1
|
Dho SE, Othman K, Zhang Y, McGlade CJ. NUMB alternative splicing and isoform specific functions in development and disease. J Biol Chem 2025:108215. [PMID: 39863103 DOI: 10.1016/j.jbc.2025.108215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The NUMB gene encodes a conserved adaptor protein with roles in asymmetric cell division and cell fate determination. First described as an inhibitor of Notch signaling, multi-functional NUMB proteins regulate multiple cellular pathways through protein complexes with ubiquitin ligases, polarity proteins and the endocytic machinery. The vertebrate NUMB protein isoforms were identified over two decades ago, yet the majority of functional studies exploring NUMB function in endocytosis, cell migration and adhesion, development and disease have largely neglected the potential for distinct isoform activity in design and interpretation. In this review we consolidate the literature that has directly addressed individual NUMB isoform functions, as well as interpret other functional studies through the lens of the specific isoforms that were utilized. We also summarize the emerging literature on the mechanisms that regulate alternative splicing of NUMB, and how this is subverted in disease. Finally, the importance of relative NUMB isoform expression as a determinant of activity and considerations for future studies of NUMB isoforms as unique proteins with distinct functions are discussed.
Collapse
Affiliation(s)
- Sascha E Dho
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8
| | - Kamal Othman
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, Canada, M5G 2M9
| | - Yangjing Zhang
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, Canada, M5G 2M9
| | - C Jane McGlade
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, Canada, M5G 2M9.
| |
Collapse
|
2
|
Ayyub M, Thomas JG, Hodeify R. An Overview of the Characteristics, Pathogenesis, Epidemiology, and Detection of Human Enterovirus in the Arabian Gulf Region. Viruses 2024; 16:1187. [PMID: 39205162 PMCID: PMC11359295 DOI: 10.3390/v16081187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Enteroviruses are RNA viruses that initiate infections through the gastrointestinal (GI) tract and are associated with enteric illness in individuals of all ages. Most serious infections of enteroviruses are in infants and young children where it is the common cause of aseptic meningitis and other systemic diseases, leading to a high mortality rate. Enteroviruses belong to the small non-enveloped family of the Picornaviridae family. The virus can spread mainly through fecal-oral and respiratory routes. In the Arabian Gulf countries, the incidence of enteroviral infections is only restricted to a few reports, and thus, knowledge of the epidemiology, characteristics, and pathogenesis of the virus in the gulf countries remains scarce. In this minireview, we sought to provide an overview of the characteristics of enterovirus and its pathogenesis, in addition to gathering the reports of enterovirus infection prevalence in Gulf Cooperation Council (GCC) countries. We also present a summary of the common methods used in its detection.
Collapse
Affiliation(s)
| | | | - Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah 72603, United Arab Emirates; (M.A.); (J.G.T.)
| |
Collapse
|
3
|
Pinot M, Le Borgne R. Spatio-Temporal Regulation of Notch Activation in Asymmetrically Dividing Sensory Organ Precursor Cells in Drosophila melanogaster Epithelium. Cells 2024; 13:1133. [PMID: 38994985 PMCID: PMC11240559 DOI: 10.3390/cells13131133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
The Notch communication pathway, discovered in Drosophila over 100 years ago, regulates a wide range of intra-lineage decisions in metazoans. The division of the Drosophila mechanosensory organ precursor is the archetype of asymmetric cell division in which differential Notch activation takes place at cytokinesis. Here, we review the molecular mechanisms by which epithelial cell polarity, cell cycle and intracellular trafficking participate in controlling the directionality, subcellular localization and temporality of mechanosensitive Notch receptor activation in cytokinesis.
Collapse
Affiliation(s)
| | - Roland Le Borgne
- Univ Rennes, Centre National de la Recherche Scientifique UMR 6290, IGDR (Institut de Génétique et Développement de Rennes), F-35000 Rennes, France
| |
Collapse
|
4
|
Yuan YH, Mao ND, Duan JL, Zhang H, Garrido C, Lirussi F, Gao Y, Xie T, Ye XY. Recent progress in discovery of novel AAK1 inhibitors: from pain therapy to potential anti-viral agents. J Enzyme Inhib Med Chem 2023; 38:2279906. [PMID: 37955299 PMCID: PMC10653628 DOI: 10.1080/14756366.2023.2279906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Adaptor associated kinase 1 (AAK1), a member of the Ark1/Prk1 family of Ser/Thr kinases, is a specific key kinase regulating Thr156 phosphorylation at the μ2 subunit of the adapter complex-2 (AP-2) protein. Due to their important biological functions, AAK1 systems have been validated in clinics for neuropathic pain therapy, and are being explored as potential therapeutic targets for diseases caused by various viruses such as Hepatitis C (HCV), Dengue, Ebola, and COVID-19 viruses and for amyotrophic lateral sclerosis (ALS). Centreing on the advances of drug discovery programs in this field up to 2023, AAK1 inhibitors are discussed from the aspects of the structure-based rational molecular design, pharmacology, toxicology and synthetic routes for the compounds of interest in this review. The aim is to provide the medicinal chemistry community with up-to-date information and to accelerate the drug discovery programs in the field of AAK1 small molecule inhibitors.
Collapse
Affiliation(s)
- Ying-Hui Yuan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Nian-Dong Mao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ji-Long Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Hang Zhang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Carmen Garrido
- INSERM UMR 1231, Labex LipSTIC, University of Bourgogne, Dijon, France
- Cancer Center George François Leclerc, Dijon, France
- University of Bourgogne Franche-Comté, Besançon, France
| | - Frédéric Lirussi
- INSERM UMR 1231, Labex LipSTIC, University of Bourgogne, Dijon, France
- University of Franche-Comté & University Hospital of Besançon, Besancon, France
| | - Yuan Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Huang C, Ji C, Wang J. Current thoughts on cellular functions of numb-associated kinases. Mol Biol Rep 2023; 50:4645-4652. [PMID: 37014568 PMCID: PMC10072014 DOI: 10.1007/s11033-023-08372-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/02/2023] [Indexed: 04/05/2023]
Abstract
Members of the Numb-associated kinase family of serine/threonine kinases play an essential role in many cellular processes, such as endocytosis, autophagy, dendrite morphogenesis, osteoblast differentiation, and the regulation of the Notch pathway. Numb-associated kinases have been relevant to diverse diseases, including neuropathic pain, Parkinson's disease, and prostate cancer. Therefore, they are considered potential therapeutic targets. In addition, it is reported that Numb-associated kinases have been involved in the life cycle of multiple viruses such as hepatitis C virus (HCV), Ebola virus (EBOV), and dengue virus (DENV). Recently, Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to threaten global health. Studies show that Numb-associated kinases are implicated in the infection of SARS-CoV-2 which can be suppressed by Numb-associated kinases inhibitors. Thus, Numb-associated kinases are proposed as potential host targets for broad-spectrum antiviral strategies. We will focus on the recent advances in Numb-associated kinases-related cellular functions and their potential as host targets for viral infections in this review. Questions that remained unknown on the cellular functions of Numb-associated kinases will also be discussed.
Collapse
Affiliation(s)
- Chenxi Huang
- Department of Biology, Faculty of Environment and Life, Beijing University of Technology, 100124, Beijing, China
| | - Cuicui Ji
- Department of Biology, Faculty of Environment and Life, Beijing University of Technology, 100124, Beijing, China.
| | - Juan Wang
- Department of Biology, Faculty of Environment and Life, Beijing University of Technology, 100124, Beijing, China.
| |
Collapse
|
6
|
Ortega-Campos SM, García-Heredia JM. The Multitasker Protein: A Look at the Multiple Capabilities of NUMB. Cells 2023; 12:333. [PMID: 36672267 PMCID: PMC9856935 DOI: 10.3390/cells12020333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
NUMB, a plasma membrane-associated protein originally described in Drosophila, is involved in determining cell function and fate during early stages of development. It is secreted asymmetrically in dividing cells, with one daughter cell inheriting NUMB and the other inheriting its antagonist, NOTCH. NUMB has been proposed as a polarizing agent and has multiple functions, including endocytosis and serving as an adaptor in various cellular pathways such as NOTCH, Hedgehog, and the P53-MDM2 axis. Due to its role in maintaining cellular homeostasis, it has been suggested that NUMB may be involved in various human pathologies such as cancer and Alzheimer's disease. Further research on NUMB could aid in understanding disease mechanisms and advancing the field of personalized medicine and the development of new therapies.
Collapse
Affiliation(s)
- Sara M. Ortega-Campos
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Manuel García-Heredia
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
7
|
Karim M, Saul S, Ghita L, Sahoo MK, Ye C, Bhalla N, Lo CW, Jin J, Park JG, Martinez-Gualda B, East MP, Johnson GL, Pinsky BA, Martinez-Sobrido L, Asquith CRM, Narayanan A, De Jonghe S, Einav S. Numb-associated kinases are required for SARS-CoV-2 infection and are cellular targets for antiviral strategies. Antiviral Res 2022; 204:105367. [PMID: 35738348 PMCID: PMC9212491 DOI: 10.1016/j.antiviral.2022.105367] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose serious threats to global health. We previously reported that AAK1, BIKE and GAK, members of the Numb-associated kinase family, control intracellular trafficking of multiple RNA viruses during viral entry and assembly/egress. Here, using both genetic and pharmacological approaches, we probe the functional relevance of NAKs for SARS-CoV-2 infection. siRNA-mediated depletion of AAK1, BIKE, GAK, and STK16, the fourth member of the NAK family, suppressed SARS-CoV-2 infection in human lung epithelial cells. Both known and novel small molecules with potent AAK1/BIKE, GAK or STK16 activity suppressed SARS-CoV-2 infection. Moreover, combination treatment with the approved anti-cancer drugs, sunitinib and erlotinib, with potent anti-AAK1/BIKE and GAK activity, respectively, demonstrated synergistic effect against SARS-CoV-2 infection in vitro. Time-of-addition experiments revealed that pharmacological inhibition of AAK1 and BIKE suppressed viral entry as well as late stages of the SARS-CoV-2 life cycle. Lastly, suppression of NAKs expression by siRNAs inhibited entry of both wild type and SARS-CoV-2 pseudovirus. These findings provide insight into the roles of NAKs in SARS-CoV-2 infection and establish a proof-of-principle that pharmacological inhibition of NAKs can be potentially used as a host-targeted approach to treat SARS-CoV-2 with potential implications to other coronaviruses.
Collapse
Affiliation(s)
- Marwah Karim
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, CA, USA
| | - Sirle Saul
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, CA, USA
| | - Luca Ghita
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, CA, USA
| | - Malaya Kumar Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Nishank Bhalla
- National Center for Biodefence and Infectious Disease, Biomedical Research Laboratory, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Chieh-Wen Lo
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, CA, USA
| | - Jing Jin
- Vitalant Research Institute, San Francisco, CA, USA
| | - Jun-Gyu Park
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Belén Martinez-Gualda
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Michael Patrick East
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gary L Johnson
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Benjamin A Pinsky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Christopher R M Asquith
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Aarthi Narayanan
- National Center for Biodefence and Infectious Disease, Biomedical Research Laboratory, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, CA, USA; Department of Microbiology and Immunology, Stanford University, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
8
|
Schor S, Pu S, Nicolaescu V, Azari S, Kõivomägi M, Karim M, Cassonnet P, Saul S, Neveu G, Yueh A, Demeret C, Skotheim JM, Jacob Y, Randall G, Einav S. The cargo adapter protein CLINT1 is phosphorylated by the Numb-associated kinase BIKE and mediates dengue virus infection. J Biol Chem 2022; 298:101956. [PMID: 35452674 PMCID: PMC9133654 DOI: 10.1016/j.jbc.2022.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
The signaling pathways and cellular functions regulated by the four Numb-associated kinases are largely unknown. We reported that AAK1 and GAK control intracellular trafficking of RNA viruses and revealed a requirement for BIKE in early and late stages of dengue virus (DENV) infection. However, the downstream targets phosphorylated by BIKE have not yet been identified. Here, to identify BIKE substrates, we conducted a barcode fusion genetics-yeast two-hybrid screen and retrieved publicly available data generated via affinity-purification mass spectrometry. We subsequently validated 19 of 47 putative BIKE interactors using mammalian cell-based protein-protein interaction assays. We found that CLINT1, a cargo-specific adapter implicated in bidirectional Golgi-to-endosome trafficking, emerged as a predominant hit in both screens. Our experiments indicated that BIKE catalyzes phosphorylation of a threonine 294 CLINT1 residue both in vitro and in cell culture. Our findings revealed that CLINT1 phosphorylation mediates its binding to the DENV nonstructural 3 protein and subsequently promotes DENV assembly and egress. Additionally, using live-cell imaging we revealed that CLINT1 cotraffics with DENV particles and is involved in mediating BIKE's role in DENV infection. Finally, our data suggest that additional cellular BIKE interactors implicated in the host immune and stress responses and the ubiquitin proteasome system might also be candidate phosphorylation substrates of BIKE. In conclusion, these findings reveal cellular substrates and pathways regulated by the understudied Numb-associated kinase enzyme BIKE, a mechanism for CLINT1 regulation, and control of DENV infection via BIKE signaling, with potential implications for cell biology, virology, and host-targeted antiviral design.
Collapse
Affiliation(s)
- Stanford Schor
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University, California, USA
| | - Szuyuan Pu
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University, California, USA
| | - Vlad Nicolaescu
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Siavash Azari
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University, California, USA
| | | | - Marwah Karim
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University, California, USA
| | - Patricia Cassonnet
- Department of Virology, Molecular Genetics of RNA Virus Genetics (GMVR), Pasteur Institute, National Center for Scientific Research, and Paris Diderot University, Paris, France
| | - Sirle Saul
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University, California, USA
| | - Gregory Neveu
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University, California, USA
| | - Andrew Yueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Caroline Demeret
- Department of Virology, Molecular Genetics of RNA Virus Genetics (GMVR), Pasteur Institute, National Center for Scientific Research, and Paris Diderot University, Paris, France
| | - Jan M Skotheim
- Department of Biology, Stanford University, California, USA
| | - Yves Jacob
- Department of Virology, Molecular Genetics of RNA Virus Genetics (GMVR), Pasteur Institute, National Center for Scientific Research, and Paris Diderot University, Paris, France
| | - Glenn Randall
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University, California, USA; Chan Zuckerberg Biohub, San Francisco, California, USA.
| |
Collapse
|
9
|
Zhang Y, Dho SE, Othman K, Simpson CD, Lapierre J, Bondoc A, McGlade CJ. Numb exon 9 inclusion regulates Integrinβ5 surface expression and promotes breast cancer metastasis. Oncogene 2022; 41:2079-2094. [PMID: 35181737 DOI: 10.1038/s41388-022-02225-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 01/07/2023]
Abstract
The endocytic adaptor protein Numb acts as a tumor suppressor through downregulation of oncogenic pathways in multiple cancer types. The identification of splicing alterations giving rise to changes in Numb protein isoform expression indicate that Numb also has tumor promoting activity, though the underlying mechanisms are unknown. Here we report that NUMB exon 9 inclusion, which results in production of a protein isoform with an additional 49 amino acids, is a feature of multiple cancer types including all subtypes of breast cancer and correlates with worse progression-free survival. Specific deletion of exon 9-included Numb isoforms (Exon9in) from breast cancer cells reduced cell growth and prevents spontaneous lung metastasis in a mouse model. Quantitative proteome profiling showed that loss of Exon9in causes downregulation of membrane receptors and adhesion molecules, as well as proteins involved in extracellular matrix organization and the epithelial-mesenchymal transition (EMT) state. In addition, exon 9 deletion caused remodeling of the endocytic network, decreased ITGβ5 surface localization, cell spreading on vitronectin and downstream signaling to ERK and SRC. Together these observations suggest that Exon9in isoform expression disrupts the endocytic trafficking functions of Numb, resulting in increased surface expression of ITGβ5 as well as other plasma membrane proteins to promote cell adhesion, EMT, and tumor metastasis.
Collapse
Affiliation(s)
- Yangjing Zhang
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Sascha E Dho
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Cell Biology, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Kamal Othman
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Craig D Simpson
- SPARC BioCentre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Jessica Lapierre
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Cell Biology, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Andrew Bondoc
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Cell Biology, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - C Jane McGlade
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Program in Cell Biology, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
10
|
Ramesh ST, Navyasree KV, Sah S, Ashok AB, Qathoon N, Mohanty S, Swain RK, Umasankar PK. BMP2K phosphorylates AP-2 and regulates clathrin-mediated endocytosis. Traffic 2021; 22:377-396. [PMID: 34480404 DOI: 10.1111/tra.12814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/29/2023]
Abstract
Phosphorylation of the central adaptor protein complex, AP-2 is pivotal for clathrin-mediated endocytosis (CME). Here, we uncover the role of an uncharacterized kinase (BMP-2 inducible kinase-BMP2K) in AP-2 phosphorylation. We demonstrate that BMP2K can phosphorylate AP-2 in vitro and in vivo. Functional impairment of BMP2K impedes AP-2 phosphorylation leading to defects in clathrin-coated pit (CCP) morphology and cargo internalization. BMP2K engages AP-2 via its extended C-terminus and this interaction is important for its CCP localization and function. Notably, endogenous BMP2K levels decline upon functional impairment of AP-2 indicating AP-2 dependent BMP2K stabilization in cells. Further, functional inactivation of BMP2K in zebrafish embryos yields gastrulation phenotypes which mirror AP-2 loss-of-function suggesting physiological relevance of BMP2K in vertebrates. Together, our findings propose involvement of a novel kinase in AP-2 phosphorylation and in the operation of CME.
Collapse
Affiliation(s)
- Shikha T Ramesh
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Centre for Doctoral Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kolaparamba V Navyasree
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Centre for Doctoral Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sneha Sah
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Anjitha B Ashok
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Nishada Qathoon
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | | | | | - Perunthottathu K Umasankar
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
11
|
Pu S, Schor S, Karim M, Saul S, Robinson M, Kumar S, Prugar LI, Dorosky DE, Brannan J, Dye JM, Einav S. BIKE regulates dengue virus infection and is a cellular target for broad-spectrum antivirals. Antiviral Res 2020; 184:104966. [PMID: 33137362 DOI: 10.1016/j.antiviral.2020.104966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/07/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
Global health is threatened by emerging viruses, many of which lack approved therapies and effective vaccines, including dengue, Ebola, and Venezuelan equine encephalitis. We previously reported that AAK1 and GAK, two of the four members of the understudied Numb-associated kinases (NAK) family, control intracellular trafficking of RNA viruses. Nevertheless, the role of BIKE and STK16 in viral infection remained unknown. Here, we reveal a requirement for BIKE, but not STK-16, in dengue virus (DENV) infection. BIKE mediates both early (postinternalization) and late (assembly/egress) stages in the DENV life cycle, and this effect is mediated in part by phosphorylation of a threonine 156 (T156) residue in the μ subunit of the adaptor protein (AP) 2 complex. Pharmacological compounds with potent anti-BIKE activity, including the investigational anticancer drug 5Z-7-oxozeaenol and more selective inhibitors, suppress DENV infection both in vitro and ex vivo. BIKE overexpression reverses the antiviral activity, validating that the mechanism of antiviral action is, at least in part, mediated by BIKE. Lastly, 5Z-7-oxozeaenol exhibits antiviral activity against viruses from three unrelated RNA viral families with a high genetic barrier to resistance. These findings reveal regulation of poorly understood stages of the DENV life cycle via BIKE signaling and establish a proof-of-principle that pharmacological inhibition of BIKE can be potentially used as a broad-spectrum strategy against acute emerging viral infections.
Collapse
Affiliation(s)
- Szuyuan Pu
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Department of Microbiology and Immunology, Stanford University, CA, USA
| | - Stanford Schor
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Department of Microbiology and Immunology, Stanford University, CA, USA
| | - Marwah Karim
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Department of Microbiology and Immunology, Stanford University, CA, USA
| | - Sirle Saul
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Department of Microbiology and Immunology, Stanford University, CA, USA
| | - Makeda Robinson
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Department of Microbiology and Immunology, Stanford University, CA, USA
| | - Sathish Kumar
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Department of Microbiology and Immunology, Stanford University, CA, USA
| | - Laura I Prugar
- US Army Medical Research Institute of Infectious Diseases, Viral Immunology Branch, Fort Detrick, Maryland, USA
| | - Danielle E Dorosky
- US Army Medical Research Institute of Infectious Diseases, Viral Immunology Branch, Fort Detrick, Maryland, USA
| | - Jennifer Brannan
- US Army Medical Research Institute of Infectious Diseases, Viral Immunology Branch, Fort Detrick, Maryland, USA
| | - John M Dye
- US Army Medical Research Institute of Infectious Diseases, Viral Immunology Branch, Fort Detrick, Maryland, USA
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Department of Microbiology and Immunology, Stanford University, CA, USA.
| |
Collapse
|
12
|
Cendrowski J, Kaczmarek M, Mazur M, Kuzmicz-Kowalska K, Jastrzebski K, Brewinska-Olchowik M, Kominek A, Piwocka K, Miaczynska M. Splicing variation of BMP2K balances abundance of COPII assemblies and autophagic degradation in erythroid cells. eLife 2020; 9:e58504. [PMID: 32795391 PMCID: PMC7473771 DOI: 10.7554/elife.58504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/13/2020] [Indexed: 12/26/2022] Open
Abstract
Intracellular transport undergoes remodeling upon cell differentiation, which involves cell type-specific regulators. Bone morphogenetic protein 2-inducible kinase (BMP2K) has been potentially implicated in endocytosis and cell differentiation but its molecular functions remained unknown. We discovered that its longer (L) and shorter (S) splicing variants regulate erythroid differentiation in a manner unexplainable by their involvement in AP-2 adaptor phosphorylation and endocytosis. However, both variants interact with SEC16A and could localize to the juxtanuclear secretory compartment. Variant-specific depletion approach showed that BMP2K isoforms constitute a BMP2K-L/S regulatory system that controls the distribution of SEC16A and SEC24B as well as SEC31A abundance at COPII assemblies. Finally, we found L to promote and S to restrict autophagic degradation and erythroid differentiation. Hence, we propose that BMP2K-L and BMP2K-S differentially regulate abundance and distribution of COPII assemblies as well as autophagy, possibly thereby fine-tuning erythroid differentiation.
Collapse
Affiliation(s)
- Jaroslaw Cendrowski
- Laboratory of Cell Biology, International Institute of Molecular and Cell BiologyWarsawPoland
| | - Marta Kaczmarek
- Laboratory of Cell Biology, International Institute of Molecular and Cell BiologyWarsawPoland
| | - Michał Mazur
- Laboratory of Cell Biology, International Institute of Molecular and Cell BiologyWarsawPoland
| | | | - Kamil Jastrzebski
- Laboratory of Cell Biology, International Institute of Molecular and Cell BiologyWarsawPoland
| | | | - Agata Kominek
- Laboratory of Cytometry, Nencki Institute of Experimental BiologyWarsawPoland
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental BiologyWarsawPoland
| | - Marta Miaczynska
- Laboratory of Cell Biology, International Institute of Molecular and Cell BiologyWarsawPoland
| |
Collapse
|
13
|
Wells C, Couñago RM, Limas JC, Almeida TL, Cook JG, Drewry DH, Elkins JM, Gileadi O, Kapadia NR, Lorente-Macias A, Pickett JE, Riemen A, Ruela-de-Sousa RR, Willson TM, Zhang C, Zuercher WJ, Zutshi R, Axtman AD. SGC-AAK1-1: A Chemical Probe Targeting AAK1 and BMP2K. ACS Med Chem Lett 2020; 11:340-345. [PMID: 32184967 DOI: 10.1021/acsmedchemlett.9b00399] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Inhibitors based on a 3-acylaminoindazole scaffold were synthesized to yield potent dual AAK1/BMP2K inhibitors. Optimization furnished a small molecule chemical probe (SGC-AAK1-1, 25) that is potent and selective for AAK1/BMP2K over other NAK family members, demonstrates narrow activity in a kinome-wide screen, and is functionally active in cells. This inhibitor represents one of the best available small molecule tools to study the functions of AAK1 and BMP2K.
Collapse
Affiliation(s)
- Carrow Wells
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC−CH), Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC−CH, Chapel Hill, North Carolina 27599, United States
| | - Rafael M. Couñago
- SGC, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-886, Brazil
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, UNICAMP, Campinas, SP 13083-875, Brazil
| | - Juanita C. Limas
- Department of Pharmacology, UNC−CH, Chapel Hill, North Carolina 27599, United States
| | - Tuanny L. Almeida
- SGC, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-886, Brazil
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, UNICAMP, Campinas, SP 13083-875, Brazil
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, UNC−CH, Chapel Hill, North Carolina 27599, United States
| | - David H. Drewry
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC−CH), Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC−CH, Chapel Hill, North Carolina 27599, United States
| | - Jonathan M. Elkins
- SGC, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-886, Brazil
- SGC, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, U.K
| | - Opher Gileadi
- SGC, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-886, Brazil
- SGC, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, U.K
| | - Nirav R. Kapadia
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC−CH), Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC−CH, Chapel Hill, North Carolina 27599, United States
| | - Alvaro Lorente-Macias
- Departamento de Química Farmacéutica y Orgánica, University of Granada, Granada, 18071, Spain
| | - Julie E. Pickett
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC−CH), Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC−CH, Chapel Hill, North Carolina 27599, United States
| | - Alexander Riemen
- Luceome Biotechnologies, LLC, Tucson, Arizona 85719, United States
| | - Roberta R. Ruela-de-Sousa
- SGC, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-886, Brazil
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, UNICAMP, Campinas, SP 13083-875, Brazil
| | - Timothy M. Willson
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC−CH), Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC−CH, Chapel Hill, North Carolina 27599, United States
| | - Cunyu Zhang
- Platform Technology Sciences, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - William J. Zuercher
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC−CH), Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC−CH, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center (LCCC), UNC−CH, Chapel Hill, North Carolina 27599, United States
| | - Reena Zutshi
- Luceome Biotechnologies, LLC, Tucson, Arizona 85719, United States
| | - Alison D. Axtman
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC−CH), Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC−CH, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
14
|
Wei R, Liu X, Voss C, Qin W, Dagnino L, Li L, Vigny M, Li SSC. NUMB regulates the endocytosis and activity of the anaplastic lymphoma kinase in an isoform-specific manner. J Mol Cell Biol 2019; 11:994-1005. [PMID: 30726988 PMCID: PMC6927325 DOI: 10.1093/jmcb/mjz003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/07/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
NUMB is an evolutionarily conserved protein that plays an important role in cell adhesion, migration, polarity, and cell fate determination. It has also been shown to play a role in the pathogenesis of certain cancers, although it remains controversial whether NUMB functions as an oncoprotein or tumor suppressor. Here, we show that NUMB binds to anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase aberrantly activated in several forms of cancer, and this interaction regulates the endocytosis and activity of ALK. Intriguingly, the function of the NUMB-ALK interaction is isoform-dependent. While both p66-NUMB and p72-NUMB isoforms are capable of mediating the endocytosis of ALK, the former directs ALK to the lysosomal degradation pathway, thus decreasing the overall ALK level and the downstream MAP kinase signal. In contrast, the p72-NUMB isoform promotes ALK recycling back to the plasma membrane, thereby maintaining the kinase in its active state. Our work sheds light on the controversial role of different isoforms of NUMB in tumorigenesis and provides mechanistic insight into ALK regulation.
Collapse
Affiliation(s)
- Ran Wei
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Xuguang Liu
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Courtney Voss
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Wentao Qin
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lina Dagnino
- Physiology and Pharmacology and Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lei Li
- School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, China
| | - Marc Vigny
- Université Pierre et Marie Curie, UPMC, INSERM UMRS-839, Paris, France
| | - Shawn Shun-Cheng Li
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
15
|
Exon 3 of the NUMB Gene Emerged in the Chordate Lineage Coopting the NUMB Protein to the Regulation of MDM2. G3-GENES GENOMES GENETICS 2019; 9:3359-3367. [PMID: 31451549 PMCID: PMC6778778 DOI: 10.1534/g3.119.400494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
MDM2 regulates a variety of cellular processes through its dual protein:protein interaction and ubiquitin ligase activities. One major function of MDM2 is to bind and ubiquitinate P53, thereby regulating its proteasomal degradation. This function is in turn controlled by the cell fate determinant NUMB, which binds to and inhibits MDM2 via a short stretch of 11 amino acids, contained in its phosphotyrosine-binding (PTB) domain, encoded by exon 3 of the NUMB gene. The NUMB-MDM2-P53 circuitry is relevant to the specification of the stem cell fate and its subversion has been shown to be causal in breast cancer leading to the emergence of cancer stem cells. While extensive work on the evolutionary aspects of the MDM2/P53 circuitry has provided hints as to how these two proteins have evolved together to maintain conserved and linked functions, little is known about the evolution of the NUMB gene and, in particular, how it developed the ability to regulate MDM2 function. Here, we show that NUMB is a metazoan gene, which acquired exon 3 in the common ancestor of the Chordate lineage, first being present in the Cephalochordate and Tunicate subphyla, but absent in invertebrates. We provide experimental evidence showing that since its emergence, exon 3 conferred to the PTB domain of NUMB the ability to bind and to regulate MDM2 functions.
Collapse
|
16
|
Farah CA, Dunn TW, Hastings MH, Ferguson L, Gao C, Gong K, Sossin WS. A role for Numb in Protein kinase M (PKM)-mediated increase in surface AMPA receptors during facilitation in Aplysia. J Neurochem 2019; 150:366-384. [PMID: 31254393 DOI: 10.1111/jnc.14807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
There is considerable evidence from both vertebrates and invertebrates that persistently active protein kinases maintain changes in synaptic strength that underlie memory. In the hermaphrodite marine mollusk, Aplysia californica, truncated forms of protein kinase C (PKC) termed protein kinase Ms have been implicated in both intermediate- and long-term facilitation, an increase in synaptic strength between sensory neurons and motor neurons thought to underlie behavioural sensitization in the animal. However, few substrates have been identified as candidates that could mediate this increase in synaptic strength. PKMs have been proposed to maintain synaptic strength through preventing endocytosis of AMPA receptors. Numb is a conserved regulator of endocytosis that is modulated by phosphorylation. We have identified and cloned Aplysia Numb (ApNumb). ApNumb contains three conserved PKC phosphorylation sites and PKMs generated from classical and atypical Aplysia PKCs can phosphorylate ApNumb in vitro and in cells. Over-expression of ApNumb that lacks the conserved PKC phosphorylation sites blocks increases in surface levels of a pHluorin-tagged Aplysia glutamate receptor measured using live imaging after intermediate- or long-term facilitation. Over-expression of this form of ApNumb did not block increases in synaptic strength seen during intermediate-term facilitation, but did block increases in synaptic strength seen during long-term facilitation. There was no effect of over-expression of this form of ApNumb on other putative Numb targets as measured using increases in calcium downstream of neurotrophins or agonists of metabotropic glutamate receptors. These results suggest that in Aplysia neurons, Numb specifically regulates AMPA receptor trafficking and is an attractive candidate for a target of PKMs in long-term maintenance of synaptic strength. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Carole A Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Tyler W Dunn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Margaret H Hastings
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Larissa Ferguson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Cherry Gao
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Katrina Gong
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Wang J, Ji X, Liu J, Zhang X. Serine/Threonine Protein Kinase STK16. Int J Mol Sci 2019; 20:ijms20071760. [PMID: 30974739 PMCID: PMC6480182 DOI: 10.3390/ijms20071760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/18/2022] Open
Abstract
STK16 (Ser/Thr kinase 16, also known as Krct/PKL12/MPSK1/TSF-1) is a myristoylated and palmitoylated Ser/Thr protein kinase that is ubiquitously expressed and conserved among all eukaryotes. STK16 is distantly related to the other kinases and belongs to the NAK kinase family that has an atypical activation loop architecture. As a membrane-associated protein that is primarily localized to the Golgi, STK16 has been shown to participate in the TGF-β signaling pathway, TGN protein secretion and sorting, as well as cell cycle and Golgi assembly regulation. This review aims to provide a comprehensive summary of the progress made in recent research about STK16, ranging from its distribution, molecular characterization, post-translational modification (fatty acylation and phosphorylation), interactors (GlcNAcK/DRG1/MAL2/Actin/WDR1), and related functions. As a relatively underexplored kinase, more studies are encouraged to unravel its regulation mechanisms and cellular functions.
Collapse
Affiliation(s)
- Junjun Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.
| | - Xinmiao Ji
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei 230601, China.
| | - Xin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| |
Collapse
|
18
|
Identification of a Novel Invasion-Promoting Region in Insulin Receptor Substrate 2. Mol Cell Biol 2018; 38:MCB.00590-17. [PMID: 29685905 DOI: 10.1128/mcb.00590-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/15/2018] [Indexed: 12/13/2022] Open
Abstract
Although the insulin receptor substrate (IRS) proteins IRS1 and IRS2 share considerable homology and activate common signaling pathways, their contributions to breast cancer are distinct. IRS1 has been implicated in the proliferation and survival of breast tumor cells. In contrast, IRS2 facilitates glycolysis, invasion, and metastasis. To determine the mechanistic basis for IRS2-dependent functions, we investigated unique structural features of IRS2 that are required for invasion. Our studies revealed that the ability of IRS2 to promote invasion is dependent upon upstream insulin-like growth factor 1 receptor (IGF-1R)/insulin receptor (IR) activation and the recruitment and activation of phosphatidylinositol 3-kinase (PI3K), functions shared with IRS1. In addition, a 174-amino-acid region in the IRS2 C-terminal tail, which is not conserved in IRS1, is also required for IRS2-mediated invasion. Importantly, this "invasion (INV) region" is sufficient to confer invasion-promoting ability when swapped into IRS1. However, the INV region is not required for the IRS2-dependent regulation of glucose uptake. Bone morphogenetic protein 2-inducible kinase (BMP2K) binds to the INV region and contributes to IRS2-dependent invasion. Taken together, our data advance the mechanistic understanding of how IRS2 regulates invasion and reveal that IRS2 functions important for cancer can be independently targeted without interfering with the metabolic activities of this adaptor protein.
Collapse
|
19
|
Manes NP, Nita-Lazar A. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research. J Proteomics 2018; 189:75-90. [PMID: 29452276 DOI: 10.1016/j.jprot.2018.02.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 02/08/2023]
Abstract
The enormous diversity of proteoforms produces tremendous complexity within cellular proteomes, facilitates intricate networks of molecular interactions, and constitutes a formidable analytical challenge for biomedical researchers. Currently, quantitative whole-proteome profiling often relies on non-targeted liquid chromatography-mass spectrometry (LC-MS), which samples proteoforms broadly, but can suffer from lower accuracy, sensitivity, and reproducibility compared with targeted LC-MS. Recent advances in bottom-up proteomics using targeted LC-MS have enabled previously unachievable identification and quantification of target proteins and posttranslational modifications within complex samples. Consequently, targeted LC-MS is rapidly advancing biomedical research, especially systems biology research in diverse areas that include proteogenomics, interactomics, kinomics, and biological pathway modeling. With the recent development of targeted LC-MS assays for nearly the entire human proteome, targeted LC-MS is positioned to enable quantitative proteomic profiling of unprecedented quality and accessibility to support fundamental and clinical research. Here we review recent applications of bottom-up proteomics using targeted LC-MS for systems biology research. SIGNIFICANCE: Advances in targeted proteomics are rapidly advancing systems biology research. Recent applications include systems-level investigations focused on posttranslational modifications (such as phosphoproteomics), protein conformation, protein-protein interaction, kinomics, proteogenomics, and metabolic and signaling pathways. Notably, absolute quantification of metabolic and signaling pathway proteins has enabled accurate pathway modeling and engineering. Integration of targeted proteomics with other technologies, such as RNA-seq, has facilitated diverse research such as the identification of hundreds of "missing" human proteins (genes and transcripts that appear to encode proteins but direct experimental evidence was lacking).
Collapse
Affiliation(s)
- Nathan P Manes
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Colaluca IN, Basile A, Freiburger L, D'Uva V, Disalvatore D, Vecchi M, Confalonieri S, Tosoni D, Cecatiello V, Malabarba MG, Yang CJ, Kainosho M, Sattler M, Mapelli M, Pece S, Di Fiore PP. A Numb-Mdm2 fuzzy complex reveals an isoform-specific involvement of Numb in breast cancer. J Cell Biol 2018; 217:745-762. [PMID: 29269425 PMCID: PMC5800818 DOI: 10.1083/jcb.201709092] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/03/2022] Open
Abstract
Numb functions as an oncosuppressor by inhibiting Notch signaling and stabilizing p53. This latter effect depends on the interaction of Numb with Mdm2, the E3 ligase that ubiquitinates p53 and commits it to degradation. In breast cancer (BC), loss of Numb results in a reduction of p53-mediated responses including sensitivity to genotoxic drugs and maintenance of homeostasis in the stem cell compartment. In this study, we show that the Numb-Mdm2 interaction represents a fuzzy complex mediated by a short Numb sequence encompassing its alternatively spliced exon 3 (Ex3), which is necessary and sufficient to inhibit Mdm2 and prevent p53 degradation. Alterations in the Numb splicing pattern are critical in BC as shown by increased chemoresistance of tumors displaying reduced levels of Ex3-containing isoforms, an effect that could be mechanistically linked to diminished p53 levels. A reduced level of Ex3-less Numb isoforms independently predicts poor outcome in BCs harboring wild-type p53. Thus, we have uncovered an important mechanism of chemoresistance and progression in p53-competent BCs.
Collapse
Affiliation(s)
| | - Andrea Basile
- The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Lee Freiburger
- Center for Integrated Protein Science Munich, Department of Chemistry, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Veronica D'Uva
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Program of Molecular Medicine, European Institute of Oncology, Milan, Italy
| | | | - Manuela Vecchi
- The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| | | | - Daniela Tosoni
- Program of Molecular Medicine, European Institute of Oncology, Milan, Italy
| | - Valentina Cecatiello
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Maria Grazia Malabarba
- The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Chun-Jiun Yang
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Japan
- Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Masatsune Kainosho
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Japan
- Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Michael Sattler
- Center for Integrated Protein Science Munich, Department of Chemistry, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Salvatore Pece
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Program of Molecular Medicine, European Institute of Oncology, Milan, Italy
| | - Pier Paolo Di Fiore
- The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Program of Molecular Medicine, European Institute of Oncology, Milan, Italy
| |
Collapse
|
21
|
Drecourt A, Babdor J, Dussiot M, Petit F, Goudin N, Garfa-Traoré M, Habarou F, Bole-Feysot C, Nitschké P, Ottolenghi C, Metodiev MD, Serre V, Desguerre I, Boddaert N, Hermine O, Munnich A, Rötig A. Impaired Transferrin Receptor Palmitoylation and Recycling in Neurodegeneration with Brain Iron Accumulation. Am J Hum Genet 2018; 102:266-277. [PMID: 29395073 DOI: 10.1016/j.ajhg.2018.01.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/05/2018] [Indexed: 12/29/2022] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a genetically heterogeneous condition characterized by progressive dystonia with iron accumulation in the basal ganglia. How NBIA-associated mutations trigger iron overload remains poorly understood. After studying fibroblast cell lines from subjects carrying both known and unreported biallelic mutations in CRAT and REPS1, we ascribe iron overload to the abnormal recycling of transferrin receptor (TfR1) and the reduction of TfR1 palmitoylation in NBIA. Moreover, we describe palmitoylation as a hitherto unreported level of post-translational TfR1 regulation. A widely used antimalarial agent, artesunate, rescued abnormal TfR1 palmitoylation in cultured fibroblasts of NBIA subjects. These observations suggest therapeutic strategies aimed at targeting impaired TfR1 recycling and palmitoylation in NBIA.
Collapse
|
22
|
Evergren E, Cobbe N, McMahon HT. Eps15R and clathrin regulate EphB2-mediated cell repulsion. Traffic 2017; 19:44-57. [PMID: 28972287 PMCID: PMC5836524 DOI: 10.1111/tra.12531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/15/2022]
Abstract
Expression of Eph receptors and their ligands, the ephrins, have important functions in boundary formation and morphogenesis in both adult and embryonic tissue. The EphB receptors and ephrinB ligands are transmembrane proteins that are expressed in different cells and their interaction drives cell repulsion. For cell repulsion to occur, trans‐endocytosis of the inter‐cellular receptor‐ligand EphB‐ephrinB complex is required. The molecular mechanism underlying trans‐endocytosis is poorly defined. Here we show that the process is clathrin‐ and Eps15R‐mediated using Co115 colorectal cell lines stably expressing EphB2 and ephrinB1. Cell repulsion in co‐cultures of EphB2‐ and ephrinB1‐expressing cells is significantly reduced by knockdown of Eps15R but not Eps15. A novel interaction motif in Eps15R, DPFxxLDPF, is shown to bind directly to the clathrin terminal domain in vitro. Moreover, the interaction between Eps15R and clathrin is required for EphB2‐mediated cell repulsion as shown in a rescue experiment in the EphB2 co‐culture assay where wild type Eps15R but not the clathrin‐binding mutant rescues cell repulsion. These results provide the first evidence that Eps15R together with clathrin control EphB/ephrinB trans‐endocytosis and thereby cell repulsion.
Collapse
Affiliation(s)
- Emma Evergren
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Neville Cobbe
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Harvey T McMahon
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
23
|
Zhao L, Zhou Z, Wang S, Jiao Q, Wu J, Ma F, Fan L, Chen M, Ying H. A recurrent mutation in bone morphogenetic proteins-2-inducible kinase gene is associated with developmental dysplasia of the hip. Exp Ther Med 2017; 13:1773-1778. [PMID: 28565766 PMCID: PMC5443164 DOI: 10.3892/etm.2017.4191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/23/2016] [Indexed: 12/24/2022] Open
Abstract
Developmental dysplasia of the hip (DDH) is a complex disorder of the hip joint affecting 1-5‰ of newborns. While genetic influence on DDH has been long known, DDH has not been ascribed to any specific genetic event. The present study reported on variants contributing to DDH susceptibility in a family with four individuals affected across three generations. Whole-exome sequencing was performed in three affected and two unaffected individuals of a pedigree with DDH. Candidate variants were confirmed by Sanger sequencing and then validated in available family members and 37 sporadic DDH patients. Two novel heterozygous, inframe mutations causing multi-nucleotide substitution polymorphisms (c.1432_1440delCAGCAGCAG corresponding with p.Gln478_480del and c.1440_1441insCAG corresponding with p.Gln480ins) in exon 11 of chromosome 4 in bone morphogenetic proteins-2-inducible kinase (BMP2K) were identified; these were found in members of the pedigree affected by DDH and in the unaffected grandmother of the proband, who was deemed to be the carrier of potential mutations, but not in the unaffected normal control saunt of the proband. These two variants shared the same genomic coordinate but with different types of mutation in BMP2K. BMP2K is known to be associated with bone and cartridge development and heterozygous mutations were found to be present in 4/4 (100%) of the affected family members, 4/15 (26.7%) of the unaffected family members and 0/7 (0%) of the unaffected unrelated family members. Genotyping of 37 unrelated, sporadic DDH patients showed that three cases were positive for the BMP2K c.1432_1440delCAGCAGCAG variants (8.12%). These findings provided strong evidence for the role of BMP2K variants in causing DDH and demonstrated that the combination of pedigree information and next-generation sequencing is an effective method for identifying pathogenic sites associated with DDH.
Collapse
Affiliation(s)
- Lihua Zhao
- Department of Orthopedics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Zaiwei Zhou
- Department of Orthopedics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Sun Wang
- Department of Orthopedics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Qing Jiao
- Department of Orthopedics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Jing Wu
- Laboratory of Translational Research, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200071, P.R. China
| | - Feng Ma
- Department of Orthopedics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Lingyan Fan
- Department of Orthopedics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Mengjie Chen
- Department of Orthopedics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Hao Ying
- Department of Orthopedics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| |
Collapse
|
24
|
Shi T, Song E, Nie S, Rodland KD, Liu T, Qian WJ, Smith RD. Advances in targeted proteomics and applications to biomedical research. Proteomics 2016; 16:2160-82. [PMID: 27302376 PMCID: PMC5051956 DOI: 10.1002/pmic.201500449] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/09/2016] [Accepted: 06/10/2016] [Indexed: 12/17/2022]
Abstract
Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity (Shi et al., Proteomics, 12, 1074-1092, 2012) herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed.
Collapse
Affiliation(s)
- Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ehwang Song
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Song Nie
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karin D Rodland
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tao Liu
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
25
|
Sorrell FJ, Szklarz M, Abdul Azeez KR, Elkins JM, Knapp S. Family-wide Structural Analysis of Human Numb-Associated Protein Kinases. Structure 2016; 24:401-11. [PMID: 26853940 PMCID: PMC4780864 DOI: 10.1016/j.str.2015.12.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 01/22/2023]
Abstract
The highly diverse Numb-associated kinase (NAK) family has been linked to broad cellular functions including receptor-mediated endocytosis, Notch pathway modulation, osteoblast differentiation, and dendrite morphogenesis. Consequently, NAK kinases play a key role in a diverse range of diseases from Parkinson's and prostate cancer to HIV. Due to the plasticity of this kinase family, NAK kinases are often inhibited by approved or investigational drugs and have been associated with side effects, but they are also potential drug targets. The presence of cysteine residues in some NAK family members provides the possibility for selective targeting via covalent inhibition. Here we report the first high-resolution structures of kinases AAK1 and BIKE in complex with two drug candidates. The presented data allow a comprehensive structural characterization of the NAK kinase family and provide the basis for rational design of selective NAK inhibitors. First crystal structures of AAK1 and BIKE solved, completing the NAK family Structural analysis of NAKs performed, revealing unusual family architecture 144 clinical kinase inhibitors screened against AAK1, BIKE, GAK, and MPSK1 Nanomolar and covalent inhibitors discovered from clinical kinase library
Collapse
Affiliation(s)
- Fiona J Sorrell
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute (TDI), University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Marta Szklarz
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute (TDI), University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Kamal R Abdul Azeez
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute (TDI), University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Jon M Elkins
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute (TDI), University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute (TDI), University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK; Institute for Pharmaceutical Chemistry, Buchmann Institute for Life Sciences Campus Riedberg, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Tay AP, Pang CNI, Twine NA, Hart-Smith G, Harkness L, Kassem M, Wilkins MR. Proteomic Validation of Transcript Isoforms, Including Those Assembled from RNA-Seq Data. J Proteome Res 2015; 14:3541-54. [PMID: 25961807 DOI: 10.1021/pr5011394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human proteome analysis now requires an understanding of protein isoforms. We recently published the PG Nexus pipeline, which facilitates high confidence validation of exons and splice junctions by integrating genomics and proteomics data. Here we comprehensively explore how RNA-seq transcriptomics data, and proteomic analysis of the same sample, can identify protein isoforms. RNA-seq data from human mesenchymal (hMSC) stem cells were analyzed with our new TranscriptCoder tool to generate a database of protein isoform sequences. MS/MS data from matching hMSC samples were then matched against the TranscriptCoder-derived database, along with Ensembl and the neXtProt database. Querying the TranscriptCoder-derived or Ensembl database could unambiguously identify ∼450 protein isoforms, with isoform-specific proteotypic peptides, including candidate hMSC-specific isoforms for the genes DPYSL2 and FXR1. Where isoform-specific peptides did not exist, groups of nonisoform-specific proteotypic peptides could specifically identify many isoforms. In both the above cases, isoforms will be detectable with targeted MS/MS assays. Unfortunately, our analysis also revealed that some isoforms will be difficult to identify unambiguously as they do not have peptides that are sufficiently distinguishing. We covisualize mRNA isoforms and peptides in a genome browser to illustrate the above situations. Mass spectrometry data is available via ProteomeXchange (PXD001449).
Collapse
Affiliation(s)
- Aidan P Tay
- Systems Biology Initiative, The University of New South Wales , Sydney, New South Wales 2052, Australia.,School of Biotechnology and Biomolecular Sciences, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Chi Nam Ignatius Pang
- Systems Biology Initiative, The University of New South Wales , Sydney, New South Wales 2052, Australia.,School of Biotechnology and Biomolecular Sciences, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Natalie A Twine
- Systems Biology Initiative, The University of New South Wales , Sydney, New South Wales 2052, Australia.,School of Biotechnology and Biomolecular Sciences, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Gene Hart-Smith
- Systems Biology Initiative, The University of New South Wales , Sydney, New South Wales 2052, Australia.,School of Biotechnology and Biomolecular Sciences, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Linda Harkness
- Endocrine Research Laboratory (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital & University of Southern Denmark , Odense 5230, Denmark
| | - Moustapha Kassem
- Endocrine Research Laboratory (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital & University of Southern Denmark , Odense 5230, Denmark
| | - Marc R Wilkins
- Systems Biology Initiative, The University of New South Wales , Sydney, New South Wales 2052, Australia.,School of Biotechnology and Biomolecular Sciences, The University of New South Wales , Sydney, New South Wales 2052, Australia
| |
Collapse
|
27
|
Yap CC, Winckler B. Adapting for endocytosis: roles for endocytic sorting adaptors in directing neural development. Front Cell Neurosci 2015; 9:119. [PMID: 25904845 PMCID: PMC4389405 DOI: 10.3389/fncel.2015.00119] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/16/2015] [Indexed: 01/01/2023] Open
Abstract
Proper cortical development depends on the orchestrated actions of a multitude of guidance receptors and adhesion molecules and their downstream signaling. The levels of these receptors on the surface and their precise locations can greatly affect guidance outcomes. Trafficking of receptors to a particular surface locale and removal by endocytosis thus feed crucially into the final guidance outcomes. In addition, endocytosis of receptors can affect downstream signaling (both quantitatively and qualitatively) and regulated endocytosis of guidance receptors is thus an important component of ensuring proper neural development. We will discuss the cell biology of regulated endocytosis and the impact on neural development. We focus our discussion on endocytic accessory proteins (EAPs) (such as numb and disabled) and how they regulate endocytosis and subsequent post-endocytic trafficking of their cognate receptors (such as Notch, TrkB, β-APP, VLDLR, and ApoER2).
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Neuroscience, University of Virginia Charlottesville, VA, USA
| | - Bettina Winckler
- Department of Neuroscience, University of Virginia Charlottesville, VA, USA
| |
Collapse
|
28
|
Eddison M, Weber SJ, Ariza-McNaughton L, Lewis J, Daudet N. Numb is not a critical regulator of Notch-mediated cell fate decisions in the developing chick inner ear. Front Cell Neurosci 2015; 9:74. [PMID: 25814931 PMCID: PMC4357303 DOI: 10.3389/fncel.2015.00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/19/2015] [Indexed: 11/27/2022] Open
Abstract
The Notch signaling pathway controls differentiation of hair cells and supporting cells in the vertebrate inner ear. Here, we have investigated whether Numb, a known regulator of Notch activity in Drosophila, is involved in this process in the embryonic chick. The chicken homolog of Numb is expressed throughout the otocyst at early stages of development and is concentrated at the basal pole of the cells. It is asymmetrically allocated at some cell divisions, as in Drosophila, suggesting that it could act as a determinant inherited by one of the two daughter cells and favoring adoption of a hair-cell fate. To test the implication of Numb in hair cell fate decisions and the regulation of Notch signaling, we used different methods to overexpress Numb at different stages of inner ear development. We found that sustained or late Numb overexpression does not promote hair cell differentiation, and Numb does not prevent the reception of Notch signaling. Surprisingly, none of the Numb-overexpressing cells differentiated into hair cells, suggesting that high levels of Numb protein could interfere with intracellular processes essential for hair cell survival. However, when Numb was overexpressed early and more transiently during ear development, no effect on hair cell formation was seen. These results suggest that in the inner ear at least, Numb does not significantly repress Notch activity and that its asymmetric distribution in dividing precursor cells does not govern the choice between hair cell and supporting cell fates.
Collapse
Affiliation(s)
- Mark Eddison
- Howard Hughes Medical Institute, Janelia Research Campus Ashburn, VA, USA
| | - Sara J Weber
- Ear Institute, University College London London, UK
| | - Linda Ariza-McNaughton
- Haematopoietic Stem cell Laboratory, Cancer Research UK, London Research Institute London, UK
| | - Julian Lewis
- Formerly of Vertebrate Development Laboratory, Cancer Research UK London, UK
| | | |
Collapse
|
29
|
Schweisguth F. Asymmetric cell division in the Drosophila bristle lineage: from the polarization of sensory organ precursor cells to Notch-mediated binary fate decision. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:299-309. [PMID: 25619594 PMCID: PMC4671255 DOI: 10.1002/wdev.175] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 12/11/2014] [Accepted: 12/19/2014] [Indexed: 12/26/2022]
Abstract
Asymmetric cell division (ACD) is a simple and evolutionary conserved process whereby a mother divides to generate two daughter cells with distinct developmental potentials. This process can generate cell fate diversity during development. Fate asymmetry may result from the unequal segregation of molecules and/or organelles between the two daughter cells. Here, I will review how fate asymmetry is regulated in the sensory bristle lineage in Drosophila and focus on the molecular mechanisms underlying ACD of the sensory organ precursor cells (SOPs). WIREs Dev Biol 2015, 4:299–309. doi: 10.1002/wdev.175 For further resources related to this article, please visit theWIREs website. Conflict of interest: The author has declared no conflicts of interest for this article.
Collapse
|
30
|
Fukao Y. Discordance between protein and transcript levels detected by selected reaction monitoring. PLANT SIGNALING & BEHAVIOR 2015; 10:e1017697. [PMID: 26039477 PMCID: PMC4623550 DOI: 10.1080/15592324.2015.1017697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 05/25/2023]
Abstract
Expression levels between transcript and protein are not always correlated. In the present study, the abundance of protein PDR9/ABCG37 in 3 Arabidopsis pdr9/abcg37 mutant alleles was evaluated using selected reaction monitoring analysis. The results showed that protein and mRNA expression levels were similar in 2 mutant alleles. The mRNA expression levels in another mutant, determined by both semi-quantitative and quantitative RT-PCR, were similar to the wild-type, although the abundance of protein was about half the abundance of the wild-type. These results suggested that using only mRNA expression levels to infer protein abundance, compare mutants or responses to various stimuli may lead to incorrect interpretation and conclusions.
Collapse
Affiliation(s)
- Yoichiro Fukao
- Plant Global Education Project; Graduate School of Biological Sciences; Nara Institute of Science and Technology; Takayama, Ikoma, Japan
| |
Collapse
|
31
|
Krieger JR, Taylor P, Moran MF, McGlade CJ. Comprehensive identification of phosphorylation sites on the Numb endocytic adaptor protein. Proteomics 2015; 15:434-46. [PMID: 25403733 DOI: 10.1002/pmic.201400232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/28/2014] [Accepted: 11/11/2014] [Indexed: 11/08/2022]
Abstract
Numb is an adaptor protein that functions in the endocytosis and intracellular trafficking of membrane receptors and adhesion molecules. Previous studies have indicated that Numb localization and function are regulated through phosphorylation by atypical protein kinase C at several key sites. Here, using LC-MS/MS, we report the identification of 25 serine/threonine Numb phosphorylation sites, and a single tyrosine phosphorylation site. Amino acid sequences flanking several of the sites identified conform to consensus motifs for cyclin-dependent kinase 5 (CDK5). In vitro kinase assays and immunoblotting confirmed that CDK5 phosphorylates Numb. LC-MS/MS analysis identified specific CDK5-directed phosphorylation of Numb at position S288 and at two additional regions. Therefore, Numb is likely to exist in multiple phospho-isoforms, and may be subject to phosphorylation-mediated regulation downstream of CDK5. These findings provide a basis for further investigations into the complex role of Numb phosphorylation in regulating its subcellular localization, protein interactions, and function. All MS data have been deposited in the ProteomeXchange with identifier PXD000997 (http://proteomecentral.proteomexchange.org/dataset/PXD000997).
Collapse
Affiliation(s)
- Jonathan R Krieger
- Program in Cell Biology, The Hospital For Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Center, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | |
Collapse
|
32
|
Couturier L, Trylinski M, Mazouni K, Darnet L, Schweisguth F. A fluorescent tagging approach in Drosophila reveals late endosomal trafficking of Notch and Sanpodo. ACTA ACUST UNITED AC 2014; 207:351-63. [PMID: 25365996 PMCID: PMC4226730 DOI: 10.1083/jcb.201407071] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Signaling and endocytosis are highly integrated processes that regulate cell fate. In the Drosophila melanogaster sensory bristle lineages, Numb inhibits the recycling of Notch and its trafficking partner Sanpodo (Spdo) to regulate cell fate after asymmetric cell division. In this paper, we have used a dual GFP/Cherry tagging approach to study the distribution and endosomal sorting of Notch and Spdo in living pupae. The specific properties of GFP, i.e., quenching at low pH, and Cherry, i.e., slow maturation time, revealed distinct pools of Notch and Spdo: cargoes exhibiting high GFP/low Cherry fluorescence intensities localized mostly at the plasma membrane and early/sorting endosomes, whereas low GFP/high Cherry cargoes accumulated in late acidic endosomes. These properties were used to show that Spdo is sorted toward late endosomes in a Numb-dependent manner. This dual-tagging approach should be generally applicable to study the trafficking dynamics of membrane proteins in living cells and tissues.
Collapse
Affiliation(s)
- Lydie Couturier
- Developmental and Stem Cell Biology Department, Institut Pasteur, 75015 Paris, France Centre National de la Recherche Scientifique, URA2578, 75015 Paris, France
| | - Mateusz Trylinski
- Developmental and Stem Cell Biology Department, Institut Pasteur, 75015 Paris, France Centre National de la Recherche Scientifique, URA2578, 75015 Paris, France Master Biosciences, École Normale Supérieure de Lyon, 75015 Paris, France
| | - Khallil Mazouni
- Developmental and Stem Cell Biology Department, Institut Pasteur, 75015 Paris, France Centre National de la Recherche Scientifique, URA2578, 75015 Paris, France
| | - Léa Darnet
- Developmental and Stem Cell Biology Department, Institut Pasteur, 75015 Paris, France Centre National de la Recherche Scientifique, URA2578, 75015 Paris, France
| | - François Schweisguth
- Developmental and Stem Cell Biology Department, Institut Pasteur, 75015 Paris, France Centre National de la Recherche Scientifique, URA2578, 75015 Paris, France
| |
Collapse
|
33
|
Avitzur Y, Guo C, Mastropaolo LA, Bahrami E, Chen H, Zhao Z, Elkadri A, Dhillon S, Murchie R, Fattouh R, Huynh H, Walker JL, Wales PW, Cutz E, Kakuta Y, Dudley J, Kammermeier J, Powrie F, Shah N, Walz C, Nathrath M, Kotlarz D, Puchaka J, Krieger JR, Racek T, Kirchner T, Walters TD, Brumell JH, Griffiths AM, Rezaei N, Rashtian P, Najafi M, Monajemzadeh M, Pelsue S, McGovern DPB, Uhlig HH, Schadt E, Klein C, Snapper SB, Muise AM. Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease. Gastroenterology 2014; 146:1028-39. [PMID: 24417819 PMCID: PMC4002656 DOI: 10.1053/j.gastro.2014.01.015] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/23/2013] [Accepted: 01/03/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Very early onset inflammatory bowel diseases (VEOIBD), including infant disorders, are a diverse group of diseases found in children younger than 6 years of age. They have been associated with several gene variants. Our aim was to identify the genes that cause VEOIBD. METHODS We performed whole exome sequencing of DNA from 1 infant with severe enterocolitis and her parents. Candidate gene mutations were validated in 40 pediatric patients and functional studies were carried out using intestinal samples and human intestinal cell lines. RESULTS We identified compound heterozygote mutations in the Tetratricopeptide repeat domain 7 (TTC7A) gene in an infant from non-consanguineous parents with severe exfoliative apoptotic enterocolitis; we also detected TTC7A mutations in 2 unrelated families, each with 2 affected siblings. TTC7A interacts with EFR3 homolog B to regulate phosphatidylinositol 4-kinase at the plasma membrane. Functional studies demonstrated that TTC7A is expressed in human enterocytes. The mutations we identified in TTC7A result in either mislocalization or reduced expression of TTC7A. Phosphatidylinositol 4-kinase was found to co-immunoprecipitate with TTC7A; the identified TTC7A mutations reduced this binding. Knockdown of TTC7A in human intestinal-like cell lines reduced their adhesion, increased apoptosis, and decreased production of phosphatidylinositol 4-phosphate. CONCLUSIONS In a genetic analysis, we identified loss of function mutations in TTC7A in 5 infants with VEOIBD. Functional studies demonstrated that the mutations cause defects in enterocytes and T cells that lead to severe apoptotic enterocolitis. Defects in the phosphatidylinositol 4-kinase-TTC7A-EFR3 homolog B pathway are involved in the pathogenesis of VEOIBD.
Collapse
Affiliation(s)
- Yaron Avitzur
- Group for Improvement of Intestinal Function and Treatment (GIFT), Hospital for Sick Children, Toronto, Ontario, Canada; SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Conghui Guo
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lucas A Mastropaolo
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ehsan Bahrami
- Department of Pediatrics, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Hannah Chen
- Translational Gastroenterology Unit and Paediatric Gastroenterology, University of Oxford, Oxford, UK
| | - Zhen Zhao
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Abdul Elkadri
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sandeep Dhillon
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ryan Murchie
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ramzi Fattouh
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hien Huynh
- Division of Pediatric Gastroenterology, Stollery Children's Hospital, Edmonton, Ontario, Canada
| | - Jennifer L Walker
- Department of Immunology and Molecular Biology, University of Southern Maine, Portland, Maine
| | - Paul W Wales
- Group for Improvement of Intestinal Function and Treatment (GIFT), Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ernest Cutz
- Division of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yoichi Kakuta
- F. Widjaja Foundation Inflammatory Bowel Disease Center and Immunobiology Research Institute at Cedars-Sinai Medical Center, Los Angeles, California
| | - Joel Dudley
- Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomics Sciences at Mount Sinai, New York, New York
| | | | - Fiona Powrie
- Translational Gastroenterology Unit, Nuffield Department Clinical Medicine-Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Neil Shah
- Gastroenterology Department, Great Ormond Street Hospital, London, UK
| | - Christoph Walz
- Institute for Pathology, Ludwig-Maximilians University, Munich, Germany
| | - Michaela Nathrath
- Department of Pediatric Oncology, Kassel and CCG Osteosarcoma, Helmholtz Center Munich, Munich, Germany
| | - Daniel Kotlarz
- Department of Pediatrics, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Jacek Puchaka
- Department of Pediatrics, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Jonathan R Krieger
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tomas Racek
- Department of Pediatrics, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Kirchner
- Institute for Pathology, Ludwig-Maximilians University, Munich, Germany
| | - Thomas D Walters
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - John H Brumell
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Anne M Griffiths
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Molecular Immunology Research Center and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Rashtian
- Department of Pediatric Gastroenterology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Najafi
- Department of Pediatric Gastroenterology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Monajemzadeh
- Department of Pathology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Stephen Pelsue
- Department of Immunology and Molecular Biology, University of Southern Maine, Portland, Maine
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel Disease Center and Immunobiology Research Institute at Cedars-Sinai Medical Center, Los Angeles, California
| | - Holm H Uhlig
- Translational Gastroenterology Unit and Paediatric Gastroenterology, University of Oxford, Oxford, UK
| | - Eric Schadt
- Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomics Sciences at Mount Sinai, New York, New York
| | - Christoph Klein
- Department of Pediatrics, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Scott B Snapper
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Children's Hospital Boston, Massachusetts; Division of Gastroenterology and Hepatology, Brigham & Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
34
|
Zhao C, Guo H, Li J, Myint T, Pittman W, Yang L, Zhong W, Schwartz RJ, Schwarz JJ, Singer HA, Tallquist MD, Wu M. Numb family proteins are essential for cardiac morphogenesis and progenitor differentiation. Development 2013; 141:281-95. [PMID: 24335256 DOI: 10.1242/dev.093690] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Numb family proteins (NFPs), including Numb and numb-like (Numbl), are cell fate determinants for multiple progenitor cell types. Their functions in cardiac progenitor differentiation and cardiac morphogenesis are unknown. To avoid early embryonic lethality and study NFP function in later cardiac development, Numb and Numbl were deleted specifically in heart to generate myocardial double-knockout (MDKO) mice. MDKOs were embryonic lethal and displayed a variety of defects in cardiac progenitor differentiation, cardiomyocyte proliferation, outflow tract (OFT) and atrioventricular septation, and OFT alignment. By ablating NFPs in different cardiac populations followed by lineage tracing, we determined that NFPs in the second heart field (SHF) are required for OFT and atrioventricular septation and OFT alignment. MDKOs displayed an SHF progenitor cell differentiation defect, as revealed by a variety of methods including mRNA deep sequencing. Numb regulated cardiac progenitor cell differentiation in an endocytosis-dependent manner. Studies including the use of a transgenic Notch reporter line showed that Notch signaling was upregulated in the MDKO. Suppression of Notch1 signaling in MDKOs rescued defects in p57 expression, proliferation and trabecular thickness. Further studies showed that Numb inhibits Notch1 signaling by promoting the degradation of the Notch1 intracellular domain in cardiomyocytes. This study reveals that NFPs regulate trabecular thickness by inhibiting Notch1 signaling, control cardiac morphogenesis in a Notch1-independent manner, and regulate cardiac progenitor cell differentiation in an endocytosis-dependent manner. The function of NFPs in cardiac progenitor differentiation and cardiac morphogenesis suggests that NFPs might be potential therapeutic candidates for cardiac regeneration and congenital heart diseases.
Collapse
Affiliation(s)
- Chen Zhao
- Cardiovascular Science Center, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Traub LM, Bonifacino JS. Cargo recognition in clathrin-mediated endocytosis. Cold Spring Harb Perspect Biol 2013; 5:a016790. [PMID: 24186068 DOI: 10.1101/cshperspect.a016790] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endosomal system is expansive and complex, characterized by swift morphological transitions, dynamic remodeling of membrane constituents, and intracellular positioning changes. To properly navigate this ever-altering membrane labyrinth, transmembrane protein cargoes typically require specific sorting signals that are decoded by components of protein coats. The best-characterized sorting process within the endosomal system is the rapid internalization of select transmembrane proteins within clathrin-coated vesicles. Endocytic signals consist of linear motifs, conformational determinants, or covalent modifications in the cytosolic domains of transmembrane cargo. These signals are interpreted by a diverse set of clathrin-associated sorting proteins (CLASPs) that translocate from the cytosol to the inner face of the plasma membrane. Signal recognition by CLASPs is highly cooperative, involving additional interactions with phospholipids, Arf GTPases, other CLASPs, and clathrin, and is regulated by large conformational changes and covalent modifications. Related sorting events occur at other endosomal sorting stations.
Collapse
Affiliation(s)
- Linton M Traub
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | | |
Collapse
|
36
|
Abstract
During asymmetric cell division, the Notch regulator Numb segregates unequally to establish different cell fates in the two daughter cells. Numb is thought to act as an endocytic protein. Two new studies show that Numb antagonizes Notch signaling by also regulating recycling of Sanpodo-Notch complexes via AP-1.
Collapse
|
37
|
Chloroquine interference with hemoglobin endocytic trafficking suppresses adaptive heme and iron homeostasis in macrophages: the paradox of an antimalarial agent. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:870472. [PMID: 23840921 PMCID: PMC3693174 DOI: 10.1155/2013/870472] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/12/2013] [Indexed: 02/04/2023]
Abstract
The CD163 scavenger receptor pathway for Hb:Hp complexes is an essential mechanism of protection against the toxicity of extracellular hemoglobin (Hb), which can accumulate in the vasculature and within tissues during hemolysis. Chloroquine is a lysosomotropic agent, which has been extensively used as an antimalarial drug in the past, before parasite resistance started to limit its efficacy in most parts of the world. More recent use of chloroquine is related to its immunomodulatory activity in patients with autoimmune diseases, which may also involve hemolytic disease components. In this study we examined the effects of chloroquine on the human Hb clearance pathway. For this purpose we developed a new mass-spectrometry-based method to specifically quantify intracellular Hb peptides within the endosomal-lysosomal compartment by single reaction monitoring (SRM). We found that chloroquine exposure impairs trafficking of Hb:Hp complexes through the endosomal-lysosomal compartment after internalization by CD163. Relative quantification of intracellular Hb peptides by SRM confirmed that chloroquine blocked cellular Hb:Hp catabolism. This effect suppressed the cellular heme-oxygenase-1 (HO-1) response and shifted macrophage iron homeostasis towards inappropriately high expression of the transferrin receptor with concurrent inhibition of ferroportin expression. A functional deficiency of Hb detoxification and heme-iron recycling may therefore be an adverse consequence of chloroquine treatment during hemolysis.
Collapse
|
38
|
Cotton M, Benhra N, Le Borgne R. Numb Inhibits the Recycling of Sanpodo in Drosophila Sensory Organ Precursor. Curr Biol 2013; 23:581-7. [DOI: 10.1016/j.cub.2013.02.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 12/10/2012] [Accepted: 02/08/2013] [Indexed: 10/27/2022]
|