1
|
Vera-Peralta H, Najburg V, Combredet C, Douché T, Gianetto QG, Matondo M, Tangy F, Mura M, Komarova AV. Applying Reverse Genetics to Study Measles Virus Interactions with the Host. Methods Mol Biol 2024; 2808:89-103. [PMID: 38743364 DOI: 10.1007/978-1-0716-3870-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The study of virus-host interactions is essential to achieve a comprehensive understanding of the viral replication process. The commonly used methods are yeast two-hybrid approach and transient expression of a single tagged viral protein in host cells followed by affinity purification of interacting cellular proteins and mass spectrometry analysis (AP-MS). However, by these approaches, virus-host protein-protein interactions are detected in the absence of a real infection, not always correctly compartmentalized, and for the yeast two-hybrid approach performed in a heterologous system. Thus, some of the detected protein-protein interactions may be artificial. Here we describe a new strategy based on recombinant viruses expressing tagged viral proteins to capture both direct and indirect protein partners during the infection (AP-MS in viral context). This way, virus-host protein-protein interacting co-complexes can be purified directly from infected cells for further characterization.
Collapse
Affiliation(s)
- Heidy Vera-Peralta
- Institut Pasteur, Université Paris Cité, Innovation Lab: Vaccines, Paris, France
- Institut de recherche biomédicale des armées, Immunopathologie, Bretigny-sur-Orge, France
| | - Valerie Najburg
- Institut Pasteur, Université Paris Cité, Innovation Lab: Vaccines, Paris, France
| | - Chantal Combredet
- Institut Pasteur, Université Paris Cité, Innovation Lab: Vaccines, Paris, France
| | - Thibaut Douché
- Institut Pasteur, Université Paris Cité, Proteomics Platform, Mass Spectrometry for Biology, CNRS, Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Université Paris Cité, Proteomics Platform, Mass Spectrometry for Biology, CNRS, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics Hub, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Université Paris Cité, Proteomics Platform, Mass Spectrometry for Biology, CNRS, Paris, France
| | | | - Marie Mura
- Institut Pasteur, Université Paris Cité, Innovation Lab: Vaccines, Paris, France
- Institut de recherche biomédicale des armées, Immunopathologie, Bretigny-sur-Orge, France
| | - Anastassia V Komarova
- Institut Pasteur, Université Paris Cité, Interactomics, RNA and Immunity Laboratory, Paris, France.
| |
Collapse
|
2
|
Khalfi P, Suspène R, Raymond KA, Caval V, Caignard G, Berry N, Thiers V, Combredet C, Rufie C, Rigaud S, Ghozlane A, Volant S, Komarova AV, Tangy F, Vartanian JP. Antagonism of ALAS1 by the Measles Virus V protein contributes to degradation of the mitochondrial network and promotes interferon response. PLoS Pathog 2023; 19:e1011170. [PMID: 36802406 PMCID: PMC9983871 DOI: 10.1371/journal.ppat.1011170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/03/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023] Open
Abstract
Viruses have evolved countless mechanisms to subvert and impair the host innate immune response. Measles virus (MeV), an enveloped, non-segmented, negative-strand RNA virus, alters the interferon response through different mechanisms, yet no viral protein has been described as directly targeting mitochondria. Among the crucial mitochondrial enzymes, 5'-aminolevulinate synthase (ALAS) is an enzyme that catalyzes the first step in heme biosynthesis, generating 5'-aminolevulinate from glycine and succinyl-CoA. In this work, we demonstrate that MeV impairs the mitochondrial network through the V protein, which antagonizes the mitochondrial enzyme ALAS1 and sequesters it to the cytosol. This re-localization of ALAS1 leads to a decrease in mitochondrial volume and impairment of its metabolic potential, a phenomenon not observed in MeV deficient for the V gene. This perturbation of the mitochondrial dynamics demonstrated both in culture and in infected IFNAR-/- hCD46 transgenic mice, causes the release of mitochondrial double-stranded DNA (mtDNA) in the cytosol. By performing subcellular fractionation post infection, we demonstrate that the most significant source of DNA in the cytosol is of mitochondrial origin. Released mtDNA is then recognized and transcribed by the DNA-dependent RNA polymerase III. The resulting double-stranded RNA intermediates will be captured by RIG-I, ultimately initiating type I interferon production. Deep sequencing analysis of cytosolic mtDNA editing divulged an APOBEC3A signature, primarily analyzed in the 5'TpCpG context. Finally, in a negative feedback loop, APOBEC3A an interferon inducible enzyme will orchestrate the catabolism of mitochondrial DNA, decrease cellular inflammation, and dampen the innate immune response.
Collapse
Affiliation(s)
- Pierre Khalfi
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, Paris, France
- Sorbonne Université, Complexité du Vivant, ED515, Paris, France
| | - Rodolphe Suspène
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Kyle A. Raymond
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, Paris, France
- Sorbonne Université, Complexité du Vivant, ED515, Paris, France
| | - Vincent Caval
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, Paris, France
| | | | - Noémie Berry
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, Paris, France
- Sorbonne Université, Complexité du Vivant, ED515, Paris, France
- UMR1161 Virologie, ANSES-INRAE-ENVA, Maisons-Alfort, France
| | - Valérie Thiers
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Chantal Combredet
- Vaccines Innovation Laboratory, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Claude Rufie
- Vaccines Innovation Laboratory, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Stéphane Rigaud
- Image Analysis Hub, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Amine Ghozlane
- Bioinformatics and Biostatistics HUB, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Stevenn Volant
- Bioinformatics and Biostatistics HUB, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Anastassia V. Komarova
- Interactomics, RNA and Immunity Laboratory, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Frédéric Tangy
- Vaccines Innovation Laboratory, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Jean-Pierre Vartanian
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
3
|
Meignié A, Combredet C, Santolini M, Kovács IA, Douché T, Gianetto QG, Eun H, Matondo M, Jacob Y, Grailhe R, Tangy F, Komarova AV. Proteomic Analysis Uncovers Measles Virus Protein C Interaction With p65-iASPP Protein Complex. Mol Cell Proteomics 2021; 20:100049. [PMID: 33515806 PMCID: PMC7950213 DOI: 10.1016/j.mcpro.2021.100049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/30/2022] Open
Abstract
Viruses manipulate the central machineries of host cells to their advantage. They prevent host cell antiviral responses to create a favorable environment for their survival and propagation. Measles virus (MV) encodes two nonstructural proteins MV-V and MV-C known to counteract the host interferon response and to regulate cell death pathways. Several molecular mechanisms underlining MV-V regulation of innate immunity and cell death pathways have been proposed, whereas MV-C host-interacting proteins are less studied. We suggest that some cellular factors that are controlled by MV-C protein during viral replication could be components of innate immunity and the cell death pathways. To determine which host factors are targeted by MV-C, we captured both direct and indirect host-interacting proteins of MV-C protein. For this, we used a strategy based on recombinant viruses expressing tagged viral proteins followed by affinity purification and a bottom-up mass spectrometry analysis. From the list of host proteins specifically interacting with MV-C protein in different cell lines, we selected the host targets that belong to immunity and cell death pathways for further validation. Direct protein interaction partners of MV-C were determined by applying protein complementation assay and the bioluminescence resonance energy transfer approach. As a result, we found that MV-C protein specifically interacts with p65–iASPP protein complex that controls both cell death and innate immunity pathways and evaluated the significance of these host factors on virus replication. Measles virus controls immune response and cell death pathways to achieve replication. Host proteins interaction network with measles virulence factor C protein. Cellular p65–iASPP complex is targeted by measles virus C protein.
Collapse
Affiliation(s)
- Alice Meignié
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Chantal Combredet
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Marc Santolini
- Center for Research and Interdisciplinarity (CRI), Université de Paris, INSERM U1284, Paris, France; Network Science Institute and Department of Physics, Northeastern University, Boston, Massachusetts, USA
| | - István A Kovács
- Network Science Institute and Department of Physics, Northeastern University, Boston, Massachusetts, USA; Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, USA; Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Thibaut Douché
- Proteomics platform, Mass Spectrometry for Biology Unit (MSBio), Institut Pasteur, CNRS USR 2000, Paris, France
| | - Quentin Giai Gianetto
- Proteomics platform, Mass Spectrometry for Biology Unit (MSBio), Institut Pasteur, CNRS USR 2000, Paris, France; Bioinformatics and Biostatistics Hub, Computational Biology Department, Institut Pasteur, CNRS USR 3756, Paris, France
| | - Hyeju Eun
- Technology Development Platform, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Mariette Matondo
- Proteomics platform, Mass Spectrometry for Biology Unit (MSBio), Institut Pasteur, CNRS USR 2000, Paris, France
| | - Yves Jacob
- Laboratory of Molecular Genetics of RNA Viruses, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Regis Grailhe
- Technology Development Platform, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Frédéric Tangy
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France.
| | - Anastassia V Komarova
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France; Laboratory of Molecular Genetics of RNA Viruses, Institut Pasteur, CNRS UMR-3569, Paris, France.
| |
Collapse
|
4
|
Sharma A, Batra J, Stuchlik O, Reed MS, Pohl J, Chow VTK, Sambhara S, Lal SK. Influenza A Virus Nucleoprotein Activates the JNK Stress-Signaling Pathway for Viral Replication by Sequestering Host Filamin A Protein. Front Microbiol 2020; 11:581867. [PMID: 33101257 PMCID: PMC7546217 DOI: 10.3389/fmicb.2020.581867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022] Open
Abstract
Influenza A virus (IAV) poses a major threat to global public health and is known to employ various strategies to usurp the host machinery for survival. Due to its fast-evolving nature, IAVs tend to escape the effect of available drugs and vaccines thus, prompting the development of novel antiviral strategies. High-throughput mass spectrometric screen of host-IAV interacting partners revealed host Filamin A (FLNA), an actin-binding protein involved in regulating multiple signaling pathways, as an interaction partner of IAV nucleoprotein (NP). In this study, we found that the IAV NP interrupts host FLNA-TRAF2 interaction by interacting with FLNA thus, resulting in increased levels of free, displaced TRAF2 molecules available for TRAF2-ASK1 mediated JNK pathway activation, a pathway critical to maintaining efficient viral replication. In addition, siRNA-mediated FLNA silencing was found to promote IAV replication (87% increase) while FLNA-overexpression impaired IAV replication (65% decrease). IAV NP was observed to be a crucial viral factor required to attain FLNA mRNA and protein attenuation post-IAV infection for efficient viral replication. Our results reveal FLNA to be a host factor with antiviral potential hitherto unknown to be involved in the IAV replication cycle thus, opening new possibilities of FLNA-NP interaction as a candidate anti-influenza drug development target.
Collapse
Affiliation(s)
- Anshika Sharma
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Jyoti Batra
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Olga Stuchlik
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Matthew S Reed
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jan Pohl
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Vincent T K Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Sunil K Lal
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia.,Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
5
|
Nathan KG, Lal SK. The Multifarious Role of 14-3-3 Family of Proteins in Viral Replication. Viruses 2020; 12:E436. [PMID: 32294919 PMCID: PMC7232403 DOI: 10.3390/v12040436] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
The 14-3-3 proteins are a family of ubiquitous and exclusively eukaryotic proteins with an astoundingly significant number of binding partners. Their binding alters the activity, stability, localization, and phosphorylation state of a target protein. The association of 14-3-3 proteins with the regulation of a wide range of general and specific signaling pathways suggests their crucial role in health and disease. Recent studies have linked 14-3-3 to several RNA and DNA viruses that may contribute to the pathogenesis and progression of infections. Therefore, comprehensive knowledge of host-virus interactions is vital for understanding the viral life cycle and developing effective therapeutic strategies. Moreover, pharmaceutical research is already moving towards targeting host proteins in the control of virus pathogenesis. As such, targeting the right host protein to interrupt host-virus interactions could be an effective therapeutic strategy. In this review, we generated a 14-3-3 protein interactions roadmap in viruses, using the freely available Virusmentha network, an online virus-virus or virus-host interaction tool. Furthermore, we summarize the role of the 14-3-3 family in RNA and DNA viruses. The participation of 14-3-3 in viral infections underlines its significance as a key regulator for the expression of host and viral proteins.
Collapse
Affiliation(s)
- Kavitha Ganesan Nathan
- School of Science, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia;
| | - Sunil K. Lal
- School of Science, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia;
- Tropical Medicine & Biology Platform, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
6
|
Very-long-chain fatty acid metabolic capacity of 17-beta-hydroxysteroid dehydrogenase type 12 (HSD17B12) promotes replication of hepatitis C virus and related flaviviruses. Sci Rep 2020; 10:4040. [PMID: 32132633 PMCID: PMC7055353 DOI: 10.1038/s41598-020-61051-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Flaviviridae infections represent a major global health burden. By deciphering mechanistic aspects of hepatitis C virus (HCV)-host interactions, one could discover common strategy for inhibiting the replication of related flaviviruses. By elucidating the HCV interactome, we identified the 17-beta-hydroxysteroid dehydrogenase type 12 (HSD17B12) as a human hub of the very-long-chain fatty acid (VLCFA) synthesis pathway and core interactor. Here we show that HSD17B12 knockdown (KD) impairs HCV replication and reduces virion production. Mechanistically, depletion of HSD17B12 induces alterations in VLCFA-containing lipid species and a drastic reduction of lipid droplets (LDs) that play a critical role in virus assembly. Oleic acid supplementation rescues viral RNA replication and production of infectious particles in HSD17B12 depleted cells, supporting a specific role of VLCFA in HCV life cycle. Furthermore, the small-molecule HSD17B12 inhibitor, INH-12, significantly reduces replication and infectious particle production of HCV as well as dengue virus and Zika virus revealing a conserved requirement across Flaviviridae virus family. Overall, the data provide a strong rationale for the advanced evaluation of HSD17B12 inhibition as a promising broad-spectrum antiviral strategy for the treatment of Flaviviridae infections.
Collapse
|
7
|
Sanchez David RY, Combredet C, Najburg V, Millot GA, Beauclair G, Schwikowski B, Léger T, Camadro JM, Jacob Y, Bellalou J, Jouvenet N, Tangy F, Komarova AV. LGP2 binds to PACT to regulate RIG-I- and MDA5-mediated antiviral responses. Sci Signal 2019; 12:eaar3993. [PMID: 31575732 DOI: 10.1126/scisignal.aar3993] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) RIG-I, MDA5, and LGP2 stimulate inflammatory and antiviral responses by sensing nonself RNA molecules produced during viral replication. Here, we investigated how LGP2 regulates the RIG-I- and MDA5-dependent induction of type I interferon (IFN) signaling and showed that LGP2 interacted with different components of the RNA-silencing machinery. We identified a direct protein-protein interaction between LGP2 and the IFN-inducible, double-stranded RNA binding protein PACT. The LGP2-PACT interaction was mediated by the regulatory C-terminal domain of LGP2 and was necessary for inhibiting RIG-I-dependent responses and for amplifying MDA5-dependent responses. We described a point mutation within LGP2 that disrupted the LGP2-PACT interaction and led to the loss of LGP2-mediated regulation of RIG-I and MDA5 signaling. These results suggest a model in which the LGP2-PACT interaction regulates the inflammatory responses mediated by RIG-I and MDA5 and enables the cellular RNA-silencing machinery to coordinate with the innate immune response.
Collapse
Affiliation(s)
- Raul Y Sanchez David
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
- Ecole doctorale B3MI/Paris7, Paris, France
| | - Chantal Combredet
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Valérie Najburg
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Gael A Millot
- Hub de Bioinformatique et Biostatistique-C3BI, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Guillaume Beauclair
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Benno Schwikowski
- Systems Biology Laboratory and USR 3756, Institut Pasteur and CNRS, Paris, France
| | - Thibaut Léger
- Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Jean-Michel Camadro
- Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
- Mitochondria, Metals, and Oxidative Stress Group, Institut Jacques Monod, UMR 7592, Université Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Yves Jacob
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Paris, France
| | - Jacques Bellalou
- Platform of Recombinant Proteins in Prokaryotic Cells, Institut Pasteur, 75015, CNRS UMR 3528, Paris, France
| | - Nolwenn Jouvenet
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France.
| | - Anastassia V Komarova
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France.
| |
Collapse
|
8
|
Pliquet E, Ruffie C, Escande M, Thalmensi J, Najburg V, Combredet C, Bestetti T, Julithe M, Liard C, Huet T, Wain-Hobson S, Tangy F, Langlade-Demoyen P. Strong antigen-specific T-cell immunity induced by a recombinant human TERT measles virus vaccine and amplified by a DNA/viral vector prime boost in IFNAR/CD46 mice. Cancer Immunol Immunother 2019; 68:533-544. [PMID: 30656384 PMCID: PMC11028090 DOI: 10.1007/s00262-018-2272-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
Abstract
Cancer immunotherapy is seeing an increasing focus on vaccination with tumor-associated antigens (TAAs). Human telomerase (hTERT) is a TAA expressed by most tumors to overcome telomere shortening. Tolerance to hTERT can be easily broken both naturally and experimentally and hTERT DNA vaccine candidates have been introduced in clinical trials. DNA prime/boost strategies have been widely developed to immunize efficiently against infectious diseases. We explored the use of a recombinant measles virus (MV) hTERT vector to boost DNA priming as recombinant live attenuated measles virus has an impressive safety and efficacy record. Here, we show that a MV-TERT vector can rapidly and strongly boost DNA hTERT priming in MV susceptible IFNAR/CD46 mouse models. The cellular immune responses were Th1 polarized. No humoral responses were elicited. The 4 kb hTERT transgene did not impact MV replication or induction of cell-mediated responses. These findings validate the MV-TERT vector to boost cell-mediated responses following DNA priming in humans.
Collapse
Affiliation(s)
- Elodie Pliquet
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France.
- Molecular Retrovirology Unit, Institut Pasteur, CNRS-URA 3015, Paris, France.
| | - Claude Ruffie
- Viral Genomics and Vaccination Unit, Institut Pasteur, CNRS-UMR 3965, Paris, France
| | - Marie Escande
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Jessie Thalmensi
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Valérie Najburg
- Viral Genomics and Vaccination Unit, Institut Pasteur, CNRS-UMR 3965, Paris, France
| | - Chantal Combredet
- Viral Genomics and Vaccination Unit, Institut Pasteur, CNRS-UMR 3965, Paris, France
| | - Thomas Bestetti
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Marion Julithe
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Christelle Liard
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Thierry Huet
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Simon Wain-Hobson
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
- Molecular Retrovirology Unit, Institut Pasteur, CNRS-URA 3015, Paris, France
| | - Frédéric Tangy
- Viral Genomics and Vaccination Unit, Institut Pasteur, CNRS-UMR 3965, Paris, France
| | - Pierre Langlade-Demoyen
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
- Molecular Retrovirology Unit, Institut Pasteur, CNRS-URA 3015, Paris, France
| |
Collapse
|
9
|
Yu T, Ding Y, Zhang Y, Liu Y, Li Y, Lei J, Zhou J, Song S, Hu B. Circular RNA GATAD2A promotes H1N1 replication through inhibiting autophagy. Vet Microbiol 2019; 231:238-245. [PMID: 30955816 DOI: 10.1016/j.vetmic.2019.03.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 01/29/2023]
Abstract
Circular RNAs (circRNAs) play critical roles in various diseases. However, whether and how circular RNA regulates influenza A virus (IAV) infection is unknown. Here, we studied the role of circular RNA GATA Zinc Finger Domain Containing 2A (circ-GATAD2A) in the replication of IAV H1N1 in A549 cells. Circ-GATAD2A was formed upon H1N1 infection. Knockdown of circ-GATAD2A in A549 cells enhanced autophagy and inhibited H1N1 replication. By contrast, overexpression of circ-GATAD2A impaired autophagy and promoted H1N1 replication. Similarly, knockout of vacuolar protein sorting 34 (VPS34) blocked autophagy and increased H1N1 replication. However, the expression of circ-GATAD2A could not further enhance H1N1 replication in VPS34 knockout cells. Collectively, these data indicated that circ-GATAD2A promotes the replication of H1N1 by inhibiting autophagy.
Collapse
Affiliation(s)
- Tianqi Yu
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, Institute of Immunology and College of Veterianry Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yingnan Ding
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, Institute of Immunology and College of Veterianry Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yina Zhang
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Yulan Liu
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, Institute of Immunology and College of Veterianry Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yahui Li
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, Institute of Immunology and College of Veterianry Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jing Lei
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, Institute of Immunology and College of Veterianry Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Suquan Song
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, Institute of Immunology and College of Veterianry Medicine, Nanjing Agricultural University, Nanjing, China
| | - Boli Hu
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, Institute of Immunology and College of Veterianry Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
10
|
Fusade-Boyer M, Dupré G, Bessière P, Khiar S, Quentin-Froignant C, Beck C, Lecollinet S, Rameix-Welti MA, Eléouët JF, Tangy F, Lajoie B, Bertagnoli S, Vidalain PO, Gallardo F, Volmer R. Evaluation of the Antiviral Activity of Sephin1 Treatment and Its Consequences on eIF2α Phosphorylation in Response to Viral Infections. Front Immunol 2019; 10:134. [PMID: 30809223 PMCID: PMC6379315 DOI: 10.3389/fimmu.2019.00134] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/16/2019] [Indexed: 12/27/2022] Open
Abstract
The guanabenz derivative Sephin1 has recently been proposed to increase the levels of translation initiation factor 2 (eIF2α) phosphorylation by inhibiting dephosphorylation by the protein phosphatase 1-GADD34 (PPP1R15A) complex. As phosphorylation of eIF2α by protein kinase R (PKR) is a prominent cellular antiviral pathway, we evaluated the consequences of Sephin1 treatment on virus replication. Our results provide evidence that Sephin1 downregulates replication of human respiratory syncytial virus, measles virus, human adenovirus 5 virus, human enterovirus D68, human cytomegalovirus, and rabbit myxoma virus. However, Sephin1 proved to be inactive against influenza virus, as well as against Japanese encephalitis virus. Sephin1 increased the levels of phosphorylated eIF2α in cells exposed to a PKR agonist. By contrast, in virus-infected cells, the levels of phosphorylated eIF2α did not always correlate with the inhibition of virus replication by Sephin1. This work identifies Sephin1 as an antiviral molecule in cell culture against RNA, as well as DNA viruses belonging to phylogenetically distant families.
Collapse
Affiliation(s)
| | - Gabriel Dupré
- Université de Toulouse, ENVT, INRA, UMR 1225, Toulouse, France
| | - Pierre Bessière
- Université de Toulouse, ENVT, INRA, UMR 1225, Toulouse, France
| | - Samira Khiar
- Viral Genomics and Vaccination Unit, CNRS UMR-3569, Institut Pasteur, Paris, France
| | - Charlotte Quentin-Froignant
- Université de Toulouse, ENVT, INRA, UMR 1225, Toulouse, France.,NeoVirTech SAS, Institute for Advanced Life Science Technology, Toulouse, France
| | - Cécile Beck
- UMR 1161 Virology, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, ANSES Animal Health Laboratory, EURL for Equine Diseases, Maisons-Alfort, France
| | - Sylvie Lecollinet
- UMR 1161 Virology, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, ANSES Animal Health Laboratory, EURL for Equine Diseases, Maisons-Alfort, France
| | - Marie-Anne Rameix-Welti
- UMR INSERM U1173 2I, UFR des Sciences de la Santé Simone Veil-UVSQ, Montigny-le-Bretonneux, France.,AP-HP, Laboratoire de Microbiologie, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Frédéric Tangy
- Viral Genomics and Vaccination Unit, CNRS UMR-3569, Institut Pasteur, Paris, France
| | - Barbora Lajoie
- Laboratoire de Génie Chimique CNRS, INPT, UPS Université de Toulouse III, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | | | - Pierre-Olivier Vidalain
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Equipe Chimie & Biologie, Modélisation et Immunologie pour la Thérapie, CNRS UMR 8601, Université Paris Descartes, Paris, France
| | - Franck Gallardo
- NeoVirTech SAS, Institute for Advanced Life Science Technology, Toulouse, France
| | - Romain Volmer
- Université de Toulouse, ENVT, INRA, UMR 1225, Toulouse, France
| |
Collapse
|
11
|
Chaperoning the Mononegavirales: Current Knowledge and Future Directions. Viruses 2018; 10:v10120699. [PMID: 30544818 PMCID: PMC6315898 DOI: 10.3390/v10120699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 01/02/2023] Open
Abstract
The order Mononegavirales harbors numerous viruses of significant relevance to human health, including both established and emerging infections. Currently, vaccines are only available for a small subset of these viruses, and antiviral therapies remain limited. Being obligate cellular parasites, viruses must utilize the cellular machinery for their replication and spread. Therefore, targeting cellular pathways used by viruses can provide novel therapeutic approaches. One of the key challenges confronted by both hosts and viruses alike is the successful folding and maturation of proteins. In cells, this task is faced by cellular molecular chaperones, a group of conserved and abundant proteins that oversee protein folding and help maintain protein homeostasis. In this review, we summarize the current knowledge of how the Mononegavirales interact with cellular chaperones, highlight key gaps in our knowledge, and discuss the potential of chaperone inhibitors as antivirals.
Collapse
|
12
|
Mura M, Ruffié C, Billon-Denis E, Combredet C, Tournier J, Tangy F. hCD46 receptor is not required for measles vaccine Schwarz strain replication in vivo: Type-I IFN is the species barrier in mice. Virology 2018; 524:151-159. [DOI: 10.1016/j.virol.2018.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 12/26/2022]
|
13
|
Upon Infection, Cellular WD Repeat-Containing Protein 5 (WDR5) Localizes to Cytoplasmic Inclusion Bodies and Enhances Measles Virus Replication. J Virol 2018; 92:JVI.01726-17. [PMID: 29237839 DOI: 10.1128/jvi.01726-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022] Open
Abstract
Replication of negative-strand RNA viruses occurs in association with discrete cytoplasmic foci called inclusion bodies. Whereas inclusion bodies represent a prominent subcellular structure induced by viral infection, our knowledge of the cellular protein components involved in inclusion body formation and function is limited. Using measles virus-infected HeLa cells, we found that the WD repeat-containing protein 5 (WDR5), a subunit of histone H3 lysine 4 methyltransferases, was selectively recruited to virus-induced inclusion bodies. Furthermore, WDR5 was found in complexes containing viral proteins associated with RNA replication. WDR5 was not detected with mitochondria, stress granules, or other known secretory or endocytic compartments of infected cells. WDR5 deficiency decreased both viral protein production and infectious virus yields. Interferon production was modestly increased in WDR5-deficient cells. Thus, our study identifies WDR5 as a novel viral inclusion body-associated cellular protein and suggests a role for WDR5 in promoting viral replication.IMPORTANCE Measles virus is a human pathogen that remains a global concern, with more than 100,000 measles-related deaths annually despite the availability of an effective vaccine. As measles continues to cause significant morbidity and mortality, understanding the virus-host interactions at the molecular level that affect virus replication efficiency is important for development and optimization of treatment procedures. Measles virus is an RNA virus that encodes six genes and replicates in the cytoplasm of infected cells in discrete cytoplasmic replication bodies, though little is known of the biochemical nature of these structures. Here, we show that the cellular protein WDR5 is enriched in the cytoplasmic viral replication factories and enhances virus growth. WDR5-containing protein complex includes viral proteins responsible for viral RNA replication. Thus, we have identified WDR5 as a host factor that enhances the replication of measles virus.
Collapse
|
14
|
Botero D, Alvarado C, Bernal A, Danies G, Restrepo S. Network Analyses in Plant Pathogens. Front Microbiol 2018; 9:35. [PMID: 29441045 PMCID: PMC5797656 DOI: 10.3389/fmicb.2018.00035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/09/2018] [Indexed: 11/14/2022] Open
Abstract
Even in the age of big data in Biology, studying the connections between the biological processes and the molecular mechanisms behind them is a challenging task. Systems biology arose as a transversal discipline between biology, chemistry, computer science, mathematics, and physics to facilitate the elucidation of such connections. A scenario, where the application of systems biology constitutes a very powerful tool, is the study of interactions between hosts and pathogens using network approaches. Interactions between pathogenic bacteria and their hosts, both in agricultural and human health contexts are of great interest to researchers worldwide. Large amounts of data have been generated in the last few years within this area of research. However, studies have been relatively limited to simple interactions. This has left great amounts of data that remain to be utilized. Here, we review the main techniques in network analysis and their complementary experimental assays used to investigate bacterial-plant interactions. Other host-pathogen interactions are presented in those cases where few or no examples of plant pathogens exist. Furthermore, we present key results that have been obtained with these techniques and how these can help in the design of new strategies to control bacterial pathogens. The review comprises metabolic simulation, protein-protein interactions, regulatory control of gene expression, host-pathogen modeling, and genome evolution in bacteria. The aim of this review is to offer scientists working on plant-pathogen interactions basic concepts around network biology, as well as an array of techniques that will be useful for a better and more complete interpretation of their data.
Collapse
Affiliation(s)
- David Botero
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia.,Grupo de Diseño de Productos y Procesos, Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia.,Grupo de Biología Computacional y Ecología Microbiana, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Camilo Alvarado
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Adriana Bernal
- Laboratory of Molecular Interactions of Agricultural Microbes, LIMMA, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Giovanna Danies
- Department of Design, Universidad de Los Andes, Bogotá, Colombia
| | - Silvia Restrepo
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
15
|
Abstract
Pathogen-host interactions (PHIs) underlie the process of infection. The systems biology view of the whole PHI system is superior to the investigation of the pathogen or host separately in understanding the infection mechanisms. Especially, the identification of host-oriented drug targets for the next-generation anti-infection therapeutics requires the properties of the host factors targeted by pathogens. Here, we provide an outline of computational analysis of PHI networks, focusing on the properties of the pathogen-targeted host proteins. We also provide information about the available PHI data and the related Web-based resources.
Collapse
Affiliation(s)
- Müberra Fatma Cesur
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Saliha Durmuş
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
16
|
Original Chemical Series of Pyrimidine Biosynthesis Inhibitors That Boost the Antiviral Interferon Response. Antimicrob Agents Chemother 2017; 61:AAC.00383-17. [PMID: 28807907 PMCID: PMC5610480 DOI: 10.1128/aac.00383-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022] Open
Abstract
De novo pyrimidine biosynthesis is a key metabolic pathway involved in multiple biosynthetic processes. Here, we identified an original series of 3-(1H-indol-3-yl)-2,3-dihydro-4H-furo[3,2-c]chromen-4-one derivatives as a new class of pyrimidine biosynthesis inhibitors formed by two edge-fused polycyclic moieties. We show that identified compounds exhibit broad-spectrum antiviral activity and immunostimulatory properties, in line with recent reports linking de novo pyrimidine biosynthesis with innate defense mechanisms against viruses. Most importantly, we establish that pyrimidine deprivation can amplify the production of both type I and type III interferons by cells stimulated with retinoic acid-inducible gene 1 (RIG-I) ligands. Altogether, our results further expand the current panel of pyrimidine biosynthesis inhibitors and illustrate how the production of antiviral interferons is tightly coupled to this metabolic pathway. Functional and structural similarities between this new chemical series and dicoumarol, which was reported before to inhibit pyrimidine biosynthesis at the dihydroorotate dehydrogenase (DHODH) step, are discussed.
Collapse
|
17
|
Diot C, Fournier G, Dos Santos M, Magnus J, Komarova A, van der Werf S, Munier S, Naffakh N. Influenza A Virus Polymerase Recruits the RNA Helicase DDX19 to Promote the Nuclear Export of Viral mRNAs. Sci Rep 2016; 6:33763. [PMID: 27653209 PMCID: PMC5037575 DOI: 10.1038/srep33763] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/01/2016] [Indexed: 12/16/2022] Open
Abstract
Enhancing the knowledge of host factors that are required for efficient influenza A virus (IAV) replication is essential to address questions related to pathogenicity and to identify targets for antiviral drug development. Here we focused on the interplay between IAV and DExD-box RNA helicases (DDX), which play a key role in cellular RNA metabolism by remodeling RNA-RNA or RNA-protein complexes. We performed a targeted RNAi screen on 35 human DDX proteins to identify those involved in IAV life cycle. DDX19 was a major hit. In DDX19-depleted cells the accumulation of viral RNAs and proteins was delayed, and the production of infectious IAV particles was strongly reduced. We show that DDX19 associates with intronless, unspliced and spliced IAV mRNAs and promotes their nuclear export. In addition, we demonstrate an RNA-independent association between DDX19 and the viral polymerase, that is modulated by the ATPase activity of DDX19. Our results provide a model in which DDX19 is recruited to viral mRNAs in the nucleus of infected cells to enhance their nuclear export. Information gained from this virus-host interaction improves the understanding of both the IAV replication cycle and the cellular function of DDX19.
Collapse
Affiliation(s)
- Cédric Diot
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, F-75015 Paris, France.,CNRS, UMR3569, F-75015 Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, EA302, F-75015 Paris, France
| | - Guillaume Fournier
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, F-75015 Paris, France.,CNRS, UMR3569, F-75015 Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, EA302, F-75015 Paris, France
| | - Mélanie Dos Santos
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, F-75015 Paris, France.,CNRS, UMR3569, F-75015 Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, EA302, F-75015 Paris, France
| | - Julie Magnus
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, F-75015 Paris, France.,CNRS, UMR3569, F-75015 Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, EA302, F-75015 Paris, France
| | - Anastasia Komarova
- CNRS, UMR3569, F-75015 Paris, France.,Institut Pasteur, Unité de Génomique Virale et Vaccination, Département de Virologie, F-75015 Paris, France
| | - Sylvie van der Werf
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, F-75015 Paris, France.,CNRS, UMR3569, F-75015 Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, EA302, F-75015 Paris, France
| | - Sandie Munier
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, F-75015 Paris, France.,CNRS, UMR3569, F-75015 Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, EA302, F-75015 Paris, France
| | - Nadia Naffakh
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, F-75015 Paris, France.,CNRS, UMR3569, F-75015 Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, EA302, F-75015 Paris, France
| |
Collapse
|
18
|
De Maio FA, Risso G, Iglesias NG, Shah P, Pozzi B, Gebhard LG, Mammi P, Mancini E, Yanovsky MJ, Andino R, Krogan N, Srebrow A, Gamarnik AV. The Dengue Virus NS5 Protein Intrudes in the Cellular Spliceosome and Modulates Splicing. PLoS Pathog 2016; 12:e1005841. [PMID: 27575636 PMCID: PMC5004807 DOI: 10.1371/journal.ppat.1005841] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/03/2016] [Indexed: 11/22/2022] Open
Abstract
Dengue virus NS5 protein plays multiple functions in the cytoplasm of infected cells, enabling viral RNA replication and counteracting host antiviral responses. Here, we demonstrate a novel function of NS5 in the nucleus where it interferes with cellular splicing. Using global proteomic analysis of infected cells together with functional studies, we found that NS5 binds spliceosome complexes and modulates endogenous splicing as well as minigene-derived alternative splicing patterns. In particular, we show that NS5 alone, or in the context of viral infection, interacts with core components of the U5 snRNP particle, CD2BP2 and DDX23, alters the inclusion/exclusion ratio of alternative splicing events, and changes mRNA isoform abundance of known antiviral factors. Interestingly, a genome wide transcriptome analysis, using recently developed bioinformatics tools, revealed an increase of intron retention upon dengue virus infection, and viral replication was improved by silencing specific U5 components. Different mechanistic studies indicate that binding of NS5 to the spliceosome reduces the efficiency of pre-mRNA processing, independently of NS5 enzymatic activities. We propose that NS5 binding to U5 snRNP proteins hijacks the splicing machinery resulting in a less restrictive environment for viral replication.
Collapse
Affiliation(s)
| | - Guillermo Risso
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
| | | | - Priya Shah
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Berta Pozzi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
| | | | - Pablo Mammi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
| | | | | | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Anabella Srebrow
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
| | | |
Collapse
|
19
|
Applications of Replicating-Competent Reporter-Expressing Viruses in Diagnostic and Molecular Virology. Viruses 2016; 8:v8050127. [PMID: 27164126 PMCID: PMC4885082 DOI: 10.3390/v8050127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/31/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022] Open
Abstract
Commonly used tests based on wild-type viruses, such as immunostaining, cannot meet the demands for rapid detection of viral replication, high-throughput screening for antivirals, as well as for tracking viral proteins or virus transport in real time. Notably, the development of replicating-competent reporter-expressing viruses (RCREVs) has provided an excellent option to detect directly viral replication without the use of secondary labeling, which represents a significant advance in virology. This article reviews the applications of RCREVs in diagnostic and molecular virology, including rapid neutralization tests, high-throughput screening systems, identification of viral receptors and virus-host interactions, dynamics of viral infections in vitro and in vivo, vaccination approaches and others. However, there remain various challenges associated with RCREVs, including pathogenicity alterations due to the insertion of a reporter gene, instability or loss of the reporter gene expression, or attenuation of reporter signals in vivo. Despite all these limitations, RCREVs have become powerful tools for both basic and applied virology with the development of new technologies for generating RCREVs, the inventions of novel reporters and the better understanding of regulation of viral replication.
Collapse
|
20
|
Du J, Xing S, Tian Z, Gao S, Xie J, Chang H, Liu G, Luo J, Yin H. Proteomic analysis of sheep primary testicular cells infected with bluetongue virus. Proteomics 2016; 16:1499-514. [PMID: 26989863 PMCID: PMC7168089 DOI: 10.1002/pmic.201500275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 01/03/2016] [Accepted: 03/11/2016] [Indexed: 01/06/2023]
Abstract
Bluetongue virus (BTV) causes a non‐contagious, arthropod‐transmitted disease in wild and domestic ruminants, such as sheep. In this study, we used iTRAQ labeling coupled with LC‐MS/MS for quantitative identification of differentially expressed proteins in BTV‐infected sheep testicular (ST) cells. Relative quantitative data were obtained for 4455 proteins in BTV‐ and mock‐infected ST cells, among which 101 and 479 proteins were differentially expressed at 24 and 48 h post‐infection, respectively, indicating further proteomic changes during the later stages of infection. Ten corresponding genes of differentially expressed proteins were validated via real‐time RT‐PCR. Expression levels of three representative proteins, eIF4a1, STAT1 and HSP27, were further confirmed via western blot analysis. Bioinformatics analysis disclosed that the differentially expressed proteins are primarily involved in biological processes related to innate immune response, signal transduction, nucleocytoplasmic transport, transcription and apoptosis. Several upregulated proteins were associated with the RIG‐I‐like receptor signaling pathway and endocytosis. To our knowledge, this study represents the first attempt to investigate proteome‐wide dysregulation in BTV‐infected cells with the aid of quantitative proteomics. Our collective results not only enhance understanding of the host response to BTV infection but also highlight multiple potential targets for the development of antiviral agents.
Collapse
Affiliation(s)
- Junzheng Du
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Shanshan Xing
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Zhancheng Tian
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Shandian Gao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Junren Xie
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| |
Collapse
|
21
|
Sanchez David RY, Combredet C, Sismeiro O, Dillies MA, Jagla B, Coppée JY, Mura M, Guerbois Galla M, Despres P, Tangy F, Komarova AV. Comparative analysis of viral RNA signatures on different RIG-I-like receptors. eLife 2016; 5:e11275. [PMID: 27011352 PMCID: PMC4841775 DOI: 10.7554/elife.11275] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/24/2016] [Indexed: 12/17/2022] Open
Abstract
The RIG-I-like receptors (RLRs) play a major role in sensing RNA virus infection to initiate and modulate antiviral immunity. They interact with particular viral RNAs, most of them being still unknown. To decipher the viral RNA signature on RLRs during viral infection, we tagged RLRs (RIG-I, MDA5, LGP2) and applied tagged protein affinity purification followed by next-generation sequencing (NGS) of associated RNA molecules. Two viruses with negative- and positive-sense RNA genome were used: measles (MV) and chikungunya (CHIKV). NGS analysis revealed that distinct regions of MV genome were specifically recognized by distinct RLRs: RIG-I recognized defective interfering genomes, whereas MDA5 and LGP2 specifically bound MV nucleoprotein-coding region. During CHIKV infection, RIG-I associated specifically to the 3' untranslated region of viral genome. This study provides the first comparative view of the viral RNA ligands for RIG-I, MDA5 and LGP2 in the presence of infection.
Collapse
Affiliation(s)
- Raul Y Sanchez David
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
- Ecole doctorale, Biochimie, Biothérapies, Biologie Moléculaire et Infectiologie (B3MI), Université Paris Diderot - Paris 7, Paris, France
| | - Chantal Combredet
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Odile Sismeiro
- Transcriptome and Epigenome, BioMics Pole, Center for Innovation and Technological Research, Institut Pasteur, Paris, France
| | - Marie-Agnès Dillies
- Transcriptome and Epigenome, BioMics Pole, Center for Innovation and Technological Research, Institut Pasteur, Paris, France
| | - Bernd Jagla
- Transcriptome and Epigenome, BioMics Pole, Center for Innovation and Technological Research, Institut Pasteur, Paris, France
| | - Jean-Yves Coppée
- Transcriptome and Epigenome, BioMics Pole, Center for Innovation and Technological Research, Institut Pasteur, Paris, France
| | - Marie Mura
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
- Unité Interactions Hôte-Agents Pathogens, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | | | - Philippe Despres
- Technology Platform CYROI, University of Reunion Island, Saint-Clotilde, France
| | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Anastassia V Komarova
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| |
Collapse
|
22
|
Banerjee N, Mukhopadhyay S. Viral glycoproteins: biological role and application in diagnosis. Virusdisease 2016; 27:1-11. [PMID: 26925438 PMCID: PMC4758313 DOI: 10.1007/s13337-015-0293-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/10/2015] [Indexed: 12/21/2022] Open
Abstract
The viruses that infect humans cause a huge global disease burden and produce immense challenge towards healthcare system. Glycoproteins are one of the major components of human pathogenic viruses. They have been demonstrated to have important role(s) in infection and immunity. Concomitantly high titres of antibodies against these antigenic viral glycoproteins have paved the way for development of novel diagnostics. Availability of appropriate biomarkers is necessary for advance diagnosis of infectious diseases especially in case of outbreaks. As human mobilization has increased manifold nowadays, dissemination of infectious agents became quicker that paves the need of rapid diagnostic system. In case of viral infection it is an emergency as virus spreads and mutates very fast. This review encircles the vast arena of viral glycoproteins, their importance in health and disease and their diagnostic applications.
Collapse
Affiliation(s)
- Nilotpal Banerjee
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C.R Avenue, Kolkata, 700073 India
| | - Sumi Mukhopadhyay
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C.R Avenue, Kolkata, 700073 India
| |
Collapse
|
23
|
Zhang LK, Lin T, Zhu SL, Xianyu LZ, Lu SY. Global quantitative proteomic analysis of human glioma cells profiled host protein expression in response to enterovirus type 71 infection. Proteomics 2015; 15:3784-96. [PMID: 26350028 DOI: 10.1002/pmic.201500134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 07/29/2015] [Accepted: 09/04/2015] [Indexed: 01/26/2023]
Abstract
Enterovirus 71 (EV71) is one of the leading causes of hand, foot and mouth disease with neurological complications in some cases. To study the pathogenesis of EV71 infection, large-scale analyses of EV71 infected cells have been performed. However, most of these studies employed rhabdomyosarcoma (RD) cells or used transcriptomic strategy. Here, we performed SILAC-based quantitative proteomic analysis of EV71-infected U251 cells, a human glioma cell line. A total of 3125 host proteins were quantified, in which 451 were differentially regulated as a result of EV71 infection at 8 or 20 hpi or both. Gene Ontology analysis indicates the regulated proteins were enriched in "metabolic process", "biological regulation" and "cellular process", implying that these biological processes were affected by EV71 infection. Furthermore, functional study indicated that TRAF2 and TRAF6 among the up-regulated proteins could inhibit the replication of EV71 at the early phase post infection, and the anti-EV71 function of both proteins was independent of interferon β. Our study not only provided an overview of cellular response to EV71 infection in a human glioma cell line, but also found that TRAF2 and TRAF6 might be potential targets to inhibit the replication of EV71. All MS data have been deposited in the ProteomeXchange with identifier PXD002454 (http://proteomecentral.proteomexchange.org/dataset/PXD002454).
Collapse
Affiliation(s)
- Lei-Ke Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Tao Lin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Sheng-Lin Zhu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Ling-Zhi Xianyu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Song-Ya Lu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
24
|
Colpitts CC, El-Saghire H, Pochet N, Schuster C, Baumert TF. High-throughput approaches to unravel hepatitis C virus-host interactions. Virus Res 2015; 218:18-24. [PMID: 26410623 DOI: 10.1016/j.virusres.2015.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) remains a major global health burden, with more than 130 million individuals chronically infected and at risk for the development of hepatocellular carcinoma (HCC). The recent clinical licensing of direct-acting antivirals enables viral cure. However, limited access to therapy and treatment failure in patient subgroups warrants a continuing effort to develop complementary antiviral strategies. Furthermore, once fibrosis is established, curing HCV infection does not eliminate the risk for HCC. High-throughput approaches and screens have enabled the investigation of virus-host interactions on a genome-wide scale. Gain- and loss-of-function screens have identified essential host-dependency factors in the HCV viral life cycle, such as host cell entry factors or regulatory factors for viral replication and assembly. Network analyses of systems-scale data sets provided a comprehensive view of the cellular state following HCV infection, thus improving our understanding of the virus-induced responses of the target cell. Interactome, metabolomics and gene expression studies identified dysregulated cellular processes potentially contributing to HCV pathogenesis and HCC. Drug screens using chemical libraries led to the discovery of novel antivirals. Here, we review the contribution of high-throughput approaches for the investigation of virus-host interactions, viral pathogenesis and drug discovery.
Collapse
Affiliation(s)
- Che C Colpitts
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Hussein El-Saghire
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Nathalie Pochet
- Program in Translational NeuroPsychiatric Genomics, Brigham and Women's Hospital, Harvard Medical School, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Catherine Schuster
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France; Institut Hospitalo-Universitaire, PôleHépato-digestif, HôpitauxUniversitaires de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
25
|
Actin-Modulating Protein Cofilin Is Involved in the Formation of Measles Virus Ribonucleoprotein Complex at the Perinuclear Region. J Virol 2015; 89:10524-31. [PMID: 26269174 DOI: 10.1128/jvi.01819-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/30/2015] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED In measles virus (MV)-infected cells, the ribonucleoprotein (RNP) complex, comprised of the viral genome and the nucleocapsid (N) protein, phosphoprotein (P protein), and large protein, assembles at the perinuclear region and synthesizes viral RNAs. The cellular proteins involved in the formation of the RNP complex are largely unknown. In this report, we show that cofilin, an actin-modulating host protein, interacts with the MV N protein and aids in the formation of the RNP complex. Knockdown of cofilin using the short hairpin RNA reduces the formation of the RNP complex after MV infection and that of the RNP complex-like structure after plasmid-mediated expression of MV N and P proteins. A lower level of formation of the RNP complex results in the reduction of viral RNA synthesis. Cofilin phosphorylation on the serine residue at position 3, an enzymatically inactive form, is increased after MV infection and the phosphorylated form of cofilin is preferentially included in the complex. These results indicate that cofilin plays an important role in MV replication by increasing formation of the RNP complex and viral RNA synthesis. IMPORTANCE Many RNA viruses induce within infected cells the structure called the ribonucleoprotein (RNP) complex in which viral RNA synthesis occurs. It is comprised of the viral genome and proteins that include the viral RNA polymerase. The cellular proteins involved in the formation of the RNP complex are largely unknown. In this report, we show that cofilin, an actin-modulating host protein, binds to the measles virus (MV) nucleocapsid protein and plays an important role in the formation of the MV RNP complex and MV RNA synthesis. The level of the phosphorylated form of cofilin, enzymatically inactive, is increased after MV infection, and the phosphorylated form is preferentially associated with the RNP complex. Our findings determined with cofilin will help us better understand the mechanism by which the RNP complex is formed in virus-infected cells and develop new antiviral drugs targeting the RNP complex.
Collapse
|
26
|
Lucas-Hourani M, Munier-Lehmann H, El Mazouni F, Malmquist NA, Harpon J, Coutant EP, Guillou S, Helynck O, Noel A, Scherf A, Phillips MA, Tangy F, Vidalain PO, Janin YL. Original 2-(3-Alkoxy-1H-pyrazol-1-yl)azines Inhibitors of Human Dihydroorotate Dehydrogenase (DHODH). J Med Chem 2015; 58:5579-98. [PMID: 26079043 PMCID: PMC4516315 DOI: 10.1021/acs.jmedchem.5b00606] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Following our discovery of human dihydroorotate dehydrogenase (DHODH) inhibition by 2-(3-alkoxy-1H-pyrazol-1-yl)pyrimidine derivatives as well as 2-(4-benzyl-3-ethoxy-5-methyl-1H-pyrazol-1-yl)-5-methylpyridine, we describe here the syntheses and evaluation of an array of azine-bearing analogues. As in our previous report, the structure-activity study of this series of human DHODH inhibitors was based on a phenotypic assay measuring measles virus replication. Among other inhibitors, this round of syntheses and biological evaluation iteration led to the highly active 5-cyclopropyl-2-(4-(2,6-difluorophenoxy)-3-isopropoxy-5-methyl-1H-pyrazol-1-yl)-3-fluoropyridine. Inhibition of DHODH by this compound was confirmed in an array of in vitro assays, including enzymatic tests and cell-based assays for viral replication and cellular growth. This molecule was found to be more active than the known inhibitors of DHODH, brequinar and teriflunomide, thus opening perspectives for its use as a tool or for the design of an original series of immunosuppressive agent. Moreover, because other series of inhibitors of human DHODH have been found to also affect Plasmodium falciparum DHODH, all the compounds were assayed for their effect on P. falciparum growth. However, the modest in vitro inhibition solely observed for two compounds did not correlate with their inhibition of P. falciparum DHODH.
Collapse
Affiliation(s)
- Marianne Lucas-Hourani
- †Unité de Génomique Virale et Vaccination, Département de Virologie, Institut Pasteur, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France.,‡Unité Mixte de Recherche 3569, Centre National de la Recherche Scientifique, 25 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Hélène Munier-Lehmann
- §Unité Mixte de Recherche 3523, Centre National de la Recherche Scientifique, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France.,∥Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Institut Pasteur, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Farah El Mazouni
- ⊥Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Boulevard, Dallas, Texas 75390-9041, United States
| | - Nicholas A Malmquist
- #Unité de Biologie des Interactions Hôte-Parasite, Département de Parasitologie et Mycologie, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France.,^Unité 1201, Institut National de la Santé et de la Recherche Médicale, 25 Rue du Dr. Roux, 75724 Paris Cedex 15, France.,+Equipe de Recherche Labellisée 9195, Centre National de la Recherche Scientifique, 25 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Jane Harpon
- #Unité de Biologie des Interactions Hôte-Parasite, Département de Parasitologie et Mycologie, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France.,^Unité 1201, Institut National de la Santé et de la Recherche Médicale, 25 Rue du Dr. Roux, 75724 Paris Cedex 15, France.,+Equipe de Recherche Labellisée 9195, Centre National de la Recherche Scientifique, 25 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Eloi P Coutant
- §Unité Mixte de Recherche 3523, Centre National de la Recherche Scientifique, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France.,∥Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Institut Pasteur, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Sandrine Guillou
- §Unité Mixte de Recherche 3523, Centre National de la Recherche Scientifique, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France.,∥Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Institut Pasteur, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Olivier Helynck
- §Unité Mixte de Recherche 3523, Centre National de la Recherche Scientifique, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France.,∥Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Institut Pasteur, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Anne Noel
- §Unité Mixte de Recherche 3523, Centre National de la Recherche Scientifique, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France.,∥Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Institut Pasteur, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Artur Scherf
- #Unité de Biologie des Interactions Hôte-Parasite, Département de Parasitologie et Mycologie, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France.,^Unité 1201, Institut National de la Santé et de la Recherche Médicale, 25 Rue du Dr. Roux, 75724 Paris Cedex 15, France.,+Equipe de Recherche Labellisée 9195, Centre National de la Recherche Scientifique, 25 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Margaret A Phillips
- ⊥Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Boulevard, Dallas, Texas 75390-9041, United States
| | - Frédéric Tangy
- †Unité de Génomique Virale et Vaccination, Département de Virologie, Institut Pasteur, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France.,‡Unité Mixte de Recherche 3569, Centre National de la Recherche Scientifique, 25 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Pierre-Olivier Vidalain
- †Unité de Génomique Virale et Vaccination, Département de Virologie, Institut Pasteur, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France.,‡Unité Mixte de Recherche 3569, Centre National de la Recherche Scientifique, 25 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Yves L Janin
- §Unité Mixte de Recherche 3523, Centre National de la Recherche Scientifique, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France.,∥Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Institut Pasteur, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
27
|
Durmuş S, Çakır T, Özgür A, Guthke R. A review on computational systems biology of pathogen-host interactions. Front Microbiol 2015; 6:235. [PMID: 25914674 PMCID: PMC4391036 DOI: 10.3389/fmicb.2015.00235] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/10/2015] [Indexed: 12/27/2022] Open
Abstract
Pathogens manipulate the cellular mechanisms of host organisms via pathogen-host interactions (PHIs) in order to take advantage of the capabilities of host cells, leading to infections. The crucial role of these interspecies molecular interactions in initiating and sustaining infections necessitates a thorough understanding of the corresponding mechanisms. Unlike the traditional approach of considering the host or pathogen separately, a systems-level approach, considering the PHI system as a whole is indispensable to elucidate the mechanisms of infection. Following the technological advances in the post-genomic era, PHI data have been produced in large-scale within the last decade. Systems biology-based methods for the inference and analysis of PHI regulatory, metabolic, and protein-protein networks to shed light on infection mechanisms are gaining increasing demand thanks to the availability of omics data. The knowledge derived from the PHIs may largely contribute to the identification of new and more efficient therapeutics to prevent or cure infections. There are recent efforts for the detailed documentation of these experimentally verified PHI data through Web-based databases. Despite these advances in data archiving, there are still large amounts of PHI data in the biomedical literature yet to be discovered, and novel text mining methods are in development to unearth such hidden data. Here, we review a collection of recent studies on computational systems biology of PHIs with a special focus on the methods for the inference and analysis of PHI networks, covering also the Web-based databases and text-mining efforts to unravel the data hidden in the literature.
Collapse
Affiliation(s)
- Saliha Durmuş
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, KocaeliTurkey
| | - Tunahan Çakır
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, KocaeliTurkey
| | - Arzucan Özgür
- Department of Computer Engineering, Boǧaziçi University, IstanbulTurkey
| | - Reinhard Guthke
- Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knoell-Institute, JenaGermany
| |
Collapse
|
28
|
Greninger AL. Picornavirus–Host Interactions to Construct Viral Secretory Membranes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 129:189-212. [DOI: 10.1016/bs.pmbts.2014.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Recruitment of RED-SMU1 complex by Influenza A Virus RNA polymerase to control Viral mRNA splicing. PLoS Pathog 2014; 10:e1004164. [PMID: 24945353 PMCID: PMC4055741 DOI: 10.1371/journal.ppat.1004164] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/21/2014] [Indexed: 12/21/2022] Open
Abstract
Influenza A viruses are major pathogens in humans and in animals, whose genome consists of eight single-stranded RNA segments of negative polarity. Viral mRNAs are synthesized by the viral RNA-dependent RNA polymerase in the nucleus of infected cells, in close association with the cellular transcriptional machinery. Two proteins essential for viral multiplication, the exportin NS2/NEP and the ion channel protein M2, are produced by splicing of the NS1 and M1 mRNAs, respectively. Here we identify two human spliceosomal factors, RED and SMU1, that control the expression of NS2/NEP and are required for efficient viral multiplication. We provide several lines of evidence that in infected cells, the hetero-trimeric viral polymerase recruits a complex formed by RED and SMU1 through interaction with its PB2 and PB1 subunits. We demonstrate that the splicing of the NS1 viral mRNA is specifically affected in cells depleted of RED or SMU1, leading to a decreased production of the spliced mRNA species NS2, and to a reduced NS2/NS1 protein ratio. In agreement with the exportin function of NS2, these defects impair the transport of newly synthesized viral ribonucleoproteins from the nucleus to the cytoplasm, and strongly reduce the production of infectious influenza virions. Overall, our results unravel a new mechanism of viral subversion of the cellular splicing machinery, by establishing that the human splicing factors RED and SMU1 act jointly as key regulators of influenza virus gene expression. In addition, our data point to a central role of the viral RNA polymerase in coupling transcription and alternative splicing of the viral mRNAs.
Collapse
|
30
|
Billing AM, Kessler JR, Revets D, Sausy A, Schmitz S, Barra C, Muller CP. Proteome profiling of virus-host interactions of wild type and attenuated measles virus strains. J Proteomics 2014; 108:325-36. [PMID: 24914991 DOI: 10.1016/j.jprot.2014.05.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 11/18/2022]
Abstract
UNLABELLED Quantitative gel-based proteomics (2D DIGE coupled to MALDI-TOF/TOF MS) has been used to investigate the effects of different measles virus (MV) strains on the host cell proteome. A549/hSLAM cells were infected either with wild type MV strains, an attenuated vaccine or a multiple passaged Vero cell adapted strain. By including interferon beta treatment as a control it was possible to distinguish between the classical antiviral response and changes induced specifically by the different strains. Of 38 differentially expressed proteins in total (p-value ≤0.05, fold change ≥2), 18 proteins were uniquely modulated following MV infection with up to 9 proteins specific per individual strain. Interestingly, wt strains displayed distinct protein patterns particularly during the late phase of infection. Proteins were grouped into cytoskeleton, metabolism, transcription/translation, immune response and mitochondrial proteins. Bioinformatics analysis revealed mostly changes in proteins regulating cell death and apoptosis. Surprisingly, wt strains affected the cytokeratin system much stronger than the vaccine strain. To our knowledge, this is the first study on the MV-host proteome addressing interstrain differences. BIOLOGICAL SIGNIFICANCE In the present study we investigated the host cell proteome upon measles virus (MV) infection. The novelty about this study is the side-by side comparison of different strains from the same virus, which has not been done at the proteome level for any other virus including MV. We used different virus strains including a vaccine strain, wild type isolates derived from MV-infected patients as well as a Vero cell adapted strain, which serves as an intermediate between vaccine and wild type strain. We observed differences between vaccine and wild type strains as well as common features between different wild type strains. Perhaps one of the most surprising findings was that differences did not only occur between wild type and vaccine or Vero cell adapted strains but also between different wild type strains. In fact our study suggests that besides the cytokeratin and the IFN system wild type viruses seem to differ as much among each other than from vaccine strains. Thus our results are suggestive of complex and diverse virus-host interactions which differ considerably between different wild type strains. Our data indicate that interstrain differences are prominent and have so far been neglected by proteomics studies.
Collapse
Affiliation(s)
- Anja M Billing
- Institute of Immunology, Centre de Recherche Public de la Santé/Laboratoire National de Santé, 20A rue Auguste Lumière, L-1950 Luxembourg, Luxembourg
| | - Julia R Kessler
- Institute of Immunology, Centre de Recherche Public de la Santé/Laboratoire National de Santé, 20A rue Auguste Lumière, L-1950 Luxembourg, Luxembourg
| | - Dominique Revets
- Institute of Immunology, Centre de Recherche Public de la Santé/Laboratoire National de Santé, 20A rue Auguste Lumière, L-1950 Luxembourg, Luxembourg
| | - Aurélie Sausy
- Institute of Immunology, Centre de Recherche Public de la Santé/Laboratoire National de Santé, 20A rue Auguste Lumière, L-1950 Luxembourg, Luxembourg
| | - Stephanie Schmitz
- Institute of Immunology, Centre de Recherche Public de la Santé/Laboratoire National de Santé, 20A rue Auguste Lumière, L-1950 Luxembourg, Luxembourg
| | - Claire Barra
- Institute of Immunology, Centre de Recherche Public de la Santé/Laboratoire National de Santé, 20A rue Auguste Lumière, L-1950 Luxembourg, Luxembourg
| | - Claude P Muller
- Institute of Immunology, Centre de Recherche Public de la Santé/Laboratoire National de Santé, 20A rue Auguste Lumière, L-1950 Luxembourg, Luxembourg.
| |
Collapse
|
31
|
Lucas-Hourani M, Munier-Lehmann H, Helynck O, Komarova A, Desprès P, Tangy F, Vidalain PO. High-throughput screening for broad-spectrum chemical inhibitors of RNA viruses. J Vis Exp 2014. [PMID: 24838008 DOI: 10.3791/51222] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA viruses are responsible for major human diseases such as flu, bronchitis, dengue, Hepatitis C or measles. They also represent an emerging threat because of increased worldwide exchanges and human populations penetrating more and more natural ecosystems. A good example of such an emerging situation is chikungunya virus epidemics of 2005-2006 in the Indian Ocean. Recent progresses in our understanding of cellular pathways controlling viral replication suggest that compounds targeting host cell functions, rather than the virus itself, could inhibit a large panel of RNA viruses. Some broad-spectrum antiviral compounds have been identified with host target-oriented assays. However, measuring the inhibition of viral replication in cell cultures using reduction of cytopathic effects as a readout still represents a paramount screening strategy. Such functional screens have been greatly improved by the development of recombinant viruses expressing reporter enzymes capable of bioluminescence such as luciferase. In the present report, we detail a high-throughput screening pipeline, which combines recombinant measles and chikungunya viruses with cellular viability assays, to identify compounds with a broad-spectrum antiviral profile.
Collapse
Affiliation(s)
- Marianne Lucas-Hourani
- Unité de Génomique Virale et Vaccination, Virology Department, Institut Pasteur, CNRS UMR3569
| | - Hélène Munier-Lehmann
- Unité de Chimie et Biocatalyse, Biochemistry and Structural Biology Department, Institut Pasteur, CNRS UMR3523
| | - Olivier Helynck
- Unité de Chimie et Biocatalyse, Biochemistry and Structural Biology Department, Institut Pasteur, CNRS UMR3523
| | - Anastassia Komarova
- Unité de Génomique Virale et Vaccination, Virology Department, Institut Pasteur, CNRS UMR3569
| | - Philippe Desprès
- Unité des Interactions Moléculaires Flavivirus-Hôtes, Virology Department, Institut Pasteur
| | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Virology Department, Institut Pasteur, CNRS UMR3569
| | - Pierre-Olivier Vidalain
- Unité de Génomique Virale et Vaccination, Virology Department, Institut Pasteur, CNRS UMR3569;
| |
Collapse
|
32
|
Whittaker MM, Whittaker JW. Expression and purification of recombinant Saccharomyces cerevisiae mitochondrial carrier protein YGR257Cp (Mtm1p). Protein Expr Purif 2013; 93:77-86. [PMID: 24184947 DOI: 10.1016/j.pep.2013.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/11/2013] [Accepted: 10/23/2013] [Indexed: 12/27/2022]
Abstract
The Saccharomyces cerevisiae mitochondrial carrier YGR257Cp (Mtm1p) is an integral membrane protein that plays an essential role in mitochondrial iron homeostasis and respiratory functions, but its carrier substrate has not previously been identified. Large amounts of pure protein are required for biochemical characterization, including substrate screening. Functional complementation of a Saccharomyces knockout by expression of TwinStrep tagged YGR257Cp demonstrates that an affinity tag does not interfere with protein function, but the expression level is very low. Heterologous expression in Pichia pastoris improves the yield but the product is heterogeneous. Expression has been screened in several Escherichia coli hosts, optimizing yield by modifying induction conditions and supplementing with rare tRNAs to overcome codon bias in the eukaryotic gene. Detection of an additional N-terminal truncation product in E. coli reveals the presence of a secondary intracistronic translation initiation site, which can be eliminated by silent mutagenesis of an alternative (Leu) initiation codon, resulting in production of a single, full-length polypeptide (∼30% of the total protein) as insoluble inclusion bodies. Purified inclusion bodies were successfully refolded and affinity purified, yielding approximately 40mg of pure, soluble product per liter of culture. Refolded YGR257Cp binds pyridoxal 5'-phosphate tightly (KD<1μM), supporting a new hypothesis that the mitochondrial carrier YGR237Cp and its homologs function as high affinity PLP transporters in mitochondria, providing the first evidence for this essential transport function in eukaryotes.
Collapse
Affiliation(s)
- Mei M Whittaker
- Institute for Environmental Health, Division of Environmental and Biomolecular Systems, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, United States
| | | |
Collapse
|
33
|
Germain MA, Chatel-Chaix L, Gagné B, Bonneil É, Thibault P, Pradezynski F, de Chassey B, Meyniel-Schicklin L, Lotteau V, Baril M, Lamarre D. Elucidating novel hepatitis C virus-host interactions using combined mass spectrometry and functional genomics approaches. Mol Cell Proteomics 2013; 13:184-203. [PMID: 24169621 DOI: 10.1074/mcp.m113.030155] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
More than 170 million people worldwide are infected with the hepatitis C virus (HCV), for which future therapies are expected to rely upon a combination of oral antivirals. For a rapidly evolving virus like HCV, host-targeting antivirals are an attractive option. To decipher the role of novel HCV-host interactions, we used a proteomics approach combining immunoprecipitation of viral-host protein complexes coupled to mass spectrometry identification and functional genomics RNA interference screening of HCV partners. Here, we report the proteomics analyses of protein complexes associated with Core, NS2, NS3/4A, NS4B, NS5A, and NS5B proteins. We identified a stringent set of 98 human proteins interacting specifically with one of the viral proteins. The overlap with previous virus-host interaction studies demonstrates 24.5% shared HCV interactors overall (24/98), illustrating the reliability of the approach. The identified human proteins show enriched Gene Ontology terms associated with the endoplasmic reticulum, transport proteins with a major contribution of NS3/4A interactors, and transmembrane proteins for Core interactors. The interaction network emphasizes a high degree distribution, a high betweenness distribution, and high interconnectivity of targeted human proteins, in agreement with previous virus-host interactome studies. The set of HCV interactors also shows extensive enrichment for known targets of other viruses. The combined proteomic and gene silencing study revealed strong enrichment in modulators of HCV RNA replication, with the identification of 11 novel cofactors among our set of specific HCV partners. Finally, we report a novel immune evasion mechanism of NS3/4A protein based on its ability to affect nucleocytoplasmic transport of type I interferon-mediated signal transducer and activator of transcription 1 nuclear translocation. The study revealed highly stringent association between HCV interactors and their functional contribution to the viral replication cycle and pathogenesis.
Collapse
Affiliation(s)
- Marie-Anne Germain
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lucas-Hourani M, Dauzonne D, Jorda P, Cousin G, Lupan A, Helynck O, Caignard G, Janvier G, André-Leroux G, Khiar S, Escriou N, Desprès P, Jacob Y, Munier-Lehmann H, Tangy F, Vidalain PO. Inhibition of pyrimidine biosynthesis pathway suppresses viral growth through innate immunity. PLoS Pathog 2013; 9:e1003678. [PMID: 24098125 PMCID: PMC3789760 DOI: 10.1371/journal.ppat.1003678] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/16/2013] [Indexed: 12/19/2022] Open
Abstract
Searching for stimulators of the innate antiviral response is an appealing approach to develop novel therapeutics against viral infections. Here, we established a cell-based reporter assay to identify compounds stimulating expression of interferon-inducible antiviral genes. DD264 was selected out of 41,353 compounds for both its immuno-stimulatory and antiviral properties. While searching for its mode of action, we identified DD264 as an inhibitor of pyrimidine biosynthesis pathway. This metabolic pathway was recently identified as a prime target of broad-spectrum antiviral molecules, but our data unraveled a yet unsuspected link with innate immunity. Indeed, we showed that DD264 or brequinar, a well-known inhibitor of pyrimidine biosynthesis pathway, both enhanced the expression of antiviral genes in human cells. Furthermore, antiviral activity of DD264 or brequinar was found strictly dependent on cellular gene transcription, nuclear export machinery, and required IRF1 transcription factor. In conclusion, the antiviral property of pyrimidine biosynthesis inhibitors is not a direct consequence of pyrimidine deprivation on the virus machinery, but rather involves the induction of cellular immune response. Our therapeutic arsenal to treat viral diseases is extremely limited, and there is a critical need for molecules that could be used against multiple viruses. Among possible strategies, there is a growing interest for molecules stimulating cellular defense mechanisms. We recently developed a functional assay to identify stimulators of antiviral genes, and selected compound DD264 from a chemical library using this approach. While searching for its mode of action, we identified this molecule as an inhibitor of pyrimidine biosynthesis, a metabolic pathway that fuels the cell with pyrimidine nucleobases for both DNA and RNA synthesis. Interestingly, it was recently shown that inhibitors of this metabolic pathway prevent the replication of RNA viruses. Here, we established a functional link between pyrimidine biosynthesis pathway and the induction of antiviral genes, and demonstrated that pyrimidine biosynthesis inhibitors like DD264 or brequinar critically rely on cellular immune response to inhibit virus growth. Thus, pyrimidine deprivation is not directly responsible for the antiviral activity of pyrimidine biosynthesis inhibitors, which rather involves the induction of a metabolic stress and subsequent triggering of cellular defense mechanisms.
Collapse
Affiliation(s)
- Marianne Lucas-Hourani
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
| | - Daniel Dauzonne
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR176, Paris, France
| | - Pierre Jorda
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR176, Paris, France
| | - Gaëlle Cousin
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR176, Paris, France
| | - Alexandru Lupan
- Institut Pasteur, Unité de Chimie et Biocatalyse, Paris, France
- CNRS, UMR3523, Paris, France
| | - Olivier Helynck
- Institut Pasteur, Unité de Chimie et Biocatalyse, Paris, France
- CNRS, UMR3523, Paris, France
| | - Grégory Caignard
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
| | - Geneviève Janvier
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
| | - Gwénaëlle André-Leroux
- Institut Pasteur, Unité de Biochimie Structurale, Paris, France
- CNRS, UMR 3528, Paris, France
| | - Samira Khiar
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
| | - Nicolas Escriou
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
| | - Philippe Desprès
- Institut Pasteur, Unité Interactions moléculaires Flavivirus-Hôtes, Paris, France
| | - Yves Jacob
- CNRS, UMR3569, Paris, France
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Paris, France
- Dana-Farber Cancer Institute, Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Boston, Massachusetts, United States of America
| | - Hélène Munier-Lehmann
- Institut Pasteur, Unité de Chimie et Biocatalyse, Paris, France
- CNRS, UMR3523, Paris, France
- * E-mail: (HML); (FT); (POV)
| | - Frédéric Tangy
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
- * E-mail: (HML); (FT); (POV)
| | - Pierre-Olivier Vidalain
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
- * E-mail: (HML); (FT); (POV)
| |
Collapse
|
35
|
Komarova AV, Combredet C, Sismeiro O, Dillies MA, Jagla B, Sanchez David RY, Vabret N, Coppée JY, Vidalain PO, Tangy F. Identification of RNA partners of viral proteins in infected cells. RNA Biol 2013; 10:944-56. [PMID: 23595062 PMCID: PMC4111734 DOI: 10.4161/rna.24453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/20/2013] [Accepted: 03/26/2013] [Indexed: 12/20/2022] Open
Abstract
RNA viruses exhibit small-sized genomes encoding few proteins, but still establish complex networks of protein-protein and RNA-protein interactions within a cell to achieve efficient replication and spreading. Deciphering these interactions is essential to reach a comprehensive understanding of the viral infection process. To study RNA-protein complexes directly in infected cells, we developed a new approach based on recombinant viruses expressing tagged viral proteins that were purified together with their specific RNA partners. High-throughput sequencing was then used to identify these RNA molecules. As a proof of principle, this method was applied to measles virus nucleoprotein (MV-N). It revealed that in addition to full-length genomes, MV-N specifically interacted with a unique population of 5' copy-back defective interfering RNA genomes that we characterized. Such RNA molecules were able to induce strong activation of interferon-stimulated response element promoter preferentially via the cytoplasmic pattern recognition receptor RIG-I protein, demonstrating their biological functionality. Thus, this method provides a new platform to explore biologically active RNA-protein networks that viruses establish within infected cells.
Collapse
Affiliation(s)
- Anastassia V. Komarova
- Unité de Génomique virale et Vaccination; Institut Pasteur; CNRS URA-3015; Paris, France
| | - Chantal Combredet
- Unité de Génomique virale et Vaccination; Institut Pasteur; CNRS URA-3015; Paris, France
| | - Odile Sismeiro
- Plateforme Transcriptome et Epigénome – Génopole; Institut Pasteur; Paris, France
| | - Marie-Agnès Dillies
- Plateforme Transcriptome et Epigénome – Génopole; Institut Pasteur; Paris, France
| | - Bernd Jagla
- Plateforme Transcriptome et Epigénome – Génopole; Institut Pasteur; Paris, France
| | | | - Nicolas Vabret
- Unité de Génomique virale et Vaccination; Institut Pasteur; CNRS URA-3015; Paris, France
| | - Jean-Yves Coppée
- Plateforme Transcriptome et Epigénome – Génopole; Institut Pasteur; Paris, France
| | | | - Frédéric Tangy
- Unité de Génomique virale et Vaccination; Institut Pasteur; CNRS URA-3015; Paris, France
| |
Collapse
|
36
|
Zhang LK, Chai F, Li HY, Xiao G, Guo L. Identification of host proteins involved in Japanese encephalitis virus infection by quantitative proteomics analysis. J Proteome Res 2013; 12:2666-78. [PMID: 23647205 DOI: 10.1021/pr400011k] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Japanese encephalitis virus (JEV) enters host cells via receptor-mediated endocytosis and replicates in the cytoplasm of infected cells. To study virus-host cell interactions, we performed a SILAC-based quantitative proteomics study of JEV-infected HeLa cells using a subcellular fractionation strategy. We identified 158 host proteins as differentially regulated by JEV (defined as exhibiting a greater than 1.5-fold change in protein abundance upon JEV infection). The mass spectrometry quantitation data for selected proteins were validated by Western blot and immunofluorescence confocal microscopy. Bioinformatics analyses were used to generate JEV-regulated host response networks consisting of regulated proteins, which included 35 proteins that were newly added based on the results of this study. The JEV infection-induced host response was found to be coordinated primarily through the immune response process, the ubiquitin-proteasome system (UPS), the intracellular membrane system, and lipid metabolism-related proteins. Protein functional studies of selected host proteins using RNA interference-based techniques were carried out in HeLa cells infected with an attenuated or a highly virulent strain of JEV. We demonstrated that the knockdown of interferon-induced transmembrane protein 3 (IFITM3), Ran-binding protein 2 (RANBP2), sterile alpha motif domain-containing protein 9 (SAMD9) and vesicle-associated membrane protein 8 (VAMP8) significantly increased JEV replication. The results presented here not only promote a better understanding of the host response to JEV infection but also highlight multiple potential targets for the development of antiviral agents.
Collapse
Affiliation(s)
- Lei-Ke Zhang
- State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | | | | | | | | |
Collapse
|
37
|
Kuzmanov U, Emili A. Protein-protein interaction networks: probing disease mechanisms using model systems. Genome Med 2013; 5:37. [PMID: 23635424 PMCID: PMC3706760 DOI: 10.1186/gm441] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein-protein interactions (PPIs) and multi-protein complexes perform central roles in the cellular systems of all living organisms. In humans, disruptions of the normal patterns of PPIs and protein complexes can be causative or indicative of a disease state. Recent developments in the biological applications of mass spectrometry (MS)-based proteomics have expanded the horizon for the application of systematic large-scale mapping of physical interactions to probe disease mechanisms. In this review, we examine the application of MS-based approaches for the experimental analysis of PPI networks and protein complexes, focusing on the different model systems (including human cells) used to study the molecular basis of common diseases such as cancer, cardiomyopathies, diabetes, microbial infections, and genetic and neurodegenerative disorders.
Collapse
Affiliation(s)
- Uros Kuzmanov
- Banting and Best Department of Medical Research and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Andrew Emili
- Banting and Best Department of Medical Research and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
38
|
White EA, Howley PM. Proteomic approaches to the study of papillomavirus-host interactions. Virology 2013; 435:57-69. [PMID: 23217616 PMCID: PMC3522865 DOI: 10.1016/j.virol.2012.09.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 09/30/2012] [Indexed: 01/22/2023]
Abstract
The identification of interactions between viral and host cellular proteins has provided major insights into papillomavirus research, and these interactions are especially relevant to the role of papillomaviruses in the cancers with which they are associated. Recent advances in mass spectrometry technology and data processing now allow the systematic identification of such interactions. This has led to an improved understanding of the different pathologies associated with the many papillomavirus types, and the diverse nature of these viruses is reflected in the spectrum of interactions with host proteins. Here we review a history of proteomic approaches, particularly as applied to the papillomaviruses, and summarize current techniques. Current proteomic studies on the papillomaviruses use yeast-two-hybrid or affinity purification-mass spectrometry approaches. We detail the advantages and disadvantages of each and describe current examples of papillomavirus proteomic studies, with a particular focus on the HPV E6 and E7 oncoproteins.
Collapse
Affiliation(s)
- Elizabeth A. White
- Department of Microbiology and Immunobiology, Harvard Medical School, NRB Room 950, 77 Avenue Louis Pasteur, Boston, MA 02115
| | - Peter M. Howley
- Department of Microbiology and Immunobiology, Harvard Medical School, NRB Room 950, 77 Avenue Louis Pasteur, Boston, MA 02115
| |
Collapse
|
39
|
Delpeut S, Noyce RS, Siu RWC, Richardson CD. Host factors and measles virus replication. Curr Opin Virol 2012; 2:773-83. [PMID: 23146309 DOI: 10.1016/j.coviro.2012.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/11/2012] [Accepted: 10/16/2012] [Indexed: 12/19/2022]
Abstract
This review takes a general approach to describing host cell factors that facilitate measles virus (MeV) infection and replication. It relates our current understanding of MeV entry receptors, with emphasis on how these host cell surface proteins contribute to pathogenesis within its host. The roles of SLAM/CD150 lymphocyte receptor and the newly discovered epithelial receptor PVRL4/nectin-4 are highlighted. Host cell factors such as HSP72, Prdx1, tubulin, casein kinase, and actin, which are known to impact viral RNA synthesis and virion assembly, are also discussed. Finally the review describes strategies used by measles virus to circumvent innate immunity and confound the effects of interferon within the host cell. Proteomic studies and genome wide RNAi screens will undoubtedly advance our knowledge in the future.
Collapse
Affiliation(s)
- Sebastien Delpeut
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | |
Collapse
|
40
|
Zhu H, Cox E, Qian J. Functional protein microarray as molecular decathlete: a versatile player in clinical proteomics. Proteomics Clin Appl 2012; 6:548-62. [PMID: 23027439 PMCID: PMC3600421 DOI: 10.1002/prca.201200041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 12/31/2022]
Abstract
Functional protein microarrays were developed as a high-throughput tool to overcome the limitations of DNA microarrays and to provide a versatile platform for protein functional analyses. Recent years have witnessed tremendous growth in the use of protein microarrays, particularly functional protein microarrays, to address important questions in the field of clinical proteomics. In this review, we will summarize some of the most innovative and exciting recent applications of protein microarrays in clinical proteomics, including biomarker identification, pathogen-host interactions, and cancer biology.
Collapse
Affiliation(s)
- Heng Zhu
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, MD, USA.
| | | | | |
Collapse
|
41
|
Lucas-Hourani M, Lupan A, Desprès P, Thoret S, Pamlard O, Dubois J, Guillou C, Tangy F, Vidalain PO, Munier-Lehmann H. A phenotypic assay to identify Chikungunya virus inhibitors targeting the nonstructural protein nsP2. ACTA ACUST UNITED AC 2012; 18:172-9. [PMID: 22983165 DOI: 10.1177/1087057112460091] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted pathogen responsible for an acute infection of abrupt onset, characterized by high fever, polyarthralgia, myalgia, headaches, chills, and rash. In 2006, CHIKV was responsible for an epidemic outbreak of unprecedented magnitude in the Indian Ocean, stressing the need for therapeutic approaches. Since then, we have acquired a better understanding of CHIKV biology, but we are still missing active molecules against this reemerging pathogen. We recently reported that the nonstructural nsP2 protein of CHIKV induces a transcriptional shutoff that allows the virus to block cellular antiviral response. This was demonstrated using various luciferase-based reporter gene assays, including a trans-reporter system where Gal4 DNA binding domain is fused to Fos transcription factor. Here, we turned this assay into a high-throughput screening system to identify small molecules targeting nsP2-mediated shutoff. Among 3040 molecules tested, we identified one natural compound that partially blocks nsP2 activity and inhibits CHIKV replication in vitro. This proof of concept suggests that similar functional assays could be developed to target other viral proteins mediating a cellular shutoff and identify innovative therapeutic molecules.
Collapse
|
42
|
Askin SP, Schaeffer PM. A universal immuno-PCR platform for comparative and ultrasensitive quantification of dual affinity-tagged proteins in complex matrices. Analyst 2012; 137:5193-6. [DOI: 10.1039/c2an35857c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|