that they are novel cyanobacteria and demonstrates that polar cyanobacteria genomes are underrepresented in reference databases and there is continued need for genome sequencing of polar cyanobacteria. Analyses of the four novel and six existing polar cyanobacteria MAGs and genomes demonstrate they have genes coding for various cold tolerance mechanisms and most standard circadian rhythm genes with the Leptolyngbya sp. BulkMat.35 and Leptolyngbyaceae cyanobacterium MP9P1.79 contained kaiB3, a divergent homolog of kaiB.
Collapse
Affiliation(s)
- Jessica Lumian
- Department of Earth and Planetary Sciences, Microbiology Graduate Group, University of California Davis, Davis, CA, United States
| | - Christen Grettenberger
- Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, United States
- Department of Environmental Toxicology, University of California Davis, Davis, CA, United States
| | - Anne D. Jungblut
- Department of Sciences, The Natural History Museum, London, United Kingdom
| | - Tyler J. Mackey
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, Tauranga, New Zealand
| | - Eduardo Alatorre-Acevedo
- Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, United States
| | - Dawn Y. Sumner
- Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, United States
| |
Collapse
|
15
|
Richtová J, Bazalová O, Horák A, Tomčala A, Gonepogu VG, Oborník M, Doležel D. Circadian rhythms and circadian clock gene homologs of complex alga Chromera velia. FRONTIERS IN PLANT SCIENCE 2023; 14:1226027. [PMID: 38143581 PMCID: PMC10739334 DOI: 10.3389/fpls.2023.1226027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Most organisms on Earth are affected by periodic changes in their environment. The circadian clock is an endogenous device that synchronizes behavior, physiology, or biochemical processes to an approximately 24-hour cycle, allowing organisms to anticipate the periodic changes of day and night. Although circadian clocks are widespread in organisms, the actual molecular components differ remarkably among the clocks of plants, animals, fungi, and prokaryotes. Chromera velia is the closest known photosynthetic relative of apicomplexan parasites. Formation of its motile stage, zoospores, has been described as associated with the light part of the day. We examined the effects on the periodic release of the zoospores under different light conditions and investigated the influence of the spectral composition on zoosporogenesis. We performed a genomic search for homologs of known circadian clock genes. Our results demonstrate the presence of an almost 24-hour free-running cycle of zoosporogenesis. We also identified the blue light spectra as the essential compound for zoosporogenesis. Further, we developed a new and effective method for zoospore separation from the culture and estimated the average motility speed and lifespan of the C. velia zoospores. Our genomic search identified six cryptochrome-like genes, two genes possibly related to Arabidopsis thaliana CCA/LHY, whereas no homolog of an animal, cyanobacterial, or fungal circadian clock gene was found. Our results suggest that C. velia has a functional circadian clock, probably based mainly on a yet undefined mechanism.
Collapse
Affiliation(s)
- Jitka Richtová
- Biology Centre, Academy of Sciences of the Czech Republic, Institute of Parasitology, České Budějovice, Czechia
| | - Olga Bazalová
- Biology Centre, Academy of Sciences of the Czech Republic, Institute of Entomology, České Budějovice, Czechia
| | - Aleš Horák
- Biology Centre, Academy of Sciences of the Czech Republic, Institute of Parasitology, České Budějovice, Czechia
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Aleš Tomčala
- Faculty of Fisheries and Protection of Waters, University of South Bohemia, Vodňany, Czechia
| | - Vijaya Geetha Gonepogu
- Biology Centre, Academy of Sciences of the Czech Republic, Institute of Parasitology, České Budějovice, Czechia
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Miroslav Oborník
- Biology Centre, Academy of Sciences of the Czech Republic, Institute of Parasitology, České Budějovice, Czechia
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - David Doležel
- Biology Centre, Academy of Sciences of the Czech Republic, Institute of Entomology, České Budějovice, Czechia
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
16
|
Siebieszuk A, Sejbuk M, Witkowska AM. Studying the Human Microbiota: Advances in Understanding the Fundamentals, Origin, and Evolution of Biological Timekeeping. Int J Mol Sci 2023; 24:16169. [PMID: 38003359 PMCID: PMC10671191 DOI: 10.3390/ijms242216169] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The recently observed circadian oscillations of the intestinal microbiota underscore the profound nature of the human-microbiome relationship and its importance for health. Together with the discovery of circadian clocks in non-photosynthetic gut bacteria and circadian rhythms in anucleated cells, these findings have indicated the possibility that virtually all microorganisms may possess functional biological clocks. However, they have also raised many essential questions concerning the fundamentals of biological timekeeping, its evolution, and its origin. This narrative review provides a comprehensive overview of the recent literature in molecular chronobiology, aiming to bring together the latest evidence on the structure and mechanisms driving microbial biological clocks while pointing to potential applications of this knowledge in medicine. Moreover, it discusses the latest hypotheses regarding the evolution of timing mechanisms and describes the functions of peroxiredoxins in cells and their contribution to the cellular clockwork. The diversity of biological clocks among various human-associated microorganisms and the role of transcriptional and post-translational timekeeping mechanisms are also addressed. Finally, recent evidence on metabolic oscillators and host-microbiome communication is presented.
Collapse
Affiliation(s)
- Adam Siebieszuk
- Department of Physiology, Faculty of Medicine, Medical University of Bialystok, Mickiewicza 2C, 15-222 Białystok, Poland;
| | - Monika Sejbuk
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland;
| |
Collapse
|
17
|
Han X, Zhang D, Hong L, Yu D, Wu Z, Yang T, Rust M, Tu Y, Ouyang Q. Determining subunit-subunit interaction from statistics of cryo-EM images: observation of nearest-neighbor coupling in a circadian clock protein complex. Nat Commun 2023; 14:5907. [PMID: 37737245 PMCID: PMC10516925 DOI: 10.1038/s41467-023-41575-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
Biological processes are typically actuated by dynamic multi-subunit molecular complexes. However, interactions between subunits, which govern the functions of these complexes, are hard to measure directly. Here, we develop a general approach combining cryo-EM imaging technology and statistical modeling and apply it to study the hexameric clock protein KaiC in Cyanobacteria. By clustering millions of KaiC monomer images, we identify two major conformational states of KaiC monomers. We then classify the conformational states of (>160,000) KaiC hexamers by the thirteen distinct spatial arrangements of these two subunit states in the hexamer ring. We find that distributions of the thirteen hexamer conformational patterns for two KaiC phosphorylation mutants can be fitted quantitatively by an Ising model, which reveals a significant cooperativity between neighboring subunits with phosphorylation shifting the probability of subunit conformation. Our results show that a KaiC hexamer can respond in a switch-like manner to changes in its phosphorylation level.
Collapse
Affiliation(s)
- Xu Han
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Dongliang Zhang
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Lu Hong
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Daqi Yu
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Zhaolong Wu
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Tian Yang
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Michael Rust
- Departments of Molecular Genetics and Cell Biology and of Physics, University of Chicago, Chicago, IL, 60637, USA.
| | - Yuhai Tu
- IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598, USA.
| | - Qi Ouyang
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China.
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, AAIC, Peking University, Beijing, 100871, China.
| |
Collapse
|
18
|
Larrondo LF. Circadian entrainment of in vitro reactions, in real time, and around the clock. Proc Natl Acad Sci U S A 2023; 120:e2303566120. [PMID: 37094142 PMCID: PMC10161006 DOI: 10.1073/pnas.2303566120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Affiliation(s)
- Luis F. Larrondo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology, 7500565Santiago, Chile
| |
Collapse
|
19
|
Fang M, Chavan AG, LiWang A, Golden SS. Synchronization of the circadian clock to the environment tracked in real time. Proc Natl Acad Sci U S A 2023; 120:e2221453120. [PMID: 36940340 PMCID: PMC10068778 DOI: 10.1073/pnas.2221453120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/08/2023] [Indexed: 03/22/2023] Open
Abstract
The circadian system of the cyanobacterium Synechococcus elongatus PCC 7942 relies on a three-protein nanomachine (KaiA, KaiB, and KaiC) that undergoes an oscillatory phosphorylation cycle with a period of ~24 h. This core oscillator can be reconstituted in vitro and is used to study the molecular mechanisms of circadian timekeeping and entrainment. Previous studies showed that two key metabolic changes that occur in cells during the transition into darkness, changes in the ATP/ADP ratio and redox status of the quinone pool, are cues that entrain the circadian clock. By changing the ATP/ADP ratio or adding oxidized quinone, one can shift the phase of the phosphorylation cycle of the core oscillator in vitro. However, the in vitro oscillator cannot explain gene expression patterns because the simple mixture lacks the output components that connect the clock to genes. Recently, a high-throughput in vitro system termed the in vitro clock (IVC) that contains both the core oscillator and the output components was developed. Here, we used IVC reactions and performed massively parallel experiments to study entrainment, the synchronization of the clock with the environment, in the presence of output components. Our results indicate that the IVC better explains the in vivo clock-resetting phenotypes of wild-type and mutant strains and that the output components are deeply engaged with the core oscillator, affecting the way input signals entrain the core pacemaker. These findings blur the line between input and output pathways and support our previous demonstration that key output components are fundamental parts of the clock.
Collapse
Affiliation(s)
- Mingxu Fang
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA92093
| | - Archana G. Chavan
- School of Natural Sciences, University of California, Merced, CA95343
| | - Andy LiWang
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA92093
- School of Natural Sciences, University of California, Merced, CA95343
- Department of Chemistry & Biochemistry, University of California, Merced, CA95343
| | - Susan S. Golden
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA92093
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
20
|
Xia Y, Ding X, Wang S, Ren W. Circadian orchestration of host and gut microbiota in infection. Biol Rev Camb Philos Soc 2023; 98:115-131. [PMID: 36106627 DOI: 10.1111/brv.12898] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 01/12/2023]
Abstract
Circadian rhythms are present in almost every organism and regulate multiple aspects of biological and physiological processes (e.g. metabolism, immune responses, and microbial exposure). There exists a bidirectional circadian interaction between the host and its gut microbiota, and potential circadian orchestration of both host and gut microbiota in response to invading pathogens. In this review, we summarize what is known about these intestinal microbial oscillations and the relationships between host circadian clocks and various infectious agents (bacteria, fungi, parasites, and viruses), and discuss how host circadian clocks prime the immune system to fight pathogen infections as well as the direct effects of circadian clocks on viral activity (e.g. SARS-CoV-2 entry and replication). Finally, we consider strategies employed to realign normal circadian rhythmicity for host health, such as chronotherapy, dietary intervention, good sleep hygiene, and gut microbiota-targeted therapy. We propose that targeting circadian rhythmicity may provide therapeutic opportunities for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Yaoyao Xia
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xuezhi Ding
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China
| | - Shengyi Wang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
21
|
Halotolerance, stress mechanisms, and circadian clock of salt-tolerant cyanobacteria. Appl Microbiol Biotechnol 2023; 107:1129-1141. [PMID: 36700967 DOI: 10.1007/s00253-023-12390-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/27/2023]
Abstract
Cyanobacteria harbor a high level of physiological flexibility, which enables them to reside in virtually all available environmental niches, including extreme environments. In this review, we summarize the recent advancements in stress mechanisms of salt-tolerant (a.k.a. halotolerant) cyanobacteria. Omics approaches have been extensively employed in recent years to decipher mechanisms of halotolerance and to understand the relevance of halotolerance-associated gene regulatory networks. The vast knowledge from genome mining disclosed that halotolerant cyanobacteria possess extended gene families and/or clusters, encoding enzymes that synthesize unique osmoprotectants, including glycine betaine (GB), betaine derivatives, and mycosporine-like amino acids (MAAs). Comprehensive transcriptomic analyses were conducted using Halothece sp. PCC7418 (hereafter referred to as Halothece), a cyanobacterium that exhibits remarkable halotolerance. These studies revealed a specific transcriptional response when Halothece was subjected to salt stress, whereas salt and osmotic stresses were found to share a common transcriptomic response. Transcriptome and metabolite analyses of Halothece illustrated a complex dynamic relationship between the biosyntheses of osmoprotectants, as well as corresponding and ancillary pathways. Lastly, novel insights highlight the relationship between the molecular regulation of the circadian rhythm and salt stress tolerance. Since the circadian rhythm of gene expression was distorted under salt stress, halotolerant cyanobacteria may prioritize the adaptation to salt stress by attenuation of circadian rhythmicity. KEY POINTS: • Recent advancements in the understanding of stress mechanisms in halotolerant cyanobacteria are described based on omics analyses. • Transcriptome and metabolite analyses of Halothece illustrated a complex dynamic relationship between the biosyntheses of osmoprotectants, as well as corresponding and ancillary pathways. • Since salt stress affects the molecular regulation among clock-related proteins, salt stress may attenuate circadian rhythmicity.
Collapse
|
22
|
Li W, Wang Z, Cao J, Dong Y, Chen Y. Perfecting the Life Clock: The Journey from PTO to TTFL. Int J Mol Sci 2023; 24:ijms24032402. [PMID: 36768725 PMCID: PMC9916482 DOI: 10.3390/ijms24032402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The ubiquity of biological rhythms in life implies that it results from selection in the evolutionary process. The origin of the biological clock has two possible hypotheses: the selective pressure hypothesis of the oxidative stress cycle and the light evasion hypothesis. Moreover, the biological clock gives life higher adaptability. Two biological clock mechanisms have been discovered: the negative feedback loop of transcription-translation (TTFL) and the post-translational oscillation mechanism (PTO). The TTFL mechanism is the most classic and relatively conservative circadian clock oscillation mechanism, commonly found in eukaryotes. We have introduced the TTFL mechanism of the classical model organisms. However, the biological clock of prokaryotes is based on the PTO mechanism. The Peroxiredoxin (PRX or PRDX) protein-based PTO mechanism circadian clock widely existing in eukaryotic and prokaryotic life is considered a more conservative oscillation mechanism. The coexistence of the PTO and TTFL mechanisms in eukaryotes prompted us to explain the relationship between the two. Finally, we speculated that there might be a driving force for the evolution of the biological clock. The biological clock may have an evolutionary trend from the PTO mechanism to the TTFL mechanism, resulting from the evolution of organisms adapting to the environment.
Collapse
Affiliation(s)
- Weitian Li
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
- Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-62733778
| |
Collapse
|
23
|
Smies CW, Bodinayake KK, Kwapis JL. Time to learn: The role of the molecular circadian clock in learning and memory. Neurobiol Learn Mem 2022; 193:107651. [PMID: 35697314 PMCID: PMC9903177 DOI: 10.1016/j.nlm.2022.107651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
The circadian system plays an important role in aligning biological processes with the external time of day. A range of physiological functions are governed by the circadian cycle, including memory processes, yet little is understood about how the clock interfaces with memory at a molecular level. The molecular circadian clock consists of four key genes/gene families, Period, Clock, Cryptochrome, and Bmal1, that rhythmically cycle in an ongoing transcription-translation negative feedback loop that maintains an approximately 24-hour cycle within cells of the brain and body. In addition to their roles in generating the circadian rhythm within the brain's master pacemaker (the suprachiasmatic nucleus), recent research has suggested that these clock genes may function locally within memory-relevant brain regions to modulate memory across the day/night cycle. This review will discuss how these clock genes function both within the brain's central clock and within memory-relevant brain regions to exert circadian control over memory processes. For each core clock gene, we describe the current research that demonstrates a potential role in memory and outline how these clock genes might interface with cascades known to support long-term memory formation. Together, the research suggests that clock genes function locally within satellite clocks across the brain to exert circadian control over long-term memory formation and possibly other biological processes. Understanding how clock genes might interface with local molecular cascades in the hippocampus and other brain regions is a critical step toward developing treatments for the myriad disorders marked by dysfunction of both the circadian system and cognitive processes.
Collapse
Affiliation(s)
- Chad W Smies
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Kasuni K Bodinayake
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Janine L Kwapis
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
24
|
Highly Sensitive Tryptophan Fluorescence Probe for detecting Rhythmic Conformational changes of KaiC in the Cyanobacterial Circadian Clock System. Biochem J 2022; 479:1505-1515. [PMID: 35771042 PMCID: PMC9342895 DOI: 10.1042/bcj20210544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
KaiC, a core protein of the cyanobacterial circadian clock, consists of an N-terminal CI domain and a C-terminal CII domain, and assembles into a double-ring hexamer upon binding with ATP. KaiC rhythmically phosphorylates and dephosphorylates its own two adjacent residues Ser431 and Thr432 at the CII domain with a period of approximately 24h through assembly and disassembly with the other clock proteins, KaiA and/or KaiB. In this study, to understand how KaiC alters its conformation as the source of circadian rhythm, we investigated structural changes of an inner-radius side of the CII ring using time-resolved Trp fluorescence spectroscopy. A KaiC mutant harboring a Trp fluorescence probe at a position of 419 exhibited a robust circadian rhythm with little temperature sensitivity in the presence of KaiA and KaiB. Our fluorescence observations show a remarkable environmental change at the inner-radius side of the CII ring during circadian oscillation. Crystallographic analysis revealed that a side chain of Trp at the position of 419 was oriented toward a region undergoing a helix-coil transition, which is considered to be a key event to allosterically regulate the CI ring that plays a crucial role in determining the cycle period. The present study provides a dynamical insight into how KaiC generates circadian oscillation.
Collapse
|
25
|
Rijo-Ferreira F, Takahashi JS. Circadian rhythms in infectious diseases and symbiosis. Semin Cell Dev Biol 2022; 126:37-44. [PMID: 34625370 PMCID: PMC9183220 DOI: 10.1016/j.semcdb.2021.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Timing is everything. Many organisms across the tree of life have evolved timekeeping mechanisms that regulate numerous of their cellular functions to optimize timing by anticipating changes in the environment. The specific environmental changes that are sensed depends on the organism. For animals, plants, and free-living microbes, environmental cues include light/dark cycles, daily temperature fluctuations, among others. In contrast, for a microbe that is never free-living, its rhythmic environment is its host's rhythmic biology. Here, we describe recent research on the interactions between hosts and microbes, from the perspective both of symbiosis as well as infections. In addition to describing the biology of the microbes, we focus specifically on how circadian clocks modulate these host-microbe interactions.
Collapse
Affiliation(s)
- Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
26
|
Diallo AB, Mezouar S, Boumaza A, Fiammingo O, Coiffard B, Pontarotti P, Desnues B, Mege JL. RadA, a Key Gene of the Circadian Rhythm of Escherichia coli. Int J Mol Sci 2022; 23:ijms23116136. [PMID: 35682819 PMCID: PMC9181324 DOI: 10.3390/ijms23116136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 01/24/2023] Open
Abstract
Circadian rhythms are present in almost all living organisms, and their activity relies on molecular clocks. In prokaryotes, a functional molecular clock has been defined only in cyanobacteria. Here, we investigated the presence of circadian rhythms in non-cyanobacterial prokaryotes. The bioinformatic approach was used to identify a homologue of KaiC (circadian gene in cyanobacteria) in Escherichia coli. Then, strains of E. coli (wild type and mutants) were grown on blood agar, and sampling was made every 3 h for 24 h at constant conditions. Gene expression was determined by qRT-PCR, and the rhythmicity was analyzed using the Cosinor model. We identified RadA as a KaiC homologue in E. coli. Expression of radA showed a circadian rhythm persisting at least 3 days, with a peak in the morning. The circadian expression of other E. coli genes was also observed. Gene circadian oscillations were lost in radA mutants of E. coli. This study provides evidence of molecular clock gene expression in E. coli with a circadian rhythm. Such a finding paves the way for new perspectives in antibacterial treatment.
Collapse
Affiliation(s)
- Aissatou Bailo Diallo
- Microbes Evolution Phylogénie et Infection, Institut Recherche et Développement, Aix-Marseille University, 13005 Marseille, France; (S.M.); (A.B.); (O.F.); (B.C.); (P.P.); (B.D.); (J.-L.M.)
- IHU-Méditerranée Infection, 13005 Marseille, France
- Correspondence: ; Tel.: +33-75-885-6027
| | - Soraya Mezouar
- Microbes Evolution Phylogénie et Infection, Institut Recherche et Développement, Aix-Marseille University, 13005 Marseille, France; (S.M.); (A.B.); (O.F.); (B.C.); (P.P.); (B.D.); (J.-L.M.)
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Asma Boumaza
- Microbes Evolution Phylogénie et Infection, Institut Recherche et Développement, Aix-Marseille University, 13005 Marseille, France; (S.M.); (A.B.); (O.F.); (B.C.); (P.P.); (B.D.); (J.-L.M.)
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Oksana Fiammingo
- Microbes Evolution Phylogénie et Infection, Institut Recherche et Développement, Aix-Marseille University, 13005 Marseille, France; (S.M.); (A.B.); (O.F.); (B.C.); (P.P.); (B.D.); (J.-L.M.)
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Benjamin Coiffard
- Microbes Evolution Phylogénie et Infection, Institut Recherche et Développement, Aix-Marseille University, 13005 Marseille, France; (S.M.); (A.B.); (O.F.); (B.C.); (P.P.); (B.D.); (J.-L.M.)
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Pierre Pontarotti
- Microbes Evolution Phylogénie et Infection, Institut Recherche et Développement, Aix-Marseille University, 13005 Marseille, France; (S.M.); (A.B.); (O.F.); (B.C.); (P.P.); (B.D.); (J.-L.M.)
- CNRS SNC5039, 13005 Marseille, France
| | - Benoit Desnues
- Microbes Evolution Phylogénie et Infection, Institut Recherche et Développement, Aix-Marseille University, 13005 Marseille, France; (S.M.); (A.B.); (O.F.); (B.C.); (P.P.); (B.D.); (J.-L.M.)
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Jean-Louis Mege
- Microbes Evolution Phylogénie et Infection, Institut Recherche et Développement, Aix-Marseille University, 13005 Marseille, France; (S.M.); (A.B.); (O.F.); (B.C.); (P.P.); (B.D.); (J.-L.M.)
- IHU-Méditerranée Infection, 13005 Marseille, France
- APHM, UF Immunologie, 13005 Marseille, France
| |
Collapse
|
27
|
Site directed spin labeling to elucidating the mechanism of the cyanobacterial circadian clock. Methods Enzymol 2022; 666:59-78. [PMID: 35465929 DOI: 10.1016/bs.mie.2022.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron Paramagnetic Resonance (EPR) is a spectroscopic technique that provides structural and dynamic information on unpaired spins and their surrounding environments. Introduction of exogenous spin labels via site directed spin labeling (SDSL) enables characterization of systems of interests lacking intrinsic unpaired spins. This chapter describes the use of SDSL in quantifying KaiB-KaiC binding in the cyanobacterial circadian clock (Kai Clock), exploiting the changes in mobility of the local environment around the spin label on KaiB-KaiC interactions. While the Kai system serves as our model system to demonstrate SDSL-EPR utility in quantifying protein-protein interactions, this technique is readily amenable to other systems of interest whenever specific protein-protein interactions need to be isolated. We first present a protocol for spin labeling KaiB. Then, we detail the sample preparation and acquisition processes to maximize signal-to-noise for downstream analysis. We close this chapter by highlighting recent advances in SDSL technology to incorporate spin labels into proteins of interest and in EPR technology to improve detection sensitivity that may allow greater flexibilities to the types of experiments possible.
Collapse
|
28
|
Tyler J, Lu Y, Dunlap J, Forger DB. Evolution of the repression mechanisms in circadian clocks. Genome Biol 2022; 23:17. [PMID: 35012616 PMCID: PMC8751359 DOI: 10.1186/s13059-021-02571-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Circadian (daily) timekeeping is essential to the survival of many organisms. An integral part of all circadian timekeeping systems is negative feedback between an activator and repressor. However, the role of this feedback varies widely between lower and higher organisms. RESULTS Here, we study repression mechanisms in the cyanobacterial and eukaryotic clocks through mathematical modeling and systems analysis. We find a common mathematical model that describes the mechanism by which organisms generate rhythms; however, transcription's role in this has diverged. In cyanobacteria, protein sequestration and phosphorylation generate and regulate rhythms while transcription regulation keeps proteins in proper stoichiometric balance. Based on recent experimental work, we propose a repressor phospholock mechanism that models the negative feedback through transcription in clocks of higher organisms. Interestingly, this model, when coupled with activator phosphorylation, allows for oscillations over a wide range of protein stoichiometries, thereby reconciling the negative feedback mechanism in Neurospora with that in mammals and cyanobacteria. CONCLUSIONS Taken together, these results paint a picture of how circadian timekeeping may have evolved.
Collapse
Affiliation(s)
- Jonathan Tyler
- Department of Mathematics, University of Michigan, Ann Arbor, 48109 MI USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, 48109 MI USA
| | - Yining Lu
- Department of Mathematics, University of Michigan, Ann Arbor, 48109 MI USA
| | - Jay Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, 03755 NH USA
| | - Daniel B. Forger
- Department of Mathematics, University of Michigan, Ann Arbor, 48109 MI USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, 48109 MI USA
| |
Collapse
|
29
|
Hartsock MJ, Strnad HK, Spencer RL. Iterative Metaplasticity Across Timescales: How Circadian, Ultradian, and Infradian Rhythms Modulate Memory Mechanisms. J Biol Rhythms 2021; 37:29-42. [PMID: 34781753 DOI: 10.1177/07487304211058256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Work in recent years has provided strong evidence for the modulation of memory function and neuroplasticity mechanisms across circadian (daily), ultradian (shorter-than-daily), and infradian (longer-than-daily) timescales. Despite rapid progress, however, the field has yet to adopt a general framework to describe the overarching role of biological rhythms in memory. To this end, Iyer and colleagues introduced the term iterative metaplasticity, which they define as the "gating of receptivity to subsequent signals that repeats on a cyclic timebase." The central concept is that the cyclic regulation of molecules involved in neuroplasticity may produce cycles in neuroplastic capacity-that is, the ability of neural cells to undergo activity-dependent change. Although Iyer and colleagues focus on the circadian timescale, we think their framework may be useful for understanding how biological rhythms influence memory more broadly. In this review, we provide examples and terminology to explain how the idea of iterative metaplasticity can be readily applied across circadian, ultradian, and infradian timescales. We suggest that iterative metaplasticity may not only support the temporal niching of neuroplasticity processes but also serve an essential role in the maintenance of memory function.
Collapse
Affiliation(s)
- Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | | | | |
Collapse
|
30
|
Cai YD, Chiu JC. Timeless in animal circadian clocks and beyond. FEBS J 2021; 289:6559-6575. [PMID: 34699674 PMCID: PMC9038958 DOI: 10.1111/febs.16253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/09/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
TIMELESS (TIM) was first identified as a molecular cog in the Drosophila circadian clock. Almost three decades of investigations have resulted in an insightful model describing the critical role of Drosophila TIM (dTIM) in circadian timekeeping in insects, including its function in mediating light entrainment and temperature compensation of the molecular clock. Furthermore, exciting discoveries on its sequence polymorphism and thermosensitive alternative RNA splicing have also established its role in regulating seasonal biology. Although mammalian TIM (mTIM), its mammalian paralog, was first identified as a potential circadian clock component in 1990s due to sequence similarity to dTIM, its role in clock regulation has been more controversial. Mammalian TIM has now been characterized as a DNA replication fork component and has been shown to promote fork progression and participate in cell cycle checkpoint signaling in response to DNA damage. Despite defective circadian rhythms displayed by mtim mutants, it remains controversial whether the regulation of circadian clocks by mTIM is direct, especially given the interconnection between the cell cycle and circadian clocks. In this review, we provide a historical perspective on the identification of animal tim genes, summarize the roles of TIM proteins in biological timing and genomic stability, and draw parallels between dTIM and mTIM despite apparent functional divergence.
Collapse
Affiliation(s)
- Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, CA, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, CA, USA
| |
Collapse
|
31
|
Aviram R, Adamovich Y, Asher G. Circadian Organelles: Rhythms at All Scales. Cells 2021; 10:2447. [PMID: 34572096 PMCID: PMC8469338 DOI: 10.3390/cells10092447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Circadian clocks have evolved in most light-sensitive organisms, from unicellular organisms to mammals. Consequently, a myriad of biological functions exhibits circadian rhythmicity, from behavior to physiology, through tissue and cellular functions to subcellular processes. Circadian rhythms in intracellular organelles are an emerging and exciting research arena. We summarize herein the current literature for rhythmicity in major intracellular organelles in mammals. These include changes in the morphology, content, and functions of different intracellular organelles. While these data highlight the presence of rhythmicity in these organelles, a gap remains in our knowledge regarding the underlying molecular mechanisms and their functional significance. Finally, we discuss the importance and challenges faced by spatio-temporal studies on these organelles and speculate on the presence of oscillators in organelles and their potential mode of communication. As circadian biology has been and continues to be studied throughout temporal and spatial axes, circadian organelles appear to be the next frontier.
Collapse
Affiliation(s)
| | | | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (R.A.); (Y.A.)
| |
Collapse
|
32
|
Yadav A, Maertens L, Meese T, Van Nieuwerburgh F, Mysara M, Leys N, Cuypers A, Janssen PJ. Genetic Responses of Metabolically Active Limnospira indica Strain PCC 8005 Exposed to γ-Radiation during Its Lifecycle. Microorganisms 2021; 9:1626. [PMID: 34442705 PMCID: PMC8400943 DOI: 10.3390/microorganisms9081626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Two morphotypes of the cyanobacterial Limnospira indica (formerly Arthrospira sp.) strain PCC 8005, denoted as P2 (straight trichomes) and P6 (helical trichomes), were subjected to chronic gamma radiation from spent nuclear fuel (SNF) rods at a dose rate of ca. 80 Gy·h-1 for one mass doubling period (approximately 3 days) under continuous light with photoautotrophic metabolism fully active. Samples were taken for post-irradiation growth recovery and RNA-Seq transcriptional analysis at time intervals of 15, 40, and 71.5 h corresponding to cumulative doses of ca. 1450, 3200, and 5700 Gy, respectively. Both morphotypes, which were previously reported by us to display different antioxidant capacities and differ at the genomic level in 168 SNPs, 48 indels and 4 large insertions, recovered equally well from 1450 and 3200 Gy. However, while the P2 straight type recovered from 5700 Gy by regaining normal growth within 6 days, the P6 helical type took about 13 days to recover from this dose, indicating differences in their radiation tolerance and response. To investigate these differences, P2 and P6 cells exposed to the intermediate dose of gamma radiation (3200 Gy) were analyzed for differential gene expression by RNA-Seq analysis. Prior to batch normalization, a total of 1553 genes (887 and 666 of P2 and P6, respectively, with 352 genes in common) were selected based on a two-fold change in expression and a false discovery rate FDR smaller or equal to 0.05. About 85% of these 1553 genes encoded products of yet unknown function. Of the 229 remaining genes, 171 had a defined function while 58 genes were transcribed into non-coding RNA including 21 tRNAs (all downregulated). Batch normalization resulted in 660 differentially expressed genes with 98 having a function and 32 encoding RNA. From PCC 8005-P2 and PCC 8005-P6 expression patterns, it emerges that although the cellular routes used by the two substrains to cope with ionizing radiation do overlap to a large extent, both strains displayed a distinct preference of priorities.
Collapse
Affiliation(s)
- Anu Yadav
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Laurens Maertens
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
- Research Unit in Biology of Microorganisms (URBM), Narilis Institute, University of Namur, 5000 Namur, Belgium
| | - Tim Meese
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; (T.M.); (F.V.N.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; (T.M.); (F.V.N.)
| | - Mohamed Mysara
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| | - Natalie Leys
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Paul Jaak Janssen
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| |
Collapse
|
33
|
Mosier AE, Hurley JM. Circadian Interactomics: How Research Into Protein-Protein Interactions Beyond the Core Clock Has Influenced the Model of Circadian Timekeeping. J Biol Rhythms 2021; 36:315-328. [PMID: 34056936 DOI: 10.1177/07487304211014622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The circadian clock is the broadly conserved, protein-based, timekeeping mechanism that synchronizes biology to the Earth's 24-h light-dark cycle. Studies of the mechanisms of circadian timekeeping have placed great focus on the role that individual protein-protein interactions play in the creation of the timekeeping loop. However, research has shown that clock proteins most commonly act as part of large macromolecular protein complexes to facilitate circadian control over physiology. The formation of these complexes has led to the large-scale study of the proteins that comprise these complexes, termed here "circadian interactomics." Circadian interactomic studies of the macromolecular protein complexes that comprise the circadian clock have uncovered many basic principles of circadian timekeeping as well as mechanisms of circadian control over cellular physiology. In this review, we examine the wealth of knowledge accumulated using circadian interactomics approaches to investigate the macromolecular complexes of the core circadian clock, including insights into the core mechanisms that impart circadian timing and the clock's regulation of many physiological processes. We examine data acquired from the investigation of the macromolecular complexes centered on both the activating and repressing arm of the circadian clock and from many circadian model organisms.
Collapse
Affiliation(s)
- Alexander E Mosier
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY
| | - Jennifer M Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY.,Center for Biotechnology & Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY
| |
Collapse
|
34
|
Dvornyk V, Mei Q. Evolution of kaiA, a key circadian gene of cyanobacteria. Sci Rep 2021; 11:9995. [PMID: 33976298 PMCID: PMC8113500 DOI: 10.1038/s41598-021-89345-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 03/16/2021] [Indexed: 11/09/2022] Open
Abstract
The circadian system of cyanobacteria is built upon a central oscillator consisting of three genes, kaiA, kaiB, and kaiC. The KaiA protein plays a key role in phosphorylation/dephosphorylation cycles of KaiC, which occur over the 24-h period. We conducted a comprehensive evolutionary analysis of the kaiA genes across cyanobacteria. The results show that, in contrast to the previous reports, kaiA has an ancient origin and is as old as cyanobacteria. The kaiA homologs are present in nearly all analyzed cyanobacteria, except Gloeobacter, and have varying domain architecture. Some Prochlorococcales, which were previously reported to lack the kaiA gene, possess a drastically truncated homolog. The existence of the diverse kaiA homologs suggests significant variation of the circadian mechanism, which was described for the model cyanobacterium, Synechococcus elongatus PCC7942. The major structural modifications in the kaiA genes (duplications, acquisition and loss of domains) have apparently been induced by global environmental changes in the different geological periods.
Collapse
Affiliation(s)
- Volodymyr Dvornyk
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia.
| | - Qiming Mei
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, People's Republic of China.,Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
35
|
Madhurima K, Nandi B, Sekhar A. Metamorphic proteins: the Janus proteins of structural biology. Open Biol 2021; 11:210012. [PMID: 33878950 PMCID: PMC8059507 DOI: 10.1098/rsob.210012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The structural paradigm that the sequence of a protein encodes for a unique three-dimensional native fold does not acknowledge the intrinsic plasticity encapsulated in conformational free energy landscapes. Metamorphic proteins are a recently discovered class of biomolecules that illustrate this plasticity by folding into at least two distinct native state structures of comparable stability in the absence of ligands or cofactors to facilitate fold-switching. The expanding list of metamorphic proteins clearly shows that these proteins are not mere aberrations in protein evolution, but may have actually been a consequence of distinctive patterns in selection pressure such as those found in virus–host co-evolution. In this review, we describe the structure–function relationships observed in well-studied metamorphic protein systems, with specific focus on how functional residues are sequestered or exposed in the two folds of the protein. We also discuss the implications of metamorphosis for protein evolution and the efforts that are underway to predict metamorphic systems from sequence properties alone.
Collapse
Affiliation(s)
- Kulkarni Madhurima
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Bodhisatwa Nandi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
36
|
A Tangled Threesome: Circadian Rhythm, Body Temperature Variations, and the Immune System. BIOLOGY 2021; 10:biology10010065. [PMID: 33477463 PMCID: PMC7829919 DOI: 10.3390/biology10010065] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary In mammals, including humans, the body temperature displays a circadian rhythm and is maintained within a narrow range to facilitate the optimal functioning of physiological processes. Body temperature increases during the daytime and decreases during the nighttime thus influencing the expression of the molecular clock and the clock-control genes such as immune genes. An increase in body temperature (daytime, or fever) also prepares the organism to fight aggression by promoting the activation, function, and delivery of immune cells. Many factors may affect body temperature level and rhythm, including environment, age, hormones, or treatment. The disruption of the body temperature is associated with many kinds of diseases and their severity, thus supporting the assumed association between body temperature rhythm and immune functions. Recent studies using complex analysis suggest that circadian rhythm may change in all aspects (level, period, amplitude) and may be predictive of good or poor outcomes. The monitoring of body temperature is an easy tool to predict outcomes and maybe guide future studies in chronotherapy. Abstract The circadian rhythm of the body temperature (CRBT) is a marker of the central biological clock that results from multiple complex biological processes. In mammals, including humans, the body temperature displays a strict circadian rhythm and has to be maintained within a narrow range to allow optimal physiological functions. There is nowadays growing evidence on the role of the temperature circadian rhythm on the expression of the molecular clock. The CRBT likely participates in the phase coordination of circadian timekeepers in peripheral tissues, thus guaranteeing the proper functioning of the immune system. The disruption of the CRBT, such as fever, has been repeatedly described in diseases and likely reflects a physiological process to activate the molecular clock and trigger the immune response. On the other hand, temperature circadian disruption has also been described as associated with disease severity and thus may mirror or contribute to immune dysfunction. The present review aims to characterize the potential implication of the temperature circadian rhythm on the immune response, from molecular pathways to diseases. The origin of CRBT and physiological changes in body temperature will be mentioned. We further review the immune biological effects of temperature rhythmicity in hosts, vectors, and pathogens. Finally, we discuss the relationship between circadian disruption of the body temperature and diseases and highlight the emerging evidence that CRBT monitoring would be an easy tool to predict outcomes and guide future studies in chronotherapy.
Collapse
|
37
|
Serenko A, Turel O, Bohonis H. The impact of social networking sites use on health-related outcomes among UK adolescents. COMPUTERS IN HUMAN BEHAVIOR REPORTS 2021. [DOI: 10.1016/j.chbr.2021.100058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
38
|
Time-of-day-dependent responses of cyanobacterial cellular viability against oxidative stress. Sci Rep 2020; 10:20029. [PMID: 33208874 PMCID: PMC7676254 DOI: 10.1038/s41598-020-77141-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/03/2020] [Indexed: 01/05/2023] Open
Abstract
As an adaptation to periodic fluctuations of environmental light, photosynthetic organisms have evolved a circadian clock. Control by the circadian clock of many cellular physiological functions, including antioxidant enzymes, metabolism and the cell cycle, has attracted attention in the context of oxidative stress tolerance. However, since each physiological function works in an integrated manner to deal with oxidative stress, whether or not cell responses to oxidative stress are under circadian control remains an open question. In fact, circadian rhythms of oxidative stress tolerance have not yet been experimentally demonstrated. In the present work, we applied an assay using methyl viologen (MV), which generates reactive oxygen species (ROS) under light irradiation, and experimentally verified the circadian rhythms of oxidative stress tolerance in photosynthetic cells of the cyanobacterium Synechococcus elongatus PCC 7942, a standard model species for investigation of the circadian clock. Here, we report that ROS generated by MV treatment causes damage to stroma components and not to the photosynthetic electron transportation chain, leading to reduced cell viability. The degree of decrease in cell viability was dependent on the subjective time at which oxidative stress was applied. Thus, oxidative stress tolerance was shown to exhibit circadian rhythms. In addition, the rhythmic pattern of oxidative stress tolerance disappeared in mutant cells lacking the essential clock genes. Notably, ROS levels changed periodically, independent of the MV treatment. Thus, we demonstrate for the first time that in cyanobacterial cells, oxidative stress tolerance shows circadian oscillation.
Collapse
|
39
|
Gliech CR, Holland AJ. Keeping track of time: The fundamentals of cellular clocks. J Cell Biol 2020; 219:e202005136. [PMID: 32902596 PMCID: PMC7594491 DOI: 10.1083/jcb.202005136] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Biological timekeeping enables the coordination and execution of complex cellular processes such as developmental programs, day/night organismal changes, intercellular signaling, and proliferative safeguards. While these systems are often considered separately owing to a wide variety of mechanisms, time frames, and outputs, all clocks are built by calibrating or delaying the rate of biochemical reactions and processes. In this review, we explore the common themes and core design principles of cellular clocks, giving special consideration to the challenges associated with building timers from biochemical components. We also outline how evolution has coopted time to increase the reliability of a diverse range of biological systems.
Collapse
Affiliation(s)
| | - Andrew J. Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
40
|
Ch R, Chevallier O, Elliott CT. Metabolomics reveal circadian control of cellular metabolism. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Diallo AB, Coiffard B, Leone M, Mezouar S, Mege JL. For Whom the Clock Ticks: Clinical Chronobiology for Infectious Diseases. Front Immunol 2020; 11:1457. [PMID: 32733482 PMCID: PMC7363845 DOI: 10.3389/fimmu.2020.01457] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
The host defense against pathogens varies among individuals. Among the factors influencing host response, those associated with circadian disruptions are emerging. These latter depend on molecular clocks, which control the two partners of host defense: microbes and immune system. There is some evidence that infections are closely related to circadian rhythms in terms of susceptibility, clinical presentation and severity. In this review, we overview what is known about circadian rhythms in infectious diseases and update the knowledge about circadian rhythms in immune system, pathogens and vectors. This heuristic approach opens a new fascinating field of time-based personalized treatment of infected patients.
Collapse
Affiliation(s)
- Aïssatou Bailo Diallo
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Benjamin Coiffard
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,Aix-Marseille Univ, AP-HM, Hôpital Nord, Médecine Intensive-Réanimation, Marseille, France
| | - Marc Leone
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,Aix-Marseille Univ, AP-HM, CHU Hôpital Nord, Service d'Anesthésie et de Réanimation, Marseille, France
| | - Soraya Mezouar
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Jean-Louis Mege
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,AP-HM, UF Immunologie, Marseille, France
| |
Collapse
|
42
|
Alvarez Y, Glotfelty LG, Blank N, Dohnalová L, Thaiss CA. The Microbiome as a Circadian Coordinator of Metabolism. Endocrinology 2020; 161:bqaa059. [PMID: 32291454 PMCID: PMC7899566 DOI: 10.1210/endocr/bqaa059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
The microbiome is critically involved in the regulation of systemic metabolism. An important but poorly understood facet of this regulation is the diurnal activity of the microbiome. Herein, we summarize recent developments in our understanding of the diurnal properties of the microbiome and their integration into the circadian regulation of organismal metabolism. The microbiome may be involved in the detrimental consequences of circadian disruption for host metabolism and the development of metabolic disease. At the same time, the mechanisms by which microbiome diurnal activity is integrated into host physiology reveal several translational opportunities by which the time of day can be harnessed to optimize microbiome-based therapies. The study of circadian microbiome properties may thus provide a new avenue for treating disorders associated with circadian disruption from the gut.
Collapse
Affiliation(s)
- Yelina Alvarez
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lila G Glotfelty
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Niklas Blank
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Lenka Dohnalová
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christoph A Thaiss
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Hong L, Lavrentovich DO, Chavan A, Leypunskiy E, Li E, Matthews C, LiWang A, Rust MJ, Dinner AR. Bayesian modeling reveals metabolite-dependent ultrasensitivity in the cyanobacterial circadian clock. Mol Syst Biol 2020; 16:e9355. [PMID: 32496641 PMCID: PMC7271899 DOI: 10.15252/msb.20199355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Mathematical models can enable a predictive understanding of mechanism in cell biology by quantitatively describing complex networks of interactions, but such models are often poorly constrained by available data. Owing to its relative biochemical simplicity, the core circadian oscillator in Synechococcus elongatus has become a prototypical system for studying how collective dynamics emerge from molecular interactions. The oscillator consists of only three proteins, KaiA, KaiB, and KaiC, and near-24-h cycles of KaiC phosphorylation can be reconstituted in vitro. Here, we formulate a molecularly detailed but mechanistically naive model of the KaiA-KaiC subsystem and fit it directly to experimental data within a Bayesian parameter estimation framework. Analysis of the fits consistently reveals an ultrasensitive response for KaiC phosphorylation as a function of KaiA concentration, which we confirm experimentally. This ultrasensitivity primarily results from the differential affinity of KaiA for competing nucleotide-bound states of KaiC. We argue that the ultrasensitive stimulus-response relation likely plays an important role in metabolic compensation by suppressing premature phosphorylation at nighttime.
Collapse
Affiliation(s)
- Lu Hong
- Graduate Program in Biophysical SciencesUniversity of ChicagoChicagoILUSA
| | - Danylo O Lavrentovich
- Department of ChemistryUniversity of ChicagoChicagoILUSA
- Present address:
Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| | - Archana Chavan
- School of Natural SciencesUniversity of CaliforniaMercedCAUSA
| | - Eugene Leypunskiy
- Graduate Program in Biophysical SciencesUniversity of ChicagoChicagoILUSA
| | - Eileen Li
- Department of StatisticsUniversity of ChicagoChicagoILUSA
| | - Charles Matthews
- Department of StatisticsUniversity of ChicagoChicagoILUSA
- Present address:
School of MathematicsUniversity of EdinburghEdinburghUK
| | - Andy LiWang
- School of Natural SciencesUniversity of CaliforniaMercedCAUSA
- Quantitative and Systems BiologyUniversity of CaliforniaMercedCAUSA
- Center for Circadian BiologyUniversity of CaliforniaSan Diego, La JollaCAUSA
- Chemistry and Chemical BiologyUniversity of CaliforniaMercedCAUSA
- Health Sciences Research InstituteUniversity of CaliforniaMercedCAUSA
- Center for Cellular and Biomolecular MachinesUniversity of CaliforniaMercedCAUSA
| | - Michael J Rust
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoILUSA
- Institute for Biophysical DynamicsUniversity of ChicagoChicagoILUSA
- Institute for Genomics and Systems BiologyUniversity of ChicagoChicagoILUSA
| | - Aaron R Dinner
- Department of ChemistryUniversity of ChicagoChicagoILUSA
- Institute for Biophysical DynamicsUniversity of ChicagoChicagoILUSA
- James Franck InstituteUniversity of ChicagoChicagoILUSA
| |
Collapse
|
44
|
Partch CL. Orchestration of Circadian Timing by Macromolecular Protein Assemblies. J Mol Biol 2020; 432:3426-3448. [DOI: 10.1016/j.jmb.2019.12.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022]
|
45
|
Diernfellner AC, Brunner M. Phosphorylation Timers in the Neurospora crassa Circadian Clock. J Mol Biol 2020; 432:3449-3465. [DOI: 10.1016/j.jmb.2020.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/10/2020] [Accepted: 04/05/2020] [Indexed: 02/08/2023]
|
46
|
The recovery of KaiA’s activity depends on its N-terminal domain and KaiB in the cyanobacterial circadian clock. Biochem Biophys Res Commun 2020; 524:123-128. [DOI: 10.1016/j.bbrc.2020.01.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/13/2020] [Indexed: 11/20/2022]
|
47
|
Costantini C, Renga G, Sellitto F, Borghi M, Stincardini C, Pariano M, Zelante T, Chiarotti F, Bartoli A, Mosci P, Romani L, Brancorsini S, Bellet MM. Microbes in the Era of Circadian Medicine. Front Cell Infect Microbiol 2020; 10:30. [PMID: 32117804 PMCID: PMC7013081 DOI: 10.3389/fcimb.2020.00030] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/15/2020] [Indexed: 12/29/2022] Open
Abstract
The organisms of most domains of life have adapted to circadian changes of the environment and regulate their behavior and physiology accordingly. A particular case of such paradigm is represented by some types of host-pathogen interaction during infection. Indeed, not only some hosts and pathogens are each endowed with their own circadian clock, but they are also influenced by the circadian changes of the other with profound consequences on the outcome of the infection. It comes that daily fluctuations in the availability of resources and the nature of the immune response, coupled with circadian changes of the pathogen, may influence microbial virulence, level of colonization and damage to the host, and alter the equilibrium between commensal and invading microorganisms. In the present review, we discuss the potential relevance of circadian rhythms in human bacterial and fungal pathogens, and the consequences of circadian changes of the host immune system and microbiome on the onset and development of infection. By looking from the perspective of the interplay between host and microbes circadian rhythms, these concepts are expected to change the way we approach human infections, not only by predicting the outcome of the host-pathogen interaction, but also by indicating the best time for intervention to potentiate the anti-microbial activities of the immune system and to weaken the pathogen when its susceptibility is higher.
Collapse
Affiliation(s)
- Claudio Costantini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giorgia Renga
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Federica Sellitto
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Monica Borghi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Marilena Pariano
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Flavia Chiarotti
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Bartoli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Paolo Mosci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | | |
Collapse
|
48
|
Synechocystis KaiC3 Displays Temperature- and KaiB-Dependent ATPase Activity and Is Important for Growth in Darkness. J Bacteriol 2020; 202:JB.00478-19. [PMID: 31767776 PMCID: PMC6989803 DOI: 10.1128/jb.00478-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/17/2019] [Indexed: 02/05/2023] Open
Abstract
Cyanobacteria form a heterogeneous bacterial group with diverse lifestyles, acclimation strategies, and differences in the presence of circadian clock proteins. In Synechococcus elongatus PCC 7942, a unique posttranslational KaiABC oscillator drives circadian rhythms. ATPase activity of KaiC correlates with the period of the clock and mediates temperature compensation. Synechocystis sp. strain PCC 6803 expresses additional Kai proteins, of which KaiB3 and KaiC3 proteins were suggested to fine-tune the standard KaiAB1C1 oscillator. In the present study, we therefore characterized the enzymatic activity of KaiC3 as a representative of nonstandard KaiC homologs in vitro KaiC3 displayed ATPase activity lower than that of the Synechococcus elongatus PCC 7942 KaiC protein. ATP hydrolysis was temperature dependent. Hence, KaiC3 is missing a defining feature of the model cyanobacterial circadian oscillator. Yeast two-hybrid analysis showed that KaiC3 interacts with KaiB3, KaiC1, and KaiB1. Further, KaiB3 and KaiB1 reduced in vitro ATP hydrolysis by KaiC3. Spot assays showed that chemoheterotrophic growth in constant darkness is completely abolished after deletion of ΔkaiAB1C1 and reduced in the absence of kaiC3 We therefore suggest a role for adaptation to darkness for KaiC3 as well as a cross talk between the KaiC1- and KaiC3-based systems.IMPORTANCE The circadian clock influences the cyanobacterial metabolism, and deeper understanding of its regulation will be important for metabolic optimizations in the context of industrial applications. Due to the heterogeneity of cyanobacteria, characterization of clock systems in organisms apart from the circadian model Synechococcus elongatus PCC 7942 is required. Synechocystis sp. strain PCC 6803 represents a major cyanobacterial model organism and harbors phylogenetically diverged homologs of the clock proteins, which are present in various other noncyanobacterial prokaryotes. By our in vitro studies we unravel the interplay of the multiple Synechocystis Kai proteins and characterize enzymatic activities of the nonstandard clock homolog KaiC3. We show that the deletion of kaiC3 affects growth in constant darkness, suggesting its involvement in the regulation of nonphotosynthetic metabolic pathways.
Collapse
|
49
|
Hellweger FL. Combining Molecular Observations and Microbial Ecosystem Modeling: A Practical Guide. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:267-289. [PMID: 31226029 DOI: 10.1146/annurev-marine-010419-010829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Advances in technologies for molecular observation are leading to novel types of data, including gene, transcript, protein, and metabolite levels, which are fundamentally different from the types traditionally compared with microbial ecosystem models, such as biomass (e.g., chlorophyll a) and nutrient concentrations. A grand challenge is to use these data to improve predictive models and use models to explain observed patterns. This article presents a framework that aligns observations and models along the dimension of abstraction or biological organization-from raw sequences to ecosystem patterns for observations, and from sequence simulators to ecological theory for models. It then reviews 16 studies that compared model results with molecular observations. Molecular data can and are being combined with microbial ecosystem models, but to keep up with and take advantage of the full scope of observations, models need to become more mechanistically detailed and complex, which is a technical and cultural challenge for the ecological modeling community.
Collapse
Affiliation(s)
- Ferdi L Hellweger
- Specialty Area of Water Quality Engineering (Wasserreinhaltung), Institute of Environmental Science and Engineering, Technical University of Berlin, 10623 Berlin, Germany;
| |
Collapse
|
50
|
Tanaka K, Ishikawa M, Kaneko M, Kamiya K, Kato S, Nakanishi S. The endogenous redox rhythm is controlled by a central circadian oscillator in cyanobacterium Synechococcus elongatus PCC7942. PHOTOSYNTHESIS RESEARCH 2019; 142:203-210. [PMID: 31485868 DOI: 10.1007/s11120-019-00667-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
The intracellular redox and the circadian clock in photosynthetic organisms are two major regulators globally affecting various biological functions. Both of the global control systems have evolved as systems to adapt to regularly or irregularly changing light environments. Here, we report that the two global regulators mutually interact in cyanobacterium Synechococcus elongatus PCC7942, a model photosynthetic organism whose clock molecular mechanism is well known. Electrochemical assay using a transmembrane electron mediator revealed that intracellular redox of S. elongatus PCC7942 cell exhibited circadian rhythms under constant light conditions. The redox rhythm disappeared when transcription/translation of clock genes is defunctionalized, indicating that the transcription/translation controlled by a core KaiABC oscillator generates the circadian redox rhythm. Importantly, the amplitude of the redox rhythm at a constant light condition was large enough to affect the KaiABC oscillator. The findings indicated that the intracellular redox state is actively controlled to change in a 24-h cycle under constant light conditions by the circadian clock system.
Collapse
Affiliation(s)
- Kenya Tanaka
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan
| | - Masahito Ishikawa
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Masahiro Kaneko
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuhide Kamiya
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan
| | - Souichiro Kato
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido, 062-8517, Japan
| | - Shuji Nakanishi
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan.
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan.
| |
Collapse
|