1
|
Walker IS, Dini S, Aitken EH, Damelang T, Hasang W, Alemu A, Jensen ATR, Rambhatla JS, Opi DH, Duffy MF, Takashima E, Harawa V, Tsuboi T, Simpson JA, Mandala W, Taylor TE, Seydel KB, Chung AW, Rogerson SJ. A systems serology approach to identifying key antibody correlates of protection from cerebral malaria in Malawian children. BMC Med 2024; 22:388. [PMID: 39267089 PMCID: PMC11396342 DOI: 10.1186/s12916-024-03604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) proteins are expressed on the surface of infected erythrocytes, mediating parasite sequestration in the vasculature. PfEMP1 is a major target of protective antibodies, but the features of the antibody response are poorly defined. METHODS In Malawian children with cerebral or uncomplicated malaria, we characterized the antibody response to 39 recombinant PfEMP1 Duffy binding like (DBL) domains or cysteine-rich interdomain regions (CIDRs) in detail, including measures of antibody classes, subclasses, and engagement with Fcγ receptors and complement. Using elastic net regularized logistic regression, we identified a combination of seven antibody targets and Fc features that best distinguished between children with cerebral and uncomplicated malaria. To confirm the role of the selected targets and Fc features, we measured antibody-dependent neutrophil and THP-1 cell phagocytosis of intercellular adhesion molecule-1 (ICAM-1) and endothelial protein C (EPCR) co-binding infected erythrocytes. RESULTS The selected features distinguished between children with cerebral and uncomplicated malaria with 87% accuracy (median, 80-96% interquartile range) and included antibody to well-characterized DBLβ3 domains and a less well-characterized CIDRγ12 domain. The abilities of antibodies to engage C1q and FcγRIIIb, rather than levels of IgG, correlated with protection. In line with a role of FcγRIIIb binding antibodies to DBLβ3 domains, antibody-dependent neutrophil phagocytosis of ICAM-1 and EPCR co-binding IE was higher in uncomplicated malaria (15% median, 8-38% interquartile range) compared to cerebral malaria (7%, 30-15%, p < 0.001). CONCLUSIONS Antibodies associated with protection from cerebral malaria target a subset of PfEMP1 domains. The Fc features of protective antibody response include engagement of FcγRIIIb and C1q, and ability to induce antibody-dependent neutrophil phagocytosis of infected erythrocytes. Identifying the targets and Fc features of protective immunity could facilitate the development of PfEMP1-based therapeutics for cerebral malaria.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Medicine, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Saber Dini
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Elizabeth H Aitken
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Timon Damelang
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Wina Hasang
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Agersew Alemu
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Anja T R Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Janavi S Rambhatla
- Department of Medicine, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - D Herbert Opi
- Department of Medicine, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Michael F Duffy
- Department of Medicine, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Visopo Harawa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wilson Mandala
- Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
| | - Terrie E Taylor
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- College of Osteopathic Medicine, Michigan State University, East Lansing, USA
| | - Karl B Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- College of Osteopathic Medicine, Michigan State University, East Lansing, USA
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Stephen J Rogerson
- Department of Medicine, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia.
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
2
|
Zhou X, Zhang Q, Chen JH, Dai JF, Kassegne K. Revisiting the antigen markers of vector-borne parasitic diseases identified by immunomics: identification and application to disease control. Expert Rev Proteomics 2024; 21:205-216. [PMID: 38584506 DOI: 10.1080/14789450.2024.2336994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/03/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Protein microarray is a promising immunomic approach for identifying biomarkers. Based on our previous study that reviewed parasite antigens and recent parasitic omics research, this article expands to include information on vector-borne parasitic diseases (VBPDs), namely, malaria, schistosomiasis, leishmaniasis, babesiosis, trypanosomiasis, lymphatic filariasis, and onchocerciasis. AREAS COVERED We revisit and systematically summarize antigen markers of vector-borne parasites identified by the immunomic approach and discuss the latest advances in identifying antigens for the rational development of diagnostics and vaccines. The applications and challenges of this approach for VBPD control are also discussed. EXPERT OPINION The immunomic approach has enabled the identification and/or validation of antigen markers for vaccine development, diagnosis, disease surveillance, and treatment. However, this approach presents several challenges, including limited sample size, variability in antigen expression, false-positive results, complexity of omics data, validation and reproducibility, and heterogeneity of diseases. In addition, antigen involvement in host immune evasion and antigen sensitivity/specificity are major issues in its application. Despite these limitations, this approach remains promising for controlling VBPD. Advances in technology and data analysis methods should continue to improve candidate antigen identification, as well as the use of a multiantigen approach in diagnostic and vaccine development for VBPD control.
Collapse
Affiliation(s)
- Xia Zhou
- MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology & Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Qianqian Zhang
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Jun-Hu Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research); National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology; World Health Organization (WHO) Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, People's Republic of China
- Hainan Tropical Diseases Research Center (Hainan Sub-Center, Chinese Center for Tropical Diseases Research), Haikou, China
| | - Jian-Feng Dai
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Kokouvi Kassegne
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- One Health Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
He Q, Chaillet JK, Labbé F. Antigenic strain diversity predicts different biogeographic patterns of maintenance and decline of antimalarial drug resistance. eLife 2024; 12:RP90888. [PMID: 38363295 PMCID: PMC10942604 DOI: 10.7554/elife.90888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
The establishment and spread of antimalarial drug resistance vary drastically across different biogeographic regions. Though most infections occur in sub-Saharan Africa, resistant strains often emerge in low-transmission regions. Existing models on resistance evolution lack consensus on the relationship between transmission intensity and drug resistance, possibly due to overlooking the feedback between antigenic diversity, host immunity, and selection for resistance. To address this, we developed a novel compartmental model that tracks sensitive and resistant parasite strains, as well as the host dynamics of generalized and antigen-specific immunity. Our results show a negative correlation between parasite prevalence and resistance frequency, regardless of resistance cost or efficacy. Validation using chloroquine-resistant marker data supports this trend. Post discontinuation of drugs, resistance remains high in low-diversity, low-transmission regions, while it steadily decreases in high-diversity, high-transmission regions. Our study underscores the critical role of malaria strain diversity in the biogeographic patterns of resistance evolution.
Collapse
Affiliation(s)
- Qixin He
- Department of Biological Sciences, Purdue UniversityWest LafayetteUnited States
| | - John K Chaillet
- Department of Biological Sciences, Purdue UniversityWest LafayetteUnited States
| | - Frédéric Labbé
- Department of Ecology and Evolution, University of ChicagoChicagoUnited States
| |
Collapse
|
4
|
He Q, Chaillet JK, Labbé F. Antigenic strain diversity predicts different biogeographic patterns of maintenance and decline of anti-malarial drug resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531320. [PMID: 37987011 PMCID: PMC10659383 DOI: 10.1101/2023.03.06.531320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The establishment and spread of anti-malarial drug resistance vary drastically across different biogeographic regions. Though most infections occur in Sub-Saharan Africa, resistant strains often emerge in low-transmission regions. Existing models on resistance evolution lack consensus on the relationship between transmission intensity and drug resistance, possibly due to overlooking the feedback between antigenic diversity, host immunity, and selection for resistance. To address this, we developed a novel compartmental model that tracks sensitive and resistant parasite strains, as well as the host dynamics of generalized and antigen-specific immunity. Our results show a negative correlation between parasite prevalence and resistance frequency, regardless of resistance cost or efficacy. Validation using chloroquine-resistant marker data supports this trend. Post discontinuation of drugs, resistance remains high in low-diversity, low-transmission regions, while it steadily decreases in high-diversity, high-transmission regions. Our study underscores the critical role of malaria strain diversity in the biogeographic patterns of resistance evolution.
Collapse
Affiliation(s)
- Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - John K. Chaillet
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Frédéric Labbé
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Tan MH, Tiedje KE, Feng Q, Zhan Q, Pascual M, Shim H, Chan YB, Day KP. A paradoxical population structure of var DBLα types in Africa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.05.565723. [PMID: 37986738 PMCID: PMC10659346 DOI: 10.1101/2023.11.05.565723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The var multigene family encodes the P. falciparum erythrocyte membrane protein 1 (PfEMP1), which is important in host-parasite interaction as a virulence factor and major surface antigen of the blood stages of the parasite, responsible for maintaining chronic infection. Whilst important in the biology of P. falciparum, these genes (50 to 60 genes per parasite genome) are routinely excluded from whole genome analyses due to their hyper-diversity, achieved primarily through recombination. The PfEMP1 head structure almost always consists of a DBLα-CIDR tandem. Categorised into different groups (upsA, upsB, upsC), different head structures have been associated with different ligand-binding affinities and disease severities. We study how conserved individual DBLα types are at the country, regional, and local scales in Sub-Saharan Africa. Using publicly-available sequence datasets and a novel ups classification algorithm, cUps, we performed an in silico exploration of DBLα conservation through time and space in Africa. In all three ups groups, the population structure of DBLα types in Africa consists of variants occurring at rare, low, moderate, and high frequencies. Non-rare variants were found to be temporally stable in a local area in endemic Ghana. When inspected across different geographical scales, we report different levels of conservation; while some DBLα types were consistently found in high frequencies in multiple African countries, others were conserved only locally, signifying local preservation of specific types. Underlying this population pattern is the composition of DBLα types within each isolate DBLα repertoire, revealed to also consist of a mix of types found at rare, low, moderate, and high frequencies in the population. We further discuss the adaptive forces and balancing selection, including host genetic factors, potentially shaping the evolution and diversity of DBLα types in Africa.
Collapse
Affiliation(s)
- Mun Hua Tan
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, AU
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, AU
| | - Qian Feng
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Qi Zhan
- Department of Ecology and Evolution, University of Chicago; Chicago, Illinois, USA
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago; Chicago, Illinois, USA
| | - Heejung Shim
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Yao-Ban Chan
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Karen P Day
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, AU
| |
Collapse
|
6
|
Barua P, Duffy MF, Manning L, Laman M, Davis TME, Mueller I, Haghiri A, Simpson JA, Beeson JG, Rogerson SJ. Antibody to Plasmodium falciparum Variant Surface Antigens, var Gene Transcription, and ABO Blood Group in Children With Severe or Uncomplicated Malaria. J Infect Dis 2023; 228:1099-1107. [PMID: 37341543 PMCID: PMC10582907 DOI: 10.1093/infdis/jiad217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Antibodies to variant surface antigens (VSAs) such as Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) may vary with malaria severity. The influence of ABO blood group on antibody development is not understood. METHODS Immunoglobulin G antibodies to VSAs in Papua New Guinean children with severe (n = 41) or uncomplicated (n = 30) malaria were measured by flow cytometry using homologous P falciparum isolates. Isolates were incubated with ABO-matched homologous and heterologous acute and convalescent plasma. RNA was used to assess var gene transcription. RESULTS Antibodies to homologous, but not heterologous, isolates were boosted in convalescence. The relationship between antibody and severity varied by blood group. Antibodies to VSAs were similar in severe and uncomplicated malaria at presentation, higher in severe than uncomplicated malaria in convalescence, and higher in children with blood group O than other children. Six var gene transcripts best distinguished severe from uncomplicated malaria, including UpsA and 2 CIDRα1 domains. CONCLUSIONS ABO blood group may influence antibody acquisition to VSAs and susceptibility to severe malaria. Children in Papua New Guinea showed little evidence of acquisition of cross-reactive antibodies following malaria. Var gene transcripts in Papua New Guinean children with severe malaria were similar to those reported from Africa.
Collapse
Affiliation(s)
- Priyanka Barua
- Department of Medicine, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne
| | - Michael F Duffy
- Department of Medicine, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, Bio21 Institute, University of Melbourne, Parkville, Victoria
| | | | - Moses Laman
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang
| | | | - Ivo Mueller
- Population Health and Immunity, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Parasites and Insect Vector, Institut Pasteur, Paris, France
| | - Ali Haghiri
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville
| | - James G Beeson
- Malaria Immunity and Vaccines Laboratory, Burnet Institute, Melbourne
- Central Clinical School and Department of Microbiology, Monash University, Clayton
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen J Rogerson
- Department of Medicine, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Ruybal-Pesántez S, Sáenz FE, Deed SL, Johnson EK, Larremore DB, Vera-Arias CA, Tiedje KE, Day KP. Molecular epidemiology of continued Plasmodium falciparum disease transmission after an outbreak in Ecuador. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2023.1085862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
To better understand the factors underlying the continued incidence of clinical episodes of falciparum malaria in E-2025 countries targeting elimination, we characterized the molecular epidemiology of Plasmodium falciparum disease transmission after a clonal outbreak in Ecuador. Here we study disease transmission by documenting the diversity and population structure of the major variant surface antigen of the blood stages of P. falciparum encoded by the var multigene family. We used a high-resolution genotyping method, “varcoding”, involving targeted amplicon sequencing to fingerprint the DBLα encoding region of var genes to describe both antigenic var diversity and var repertoire similarity or relatedness in parasite isolates from clinical cases. We identified nine genetic varcodes in 58 P. falciparum isolates causing clinical disease in 2013-2015. Network analyses revealed that four of the varcodes were highly related to the outbreak varcode, with identification of possible diversification of the outbreak parasites by recombination as seen in three of those varcodes. The majority of clinical cases in Ecuador were associated with parasites with highly related or recombinant varcodes to the outbreak clone and due to local transmission rather than recent importation of parasites from other endemic countries. Sharing of types in Ecuadorian varcodes to those sampled in South American varcodes reflects historical parasite importation of some varcodes, especially from Colombia and Peru. Our findings highlight the translational application of varcoding for outbreak surveillance in epidemic/unstable malaria transmission, such as in E-2025 countries, and point to the need for surveillance of local reservoirs of infection in Ecuador to achieve the malaria elimination goal by 2025.
Collapse
|
8
|
Raghavan M, Kalantar KL, Duarte E, Teyssier N, Takahashi S, Kung AF, Rajan JV, Rek J, Tetteh KKA, Drakeley C, Ssewanyana I, Rodriguez-Barraquer I, Greenhouse B, DeRisi JL. Antibodies to repeat-containing antigens in Plasmodium falciparum are exposure-dependent and short-lived in children in natural malaria infections. eLife 2023; 12:e81401. [PMID: 36790168 PMCID: PMC10005774 DOI: 10.7554/elife.81401] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 02/14/2023] [Indexed: 02/16/2023] Open
Abstract
Protection against Plasmodium falciparum, which is primarily antibody-mediated, requires recurrent exposure to develop. The study of both naturally acquired limited immunity and vaccine induced protection against malaria remains critical for ongoing eradication efforts. Towards this goal, we deployed a customized P. falciparum PhIP-seq T7 phage display library containing 238,068 tiled 62-amino acid peptides, covering all known coding regions, including antigenic variants, to systematically profile antibody targets in 198 Ugandan children and adults from high and moderate transmission settings. Repeat elements - short amino acid sequences repeated within a protein - were significantly enriched in antibody targets. While breadth of responses to repeat-containing peptides was twofold higher in children living in the high versus moderate exposure setting, no such differences were observed for peptides without repeats, suggesting that antibody responses to repeat-containing regions may be more exposure dependent and/or less durable in children than responses to regions without repeats. Additionally, short motifs associated with seroreactivity were extensively shared among hundreds of antigens, potentially representing cross-reactive epitopes. PfEMP1 shared motifs with the greatest number of other antigens, partly driven by the diversity of PfEMP1 sequences. These data suggest that the large number of repeat elements and potential cross-reactive epitopes found within antigenic regions of P. falciparum could contribute to the inefficient nature of malaria immunity.
Collapse
Affiliation(s)
- Madhura Raghavan
- University of California, San FranciscoSan FranciscoUnited States
| | | | - Elias Duarte
- University of California, BerkeleyBerkeleyUnited States
| | - Noam Teyssier
- University of California, San FranciscoSan FranciscoUnited States
| | - Saki Takahashi
- University of California, San FranciscoSan FranciscoUnited States
| | - Andrew F Kung
- University of California, San FranciscoSan FranciscoUnited States
| | - Jayant V Rajan
- University of California, San FranciscoSan FranciscoUnited States
| | - John Rek
- Infectious Diseases Research CollaborationKampalaUganda
| | - Kevin KA Tetteh
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Chris Drakeley
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Isaac Ssewanyana
- Infectious Diseases Research CollaborationKampalaUganda
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Isabel Rodriguez-Barraquer
- University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Bryan Greenhouse
- University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Joseph L DeRisi
- University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| |
Collapse
|
9
|
Tan MH, Shim H, Chan YB, Day KP. Unravelling var complexity: Relationship between DBLα types and var genes in Plasmodium falciparum. FRONTIERS IN PARASITOLOGY 2023; 1. [PMID: 36998722 PMCID: PMC10060044 DOI: 10.3389/fpara.2022.1006341] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The enormous diversity and complexity of var genes that diversify rapidly by recombination has led to the exclusion of assembly of these genes from major genome initiatives (e.g., Pf6). A scalable solution in epidemiological surveillance of var genes is to use a small ‘tag’ region encoding the immunogenic DBLα domain as a marker to estimate var diversity. As var genes diversify by recombination, it is not clear the extent to which the same tag can appear in multiple var genes. This relationship between marker and gene has not been investigated in natural populations. Analyses of in vitro recombination within and between var genes have suggested that this relationship would not be exclusive. Using a dataset of publicly-available assembled var sequences, we test this hypothesis by studying DBLα-var relationships for four study sites in four countries: Pursat (Cambodia) and Mae Sot (Thailand), representing low malaria transmission, and Navrongo (Ghana) and Chikwawa (Malawi), representing high malaria transmission. In all study sites, DBLα-var relationships were shown to be predominantly 1-to-1, followed by a second largest proportion of 1-to-2 DBLα-var relationships. This finding indicates that DBLα tags can be used to estimate not just DBLα diversity but var gene diversity when applied in a local endemic area. Epidemiological applications of this result are discussed.
Collapse
Affiliation(s)
- Mun Hua Tan
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute, Melbourne, VIC, Australia
| | - Heejung Shim
- School of Mathematics and Statistics/Melbourne Integrative Genomics, The University of Melbourne, Melbourne, VIC, Australia
| | - Yao-ban Chan
- School of Mathematics and Statistics/Melbourne Integrative Genomics, The University of Melbourne, Melbourne, VIC, Australia
| | - Karen P. Day
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute, Melbourne, VIC, Australia
- CORRESPONDENCE Karen P. Day,
| |
Collapse
|
10
|
Ruybal-Pesántez S, Tiedje KE, Pilosof S, Tonkin-Hill G, He Q, Rask TS, Amenga-Etego L, Oduro AR, Koram KA, Pascual M, Day KP. Age-specific patterns of DBLα var diversity can explain why residents of high malaria transmission areas remain susceptible to Plasmodium falciparum blood stage infection throughout life. Int J Parasitol 2022; 52:721-731. [PMID: 35093396 PMCID: PMC9339046 DOI: 10.1016/j.ijpara.2021.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022]
Abstract
Immunity to Plasmodium falciparum is non-sterilising, thus individuals residing in malaria-endemic areas are at risk of infection throughout their lifetime. Here we seek to find a genomic epidemiological explanation for why residents of all ages harbour blood stage infections despite lifelong exposure to P. falciparum in areas of high transmission. We do this by exploring, for the first known time, the age-specific patterns of diversity of variant antigen encoding (var) genes in the reservoir of infection. Microscopic and submicroscopic P. falciparum infections were analysed at the end of the wet and dry seasons in 2012-2013 for a cohort of 1541 residents aged from 1 to 91 years in an area characterised by high seasonal malaria transmission in Ghana. By sequencing the near ubiquitous Duffy-binding-like alpha domain (DBLα) that encodes immunogenic domains, we defined var gene diversity in an estimated 1096 genomes detected in sequential wet and dry season sampling of this cohort. Unprecedented var (DBLα) diversity was observed in all ages with 42,399 unique var types detected. There was a high degree of maintenance of types between seasons (>40% seen more than once), with many of the same types, especially upsA, appearing multiple times in isolates from different individuals. Children and adolescents were found to be significant reservoirs of var DBLα diversity compared with adults. Var repertoires within individuals were highly variable, with children having more related var repertoires compared to adolescents and adults. Individuals of all ages harboured multiple genomes with var repertoires unrelated to those infecting other hosts. High turnover of parasites with diverse isolate var repertoires was also observed in all ages. These age-specific patterns are best explained by variant-specific immune selection. The observed level of var diversity for the population was then used to simulate the development of variant-specific immunity to the diverse var types under conservative assumptions. Simulations showed that the extent of observed var diversity with limited repertoire relatedness was sufficient to explain why adolescents and adults in this community remain susceptible to blood stage infection, even with multiple genomes.
Collapse
Affiliation(s)
| | - Kathryn E. Tiedje
- School of BioSciences, Bio21 Institute, The University of Melbourne, Australia,Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Australia
| | - Shai Pilosof
- Department of Ecology and Evolution, University of Chicago, USA,Department of Life Sciences, Ben-Gurion University, Be’er-Sheva, Israel
| | - Gerry Tonkin-Hill
- School of BioSciences, Bio21 Institute, The University of Melbourne, Australia,Bioinformatics Division, Walter and Eliza Hall Institute of Medial Research, Australia
| | - Qixin He
- Department of Ecology and Evolution, University of Chicago, USA
| | - Thomas S. Rask
- School of BioSciences, Bio21 Institute, The University of Melbourne, Australia
| | - Lucas Amenga-Etego
- West African Centre for Cell Biology and Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Ghana,Navrongo Health Research Centre, Ghana Health Service, Ghana
| | | | - Kwadwo A. Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana
| | | | - Karen P. Day
- School of BioSciences, Bio21 Institute, The University of Melbourne, Australia,Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Australia,Corresponding author. (K.P. Day)
| |
Collapse
|
11
|
Ventimiglia NT, Stucke EM, Coulibaly D, Berry AA, Lyke KE, Laurens MB, Bailey JA, Adams M, Niangaly A, Kone AK, Takala-Harrison S, Kouriba B, Doumbo OK, Felgner PL, Plowe CV, Thera MA, Travassos MA. Malian adults maintain serologic responses to virulent PfEMP1s amid seasonal patterns of fluctuation. Sci Rep 2021; 11:14401. [PMID: 34257318 PMCID: PMC8277812 DOI: 10.1038/s41598-021-92974-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/08/2021] [Indexed: 12/03/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein-1s (PfEMP1s), diverse malaria proteins expressed on the infected erythrocyte surface, play an important role in pathogenesis, mediating adhesion to host vascular endothelium. Antibodies to particular non-CD36-binding PfEMP1s are associated with protection against severe disease. We hypothesized that given lifelong P. falciparum exposure, Malian adults would have broad PfEMP1 serorecognition and high seroreactivity levels during follow-up, particularly to non-CD36-binding PfEMP1s such as those that attach to endothelial protein C receptor (EPCR) and intercellular adhesion molecule-1 (ICAM-1). Using a protein microarray, we determined serologic responses to 166 reference PfEMP1 fragments during a dry and subsequent malaria transmission season in Malian adults. Malian adult sera had PfEMP1 serologic responses throughout the year, with decreased reactivity to a small subset of PfEMP1 fragments during the dry season and increases in reactivity to a different subset of PfEMP1 fragments during the subsequent peak malaria transmission season, especially for intracellular PfEMP1 domains. For some individuals, PfEMP1 serologic responses increased after the dry season, suggesting antigenic switching during asymptomatic infection. Adults were more likely to experience variable serorecognition of CD36-binding PfEMP1s than non-CD36-binding PfEMP1s that bind EPCR or ICAM-1, which remained serorecognized throughout the year. Sustained seroreactivity to non-CD36-binding PfEMP1s throughout adulthood amid seasonal fluctuation patterns may reflect underlying protective severe malaria immunity and merits further investigation.
Collapse
Affiliation(s)
| | - Emily M Stucke
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Drissa Coulibaly
- University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Andrea A Berry
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E Lyke
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Jason A Bailey
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew Adams
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amadou Niangaly
- University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye K Kone
- University of Sciences, Techniques and Technologies, Bamako, Mali
| | | | - Bourema Kouriba
- University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Ogobara K Doumbo
- University of Sciences, Techniques and Technologies, Bamako, Mali
| | | | | | | | | |
Collapse
|
12
|
Antibody Levels to Plasmodium falciparum Erythrocyte Membrane Protein 1-DBLγ11 and DBLδ-1 Predict Reduction in Parasite Density. mSystems 2021; 6:e0034721. [PMID: 34128693 PMCID: PMC8269226 DOI: 10.1128/msystems.00347-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a variant surface antigen family expressed on infected red blood cells that plays a role in immune evasion and mediates adhesion to vascular endothelium. PfEMP1s are potential targets of protective antibodies as suggested by previous seroepidemiology studies. Here, we used previously reported proteomic analyses of PfEMP1s of clinical parasite isolates collected from Malian children to identify targets of immunity. We designed a peptide library representing 11 PfEMP1 domains commonly identified on clinical isolates by membrane proteomics and then examined peptide-specific antibody responses in Malian children. The number of previous malaria infections was associated with development of PfEMP1 antibodies to peptides from domains CIDRα1.4, DBLγ11, DBLβ3, and DBLδ1. A zero-inflated negative binomial model with random effects (ZINBRE) was used to identify peptide reactivities that were associated with malaria risk. This peptide selection and serosurvey strategy revealed that high antibody levels to peptides from DBLγ11 and DBLδ1 domains correlated with decreased parasite burden in future infections, supporting the notion that specific PfEMP1 domains play a role in protective immunity. IMPORTANCEPlasmodium infection causes devastating disease and high mortality in young children. Immunity develops progressively as children acquire protection against severe disease, although reinfections and recrudescences still occur throughout life in areas of endemicity, partly due to parasite immunoevasion via switching of variant proteins such as Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) expressed on the infected erythrocyte surface. Understanding the mechanisms behind antibody protection can advance development of new therapeutic interventions that address this challenge. PfEMP1 domain-specific antibodies have been linked to reduction in severe malaria; however, the large diversity of PfEMP1 domains in circulating parasites has not been fully investigated. We designed representative peptides based on B cell epitopes of PfEMP1 domains identified in membranes of clinical parasite isolates and surveyed peptide-specific antibody responses among young Malian children in a longitudinal birth cohort. We examined previous infections and age as factors contributing to antibody acquisition and identified antibody specificities that predict malaria risk.
Collapse
|
13
|
He Q, Pilosof S, Tiedje KE, Day KP, Pascual M. Frequency-Dependent Competition Between Strains Imparts Persistence to Perturbations in a Model of Plasmodium falciparum Malaria Transmission. Front Ecol Evol 2021; 9. [PMID: 35433714 PMCID: PMC9012452 DOI: 10.3389/fevo.2021.633263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In high-transmission endemic regions, local populations of Plasmodium falciparum exhibit vast diversity of the var genes encoding its major surface antigen, with each parasite comprising multiple copies from this diverse gene pool. This strategy to evade the immune system through large combinatorial antigenic diversity is common to other hyperdiverse pathogens. It underlies a series of fundamental epidemiological characteristics, including large reservoirs of transmission from high prevalence of asymptomatics and long-lasting infections. Previous theory has shown that negative frequency-dependent selection (NFDS) mediated by the acquisition of specific immunity by hosts structures the diversity of var gene repertoires, or strains, in a pattern of limiting similarity that is both non-random and non-neutral. A combination of stochastic agent-based models and network analyses has enabled the development and testing of theory in these complex adaptive systems, where assembly of local parasite diversity occurs under frequency-dependent selection and large pools of variation. We show here the application of these approaches to theory comparing the response of the malaria transmission system to intervention when strain diversity is assembled under (competition-based) selection vs. a form of neutrality, where immunity depends only on the number but not the genetic identity of previous infections. The transmission system is considerably more persistent under NFDS, exhibiting a lower extinction probability despite comparable prevalence during intervention. We explain this pattern on the basis of the structure of strain diversity, in particular the more pronounced fraction of highly dissimilar parasites. For simulations that survive intervention, prevalence under specific immunity is lower than under neutrality, because the recovery of diversity is considerably slower than that of prevalence and decreased var gene diversity reduces parasite transmission. A Principal Component Analysis of network features describing parasite similarity reveals that despite lower overall diversity, NFDS is quickly restored after intervention constraining strain structure and maintaining patterns of limiting similarity important to parasite persistence. Given the described enhanced persistence under perturbation, intervention efforts will likely require longer times than the usual practice to eliminate P. falciparum populations. We discuss implications of our findings and potential analogies for ecological communities with non-neutral assembly processes involving frequency-dependence.
Collapse
Affiliation(s)
- Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Shai Pilosof
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Karen P. Day
- Department of Microbiology and Immunology, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
- Santa Fe Institute, Santa Fe, NM, United States
- Correspondence: Mercedes Pascual,
| |
Collapse
|
14
|
Shah Z, Naung MT, Moser KA, Adams M, Buchwald AG, Dwivedi A, Ouattara A, Seydel KB, Mathanga DP, Barry AE, Serre D, Laufer MK, Silva JC, Takala-Harrison S. Whole-genome analysis of Malawian Plasmodium falciparum isolates identifies possible targets of allele-specific immunity to clinical malaria. PLoS Genet 2021; 17:e1009576. [PMID: 34033654 PMCID: PMC8184011 DOI: 10.1371/journal.pgen.1009576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/07/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Individuals acquire immunity to clinical malaria after repeated Plasmodium falciparum infections. Immunity to disease is thought to reflect the acquisition of a repertoire of responses to multiple alleles in diverse parasite antigens. In previous studies, we identified polymorphic sites within individual antigens that are associated with parasite immune evasion by examining antigen allele dynamics in individuals followed longitudinally. Here we expand this approach by analyzing genome-wide polymorphisms using whole genome sequence data from 140 parasite isolates representing malaria cases from a longitudinal study in Malawi and identify 25 genes that encode possible targets of naturally acquired immunity that should be validated immunologically and further characterized for their potential as vaccine candidates.
Collapse
Affiliation(s)
- Zalak Shah
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Myo T. Naung
- Population Health and Immunity Division, Walter Eliza Hall of Medical Institute for Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Carlton, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Kara A. Moser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew Adams
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Andrea G. Buchwald
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ankit Dwivedi
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Amed Ouattara
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Karl B. Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Don P. Mathanga
- University of Malawi College of Medicine, Malaria Alert Centre, Blantyre, Malawi
| | - Alyssa E. Barry
- Population Health and Immunity Division, Walter Eliza Hall of Medical Institute for Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Carlton, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
- Disease Elimination and Maternal and Child Health, Burnet Institute, Melbourne, Victoria, Australia
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Miriam K. Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
15
|
Mwai K, Kibinge N, Tuju J, Kamuyu G, Kimathi R, Mburu J, Chepsat E, Nyamako L, Chege T, Nkumama I, Kinyanjui S, Musenge E, Osier F. protGear: A protein microarray data pre-processing suite. Comput Struct Biotechnol J 2021; 19:2518-2525. [PMID: 34025940 PMCID: PMC8114118 DOI: 10.1016/j.csbj.2021.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/29/2022] Open
Abstract
Protein microarrays are versatile tools for high throughput study of the human proteome, but systematic and non-systematic sources of bias constrain optimal interpretation and the ultimate utility of the data. Published guidelines to limit technical variability whilst maintaining important biological variation favour DNA-based microarrays that often differ fundamentally in their experimental design. Rigorous tools to guide background correction, the quantification of within-sample variation, normalisation, and batch correction specifically for protein microarrays are limited, require extensive investigation and are not centrally accessible. Here, we develop a generic one-stop-shop pre-processing suite for protein microarrays that is compatible with data from the major protein microarray scanners. Our graphical and tabular interfaces facilitate a detailed inspection of data and are coupled with supporting guidelines that enable users to select the most appropriate algorithms to systematically address bias arising in customized experiments. The localization and distribution of background signal intensities determine the optimal correction strategy. A novel function overcomes the limitations in the interpretation of the coefficient of variation when signal intensities are at the lower end of the detection threshold. We demonstrate essential considerations in the experimental design and their impact on a range of algorithms for normalization and minimization of batch effects. Our user-friendly interactive web-based platform eliminates the need for prowess in programming. The open-source R interface includes illustrative examples, generates an auditable record, enables reproducibility, and can incorporate additional custom scripts through its online repository. This versatility will enhance its broad uptake in the infectious disease and vaccine development community.
Collapse
Affiliation(s)
- Kennedy Mwai
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Nelson Kibinge
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - James Tuju
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.,Department of Biotechnology and Biochemistry, Pwani University, Kilifi, Kenya
| | - Gathoni Kamuyu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Rinter Kimathi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - James Mburu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Emily Chepsat
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Lydia Nyamako
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Timothy Chege
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Irene Nkumama
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.,Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Samson Kinyanjui
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.,Department of Biotechnology and Biochemistry, Pwani University, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Eustasius Musenge
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Faith Osier
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.,Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany.,Department of Biotechnology and Biochemistry, Pwani University, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Tessema SK, Nakajima R, Jasinskas A, Monk SL, Lekieffre L, Lin E, Kiniboro B, Proietti C, Siba P, Felgner PL, Doolan DL, Mueller I, Barry AE. Protective Immunity against Severe Malaria in Children Is Associated with a Limited Repertoire of Antibodies to Conserved PfEMP1 Variants. Cell Host Microbe 2020; 26:579-590.e5. [PMID: 31726028 DOI: 10.1016/j.chom.2019.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/08/2019] [Accepted: 10/18/2019] [Indexed: 01/31/2023]
Abstract
Extreme diversity of the major Plasmodium falciparum antigen, PfEMP1, poses a barrier to identifying targets of immunity to malaria. Here, we used protein microarrays containing hundreds of variants of the DBLα domain of PfEMP1 to cover the diversity of Papua New Guinean (PNG) parasites. Probing the plasma of a longitudinal cohort of malaria-exposed PNG children showed that group 2 DBLα antibodies were moderately associated with a lower risk of uncomplicated malaria, whereas individual variants were only weakly associated with clinical immunity. In contrast, antibodies to 85 individual group 1 and 2 DBLα variants were associated with a 70%-100% reduction in severe malaria. Of these, 17 variants were strong predictors of severe malaria. Analysis of full-length PfEMP1 sequences from PNG samples shows that these 17 variants are linked to pathogenic CIDR domains. This suggests that whereas immunity to uncomplicated malaria requires a broad repertoire of antibodies, immunity to severe malaria targets a subset of conserved variants. These findings provide insights into antimalarial immunity and potential antibody biomarkers for disease risk.
Collapse
Affiliation(s)
- Sofonias K Tessema
- Division of Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne 3000, VIC, Australia
| | - Rie Nakajima
- Physiology & Biophysics Department, Vaccine R&D Center, University of California, Irvine, Irvine 92697, CA, USA
| | - Algis Jasinskas
- Physiology & Biophysics Department, Vaccine R&D Center, University of California, Irvine, Irvine 92697, CA, USA
| | - Stephanie L Monk
- Division of Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne 3000, VIC, Australia
| | - Lea Lekieffre
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Enmoore Lin
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Goroka 441, EHG, Papua New Guinea
| | - Benson Kiniboro
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Goroka 441, EHG, Papua New Guinea
| | - Carla Proietti
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, QLD, Australia
| | - Peter Siba
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Goroka 441, EHG, Papua New Guinea
| | - Philip L Felgner
- Physiology & Biophysics Department, Vaccine R&D Center, University of California, Irvine, Irvine 92697, CA, USA
| | - Denise L Doolan
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, QLD, Australia
| | - Ivo Mueller
- Division of Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne 3000, VIC, Australia; Department of Parasites and Insect Vectors, Institut Pasteur, Paris 75015, France
| | - Alyssa E Barry
- Division of Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne 3000, VIC, Australia.
| |
Collapse
|
17
|
Proietti C, Krause L, Trieu A, Dodoo D, Gyan B, Koram KA, Rogers WO, Richie TL, Crompton PD, Felgner PL, Doolan DL. Immune Signature Against Plasmodium falciparum Antigens Predicts Clinical Immunity in Distinct Malaria Endemic Communities. Mol Cell Proteomics 2020; 19:101-113. [PMID: 31658979 PMCID: PMC6944240 DOI: 10.1074/mcp.ra118.001256] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 10/23/2019] [Indexed: 01/14/2023] Open
Abstract
A large body of evidence supports the role of antibodies directed against the Plasmodium spp. parasite in the development of naturally acquired immunity to malaria, however an antigen signature capable of predicting protective immunity against Plasmodium remains to be identified. Key challenges for the identification of a predictive immune signature include the high dimensionality of data produced by high-throughput technologies and the limitation of standard statistical tests in accounting for synergetic interactions between immune responses to multiple targets. In this study, using samples collected from young children in Ghana at multiple time points during a longitudinal study, we adapted a predictive modeling framework which combines feature selection and machine learning techniques to identify an antigen signature of clinical immunity to malaria. Our results show that an individual's immune status can be accurately predicted by measuring antibody responses to a small defined set of 15 target antigens. We further demonstrate that the identified immune signature is highly versatile and capable of providing precise and accurate estimates of clinical protection from malaria in an independent geographic community. Our findings pave the way for the development of a robust point-of-care test to identify individuals at high risk of disease and which could be applied to monitor the impact of vaccinations and other interventions. This approach could be also translated to biomarker discovery for other infectious diseases.
Collapse
Affiliation(s)
- Carla Proietti
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lutz Krause
- The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Angela Trieu
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Daniel Dodoo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana
| | - Ben Gyan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana
| | - Kwadwo A Koram
- Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana
| | | | | | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Philip L Felgner
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, California
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
18
|
Muthui MK, Kamau A, Bousema T, Blagborough AM, Bejon P, Kapulu MC. Immune Responses to Gametocyte Antigens in a Malaria Endemic Population-The African falciparum Context: A Systematic Review and Meta-Analysis. Front Immunol 2019; 10:2480. [PMID: 31695697 PMCID: PMC6817591 DOI: 10.3389/fimmu.2019.02480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/04/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Malaria elimination remains a priority research agenda with the need for interventions that reduce and/or block malaria transmission from humans to mosquitoes. Transmission-blocking vaccines (TBVs) are in development, most of which target the transmission stage (i.e., gametocyte) antigens Pfs230 and Pfs48/45. For these interventions to be implemented, there is a need to understand the naturally acquired immunity to gametocytes. Several studies have measured the prevalence of immune responses to Pfs230 and Pfs48/45 in populations in malaria-endemic areas. Methods: We conducted a systematic review of studies carried out in African populations that measured the prevalence of immune responses to the gametocyte antigens Pfs230 and Pfs48/45. We assessed seroprevalence of antibody responses to the two antigens and investigated the effects of covariates such as age, transmission intensity/endemicity, season, and parasite prevalence on the prevalence of these antibody responses by meta-regression. Results: We identified 12 studies covering 23 sites for inclusion in the analysis. We found that the range of reported seroprevalence to Pfs230 and Pfs48/45 varied widely across studies, from 0 to 64% for Pfs48/45 and from 6 to 72% for Pfs230. We also found a modest association between increased age and increased seroprevalence to Pfs230: adults were associated with higher seroprevalence estimates in comparison to children (β coefficient 0.21, 95% CI: 0.05-0.38, p = 0.042). Methodological factors were the most significant contributors to heterogeneity between studies which prevented calculation of pooled prevalence estimates. Conclusions: Naturally acquired sexual stage immunity, as detected by antibodies to Pfs230 and Pfs48/45, was present in most studies analyzed. Significant between-study heterogeneity was seen, and methodological factors were a major contributor to this, and prevented further analysis of epidemiological and biological factors. This demonstrates a need for standardized protocols for conducting and reporting seroepidemiological analyses.
Collapse
Affiliation(s)
- Michelle K. Muthui
- Department of Biosciences, KEMRI-Wellcome Trust Programme, Kilifi, Kenya
| | - Alice Kamau
- Department of Biosciences, KEMRI-Wellcome Trust Programme, Kilifi, Kenya
| | - Teun Bousema
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Andrew M. Blagborough
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Philip Bejon
- Department of Biosciences, KEMRI-Wellcome Trust Programme, Kilifi, Kenya
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Melissa C. Kapulu
- Department of Biosciences, KEMRI-Wellcome Trust Programme, Kilifi, Kenya
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Stucke EM, Niangaly A, Berry AA, Bailey JA, Coulibaly D, Ouattara A, Lyke KE, Laurens MB, Dara A, Adams M, Pablo J, Jasinskas A, Nakajima R, Zhou AE, Agrawal S, Friedman-Klabanoff DJ, Takala-Harrison S, Kouriba B, Kone AK, Rowe JA, Doumbo OK, Felgner PL, Thera MA, Plowe CV, Travassos MA. Serologic responses to the PfEMP1 DBL-CIDR head structure may be a better indicator of malaria exposure than those to the DBL-α tag. Malar J 2019; 18:273. [PMID: 31409360 PMCID: PMC6692945 DOI: 10.1186/s12936-019-2905-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/05/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1) antigens play a critical role in host immune evasion. Serologic responses to these antigens have been associated with protection from clinical malaria, suggesting that antibodies to PfEMP1 antigens may contribute to natural immunity. The first N-terminal constitutive domain in a PfEMP1 is the Duffy binding-like alpha (DBL-α) domain, which contains a 300 to 400 base pair region unique to each particular protein (the DBL-α "tag"). This DBL-α tag has been used as a marker of PfEMP1 diversity and serologic responses in malaria-exposed populations. In this study, using sera from a malaria-endemic region, responses to DBL-α tags were compared to responses to the corresponding entire DBL-α domain (or "parent" domain) coupled with the succeeding cysteine-rich interdomain region (CIDR). METHODS A protein microarray populated with DBL-α tags, the parent DBL-CIDR head structures, and downstream PfEMP1 protein fragments was probed with sera from Malian children (aged 1 to 6 years) and adults from the control arms of apical membrane antigen 1 (AMA1) vaccine clinical trials before and during a malaria transmission season. Serological responses to the DBL-α tag and the DBL-CIDR head structure were measured and compared in children and adults, and throughout the season. RESULTS Malian serologic responses to a PfEMP1's DBL-α tag region did not correlate with seasonal malaria exposure, or with responses to the parent DBL-CIDR head structure in either children or adults. Parent DBL-CIDR head structures were better indicators of malaria exposure. CONCLUSIONS Larger PfEMP1 domains may be better indicators of malaria exposure than short, variable PfEMP1 fragments such as DBL-α tags. PfEMP1 head structures that include conserved sequences appear particularly well suited for study as serologic predictors of malaria exposure.
Collapse
Affiliation(s)
- Emily M Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Andrea A Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Drissa Coulibaly
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Amed Ouattara
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew B Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Antoine Dara
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Matthew Adams
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jozelyn Pablo
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, CA, USA
| | - Algis Jasinskas
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, CA, USA
| | - Rie Nakajima
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, CA, USA
| | - Albert E Zhou
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sonia Agrawal
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - DeAnna J Friedman-Klabanoff
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye K Kone
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - J Alexandra Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Philip L Felgner
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, CA, USA
| | - Mahamadou A Thera
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Mark A Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
20
|
Tuju J, Mackinnon MJ, Abdi AI, Karanja H, Musyoki JN, Warimwe GM, Gitau EN, Marsh K, Bull PC, Urban BC. Antigenic cartography of immune responses to Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). PLoS Pathog 2019; 15:e1007870. [PMID: 31260501 PMCID: PMC6625739 DOI: 10.1371/journal.ppat.1007870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/12/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
Naturally acquired clinical immunity to Plasmodium falciparum is partly mediated by antibodies directed at parasite-derived antigens expressed on the surface of red blood cells which mediate disease and are extremely diverse. Unlike children, adults recognize a broad range of variant surface antigens (VSAs) and are protected from severe disease. Though crucial to the design and feasibility of an effective malaria vaccine, it is not yet known whether immunity arises through cumulative exposure to each of many antigenic types, cross-reactivity between antigenic types, or some other mechanism. In this study, we measured plasma antibody responses of 36 children with symptomatic malaria to a diverse panel of 36 recombinant proteins comprising part of the DBLα domain (the 'DBLα-tag') of PfEMP1, a major class of VSAs. We found that although plasma antibody responses were highly specific to individual antigens, serological profiles of responses across antigens fell into one of just two distinct types. One type was found almost exclusively in children that succumbed to severe disease (19 out of 20) while the other occurred in all children with mild disease (16 out of 16). Moreover, children with severe malaria had serological profiles that were narrower in antigen specificity and shorter-lived than those in children with mild malaria. Borrowing a novel technique used in influenza-antigenic cartography-we mapped these dichotomous serological profiles to amino acid sequence variation within a small sub-region of the PfEMP1 DBLα domain. By applying our methodology on a larger scale, it should be possible to identify epitopes responsible for eliciting the protective version of serological profiles to PfEMP1 thereby accelerating development of a broadly effective anti-disease malaria vaccine.
Collapse
Affiliation(s)
- James Tuju
- KEMRI-Wellcome Trust Research Programme, Kenya
- Department of Chemistry and Biochemistry, Pwani University, Kilifi, Kenya
| | | | | | | | | | - George M. Warimwe
- KEMRI-Wellcome Trust Research Programme, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Evelyn N. Gitau
- African Population and Health Research Center, Nairobi, Kenya
| | - Kevin Marsh
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Britta C. Urban
- Liverpool School of Tropical Medicine, Department of Tropical Disease Biology, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
21
|
Pilosof S, He Q, Tiedje KE, Ruybal-Pesántez S, Day KP, Pascual M. Competition for hosts modulates vast antigenic diversity to generate persistent strain structure in Plasmodium falciparum. PLoS Biol 2019; 17:e3000336. [PMID: 31233490 PMCID: PMC6611651 DOI: 10.1371/journal.pbio.3000336] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 07/05/2019] [Accepted: 06/05/2019] [Indexed: 01/14/2023] Open
Abstract
In their competition for hosts, parasites with antigens that are novel to the host immune system will be at a competitive advantage. The resulting frequency-dependent selection can structure parasite populations into strains of limited genetic overlap. For the causative agent of malaria, Plasmodium falciparum, the high recombination rates and associated vast diversity of its highly antigenic and multicopy var genes preclude such clear clustering in endemic regions. This undermines the definition of strains as specific, temporally persisting gene variant combinations. We use temporal multilayer networks to analyze the genetic similarity of parasites in both simulated data and in an extensively and longitudinally sampled population in Ghana. When viewed over time, populations are structured into modules (i.e., groups) of parasite genomes whose var gene combinations are more similar within than between the modules and whose persistence is much longer than that of the individual genomes that compose them. Comparison to neutral models that retain parasite population dynamics but lack competition reveals that the selection imposed by host immunity promotes the persistence of these modules. The modular structure is, in turn, associated with a slower acquisition of immunity by individual hosts. Modules thus represent dynamically generated niches in host immune space, which can be interpreted as strains. Negative frequency-dependent selection therefore shapes the organization of the var diversity into parasite genomes, leaving a persistence signature over ecological time scales. Multilayer networks extend the scope of phylodynamics analyses by allowing quantification of temporal genetic structure in organisms that generate variation via recombination or other non-bifurcating processes. A strain structure similar to the one described here should apply to other pathogens with large antigenic spaces that evolve via recombination. For malaria, the temporal modular structure should enable the formulation of tractable epidemiological models that account for parasite antigenic diversity and its influence on intervention outcomes. A combination of computational modeling and empirical data reveals persistent strain structure despite vast antigenic diversity in the human malaria parasite Plasmodium falciparum, with potential consequences for the acquisition of immunity.
Collapse
Affiliation(s)
- Shai Pilosof
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Qixin He
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Kathryn E. Tiedje
- School of BioSciences, Bio21 Institute/University of Melbourne, Melbourne, Australia
| | | | - Karen P. Day
- School of BioSciences, Bio21 Institute/University of Melbourne, Melbourne, Australia
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
22
|
Attaher O, Mahamar A, Swihart B, Barry A, Diarra BS, Kanoute MB, Dembele AB, Keita S, Gaoussou S, Issiaka D, Dicko A, Duffy PE, Fried M. Age-dependent increase in antibodies that inhibit Plasmodium falciparum adhesion to a subset of endothelial receptors. Malar J 2019; 18:128. [PMID: 30971252 PMCID: PMC6458601 DOI: 10.1186/s12936-019-2764-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/03/2019] [Indexed: 11/30/2022] Open
Abstract
Background Plasmodium falciparum-infected erythrocytes (IE) sequester in deep vascular beds where their adhesion is mediated by an array of endothelial surface receptors. Because parasite adhesion has been associated with disease, antibodies that block this activity may confer protective immunity. Here, levels of plasma anti-adhesion activity and surface reactivity against freshly collected IEs from malaria-infected children were measured in a Malian birth cohort and related to child age and malaria infection history. Methods Plasma samples from children enrolled at birth in a longitudinal cohort study of mother–infant pairs in Ouelessebougou, Mali were collected at multiple time points during follow-up visits. Anti-adhesion antibodies (i.e., inhibit IE binding to any of several endothelial receptors) and reactivity with surface IE proteins were measured using a binding inhibition assay and by flow cytometry, respectively. Results Levels of antibodies that inhibit the binding of children’s IE to the receptors ICAM-1, integrin α3β1 and laminin increased with age. The breadth of antibodies that inhibit ICAM-1 and laminin adhesion (defined as the proportion of IE isolates whose binding was reduced by ≥ 50%) also significantly increased with age. The number of malaria infections prior to plasma collection was associated with levels of plasma reactivity to IE surface proteins, but not levels of anti-adhesion activity. Conclusions Age is associated with increased levels of antibodies that reduce adhesion of children’s IE to three of the ten endothelial receptors evaluated here. These results suggest that anti-adhesion antibodies to some but not all endothelial receptors are acquired during the first few years of life. Electronic supplementary material The online version of this article (10.1186/s12936-019-2764-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oumar Attaher
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Almahamoudou Mahamar
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Bruce Swihart
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| | - Amadou Barry
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Bacary S Diarra
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Moussa B Kanoute
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Adama B Dembele
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Sekouba Keita
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Santara Gaoussou
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Djibrilla Issiaka
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Alassane Dicko
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA.
| |
Collapse
|
23
|
Abstract
The varied landscape of the adaptive immune response is determined by the peptides presented by immune cells, derived from viral or microbial pathogens or cancerous cells. The study of immune biomarkers or antigens is not new, and classical methods such as agglutination, enzyme-linked immunosorbent assay, or Western blotting have been used for many years to study the immune response to vaccination or disease. However, in many of these traditional techniques, protein or peptide identification has often been the bottleneck. Recent progress in genomics and mass spectrometry have led to many of the rapid advances in proteomics approaches. Immunoproteomics describes a rapidly growing collection of approaches that have the common goal of identifying and measuring antigenic peptides or proteins. This includes gel-based, array-based, mass spectrometry-based, DNA-based, or in silico approaches. Immunoproteomics is yielding an understanding of disease and disease progression, vaccine candidates, and biomarkers. This review gives an overview of immunoproteomics and closely related technologies that are used to define the full set of protein antigens targeted by the immune system during disease.
Collapse
Affiliation(s)
- Kelly M Fulton
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Isabel Baltat
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Susan M Twine
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada.
| |
Collapse
|
24
|
Bushman M, Antia R, Udhayakumar V, de Roode JC. Within-host competition can delay evolution of drug resistance in malaria. PLoS Biol 2018; 16:e2005712. [PMID: 30130363 PMCID: PMC6103507 DOI: 10.1371/journal.pbio.2005712] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
In the malaria parasite P. falciparum, drug resistance generally evolves first in low-transmission settings, such as Southeast Asia and South America. Resistance takes noticeably longer to appear in the high-transmission settings of sub-Saharan Africa, although it may spread rapidly thereafter. Here, we test the hypothesis that competitive suppression of drug-resistant parasites by drug-sensitive parasites may inhibit evolution of resistance in high-transmission settings, where mixed-strain infections are common. We employ a cross-scale model, which simulates within-host (infection) dynamics and between-host (transmission) dynamics of sensitive and resistant parasites for a population of humans and mosquitoes. Using this model, we examine the effects of transmission intensity, selection pressure, fitness costs of resistance, and cross-reactivity between strains on the establishment and spread of resistant parasites. We find that resistant parasites, introduced into the population at a low frequency, are more likely to go extinct in high-transmission settings, where drug-sensitive competitors and high levels of acquired immunity reduce the absolute fitness of the resistant parasites. Under strong selection from antimalarial drug use, however, resistance spreads faster in high-transmission settings than low-transmission ones. These contrasting results highlight the distinction between establishment and spread of resistance and suggest that the former but not the latter may be inhibited in high-transmission settings. Our results suggest that within-host competition is a key factor shaping the evolution of drug resistance in P. falciparum. The malaria parasite Plasmodium falciparum has evolved resistance to most antimalarial drugs, greatly complicating treatment and control of the disease. Curiously, although sub-Saharan Africa accounts for the majority of the global burden of malaria, the evolution of drug resistance in Africa has been markedly delayed compared to Asia and the Americas. One reason might be that, in a population in which the prevalence of infection is high, a newly emerged drug-resistant strain faces a high risk of extinction due to competition from drug-sensitive parasites that already “occupy” most of the host population. Using a mathematical model, we confirm that drug-resistant parasites face a much greater risk of extinction in a “high-transmission” setting like sub-Saharan Africa than in a “low-transmission” setting like Southeast Asia. However, we also find that when drug-resistant parasites manage to avoid extinction, their subsequent spread may be more rapid in high-transmission settings than in low-transmission settings, especially when selection is strong. These results offer a novel explanation for global patterns of drug resistance evolution in malaria and suggest a new dimension to consider in resistance prevention and containment efforts: namely, the intrinsic favorability of low- and high-transmission settings for establishment and spread of drug resistance.
Collapse
Affiliation(s)
- Mary Bushman
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jacobus C. de Roode
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
25
|
Antibodies to Intercellular Adhesion Molecule 1-Binding Plasmodium falciparum Erythrocyte Membrane Protein 1-DBLβ Are Biomarkers of Protective Immunity to Malaria in a Cohort of Young Children from Papua New Guinea. Infect Immun 2018; 86:IAI.00485-17. [PMID: 29784862 DOI: 10.1128/iai.00485-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 05/18/2018] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates parasite sequestration to the cerebral microvasculature via binding of DBLβ domains to intercellular adhesion molecule 1 (ICAM1) and is associated with severe cerebral malaria. In a cohort of 187 young children from Papua New Guinea (PNG), we examined baseline levels of antibody to the ICAM1-binding PfEMP1 domain, DBLβ3PF11_0521, in comparison to four control antigens, including NTS-DBLα and CIDR1 domains from another group A variant and a group B/C variant. Antibody levels for the group A antigens were strongly associated with age and exposure. Antibody responses to DBLβ3PF11_0521 were associated with a 37% reduced risk of high-density clinical malaria in the follow-up period (adjusted incidence risk ratio [aIRR] = 0.63 [95% confidence interval {CI}, 0.45 to 0.88; P = 0.007]) and a 25% reduction in risk of low-density clinical malaria (aIRR = 0.75 [95% CI, 0.55 to 1.01; P = 0.06]), while there was no such association for other variants. Children who experienced severe malaria also had significantly lower levels of antibody to DBLβ3PF11_0521 and the other group A domains than those that experienced nonsevere malaria. Furthermore, a subset of PNG DBLβ sequences had ICAM1-binding motifs, formed a distinct phylogenetic cluster, and were similar to sequences from other areas of endemicity. PfEMP1 variants associated with these DBLβ domains were enriched for DC4 and DC13 head structures implicated in endothelial protein C receptor (EPCR) binding and severe malaria, suggesting conservation of dual binding specificities. These results provide further support for the development of specific classes of PfEMP1 as vaccine candidates and as biomarkers for protective immunity against clinical P. falciparum malaria.
Collapse
|
26
|
Networks of genetic similarity reveal non-neutral processes shape strain structure in Plasmodium falciparum. Nat Commun 2018; 9:1817. [PMID: 29739937 PMCID: PMC5940794 DOI: 10.1038/s41467-018-04219-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/12/2018] [Indexed: 11/09/2022] Open
Abstract
Pathogens compete for hosts through patterns of cross-protection conferred by immune responses to antigens. In Plasmodium falciparum malaria, the var multigene family encoding for the major blood-stage antigen PfEMP1 has evolved enormous genetic diversity through ectopic recombination and mutation. With 50-60 var genes per genome, it is unclear whether immune selection can act as a dominant force in structuring var repertoires of local populations. The combinatorial complexity of the var system remains beyond the reach of existing strain theory and previous evidence for non-random structure cannot demonstrate immune selection without comparison with neutral models. We develop two neutral models that encompass malaria epidemiology but exclude competitive interactions between parasites. These models, combined with networks of genetic similarity, reveal non-neutral strain structure in both simulated systems and an extensively sampled population in Ghana. The unique population structure we identify underlies the large transmission reservoir characteristic of highly endemic regions in Africa.
Collapse
|
27
|
Kessler A, Campo JJ, Harawa V, Mandala WL, Rogerson SJ, Mowrey WB, Seydel KB, Kim K. Convalescent Plasmodium falciparum-specific seroreactivity does not correlate with paediatric malaria severity or Plasmodium antigen exposure. Malar J 2018; 17:178. [PMID: 29695240 PMCID: PMC5918990 DOI: 10.1186/s12936-018-2323-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/18/2018] [Indexed: 12/17/2022] Open
Abstract
Background Antibody immunity is thought to be essential to prevent severe Plasmodium falciparum infection, but the exact correlates of protection are unknown. Over time, children in endemic areas acquire non-sterile immunity to malaria that correlates with development of antibodies to merozoite invasion proteins and parasite proteins expressed on the surface of infected erythrocytes. Results A 1000 feature P. falciparum 3D7 protein microarray was used to compare P. falciparum-specific seroreactivity during acute infection and 30 days after infection in 23 children with uncomplicated malaria (UM) and 25 children with retinopathy-positive cerebral malaria (CM). All children had broad P. falciparum antibody reactivity during acute disease. IgM reactivity decreased and IgG reactivity increased in convalescence. Antibody reactivity to CIDR domains of “virulent” PfEMP1 proteins was low with robust reactivity to the highly conserved, intracellular ATS domain of PfEMP1 in both groups. Although children with UM and CM differed markedly in parasite burden and PfEMP1 exposure during acute disease, neither acute nor convalescent PfEMP1 seroreactivity differed between groups. Greater seroprevalence to a conserved Group A-associated ICAM binding extracellular domain was observed relative to linked extracellular CIDRα1 domains in both case groups. Pooled immune IgG from Malawian adults revealed greater reactivity to PfEMP1 than observed in children. Conclusions Children with uncomplicated and cerebral malaria have similar breadth and magnitude of P. falciparum antibody reactivity. The utility of protein microarrays to measure serological recognition of polymorphic PfEMP1 antigens needs to be studied further, but the study findings support the hypothesis that conserved domains of PfEMP1 are more prominent targets of cross reactive antibodies than variable domains in children with symptomatic malaria. Protein microarrays represent an additional tool to identify cross-reactive Plasmodium antigens including PfEMP1 domains that can be investigated as strain-transcendent vaccine candidates. Electronic supplementary material The online version of this article (10.1186/s12936-018-2323-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Kessler
- Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Visopo Harawa
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,College of Medicine, Biomedical Department, University of Malawi, Blantyre, Malawi
| | - Wilson L Mandala
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,College of Medicine, Biomedical Department, University of Malawi, Blantyre, Malawi.,Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
| | | | | | - Karl B Seydel
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA. .,Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi.
| | - Kami Kim
- Albert Einstein College of Medicine, Bronx, NY, USA. .,Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
28
|
França CT, Li Wai Suen CSN, Carmagnac A, Lin E, Kiniboro B, Siba P, Schofield L, Mueller I. IgG antibodies to synthetic GPI are biomarkers of immune-status to both Plasmodium falciparum and Plasmodium vivax malaria in young children. Malar J 2017; 16:386. [PMID: 28946883 PMCID: PMC5613389 DOI: 10.1186/s12936-017-2042-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/21/2017] [Indexed: 11/14/2022] Open
Abstract
Background Further reduction in malaria prevalence and its eventual elimination would be greatly facilitated by the development of biomarkers of exposure and/or acquired immunity to malaria, as well as the deployment of effective vaccines against Plasmodium falciparum and Plasmodium vivax. A better understanding of the acquisition of immunity in naturally-exposed populations is essential for the identification of antigens useful as biomarkers, as well as to inform rational vaccine development. Methods ELISA was used to measure total IgG to a synthetic form of glycosylphosphatidylinositol from P. falciparum (PfGPI) in a cohort of 1–3 years old Papua New Guinea children with well-characterized individual differences in exposure to P. falciparum and P. vivax blood-stage infections. The relationship between IgG levels to PfGPI and measures of recent and past exposure to P. falciparum and P. vivax infections was investigated, as well as the association between antibody levels and prospective risk of clinical malaria over 16 months of follow-up. Results Total IgG levels to PfGPI were low in the young children tested. Antibody levels were higher in the presence of P. falciparum or P. vivax infections, but short-lived. High IgG levels were associated with higher risk of P. falciparum malaria (IRR 1.33–1.66, P = 0.008–0.027), suggesting that they are biomarkers of increased exposure to P. falciparum infections. Given the cross-reactive nature of antibodies to PfGPI, high IgG levels were also associated with reduced risk of P. vivax malaria (IRR 0.65–0.67, P = 0.039–0.044), indicating that these antibodies are also markers of acquired immunity to P. vivax. Conclusions This study highlights that in young children, IgG to PfGPI might be a useful marker of immune-status to both P. falciparum and P. vivax infections, and potentially useful to help malaria control programs to identify populations at-risk. Further functional studies are necessary to confirm the potential of PfGPI as a target for vaccine development. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-2042-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camila T França
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| | - Connie S N Li Wai Suen
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Amandine Carmagnac
- Infection and Immunity Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Enmoore Lin
- Malaria Immuno-Epidemiology Unit, PNG Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Benson Kiniboro
- Malaria Immuno-Epidemiology Unit, PNG Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Peter Siba
- Malaria Immuno-Epidemiology Unit, PNG Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Louis Schofield
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Malaria Parasites & Hosts Unit, Department of Parasites & Insect Vectors, Institut Pasteur, Paris, France.,Barcelona Institute of Global Health (ISGLOBAL), Barcelona, Spain
| |
Collapse
|
29
|
Ruybal-Pesántez S, Tiedje KE, Tonkin-Hill G, Rask TS, Kamya MR, Greenhouse B, Dorsey G, Duffy MF, Day KP. Population genomics of virulence genes of Plasmodium falciparum in clinical isolates from Uganda. Sci Rep 2017; 7:11810. [PMID: 28924231 PMCID: PMC5603532 DOI: 10.1038/s41598-017-11814-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/30/2017] [Indexed: 12/18/2022] Open
Abstract
Plasmodium falciparum causes a spectrum of malarial disease from asymptomatic to uncomplicated through to severe. Investigations of parasite virulence have associated the expression of distinct variants of the major surface antigen of the blood stages known as Pf EMP1 encoded by up to 60 var genes per genome. Looking at the population genomics of var genes in cases of uncomplicated malaria, we set out to determine if there was any evidence of a selective sweep of specific var genes or clonal epidemic structure related to the incidence of uncomplicated disease in children. By sequencing the conserved DBLα domain of var genes from six sentinel sites in Uganda we found that the parasites causing uncomplicated P. falciparum disease in children were highly diverse and that every child had a unique var DBLα repertoire. Despite extensive var DBLα diversity and minimal overlap between repertoires, specific DBLα types and groups were conserved at the population level across Uganda. This pattern was the same regardless of the geographic distance or malaria transmission intensity. These data lead us to propose that any parasite can cause uncomplicated malarial disease and that these diverse parasite repertoires are composed of both upsA and non-upsA var gene groups.
Collapse
Affiliation(s)
- Shazia Ruybal-Pesántez
- School of BioSciences, Bio21 Institute/University of Melbourne, Melbourne, Australia
- Department of Microbiology, New York University, New York, USA
| | - Kathryn E Tiedje
- School of BioSciences, Bio21 Institute/University of Melbourne, Melbourne, Australia
- Department of Microbiology, New York University, New York, USA
| | | | - Thomas S Rask
- School of BioSciences, Bio21 Institute/University of Melbourne, Melbourne, Australia
- Department of Microbiology, New York University, New York, USA
| | - Moses R Kamya
- School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, USA
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, USA
| | - Michael F Duffy
- School of BioSciences, Bio21 Institute/University of Melbourne, Melbourne, Australia
| | - Karen P Day
- School of BioSciences, Bio21 Institute/University of Melbourne, Melbourne, Australia.
- Department of Microbiology, New York University, New York, USA.
| |
Collapse
|
30
|
Chan JA, Stanisic DI, Duffy MF, Robinson LJ, Lin E, Kazura JW, King CL, Siba PM, Fowkes FJ, Mueller I, Beeson JG. Patterns of protective associations differ for antibodies to P. falciparum-infected erythrocytes and merozoites in immunity against malaria in children. Eur J Immunol 2017; 47:2124-2136. [PMID: 28833064 DOI: 10.1002/eji.201747032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/09/2017] [Accepted: 08/16/2017] [Indexed: 11/10/2022]
Abstract
Acquired antibodies play an important role in immunity to P. falciparum malaria and are typically directed towards surface antigens expressed by merozoites and infected erythrocytes (IEs). The importance of specific IE surface antigens as immune targets remains unclear. We evaluated antibodies and protective associations in two cohorts of children in Papua New Guinea. We used genetically-modified P. falciparum to evaluate the importance of PfEMP1 and a P. falciparum isolate with a virulent phenotype. Our findings suggested that PfEMP1 was the dominant target of antibodies to the IE surface, including functional antibodies that promoted opsonic phagocytosis by monocytes. Antibodies were associated with increasing age and concurrent parasitemia, and were higher among children exposed to a higher force-of-infection as determined using molecular detection. Antibodies to IE surface antigens were consistently associated with reduced risk of malaria in both younger and older children. However, protective associations for antibodies to merozoite surface antigens were only observed in older children. This suggests that antibodies to IE surface antigens, particularly PfEMP1, play an earlier role in acquired immunity to malaria, whereas greater exposure is required for protective antibodies to merozoite antigens. These findings have implications for vaccine design and serosurveillance of malaria transmission and immunity.
Collapse
Affiliation(s)
- Jo-Anne Chan
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia.,Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Danielle I Stanisic
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Michael F Duffy
- Department of Medicine and Melbourne School of Public Health, University of Melbourne, Parkville, Victoria, Australia
| | - Leanne J Robinson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia.,Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Enmoore Lin
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - James W Kazura
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Freya Ji Fowkes
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia.,Melbourne School of Public Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Epidemiology and Preventive Medicine and Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - James G Beeson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia.,Department of Medicine and Melbourne School of Public Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
31
|
T cell subtypes and reciprocal inflammatory mediator expression differentiate P. falciparum memory recall responses in asymptomatic and symptomatic malaria patients in southeastern Haiti. PLoS One 2017; 12:e0174718. [PMID: 28369062 PMCID: PMC5378365 DOI: 10.1371/journal.pone.0174718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/14/2017] [Indexed: 12/20/2022] Open
Abstract
Asymptomatic Plasmodium falciparum infection is responsible for maintaining malarial disease within human populations in low transmission countries such as Haiti. Investigating differential host immune responses to the parasite as a potential underlying mechanism could help provide insight into this highly complex phenomenon and possibly identify asymptomatic individuals. We performed a cross-sectional analysis of individuals who were diagnosed with malaria in Sud-Est, Haiti by comparing the cellular and humoral responses of both symptomatic and asymptomatic subjects. Plasma samples were analyzed with a P. falciparum protein microarray, which demonstrated serologic reactivity to 3,877 P. falciparum proteins of known serologic reactivity; however, no antigen-antibody reactions delineating asymptomatics from symptomatics were identified. In contrast, differences in cellular responses were observed. Flow cytometric analysis of patient peripheral blood mononuclear cells co-cultured with P. falciparum infected erythrocytes demonstrated a statistically significant increase in the proportion of T regulatory cells (CD4+ CD25+ CD127-), and increases in unique populations of both NKT-like cells (CD3+ CD8+ CD56+) and CD8mid T cells in asymptomatics compared to symptomatics. Also, CD38+/HLA-DR+ expression on γδ T cells, CD8mid (CD56-) T cells, and CD8mid CD56+ NKT-like cells decreased upon exposure to infected erythrocytes in both groups. Cytometric bead analysis of the co-culture supernatants demonstrated an upregulation of monocyte-activating chemokines/cytokines in asymptomatics, while immunomodulatory soluble factors were elevated in symptomatics. Principal component analysis of these expression values revealed a distinct clustering of individual responses within their respective phenotypic groups. This is the first comprehensive investigation of immune responses to P. falciparum in Haiti, and describes unique cell-mediated immune repertoires that delineate individuals into asymptomatic and symptomatic phenotypes. Future investigations using large scale biological data sets analyzing multiple components of adaptive immunity, could collectively define which cellular responses and molecular correlates of disease outcome are malaria region specific, and which are truly generalizable features of asymptomatic Plasmodium immunity, a research goal of critical priority.
Collapse
|
32
|
Dara A, Drábek EF, Travassos MA, Moser KA, Delcher AL, Su Q, Hostelley T, Coulibaly D, Daou M, Dembele A, Diarra I, Kone AK, Kouriba B, Laurens MB, Niangaly A, Traore K, Tolo Y, Fraser CM, Thera MA, Djimde AA, Doumbo OK, Plowe CV, Silva JC. New var reconstruction algorithm exposes high var sequence diversity in a single geographic location in Mali. Genome Med 2017; 9:30. [PMID: 28351419 PMCID: PMC5368897 DOI: 10.1186/s13073-017-0422-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/02/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Encoded by the var gene family, highly variable Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1) proteins mediate tissue-specific cytoadherence of infected erythrocytes, resulting in immune evasion and severe malaria disease. Sequencing and assembling the 40-60 var gene complement for individual infections has been notoriously difficult, impeding molecular epidemiological studies and the assessment of particular var elements as subunit vaccine candidates. METHODS We developed and validated a novel algorithm, Exon-Targeted Hybrid Assembly (ETHA), to perform targeted assembly of var gene sequences, based on a combination of Pacific Biosciences and Illumina data. RESULTS Using ETHA, we characterized the repertoire of var genes in 12 samples from uncomplicated malaria infections in children from a single Malian village and showed them to be as genetically diverse as vars from isolates from around the globe. The gene var2csa, a member of the var family associated with placental malaria pathogenesis, was present in each genome, as were vars previously associated with severe malaria. CONCLUSION ETHA, a tool to discover novel var sequences from clinical samples, will aid the understanding of malaria pathogenesis and inform the design of malaria vaccines based on PfEMP1. ETHA is available at: https://sourceforge.net/projects/etha/ .
Collapse
Affiliation(s)
- Antoine Dara
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD USA
| | - Elliott F. Drábek
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Mark A. Travassos
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD USA
| | - Kara A. Moser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Arthur L. Delcher
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Qi Su
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Timothy Hostelley
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Science, Techniques and Technologies, Bamako, Mali
| | - Modibo Daou
- Malaria Research and Training Center, University of Science, Techniques and Technologies, Bamako, Mali
| | - Ahmadou Dembele
- Malaria Research and Training Center, University of Science, Techniques and Technologies, Bamako, Mali
| | - Issa Diarra
- Malaria Research and Training Center, University of Science, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye K. Kone
- Malaria Research and Training Center, University of Science, Techniques and Technologies, Bamako, Mali
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Science, Techniques and Technologies, Bamako, Mali
| | - Matthew B. Laurens
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD USA
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Science, Techniques and Technologies, Bamako, Mali
| | - Karim Traore
- Malaria Research and Training Center, University of Science, Techniques and Technologies, Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Science, Techniques and Technologies, Bamako, Mali
| | - Claire M. Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University of Science, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center, University of Science, Techniques and Technologies, Bamako, Mali
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, University of Science, Techniques and Technologies, Bamako, Mali
| | - Christopher V. Plowe
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD USA
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
33
|
Bruske EI, Dimonte S, Enderes C, Tschan S, Flötenmeyer M, Koch I, Berger J, Kremsner P, Frank M. In Vitro Variant Surface Antigen Expression in Plasmodium falciparum Parasites from a Semi-Immune Individual Is Not Correlated with Var Gene Transcription. PLoS One 2016; 11:e0166135. [PMID: 27907004 PMCID: PMC5132323 DOI: 10.1371/journal.pone.0166135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/24/2016] [Indexed: 12/17/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is considered to be the main variant surface antigen (VSA) of Plasmodium falciparum and is mainly localized on electron-dense knobs in the membrane of the infected erythrocyte. Switches in PfEMP1 expression provide the basis for antigenic variation and are thought to be critical for parasite persistence during chronic infections. Recently, strain transcending anti-PfEMP1 immunity has been shown to develop early in life, challenging the role of PfEMP1 in antigenic variation during chronic infections. In this work we investigate how P. falciparum achieves persistence during a chronic asymptomatic infection. The infected individual (MOA) was parasitemic for 42 days and multilocus var gene genotyping showed persistence of the same parasite population throughout the infection. Parasites from the beginning of the infection were adapted to tissue culture and cloned by limiting dilution. Flow cytometry using convalescent serum detected a variable surface recognition signal on isogenic clonal parasites. Quantitative real-time PCR with a field isolate specific var gene primer set showed that the surface recognition signal was not correlated with transcription of individual var genes. Strain transcending anti-PfEMP1 immunity of the convalescent serum was demonstrated with CD36 selected and PfEMP1 knock-down NF54 clones. In contrast, knock-down of PfEMP1 did not have an effect on the antibody recognition signal in MOA clones. Trypsinisation of the membrane surface proteins abolished the surface recognition signal and immune electron microscopy revealed that antibodies from the convalescent serum bound to membrane areas without knobs and with knobs. Together the data indicate that PfEMP1 is not the main variable surface antigen during a chronic infection and suggest a role for trypsin sensitive non-PfEMP1 VSAs for parasite persistence in chronic infections.
Collapse
Affiliation(s)
- Ellen Inga Bruske
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| | - Sandra Dimonte
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| | - Corinna Enderes
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| | - Serena Tschan
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| | | | - Iris Koch
- Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Jürgen Berger
- Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Peter Kremsner
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
- CERMEL (Centre de Recherche Médicale de Lambaréné), Lambaréné, Gabon
| | - Matthias Frank
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
- CERMEL (Centre de Recherche Médicale de Lambaréné), Lambaréné, Gabon
- * E-mail:
| |
Collapse
|
34
|
Kassegne K, Abe EM, Chen JH, Zhou XN. Immunomic approaches for antigen discovery of human parasites. Expert Rev Proteomics 2016; 13:1091-1101. [DOI: 10.1080/14789450.2016.1252675] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Kokouvi Kassegne
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, People’s Republic of China
| | - Eniola Michael Abe
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, People’s Republic of China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, People’s Republic of China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, People’s Republic of China
| |
Collapse
|
35
|
Boyle MJ, Reiling L, Osier FH, Fowkes FJI. Recent insights into humoral immunity targeting Plasmodium falciparum and Plasmodium vivax malaria. Int J Parasitol 2016; 47:99-104. [PMID: 27451359 DOI: 10.1016/j.ijpara.2016.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 01/02/2023]
Abstract
Recent efforts in malaria control have led to marked reductions in malaria incidence. However, new strategies are needed to sustain malaria elimination and eradication and achieve the World Health Organization goal of a malaria-free world. The development of highly effective vaccines would contribute to this goal and would be facilitated by a comprehensive understanding of humoral immune responses targeting Plasmodium falciparum and Plasmodium vivax malaria. New tools are required to facilitate the identification of vaccine candidates and the development of vaccines that induce functional and protective immunity. Here we discuss recent published findings, and unpublished work presented at the 2016 Molecular Approaches to Malaria conference, that highlight advancements in understanding humoral immune responses in the context of vaccine development. Highlights include the increased application of 'omics' and 'Big data' platforms to identify vaccine candidates, and the identification of novel functions of antibody responses that mediate protection. The application of these strategies and a global approach will increase the likelihood of rapid development of highly efficacious vaccines.
Collapse
Affiliation(s)
- Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia; Menzies School of Medical Research, Darwin, Northern Territory 0810, Australia.
| | - Linda Reiling
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia
| | - Faith H Osier
- KEMRI Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia; Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia; Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
36
|
A systems biology approach for diagnostic and vaccine antigen discovery in tropical infectious diseases. Curr Opin Infect Dis 2016; 28:438-45. [PMID: 26237545 DOI: 10.1097/qco.0000000000000193] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW There is a need for improved diagnosis and for more rapidly assessing the presence, prevalence, and spread of newly emerging or reemerging infectious diseases. An approach to the pathogen-detection strategy is based on analyzing host immune response to the infection. This review focuses on a protein microarray approach for this purpose. RECENT FINDINGS Here we take a protein microarray approach to profile the humoral immune response to numerous infectious agents, and to identify the complete antibody repertoire associated with each disease. The results of these studies lead to the identification of diagnostic markers and potential subunit vaccine candidates. These results from over 30 different organisms can also provide information about common trends in the humoral immune response. SUMMARY This review describes the implications of the findings for clinical practice or research. A systems biology approach to identify the antibody repertoire associated with infectious diseases challenge using protein microarray has become a powerful method in identifying diagnostic markers and potential subunit vaccine candidates, and moreover, in providing information on proteomic feature (functional and physically properties) of seroreactive and serodiagnostic antigens. Combining the detection of the pathogen with a comprehensive assessment of the host immune response will provide a new understanding of the correlations between specific causative agents, the host response, and the clinical manifestations of the disease.
Collapse
|
37
|
Abstract
Malaria is one of the most serious infectious diseases with most of the severe disease
caused by Plasmodium falciparum (Pf). Naturally acquired immunity
develops over time after repeated infections and the development of antimalarial
antibodies is thought to play a crucial role. Neonates and young infants are relatively
protected from symptomatic malaria through mechanisms that are poorly understood. The
prevailing paradigm is that maternal antimalarial antibodies transferred to the fetus in
the last trimester of pregnancy protect the infant from early infections. These
antimalarial antibodies wane by approximately 6 months of age leaving the infant
vulnerable to malaria, however direct evidence supporting this epidemiologically based
paradigm is lacking. As infants are the target population for future malaria vaccines,
understanding how they begin to develop immunity to malaria and the gaps in their
responses is key. This review summarizes the antimalarial antibody responses detected in
infants and how they change over time. We focus primarily on Pf antibody responses and
will briefly mention Plasmodium vivax responses in infants.
Collapse
|
38
|
Designing malaria vaccines to circumvent antigen variability. Vaccine 2015; 33:7506-12. [PMID: 26475447 PMCID: PMC4731100 DOI: 10.1016/j.vaccine.2015.09.110] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022]
Abstract
Prospects for malaria eradication will be greatly enhanced by an effective vaccine, but parasite genetic diversity poses a major impediment to malaria vaccine efficacy. In recent pre-clinical and field trials, vaccines based on polymorphic Plasmodium falciparum antigens have shown efficacy only against homologous strains, raising the specter of allele-specific immunity such as that which plagues vaccines against influenza and HIV. The most advanced malaria vaccine, RTS,S, targets relatively conserved epitopes on the P. falciparum circumsporozoite protein. After more than 40 years of development and testing, RTS,S, has shown significant but modest efficacy against clinical malaria in phase 2 and 3 trials. Ongoing phase 2 studies of an irradiated sporozoite vaccine will ascertain whether the full protection against homologous experimental malaria challenge conferred by high doses of a whole organism vaccine can provide protection against diverse strains in the field. Here we review and evaluate approaches being taken to design broadly cross-protective malaria vaccines.
Collapse
|
39
|
Large screen approaches to identify novel malaria vaccine candidates. Vaccine 2015; 33:7496-505. [PMID: 26428458 DOI: 10.1016/j.vaccine.2015.09.059] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 11/20/2022]
Abstract
Until recently, malaria vaccine development efforts have focused almost exclusively on a handful of well characterized Plasmodium falciparum antigens. Despite dedicated work by many researchers on different continents spanning more than half a century, a successful malaria vaccine remains elusive. Sequencing of the P. falciparum genome has revealed more than five thousand genes, providing the foundation for systematic approaches to discover candidate vaccine antigens. We are taking advantage of this wealth of information to discover new antigens that may be more effective vaccine targets. Herein, we describe different approaches to large-scale screening of the P. falciparum genome to identify targets of either antibody responses or T cell responses using human specimens collected in Controlled Human Malaria Infections (CHMI) or under conditions of natural exposure in the field. These genome, proteome and transcriptome based approaches offer enormous potential for the development of an efficacious malaria vaccine.
Collapse
|
40
|
Olaya-Abril A, Jiménez-Munguía I, Gómez-Gascón L, Obando I, Rodríguez-Ortega MJ. A Pneumococcal Protein Array as a Platform to Discover Serodiagnostic Antigens Against Infection. Mol Cell Proteomics 2015; 14:2591-608. [PMID: 26183717 DOI: 10.1074/mcp.m115.049544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 01/22/2023] Open
Abstract
Pneumonia is one of the most common and severe diseases associated with Streptococcus pneumoniae infections in children and adults. Etiological diagnosis of pneumococcal pneumonia in children is generally challenging because of limitations of diagnostic tests and interference with nasopharyngeal colonizing strains. Serological assays have recently gained interest to overcome some problems found with current diagnostic tests in pediatric pneumococcal pneumonia. To provide insight into this field, we have developed a protein array to screen the antibody response to many antigens simultaneously. Proteins were selected by experimental identification from a collection of 24 highly prevalent pediatric clinical isolates in Spain, using a proteomics approach consisting of "shaving" the cell surface with proteases and further LC/MS/MS analysis. Ninety-five proteins were recombinantly produced and printed on an array. We probed it with a collection of sera from children with pneumococcal pneumonia. From the set of the most seroprevalent antigens, we obtained a clear discriminant response for a group of three proteins (PblB, PulA, and PrtA) in children under 4 years old. We validated the results by ELISA and an immunostrip assay showed the translation to easy-to-use, affordable tests. Thus, the protein array here developed presents a tool for broad use in serodiagnostics.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- From the ‡Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3; and Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Jiménez-Munguía
- From the ‡Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3; and Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Gómez-Gascón
- §Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Ignacio Obando
- ¶Sección de Enfermedades Infecciosas Pediátricas e Inmunopatología, Hospital Universitario Infantil Virgen del Rocío, Sevilla, Spain
| | - Manuel J Rodríguez-Ortega
- From the ‡Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3; and Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain;
| |
Collapse
|
41
|
Travassos MA, Coulibaly D, Bailey JA, Niangaly A, Adams M, Nyunt MM, Ouattara A, Lyke KE, Laurens MB, Pablo J, Jasinskas A, Nakajima R, Berry AA, Takala-Harrison S, Kone AK, Kouriba B, Rowe JA, Doumbo OK, Thera MA, Laufer MK, Felgner PL, Plowe CV. Differential recognition of terminal extracellular Plasmodium falciparum VAR2CSA domains by sera from multigravid, malaria-exposed Malian women. Am J Trop Med Hyg 2015; 92:1190-1194. [PMID: 25918203 PMCID: PMC4458824 DOI: 10.4269/ajtmh.14-0524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/03/2015] [Indexed: 11/20/2022] Open
Abstract
The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediates parasite sequestration in small capillaries through tissue-specific cytoadherence. The best characterized of these proteins is VAR2CSA, which is expressed on the surface of infected erythrocytes that bind to chondroitin sulfate in the placental matrix. Antibodies to VAR2CSA prevent placental cytoadherence and protect against placental malaria. The size and complexity of the VAR2CSA protein pose challenges for vaccine development, but smaller constitutive domains may be suitable for subunit vaccine development. A protein microarray was printed to include five overlapping fragments of the 3D7 VAR2CSA extracellular region. Malian women with a history of at least one pregnancy had antibody recognition of four of these fragments and had stronger reactivity against the two distal fragments than did nulliparous women, children, and men from Mali, suggesting that the C-terminal extracellular VAR2CSA domains are a potential focus of protective immunity. With carefully chosen sera from longitudinal studies of pregnant women, this approach has the potential to identify seroreactive VAR2CSA domains associated with protective immunity against pregnancy-associated malaria.
Collapse
Affiliation(s)
- Mark A. Travassos
- *Address correspondence to Mark A. Travassos, Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore St., Room 480, Baltimore, MD 21201. E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Dent AE, Nakajima R, Liang L, Baum E, Moormann AM, Sumba PO, Vulule J, Babineau D, Randall A, Davies DH, Felgner PL, Kazura JW. Plasmodium falciparum Protein Microarray Antibody Profiles Correlate With Protection From Symptomatic Malaria in Kenya. J Infect Dis 2015; 212:1429-38. [PMID: 25883384 DOI: 10.1093/infdis/jiv224] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/25/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Immunoglobulin G antibodies (Abs) to Plasmodium falciparum antigens have been associated with naturally acquired immunity to symptomatic malaria. METHODS We probed protein microarrays covering 824 unique P. falciparum protein features with plasma from residents of a community in Kenya monitored for 12 weeks for (re)infection and symptomatic malaria after administration of antimalarial drugs. P. falciparum proteins recognized by Abs from 88 children (aged 1-14 years) and 86 adults (aged ≥ 18 years), measured at the beginning of the observation period, were ranked by Ab signal intensity. RESULTS Abs from immune adults reacted with a total 163 of 824 P. falciparum proteins. Children gradually acquired Abs to the full repertoire of antigens recognized by adults. Abs to some antigens showed high seroconversion rates, reaching maximal levels early in childhood, whereas others did not reach adult levels until adolescence. No correlation between Ab signal intensity and time to (re)infection was observed. In contrast, Ab levels to 106 antigens were significantly higher in children who were protected from symptomatic malaria compared with those who were not. Abs to antigens predictive of protection included P. falciparum erythrocyte membrane protein 1, merozoite surface protein (MSP) 10, MSP2, liver-stage antigen 3, PF70, MSP7, and Plasmodium helical interspersed subtelomeric domain protein. CONCLUSIONS Protein microarrays may be useful in the search for malaria antigens associated with protective immunity.
Collapse
Affiliation(s)
- Arlene E Dent
- Center for Global Health and Diseases, Case Western Reserve University Rainbow Babies and Children's Hospital, Cleveland, Ohio
| | | | - Li Liang
- University of California, Irvine
| | | | - Ann M Moormann
- Center for Global Health Research, University of Massachusetts Medical School, Worcester
| | | | | | | | | | | | | | - James W Kazura
- Center for Global Health and Diseases, Case Western Reserve University
| |
Collapse
|
43
|
Baum E, Sattabongkot J, Sirichaisinthop J, Kiattibutr K, Davies DH, Jain A, Lo E, Lee MC, Randall AZ, Molina DM, Liang X, Cui L, Felgner PL, Yan G. Submicroscopic and asymptomatic Plasmodium falciparum and Plasmodium vivax infections are common in western Thailand - molecular and serological evidence. Malar J 2015; 14:95. [PMID: 25849211 PMCID: PMC4342942 DOI: 10.1186/s12936-015-0611-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/11/2015] [Indexed: 11/21/2022] Open
Abstract
Background Malaria is a public health problem in parts of Thailand, where Plasmodium falciparum and Plasmodium vivax are the main causes of infection. In the northwestern border province of Tak parasite prevalence is now estimated to be less than 1% by microscopy. Nonetheless, microscopy is insensitive at low-level parasitaemia. The objective of this study was to assess the current epidemiology of falciparum and vivax malaria in Tak using molecular methods to detect exposure to and infection with parasites; in particular, the prevalence of asymptomatic infections and infections with submicroscopic parasite levels. Methods Three-hundred microlitres of whole blood from finger-prick were collected into capillary tubes from residents of a sentinel village and from patients at a malaria clinic. Pelleted cellular fractions were screened by quantitative PCR to determine parasite prevalence, while plasma was probed on a protein microarray displaying hundreds of P. falciparum and P. vivax proteins to obtain antibody response profiles in those individuals. Results Of 219 samples from the village, qPCR detected 25 (11.4%) Plasmodium sp. infections, of which 92% were asymptomatic and 100% were submicroscopic. Of 61 samples from the clinic patients, 27 (44.3%) were positive by qPCR, of which 25.9% had submicroscopic parasite levels. Cryptic mixed infections, misdiagnosed as single-species infections by microscopy, were found in 7 (25.9%) malaria patients. All sample donors, parasitaemic and non-parasitaemic alike, had serological evidence of parasite exposure, with 100% seropositivity to at least 54 antigens. Antigens significantly associated with asymptomatic infections were P. falciparum MSP2, DnaJ protein, putative E1E2 ATPase, and three others. Conclusion These findings suggest that parasite prevalence is higher than currently estimated by local authorities based on the standard light microscopy. As transmission levels drop in Thailand, it may be necessary to employ higher throughput and sensitivity methods for parasite detection in the phase of malaria elimination. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0611-9) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Bailey JA, Pablo J, Niangaly A, Travassos MA, Ouattara A, Coulibaly D, Laurens MB, Takala-Harrison SL, Lyke KE, Skinner J, Berry AA, Jasinskas A, Nakajima-Sasaki R, Kouriba B, Thera MA, Felgner PL, Doumbo OK, Plowe CV. Seroreactivity to a large panel of field-derived Plasmodium falciparum apical membrane antigen 1 and merozoite surface protein 1 variants reflects seasonal and lifetime acquired responses to malaria. Am J Trop Med Hyg 2015; 92:9-12. [PMID: 25294612 PMCID: PMC4347399 DOI: 10.4269/ajtmh.14-0140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/26/2014] [Indexed: 11/07/2022] Open
Abstract
Parasite antigen diversity poses an obstacle to developing an effective malaria vaccine. A protein microarray containing Plasmodium falciparum apical membrane antigen 1 (AMA1, n = 57) and merozoite surface protein 1 19-kD (MSP119, n = 10) variants prevalent at a malaria vaccine testing site in Bandiagara, Mali, was used to assess changes in seroreactivity caused by seasonal and lifetime exposure to malaria. Malian adults had significantly higher magnitude and breadth of seroreactivity to variants of both antigens than did Malian children. Seroreactivity increased over the course of the malaria season in children and adults, but the difference was more dramatic in children. These results help to validate diversity-covering protein microarrays as a promising tool for measuring the breadth of antibody responses to highly variant proteins, and demonstrate the potential of this new tool to help guide the development of malaria vaccines with strain-transcending efficacy.
Collapse
Affiliation(s)
- Jason A Bailey
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Jozelyn Pablo
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Amadou Niangaly
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Mark A Travassos
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Amed Ouattara
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Drissa Coulibaly
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Matthew B Laurens
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Shannon L Takala-Harrison
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Kirsten E Lyke
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Jeff Skinner
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Andrea A Berry
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Algis Jasinskas
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Rie Nakajima-Sasaki
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Bourema Kouriba
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Mahamadou A Thera
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Philip L Felgner
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Ogobara K Doumbo
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Christopher V Plowe
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| |
Collapse
|
45
|
Campo JJ, Aponte JJ, Skinner J, Nakajima R, Molina DM, Liang L, Sacarlal J, Alonso PL, Crompton PD, Felgner PL, Dobaño C. RTS,S vaccination is associated with serologic evidence of decreased exposure to Plasmodium falciparum liver- and blood-stage parasites. Mol Cell Proteomics 2014; 14:519-31. [PMID: 25547414 DOI: 10.1074/mcp.m114.044677] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The leading malaria vaccine candidate, RTS,S, targets the sporozoite and liver stages of the Plasmodium falciparum life cycle, yet it provides partial protection against disease associated with the subsequent blood stage of infection. Antibodies against the vaccine target, the circumsporozoite protein, have not shown sufficient correlation with risk of clinical malaria to serve as a surrogate for protection. The mechanism by which a vaccine that targets the asymptomatic sporozoite and liver stages protects against disease caused by blood-stage parasites remains unclear. We hypothesized that vaccination with RTS,S protects from blood-stage disease by reducing the number of parasites emerging from the liver, leading to prolonged exposure to subclinical levels of blood-stage parasites that go undetected and untreated, which in turn boosts pre-existing antibody-mediated blood-stage immunity. To test this hypothesis, we compared antibody responses to 824 P. falciparum antigens by protein array in Mozambican children 6 months after receiving a full course of RTS,S (n = 291) versus comparator vaccine (n = 297) in a Phase IIb trial. Moreover, we used a nested case-control design to compare antibody responses of children who did or did not experience febrile malaria. Unexpectedly, we found that the breadth and magnitude of the antibody response to both liver and asexual blood-stage antigens was significantly lower in RTS,S vaccinees, with the exception of only four antigens, including the RTS,S circumsporozoite antigen. Contrary to our initial hypothesis, these findings suggest that RTS,S confers protection against clinical malaria by blocking sporozoite invasion of hepatocytes, thereby reducing exposure to the blood-stage parasites that cause disease. We also found that antibody profiles 6 months after vaccination did not distinguish protected and susceptible children during the subsequent 12-month follow-up period but were strongly associated with exposure. Together, these data provide insight into the mechanism by which RTS,S protects from malaria.
Collapse
Affiliation(s)
- Joe J Campo
- ‡ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; §Manhiça Health Research Centre, Manhiça, Mozambique;
| | - John J Aponte
- ‡ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; §Manhiça Health Research Centre, Manhiça, Mozambique
| | - Jeff Skinner
- ¶Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Rie Nakajima
- ‡‡Department of Medicine, University of California Irvine, Irvine, CA
| | | | - Li Liang
- ‡‡Department of Medicine, University of California Irvine, Irvine, CA
| | - Jahit Sacarlal
- §Manhiça Health Research Centre, Manhiça, Mozambique; **Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Pedro L Alonso
- ‡ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; §Manhiça Health Research Centre, Manhiça, Mozambique
| | - Peter D Crompton
- ¶Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Philip L Felgner
- ‡‡Department of Medicine, University of California Irvine, Irvine, CA; ‖Antigen Discovery Inc., Irvine, CA
| | - Carlota Dobaño
- ‡ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; §Manhiça Health Research Centre, Manhiça, Mozambique
| |
Collapse
|
46
|
Chia WN, Goh YS, Rénia L. Novel approaches to identify protective malaria vaccine candidates. Front Microbiol 2014; 5:586. [PMID: 25452745 PMCID: PMC4233905 DOI: 10.3389/fmicb.2014.00586] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/17/2014] [Indexed: 12/17/2022] Open
Abstract
Efforts to develop vaccines against malaria have been the focus of substantial research activities for decades. Several categories of candidate vaccines are currently being developed for protection against malaria, based on antigens corresponding to the pre-erythrocytic, blood stage, or sexual stages of the parasite. Long lasting sterile protection from Plasmodium falciparum sporozoite challenge has been observed in human following vaccination with whole parasite formulations, clearly demonstrating that a protective immune response targeting predominantly the pre-erythrocytic stages can develop against malaria. However, most of vaccine candidates currently being investigated, which are mostly subunits vaccines, have not been able to induce substantial (>50%) protection thus far. This is due to the fact that the antigens responsible for protection against the different parasite stages are still yet to be known and relevant correlates of protection have remained elusive. For a vaccine to be developed in a timely manner, novel approaches are required. In this article, we review the novel approaches that have been developed to identify the antigens for the development of an effective malaria vaccine.
Collapse
Affiliation(s)
- Wan Ni Chia
- Singapore Immunology Network, Agency for Science, Technology and Research Singapore, Singapore ; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Yun Shan Goh
- Singapore Immunology Network, Agency for Science, Technology and Research Singapore, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research Singapore, Singapore ; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| |
Collapse
|
47
|
Lessa-Aquino C, Wunder EA, Lindow JC, Rodrigues CB, Pablo J, Nakajima R, Jasinskas A, Liang L, Reis MG, Ko AI, Medeiros MA, Felgner PL. Proteomic features predict seroreactivity against leptospiral antigens in leptospirosis patients. J Proteome Res 2014; 14:549-56. [PMID: 25358092 PMCID: PMC4286151 DOI: 10.1021/pr500718t] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
With
increasing efficiency, accuracy, and speed we can access complete
genome sequences from thousands of infectious microorganisms; however,
the ability to predict antigenic targets of the immune system based
on amino acid sequence alone is still needed. Here we use a Leptospira interrogans microarray expressing 91% (3359)
of all leptospiral predicted ORFs (3667) and make an empirical accounting
of all antibody reactive antigens recognized in sera from naturally
infected humans; 191 antigens elicited an IgM or IgG response, representing
5% of the whole proteome. We classified the reactive antigens into
26 annotated COGs (clusters of orthologous groups), 26 JCVI Mainrole
annotations, and 11 computationally predicted proteomic features.
Altogether, 14 significantly enriched categories were identified,
which are associated with immune recognition including mass spectrometry
evidence of in vitro expression and in vivo mRNA up-regulation. Together,
this group of 14 enriched categories accounts for just 25% of the
leptospiral proteome but contains 50% of the immunoreactive antigens.
These findings are consistent with our previous studies of other Gram-negative
bacteria. This genome-wide approach provides an empirical basis to
predict and classify antibody reactive antigens based on structural,
physical–chemical, and functional proteomic features and a
framework for understanding the breadth and specificity of the immune
response to L. interrogans.
Collapse
Affiliation(s)
- Carolina Lessa-Aquino
- Fiocruz, Bio-Manguinhos, Brazilian Ministry of Health , Avenida Brasil, 4365 - Manguinhos, Rio de Janeiro, RJ 21040-900, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Torres KJ, Castrillon CE, Moss EL, Saito M, Tenorio R, Molina DM, Davies H, Neafsey DE, Felgner P, Vinetz JM, Gamboa D. Genome-level determination of Plasmodium falciparum blood-stage targets of malarial clinical immunity in the Peruvian Amazon. J Infect Dis 2014; 211:1342-51. [PMID: 25381370 DOI: 10.1093/infdis/jiu614] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Persons with blood-stage Plasmodium falciparum parasitemia in the absence of symptoms are considered to be clinically immune. We hypothesized that asymptomatic subjects with P. falciparum parasitemia would differentially recognize a subset of P. falciparum proteins on a genomic scale. METHODS AND FINDINGS Compared with symptomatic subjects, sera from clinically immune, asymptomatically infected individuals differentially recognized 51 P. falciparum proteins, including the established vaccine candidate PfMSP1. Novel, hitherto unstudied hypothetical proteins and other proteins not previously recognized as potential vaccine candidates were also differentially recognized. Genes encoding the proteins differentially recognized by the Peruvian clinically immune individuals exhibited a significant enrichment of nonsynonymous nucleotide variation, an observation consistent with these genes undergoing immune selection. CONCLUSIONS A limited set of P. falciparum protein antigens was associated with the development of naturally acquired clinical immunity in the low-transmission setting of the Peruvian Amazon. These results imply that, even in a low-transmission setting, an asexual blood-stage vaccine designed to reduce clinical malaria symptoms will likely need to contain large numbers of often-polymorphic proteins, a finding at odds with many current efforts in the design of vaccines against asexual blood-stage P. falciparum.
Collapse
Affiliation(s)
- Katherine J Torres
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía
| | - Carlos E Castrillon
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía
| | - Eli L Moss
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Mayuko Saito
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía Division of Infectious Diseases, Department of Medicine, University of California-San Diego, La Jolla
| | - Roy Tenorio
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía Laboratorio Satelital, Universidad Peruana Cayetano Heredia, Iquitos, Perú
| | | | - Huw Davies
- Division of Infectious Diseases, Department of Medicine, University of California-Irvine
| | - Daniel E Neafsey
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Philip Felgner
- Division of Infectious Diseases, Department of Medicine, University of California-Irvine
| | - Joseph M Vinetz
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía Institute de Medicina Tropical, Universidad Peruana Cayetano Heredia, Lima Division of Infectious Diseases, Department of Medicine, University of California-San Diego, La Jolla
| | - Dionicia Gamboa
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía Institute de Medicina Tropical, Universidad Peruana Cayetano Heredia, Lima
| |
Collapse
|
49
|
Finney OC, Danziger SA, Molina DM, Vignali M, Takagi A, Ji M, Stanisic DI, Siba PM, Liang X, Aitchison JD, Mueller I, Gardner MJ, Wang R. Predicting antidisease immunity using proteome arrays and sera from children naturally exposed to malaria. Mol Cell Proteomics 2014; 13:2646-60. [PMID: 25023128 DOI: 10.1074/mcp.m113.036632] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Malaria remains one of the most prevalent and lethal human infectious diseases worldwide. A comprehensive characterization of antibody responses to blood stage malaria is essential to support the development of future vaccines, sero-diagnostic tests, and sero-surveillance methods. We constructed a proteome array containing 4441 recombinant proteins expressed by the blood stages of the two most common human malaria parasites, P. falciparum (Pf) and P. vivax (Pv), and used this array to screen sera of Papua New Guinea children infected with Pf, Pv, or both (Pf/Pv) that were either symptomatic (febrile), or asymptomatic but had parasitemia detectable via microscopy or PCR. We hypothesized that asymptomatic children would develop antigen-specific antibody profiles associated with antidisease immunity, as compared with symptomatic children. The sera from these children recognized hundreds of the arrayed recombinant Pf and Pv proteins. In general, responses in asymptomatic children were highest in those with high parasitemia, suggesting that antibody levels are associated with parasite burden. In contrast, symptomatic children carried fewer antibodies than asymptomatic children with infections detectable by microscopy, particularly in Pv and Pf/Pv groups, suggesting that antibody production may be impaired during symptomatic infections. We used machine-learning algorithms to investigate the relationship between antibody responses and symptoms, and we identified antibody responses to sets of Plasmodium proteins that could predict clinical status of the donors. Several of these antibody responses were identified by multiple comparisons, including those against members of the serine enriched repeat antigen family and merozoite protein 4. Interestingly, both P. falciparum serine enriched repeat antigen-5 and merozoite protein 4 have been previously investigated for use in vaccines. This machine learning approach, never previously applied to proteome arrays, can be used to generate a list of potential seroprotective and/or diagnostic antigens candidates that can be further evaluated in longitudinal studies.
Collapse
Affiliation(s)
- Olivia C Finney
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA 98109 USA
| | - Samuel A Danziger
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA 98109 USA; §Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109 USA
| | - Douglas M Molina
- ¶Antigen Discovery Inc. (ADi), 1 Technology Dr E, Irvine, CA 92618 USA
| | - Marissa Vignali
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA 98109 USA
| | - Aki Takagi
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA 98109 USA
| | - Ming Ji
- ‖Division of Epidemiology/Biostatistics, Graduate School of Public Health, San Diego State University, Hardy Tower 119, 5500 Campanile Drive, San Diego, CA 92182
| | - Danielle I Stanisic
- **Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea; ‡‡Walter & Eliza Hall Institute, 1G Royal Parade, Parkville Victoria 3052, Australia
| | - Peter M Siba
- **Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Xiawu Liang
- ¶Antigen Discovery Inc. (ADi), 1 Technology Dr E, Irvine, CA 92618 USA
| | - John D Aitchison
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA 98109 USA; §Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109 USA
| | - Ivo Mueller
- **Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea; ‡‡Walter & Eliza Hall Institute, 1G Royal Parade, Parkville Victoria 3052, Australia; §§Barcelona Centre for International Health Research, Carrer Roselló 132, 08036 Barcelona, Spain
| | - Malcolm J Gardner
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA 98109 USA
| | - Ruobing Wang
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA 98109 USA;
| |
Collapse
|
50
|
Chan JA, Fowkes FJI, Beeson JG. Surface antigens of Plasmodium falciparum-infected erythrocytes as immune targets and malaria vaccine candidates. Cell Mol Life Sci 2014; 71:3633-57. [PMID: 24691798 PMCID: PMC4160571 DOI: 10.1007/s00018-014-1614-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/04/2014] [Accepted: 03/17/2014] [Indexed: 12/19/2022]
Abstract
Understanding the targets and mechanisms of human immunity to malaria caused by Plasmodium falciparum is crucial for advancing effective vaccines and developing tools for measuring immunity and exposure in populations. Acquired immunity to malaria predominantly targets the blood stage of infection when merozoites of Plasmodium spp. infect erythrocytes and replicate within them. During the intra-erythrocytic development of P. falciparum, numerous parasite-derived antigens are expressed on the surface of infected erythrocytes (IEs). These antigens enable P. falciparum-IEs to adhere in the vasculature and accumulate in multiple organs, which is a key process in the pathogenesis of disease. IE surface antigens, often referred to as variant surface antigens, are important targets of acquired protective immunity and include PfEMP1, RIFIN, STEVOR and SURFIN. These antigens are highly polymorphic and encoded by multigene families, which generate substantial antigenic diversity to mediate immune evasion. The most important immune target appears to be PfEMP1, which is a major ligand for vascular adhesion and sequestration of IEs. Studies are beginning to identify specific variants of PfEMP1 linked to disease pathogenesis that may be suitable for vaccine development, but overcoming antigenic diversity in PfEMP1 remains a major challenge. Much less is known about other surface antigens, or antigens on the surface of gametocyte-IEs, the effector mechanisms that mediate immunity, and how immunity is acquired and maintained over time; these are important topics for future research.
Collapse
|