1
|
Wackowski K, Zhu X, Shen S, Zhang M, Qu J, Read LK. RESC14 and RESC8 cooperate to mediate RESC function and dynamics during trypanosome RNA editing. Nucleic Acids Res 2024; 52:9867-9885. [PMID: 38967000 PMCID: PMC11381364 DOI: 10.1093/nar/gkae561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/16/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
Mitochondrial transcripts in Trypanosoma brucei require extensive uridine insertion/deletion RNA editing to generate translatable open reading frames. The RNA editing substrate binding complex (RESC) serves as the scaffold that coordinates the protein-protein and protein-RNA interactions during editing. RESC broadly contains two modules termed the guide RNA binding complex (GRBC) and the RNA editing mediator complex (REMC), as well as organizer proteins. How the protein and RNA components of RESC dynamically interact to facilitate editing is not well understood. Here, we examine the roles of organizer proteins, RESC8 and RESC14, in facilitating RESC dynamics. High-throughput sequencing of editing intermediates reveals an overlapping RESC8 and RESC14 function during editing progression across multiple transcripts. Blue native PAGE analysis demonstrates that RESC14 is essential for incorporation of RESC8 into a large RNA-containing complex, while RESC8 is important in recruiting a smaller ribonucleoprotein complex (RNP) to this large complex. Proximity labeling shows that RESC14 is important for stable RESC protein-protein interactions, as well as RESC-RECC associations. Together, our data support a model in which RESC14 is necessary for assembly of editing competent RESC through recruitment of an RNP containing RESC8, GRBC and gRNA to REMC and mRNA.
Collapse
Affiliation(s)
- Katherine Wackowski
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Xiaoyu Zhu
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA and NYS Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA and NYS Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Ming Zhang
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA and NYS Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA and NYS Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
2
|
de Almeida RF, Lucena ACR, Batista M, Marchini FK, de Godoy LMF. Non-histone protein methylation in Trypanosoma cruzi epimastigotes. Proteomics 2023; 23:e2200230. [PMID: 37183273 DOI: 10.1002/pmic.202200230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023]
Abstract
Post-translational methylation of proteins, which occurs in arginines and lysines, modulates several biological processes at different levels of cell signaling. Recently, methylation has been demonstrated in the regulation beyond histones, for example, in the dynamics of protein-protein and protein-nucleic acid interactions. However, the presence and role of non-histone methylation in Trypanosoma cruzi, the etiologic agent of Chagas disease, has not yet been elucidated. Here, we applied mass spectrometry-based-proteomics (LC-MS/MS) to profile the methylproteome of T. cruzi epimastigotes, describing a total of 1252 methyl sites in 824 proteins. Functional enrichment and protein-protein interaction analysis show that protein methylation impacts important biological processes of the parasite, such as translation, RNA and DNA binding, amino acid, and carbohydrate metabolism. In addition, 171 of the methylated proteins were previously reported to bear phosphorylation sites in T. cruzi, including flagellar proteins and RNA binding proteins, indicating that there may be an interplay between these different modifications in non-histone proteins. Our results show that a broad spectrum of functions is affected by methylation in T. cruzi, indicating its potential to impact important processes in the biology of the parasite and other trypanosomes.
Collapse
Affiliation(s)
- Rafael Fogaça de Almeida
- Laboratório de Biologia Molecular e Sistêmica de Tripanossomatídeos, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Parana, Brazil
| | - Aline Castro Rodrigues Lucena
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Parana, Brazil
| | - Michel Batista
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Parana, Brazil
- Plataforma de Espectrometria de Massas, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Parana, Brazil
| | - Fabricio Klerynton Marchini
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Parana, Brazil
- Plataforma de Espectrometria de Massas, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Parana, Brazil
| | - Lyris Martins Franco de Godoy
- Laboratório de Biologia Molecular e Sistêmica de Tripanossomatídeos, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Parana, Brazil
| |
Collapse
|
3
|
Salinas R, Cannistraci E, Schumacher MA. Structure of the T. brucei kinetoplastid RNA editing substrate-binding complex core component, RESC5. PLoS One 2023; 18:e0282155. [PMID: 36862634 PMCID: PMC9980740 DOI: 10.1371/journal.pone.0282155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
Kinetoplastid protists such as Trypanosoma brucei undergo an unusual process of mitochondrial uridine (U) insertion and deletion editing termed kinetoplastid RNA editing (kRNA editing). This extensive form of editing, which is mediated by guide RNAs (gRNAs), can involve the insertion of hundreds of Us and deletion of tens of Us to form a functional mitochondrial mRNA transcript. kRNA editing is catalyzed by the 20 S editosome/RECC. However, gRNA directed, processive editing requires the RNA editing substrate binding complex (RESC), which is comprised of 6 core proteins, RESC1-RESC6. To date there are no structures of RESC proteins or complexes and because RESC proteins show no homology to proteins of known structure, their molecular architecture remains unknown. RESC5 is a key core component in forming the foundation of the RESC complex. To gain insight into the RESC5 protein we performed biochemical and structural studies. We show that RESC5 is monomeric and we report the T. brucei RESC5 crystal structure to 1.95 Å. RESC5 harbors a dimethylarginine dimethylaminohydrolase-like (DDAH) fold. DDAH enzymes hydrolyze methylated arginine residues produced during protein degradation. However, RESC5 is missing two key catalytic DDAH residues and does bind DDAH substrate or product. Implications of the fold for RESC5 function are discussed. This structure provides the first structural view of an RESC protein.
Collapse
Affiliation(s)
- Raul Salinas
- Department of Biochemistry, Duke University School of Medicine, DUMC, Durham, NC, United States of America
| | - Emily Cannistraci
- Department of Biochemistry, Duke University School of Medicine, DUMC, Durham, NC, United States of America
| | - Maria A. Schumacher
- Department of Biochemistry, Duke University School of Medicine, DUMC, Durham, NC, United States of America
| |
Collapse
|
4
|
Carnes J, Gendrin C, McDermott SM, Stuart K. KRGG1 function in RNA editing in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2023; 29:228-240. [PMID: 36400448 PMCID: PMC9891254 DOI: 10.1261/rna.079418.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/11/2022] [Indexed: 05/20/2023]
Abstract
Mitochondrial gene expression in trypanosomes requires numerous multiprotein complexes that are unique to kinetoplastids. Among these, the most well characterized are RNA editing catalytic complexes (RECCs) that catalyze the guide RNA (gRNA)-specified insertion and deletion of uridines during mitochondrial mRNA maturation. This post-transcriptional resequencing of mitochondrial mRNAs can be extensive, involving dozens of different gRNAs and hundreds of editing sites with most of the mature mRNA sequences resulting from the editing process. Proper coordination of the editing with the cognate gRNAs is attributed to RNA editing substrate-binding complexes (RESCs), which are also required for RNA editing. Although the precise mechanism of RESC function is less well understood, their affinity for binding both editing substrates and products suggests that these complexes may provide a scaffold for RECC catalytic processing. KRGG1 has been shown to bind RNAs, and although affinity purification co-isolates RESC complexes, its role in RNA editing remains uncertain. We show here that KRGG1 is essential in BF parasites and required for normal editing. KRGG1 repression results in reduced amounts of edited A6 mRNA and increased amounts of edited ND8 mRNA. Sequence and structure analysis of KRGG1 identified a region of homology with RESC6, and both proteins have predicted tandem helical repeats that resemble ARM/HEAT motifs. The ARM/HEAT-like region is critical for function as exclusive expression of mutated KRGG1 results in growth inhibition and disruption of KRGG1 association with RESCs. These results indicate that KRGG1 is critical for RNA editing and its specific function is associated with RESC activity.
Collapse
Affiliation(s)
- Jason Carnes
- Seattle Children's Research Institute, Seattle, Washington 98109, USA
| | - Claire Gendrin
- Seattle Children's Research Institute, Seattle, Washington 98109, USA
| | | | - Kenneth Stuart
- Seattle Children's Research Institute, Seattle, Washington 98109, USA
- Department of Pediatrics and Global Health, University of Washington, Seattle, Washington 98105, USA
| |
Collapse
|
5
|
Delzell S, Nelson SW, Frost MP, Klingbeil MM. Trypanosoma brucei Mitochondrial DNA Polymerase POLIB Contains a Novel Polymerase Domain Insertion That Confers Dominant Exonuclease Activity. Biochemistry 2022; 61:2751-2765. [PMID: 36399653 PMCID: PMC9731263 DOI: 10.1021/acs.biochem.2c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/31/2022] [Indexed: 11/19/2022]
Abstract
Trypanosoma brucei and related parasites contain an unusual catenated mitochondrial genome known as kinetoplast DNA (kDNA) composed of maxicircles and minicircles. The kDNA structure and replication mechanism are divergent and essential for parasite survival. POLIB is one of three Family A DNA polymerases independently essential to maintain the kDNA network. However, the division of labor among the paralogs, particularly which might be a replicative, proofreading enzyme, remains enigmatic. De novo modeling of POLIB suggested a structure that is divergent from all other Family A polymerases, in which the thumb subdomain contains a 369 amino acid insertion with homology to DEDDh DnaQ family 3'-5' exonucleases. Here we demonstrate recombinant POLIB 3'-5' exonuclease prefers DNA vs RNA substrates and degrades single- and double-stranded DNA nonprocessively. Exonuclease activity prevails over polymerase activity on DNA substrates at pH 8.0, while DNA primer extension is favored at pH 6.0. Mutations that ablate POLIB polymerase activity slow the exonuclease rate suggesting crosstalk between the domains. We show that POLIB extends an RNA primer more efficiently than a DNA primer in the presence of dNTPs but does not incorporate rNTPs efficiently using either primer. Immunoprecipitation of Pol I-like paralogs from T. brucei corroborates the pH selectivity and RNA primer preferences of POLIB and revealed that the other paralogs efficiently extend a DNA primer. The enzymatic properties of POLIB suggest this paralog is not a replicative kDNA polymerase, and the noncanonical polymerase domain provides another example of exquisite diversity among DNA polymerases for specialized function.
Collapse
Affiliation(s)
- Stephanie
B. Delzell
- Department
of Microbiology, University of Massachusetts, Amherst, Massachusetts01003, United States
| | - Scott W. Nelson
- Roy
J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa50011, United States
| | - Matthew P. Frost
- Department
of Microbiology, University of Massachusetts, Amherst, Massachusetts01003, United States
| | - Michele M. Klingbeil
- Department
of Microbiology, University of Massachusetts, Amherst, Massachusetts01003, United States
- The
Institute for Applied Life Sciences, University
of Massachusetts, Amherst, Massachusetts01003, United States
| |
Collapse
|
6
|
Małecki JM, Davydova E, Falnes PØ. Protein methylation in mitochondria. J Biol Chem 2022; 298:101791. [PMID: 35247388 PMCID: PMC9006661 DOI: 10.1016/j.jbc.2022.101791] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Many proteins are modified by posttranslational methylation, introduced by a number of methyltransferases (MTases). Protein methylation plays important roles in modulating protein function and thus in optimizing and regulating cellular and physiological processes. Research has mainly focused on nuclear and cytosolic protein methylation, but it has been known for many years that also mitochondrial proteins are methylated. During the last decade, significant progress has been made on identifying the MTases responsible for mitochondrial protein methylation and addressing its functional significance. In particular, several novel human MTases have been uncovered that methylate lysine, arginine, histidine, and glutamine residues in various mitochondrial substrates. Several of these substrates are key components of the bioenergetics machinery, e.g., respiratory Complex I, citrate synthase, and the ATP synthase. In the present review, we report the status of the field of mitochondrial protein methylation, with a particular emphasis on recently discovered human MTases. We also discuss evolutionary aspects and functional significance of mitochondrial protein methylation and present an outlook for this emergent research field.
Collapse
Affiliation(s)
- Jędrzej M Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway.
| | - Erna Davydova
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
7
|
Tan C, Xiao Y, Huang X, Wu L, Huang Y. Alterations of Asymmetric Dimethylarginine (ADMA)-Containing Protein Profiles Associated with Chronic Pancreatitis Pathogenesis. J Inflamm Res 2021; 14:7381-7392. [PMID: 34992424 PMCID: PMC8714020 DOI: 10.2147/jir.s346575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The pathophysiological mechanisms of chronic pancreatitis (CP) still remain poorly understood. In this study, we aimed to characterize asymmetric dimethylarginine (ADMA)-containing proteins in pancreatic tissues and its relationship with CP pathogenesis. Methods Totally 36 patients with CP were enrolled in this study. Seven other cholangiocarcinoma patients without pancreas involvements or patients with benign pancreatic tumors were included as the control group. Total proteins in human pancreatic tissues were digested by trypsin, and ADMA-containing peptides were enriched via immunoaffinity purification. The LC-MS/MS was performed to characterize ADMA-containing peptides and their modification sites in CP tissues. Relative asymmetric arginine dimethylation levels of HNRNPA3 proteins in human pancreatic tissues were detected by the immunoprecipitation combined with Western blot. The serum inflammatory factors were determined via the ELISA method. Results A total of 134 ADMA sites in the control group and 137 ADMA sites in CP tissues were characterized by mass spectrometry, which belong to 93 and 94 ADMA-containing proteins in the control group and CP tissues, respectively. Glycine and proline residues were significantly overrepresented in the flanking sequences of ADMA sites. ADMA-containing proteins in the CP tissues were associated with various biological processes, especially the RNA metabolism and splicing pathways. Multiple protein members of the spliceosome pathway such as HNRNPA3 possess ADMA sites in the CP tissues. HNRNPA3 dimethylation levels were greatly increased in CP tissues, which were positively correlated with inflammatory factors. Conclusion The pathogenesis of CP is associated with alterations of asymmetric arginine dimethylation in pancreatic tissues.
Collapse
Affiliation(s)
- Chaochao Tan
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Yan Xiao
- Intensive Care Unit, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Xiangping Huang
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Ling Wu
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Ying Huang
- Department of Emergency, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
- Correspondence: Ying Huang Department of Emergency, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), 61 Jiefang Road, Changsha, Hunan, 410005, People’s Republic of ChinaTel +8613974858993 Email
| |
Collapse
|
8
|
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27:1650-1670. [PMID: 33463458 DOI: 10.2174/1381612827666210119105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause the lethal human disease African sleeping sickness and the economically devastating disease of cattle, Nagana. African sleeping sickness, also known as Human African Trypanosomiasis (HAT), threatens 65 million people and animal trypanosomiasis makes large areas of farmland unusable. There is no vaccine and licensed therapies against the most severe, late-stage disease are toxic, impractical and ineffective. Trypanosomes are transmitted by tsetse flies, and HAT is therefore predominantly confined to the tsetse fly belt in sub-Saharan Africa. They are exclusively extracellular and they differentiate between at least seven developmental forms that are highly adapted to host and vector niches. In the mammalian (human) host they inhabit the blood, cerebrospinal fluid (late-stage disease), skin, and adipose fat. In the tsetse fly vector they travel from the tsetse midgut to the salivary glands via the ectoperitrophic space and proventriculus. Trypanosomes are evolutionarily divergent compared with most branches of eukaryotic life. Perhaps most famous for their extraordinary mechanisms of monoallelic gene expression and antigenic variation, they have also been investigated because much of their biology is either highly unconventional or extreme. Moreover, in addition to their importance as pathogens, many researchers have been attracted to the field because trypanosomes have some of the most advanced molecular genetic tools and database resources of any model system. The following will cover just some aspects of trypanosome biology and how its divergent biochemistry has been leveraged to develop drugs to treat African sleeping sickness. This is by no means intended to be a comprehensive survey of trypanosome features. Rather, I hope to present trypanosomes as one of the most fascinating and tractable systems to do discovery biology.
Collapse
Affiliation(s)
- Samuel Dean
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
9
|
Amodeo S, Kalichava A, Fradera-Sola A, Bertiaux-Lequoy E, Guichard P, Butter F, Ochsenreiter T. Characterization of the novel mitochondrial genome segregation factor TAP110 in Trypanosoma brucei. J Cell Sci 2021; 134:jcs254300. [PMID: 33589495 PMCID: PMC7970207 DOI: 10.1242/jcs.254300] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Proper mitochondrial genome inheritance is important for eukaryotic cell survival. Trypanosoma brucei, a protozoan parasite, contains a singular mitochondrial genome, the kinetoplast (k)DNA. The kDNA is anchored to the basal body via the tripartite attachment complex (TAC) to ensure proper segregation. Several components of the TAC have been described; however, the connection of the TAC to the kDNA remains elusive. Here, we characterize the TAC-associated protein TAP110. We find that both depletion and overexpression of TAP110 leads to a delay in the separation of the replicated kDNA networks. Proteome analysis after TAP110 overexpression identified several kDNA-associated proteins that changed in abundance, including a TEX-like protein that dually localizes to the nucleus and the kDNA, potentially linking replication and segregation in the two compartments. The assembly of TAP110 into the TAC region seems to require the TAC but not the kDNA itself; however, once TAP110 has been assembled, it also interacts with the kDNA. Finally, we use ultrastructure expansion microscopy in trypanosomes for the first time, and reveal the precise position of TAP110 between TAC102 and the kDNA, showcasing the potential of this approach.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Simona Amodeo
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Ana Kalichava
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | | | - Eloïse Bertiaux-Lequoy
- Department of Cell Biology, University of Geneva, Sciences III, 1211 Geneva, Switzerland
| | - Paul Guichard
- Department of Cell Biology, University of Geneva, Sciences III, 1211 Geneva, Switzerland
| | - Falk Butter
- Institute of Molecular Biology, 55128 Mainz, Germany
| | | |
Collapse
|
10
|
Wei M, Tan C, Tang Z, Lian Y, Huang Y, Chen Y, Chen C, Zhou W, Cai T, Hu J. Proteome-Wide Alterations of Asymmetric Arginine Dimethylation Associated With Pancreatic Ductal Adenocarcinoma Pathogenesis. Front Cell Dev Biol 2020; 8:545934. [PMID: 33344439 PMCID: PMC7744470 DOI: 10.3389/fcell.2020.545934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/06/2020] [Indexed: 02/04/2023] Open
Abstract
Arginine methylation catalyzed by protein arginine methyltransferases (PRMTs) performs essential roles in regulating cancer initiation and progression, but its implication in pancreatic ductal adenocarcinoma (PDAC) requires further elucidation. In this study, asymmetric dimethylarginine (ADMA)-containing peptides in PDAC cell line PANC-1 were identified by label-free quantitative proteomics combined with affinity purification, using human non-cancerous pancreatic ductal epithelium cell line HPDE6c7 as the control. In total, 289 ADMA sites in 201 proteins were identified in HPDE6c7 and PANC-1 cells, including 82 sites with lower dimethylation and 37 sites with higher dimethylation in PANC-1 cells compared with HPDE6c7 cells. These ADMA-containing peptides demonstrated significant enrichment of glycine and proline residues in both cell lines. Importantly, leucine residues were significantly enriched in ADMA-containing peptides identified only in HPDE6c7 cells or showing lower dimethylation in PANC-1 cells. ADMA-containing proteins were significantly enriched in multiple biological processes and signaling cascades associated with cancer development, such as spliceosome machinery, the Wnt/β-catenin, Hedgehog, tumor growth factor beta (TGF-β), and mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, PDAC cell lines with enhanced cell viability showed lower PRMT4 protein abundance and global ADMA-containing protein levels compared with HPDE6c7. PRMT4 overexpression partially recovered ADMA-containing protein levels and repressed viability in PANC-1 cells. These results revealed significantly altered ADMA-containing protein profiles in human pancreatic carcinoma cells, which provided a basis for elucidating the pathogenic roles of PRMT-mediated protein methylation in pancreatic cancer.
Collapse
Affiliation(s)
- Meijin Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaochao Tan
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.,Translational Medicine Research Institute, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhouqin Tang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingying Lian
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Huang
- Department of Emergency, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Congwei Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Cai
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiliang Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Ren J, Wei D, An H, Zhang J, Zhang Z. Shenqi Yizhi granules protect hippocampus of AD transgenic mice by modulating on multiple pathological processes. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:112869. [PMID: 32315734 DOI: 10.1016/j.jep.2020.112869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese herbal medicine (CHM) draws more attention to explore effective therapeutic strategy for Alzheimer's disease (AD). CHM usually uses combinations of herbs or herbal ingredients to treat diseases, with the components targeting different disease processes. CHM might improve cognition in AD and MCI patients by optimizing network activity, promoting neural plasticity and repairing damaged neurons. Shenqi Yizhi granules (SQYG), a CHM prescription, are mainly consists of Panax ginseng C.A.Mey, Astragalus membranaceus (Fisch.) Bunge, and Scutellaria baicalensis Georgi and have been used to ameliorate cognitive impairment in mild-to-moderate dementia patients. AIM OF THE STUDY To investigate the neuroprotection effect and pharmacological mechanism of SQYG in the hippocampus of 5XFAD transgenic mice. MATERIALS AND METHODS The immunofluorescence detection, 2DE-gels, mass spectrum identification, biological information analysis and Western blot were performed after SQYG treatment. RESULTS SQYG treatment significantly decreased the fluorescence intensities of anti-GFAP and anti-Iba1 in the hippocampus of 5XFAD mice. The expression levels of 31 proteins in the hippocampus were significantly influenced by SQYG, approximately 65% of these proteins are related to energy metabolism, stress response and cytoskeleton, whereas others are related to synaptic transmission, signal transduction, antioxidation, amino acid metabolism, and DNA repair. The expression of these proteins were increased. The changes in the expression levels of malate dehydrogenase (cytoplasmic) and pyruvate kinase M were confirmed by Western blot. CONCLUSIONS The pharmacological mechanism of SQYG on the hippocampus may be related to modulation of multiple pathological processes, including energy metabolism, stress response, cytoskeleton, synaptic transmission, signal transduction, and amino acid metabolism in 5XFAD mice.
Collapse
Affiliation(s)
- Jianting Ren
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China; BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Haiting An
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China; BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Junying Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China; BABRI Centre, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
12
|
Cayla M, Matthews KR, Ivens AC. A global analysis of low-complexity regions in the Trypanosoma brucei proteome reveals enrichment in the C-terminus of nucleic acid binding proteins providing potential targets of phosphorylation. Wellcome Open Res 2020; 5:219. [PMID: 33274300 PMCID: PMC7682498 DOI: 10.12688/wellcomeopenres.16286.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 11/29/2022] Open
Abstract
Background: Low-complexity regions (LCRs) on proteins have attracted increasing attention recently due to their role in the assembly of membraneless organelles or granules by liquid-liquid phase separation. Several examples of such granules have been shown to sequester RNA and proteins in an inactive state, providing an important mechanism for dynamic post-transcriptional gene regulation. In trypanosome parasites, post-transcriptional control overwhelmingly dominates gene regulation due to the organisation of their genome into polycistronic transcription units. The purpose of the current study was to generate a substantially more comprehensive genome-wide survey of LCRs on trypanosome proteins than currently available . Methods: Using the Shannon's entropy method, provided in the R package 'entropy', we identified LCRs in the proteome of Trypanosoma brucei. Our analysis predicts LCRs and their positional enrichment in distinct protein cohorts and superimposes on this a range of post-translational modifications derived from available experimental datasets. Results: We have identified 8162 LCRs present on 4914 proteins, representing 42% of the proteome, placing Trypanosoma brucei among the eukaryotes with the highest percentage of LCRs . Our results highlight the enrichment of LCRs in the C-terminal region of predicted nucleic acid binding proteins, these acting as favoured sites for potential phosphorylation. Phosphorylation represents 51% of the post-translational modifications present on LCRs compared to 16% on the rest of the proteome. Conclusions: The post-translational modifications of LCRs, and in particular phosphorylation events, could contribute to post-transcriptional gene expression control and the dynamics of protein targeting to membraneless organelles in kinetoplastid parasites.
Collapse
Affiliation(s)
- Mathieu Cayla
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, EH9 3JT, UK
| | - Keith R. Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, EH9 3JT, UK
| | - Alasdair C. Ivens
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, EH9 3JT, UK
| |
Collapse
|
13
|
Cayla M, Matthews KR, Ivens AC. A global analysis of low-complexity regions in the Trypanosoma brucei proteome reveals enrichment in the C-terminus of nucleic acid binding proteins providing potential targets of phosphorylation. Wellcome Open Res 2020; 5:219. [PMID: 33274300 PMCID: PMC7682498 DOI: 10.12688/wellcomeopenres.16286.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2020] [Indexed: 03/31/2024] Open
Abstract
Background: Low-complexity regions (LCRs) on proteins have attracted increasing attention recently due to their role in the assembly of membraneless organelles or granules by liquid-liquid phase separation. Several examples of such granules have been shown to sequester RNA and proteins in an inactive state, providing an important mechanism for dynamic post-transcriptional gene regulation. In trypanosome parasites, post-transcriptional control overwhelmingly dominates gene regulation due to the organisation of their genome into polycistronic transcription units. The purpose of the current study was to generate a substantially more comprehensive genome-wide survey of LCRs on trypanosome proteins than currently available . Methods: Using the Shannon's entropy method, provided in the R package 'entropy', we identified LCRs in the proteome of Trypanosoma brucei. Our analysis predicts LCRs and their positional enrichment in distinct protein cohorts and superimposes on this a range of post-translational modifications derived from available experimental datasets. Results: Our results highlight the enrichment of LCRs in the C-terminal region of predicted nucleic acid binding proteins, these acting as favoured sites for potential phosphorylation. Conclusions: The post-translational modifications of LCRs, and in particular the phosphorylation events, could contribute to post-transcriptional gene expression control and the dynamics of protein targeting to membraneless organelles in kinetoplastid parasites.
Collapse
Affiliation(s)
- Mathieu Cayla
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, EH9 3JT, UK
| | - Keith R. Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, EH9 3JT, UK
| | - Alasdair C. Ivens
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, EH9 3JT, UK
| |
Collapse
|
14
|
Tylec BL, Simpson RM, Kirby LE, Chen R, Sun Y, Koslowsky DJ, Read LK. Intrinsic and regulated properties of minimally edited trypanosome mRNAs. Nucleic Acids Res 2019; 47:3640-3657. [PMID: 30698753 PMCID: PMC6468165 DOI: 10.1093/nar/gkz012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 12/17/2022] Open
Abstract
Most mitochondrial mRNAs in kinetoplastids require extensive uridine insertion/deletion editing to generate translatable open reading frames. Editing is specified by trans-acting gRNAs and involves a complex machinery including basal and accessory factors. Here, we utilize high-throughput sequencing to analyze editing progression in two minimally edited mRNAs that provide a simplified system due their requiring only two gRNAs each for complete editing. We show that CYb and MURF2 mRNAs exhibit barriers to editing progression that differ from those previously identified for pan-edited mRNAs, primarily at initial gRNA usage and gRNA exchange. We demonstrate that mis-edited junctions arise through multiple pathways including mis-alignment of cognate gRNA, incorrect and sometimes promiscuous gRNA utilization and inefficient gRNA anchoring. We then examined the roles of accessory factors RBP16 and MRP1/2 in maintaining edited CYb and MURF2 populations. RBP16 is essential for initiation of CYb and MURF2 editing, as well as MURF2 editing progression. In contrast, MRP1/2 stabilizes both edited mRNA populations, while further promoting progression of MURF2 mRNA editing. We also analyzed the effects of RNA Editing Substrate Binding Complex components, TbRGG2 and GAP1, and show that both proteins modestly impact progression of editing on minimally edited mRNAs, suggesting a novel function for GAP1.
Collapse
Affiliation(s)
- Brianna L Tylec
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203
| | - Rachel M Simpson
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203
| | - Laura E Kirby
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Runpu Chen
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260
| | - Yijun Sun
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203
| | - Donna J Koslowsky
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203
| |
Collapse
|
15
|
Trypanosoma brucei PRMT1 Is a Nucleic Acid Binding Protein with a Role in Energy Metabolism and the Starvation Stress Response. mBio 2018; 9:mBio.02430-18. [PMID: 30563898 PMCID: PMC6299225 DOI: 10.1128/mbio.02430-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In Trypanosoma brucei and related kinetoplastid parasites, transcription of protein coding genes is largely unregulated. Rather, mRNA binding proteins, which impact processes such as transcript stability and translation efficiency, are the predominant regulators of gene expression. Arginine methylation is a posttranslational modification that preferentially targets RNA binding proteins and is, therefore, likely to have a substantial impact on T. brucei biology. The data presented here demonstrate that cells depleted of T. brucei PRMT1 (TbPRMT1), a major type I protein arginine methyltransferase, exhibit decreased virulence in an animal model. To understand the basis of this phenotype, quantitative global proteomics was employed to measure protein steady-state levels in cells lacking TbPRMT1. The approach revealed striking changes in proteins involved in energy metabolism. Most prominent were a decrease in glycolytic enzyme abundance and an increase in proline degradation pathway components, changes that resemble the metabolic remodeling that occurs during T. brucei life cycle progression. The work describes several RNA binding proteins whose association with mRNA was altered in TbPRMT1-depleted cells, and a large number of TbPRMT1-interacting proteins, thereby highlighting potential TbPRMT1 substrates. Many proteins involved in the T. brucei starvation stress response were found to interact with TbPRMT1, prompting analysis of the response of TbPRMT1-depleted cells to nutrient deprivation. Indeed, depletion of TbPRMT1 strongly hinders the ability of T. brucei to form cytoplasmic mRNA granules under starvation conditions. Finally, this work shows that TbPRMT1 itself binds nucleic acids in vitro and in vivo, a feature completely novel to protein arginine methyltransferases.IMPORTANCE Trypanosoma brucei infection causes human African trypanosomiasis, also known as sleeping sickness, a disease with a nearly 100% fatality rate when untreated. Current drugs are expensive, toxic, and highly impractical to administer, prompting the community to explore various unique aspects of T. brucei biology in search of better treatments. In this study, we identified the protein arginine methyltransferase (PRMT), TbPRMT1, as a factor that modulates numerous aspects of T. brucei biology. These include glycolysis and life cycle progression signaling, both of which are being intensely researched toward identification of potential drug targets. Our data will aid research in those fields. Furthermore, we demonstrate for the first time a direct association of a PRMT with nucleic acids, a finding we believe could translate to other organisms, including humans, thereby impacting research in fields as distant as human cancer biology and immune response modulation.
Collapse
|
16
|
Concepción-Acevedo J, Miller JC, Boucher MJ, Klingbeil MM. Cell cycle localization dynamics of mitochondrial DNA polymerase IC in African trypanosomes. Mol Biol Cell 2018; 29:2540-2552. [PMID: 30133333 PMCID: PMC6254582 DOI: 10.1091/mbc.e18-02-0127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Trypanosoma brucei has a unique catenated mitochondrial DNA (mtDNA) network called kinetoplast DNA (kDNA). Replication of kDNA occurs once per cell cycle in near synchrony with nuclear S phase and requires the coordination of many proteins. Among these are three essential DNA polymerases (TbPOLIB, IC, and ID). Localization dynamics of these proteins with respect to kDNA replication stages and how they coordinate their functions during replication are not well understood. We previously demonstrated that TbPOLID undergoes dynamic localization changes that are coupled to kDNA replication events. Here, we report the localization of TbPOLIC, a second essential DNA polymerase, and demonstrate the accumulation of TbPOLIC foci at active kDNA replication sites (antipodal sites) during stage II of the kDNA duplication cycle. While TbPOLIC was undetectable by immunofluorescence during other cell cycle stages, steady-state protein levels measured by Western blot remained constant. TbPOLIC foci colocalized with the fraction of TbPOLID that localized to the antipodal sites. However, the partial colocalization of the two essential DNA polymerases suggests a highly dynamic environment at the antipodal sites to coordinate the trafficking of replication proteins during kDNA synthesis. These data indicate that cell cycle-dependent localization is a major regulatory mechanism for essential mtDNA polymerases during kDNA replication.
Collapse
Affiliation(s)
| | - Jonathan C Miller
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Michael J Boucher
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Michele M Klingbeil
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
17
|
Shen S, An B, Wang X, Hilchey SP, Li J, Cao J, Tian Y, Hu C, Jin L, Ng A, Tu C, Qu M, Zand MS, Qu J. Surfactant Cocktail-Aided Extraction/Precipitation/On-Pellet Digestion Strategy Enables Efficient and Reproducible Sample Preparation for Large-Scale Quantitative Proteomics. Anal Chem 2018; 90:10350-10359. [PMID: 30078316 DOI: 10.1021/acs.analchem.8b02172] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
For quantitative proteomics, efficient, robust, and reproducible sample preparation with high throughput is critical yet challenging, especially when large cohorts are involved, as is often required by clinical/pharmaceutical studies. We describe a rapid and straightforward surfactant cocktail-aided extraction/precipitation/on-pellet digestion (SEPOD) strategy to address this need. Prior to organic solvent precipitation and on-pellet digestion, SEPOD treats samples with a surfactant cocktail (SC) containing multiple nonionic/anionic surfactants, which achieves (i) exhaustive/reproducible protein extraction, including membrane-bound proteins; (ii) effective removal of detrimental nonprotein matrix components (e.g., >94% of phospholipids); (iii) rapid/efficient proteolytic digestion owing to dual (surfactants + precipitation) denaturation. The optimal SC composition and concentrations were determined by Orthogonal-Array-Design investigation of their collective/individuals effects on protein extraction/denaturation. Key parameters for cleanup and digestion were experimentally identified as well. The optimized SEPOD procedures allowed a rapid 6 h digestion providing a clean digest with high peptide yields and excellent quantitative reproducibility (especially low-abundance proteins). Compared with filter-assisted sample preparation (FASP) and in-solution digestion, SEPOD showed superior performance by recovering substantially more peptide/proteins (including integral membrane proteins), yielding significantly higher peptide intensities and improving quantification for peptides with extreme physicochemical properties. SEPOD was further applied in a large-cohort temporal investigation of 44 IAV-infected mouse lungs, providing efficient and reproducible peptide yields (77.9 ± 4.6%) across all samples. With the IonStar pipeline, >6 400 unique protein groups were quantified (≥2 peptide/protein, peptide-FDR < 0.05%), ∼99% without missing data in any sample with <7% technical median-intragroup CV. Altered proteome patterns revealed interesting novel insights into pathophysiological changes by IAV infection. In summary, SEPOD offers a feasible solution for rapid, efficient, and reproducible preparation of biological samples, facilitating high-quality proteomic quantification of large sample cohorts.
Collapse
Affiliation(s)
- Shichen Shen
- Department of Pharmaceutical Sciences , SUNY at Buffalo , Buffalo , New York 14214 , United States.,New York State Center of Excellence in Bioinformatics & Life Sciences , Buffalo , New York 14203 , United States
| | - Bo An
- Department of Pharmaceutical Sciences , SUNY at Buffalo , Buffalo , New York 14214 , United States.,New York State Center of Excellence in Bioinformatics & Life Sciences , Buffalo , New York 14203 , United States
| | - Xue Wang
- New York State Center of Excellence in Bioinformatics & Life Sciences , Buffalo , New York 14203 , United States.,Roswell Park Cancer Institute , Buffalo , New York 14263 , United States
| | - Shannon P Hilchey
- Division of Nephrology , University of Rochester Medical Center , Rochester , New York 14642 , United States
| | - Jun Li
- Department of Pharmaceutical Sciences , SUNY at Buffalo , Buffalo , New York 14214 , United States.,New York State Center of Excellence in Bioinformatics & Life Sciences , Buffalo , New York 14203 , United States
| | - Jin Cao
- National Institute for Food and Drug Control , Beijing , 100050 , China
| | - Yu Tian
- AbbVie Bioresearch Center Inc. , Worcester , Massachusetts 01605 , United States
| | - Chenqi Hu
- AbbVie Bioresearch Center Inc. , Worcester , Massachusetts 01605 , United States
| | - Liang Jin
- AbbVie Bioresearch Center Inc. , Worcester , Massachusetts 01605 , United States
| | - Andrew Ng
- New York State Center of Excellence in Bioinformatics & Life Sciences , Buffalo , New York 14203 , United States.,School of Dental Medicine , SUNY at Buffalo , Buffalo , New York 14214 , United States
| | - Chengjian Tu
- Department of Pharmaceutical Sciences , SUNY at Buffalo , Buffalo , New York 14214 , United States.,New York State Center of Excellence in Bioinformatics & Life Sciences , Buffalo , New York 14203 , United States
| | - Miao Qu
- Department of Neurology, Xuan Wu Hospital , Capital University of Medicine , Beijing , 100053 , China
| | - Martin S Zand
- Division of Nephrology , University of Rochester Medical Center , Rochester , New York 14642 , United States
| | - Jun Qu
- Department of Pharmaceutical Sciences , SUNY at Buffalo , Buffalo , New York 14214 , United States.,New York State Center of Excellence in Bioinformatics & Life Sciences , Buffalo , New York 14203 , United States
| |
Collapse
|
18
|
Cruz-Reyes J, Mooers BHM, Doharey PK, Meehan J, Gulati S. Dynamic RNA holo-editosomes with subcomplex variants: Insights into the control of trypanosome editing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1502. [PMID: 30101566 DOI: 10.1002/wrna.1502] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
Abstract
RNA editing causes massive remodeling of the mitochondrial mRNA transcriptome in trypanosomes and related kinetoplastid protozoa. This type of editing involves the specific insertion or deletion of uridylates (U) directed by small noncoding guide RNAs (gRNAs). Because U-insertion exceeds U-deletion by a factor of 10, editing increases the nascent mRNA size by up to 55%. In Trypanosoma brucei, the editing apparatus uses ~40 proteins and >1,200 gRNAs to create the functional open reading frame in 12 mRNAs. Thousands of sites are specifically recognized in the pre-edited mRNAs and a myriad of partially edited transcript intermediates accumulates in mitochondria. The control of editing is poorly understood, but past work suggests that it occurs during substrate recognition, the initiation and progression of editing, and during the life-cycle in different hosts. The growing understanding of the editing proteins offers clues about editing control. Most editing proteins reside in the "RNA-free" RNA editing core complex (RECC) and in the accessory RNA editing substrate complex (RESC) that contains gRNA. Two accessory RNA helicases are known, including one in the RNA editing helicase 2 complex (REH2C). Both the RESC and the REH2C associate with mRNA, providing a rationale for the assembly of mRNA or its mRNPs, RESC, and the RECC enzyme. Identified variants of the canonical editing complexes further complicate the model of RNA editing. We examine specific examples of complex variants, differential effects of editing proteins on the mRNAs within and between T. brucei life stages, and possible control points in RNA holo-editosomes. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Blaine H M Mooers
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Pawan K Doharey
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Joshua Meehan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Shelly Gulati
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
19
|
Wang X, Niu J, Li J, Shen X, Shen S, Straubinger RM, Qu J. Temporal Effects of Combined Birinapant and Paclitaxel on Pancreatic Cancer Cells Investigated via Large-Scale, Ion-Current-Based Quantitative Proteomics (IonStar). Mol Cell Proteomics 2018; 17:655-671. [PMID: 29358341 PMCID: PMC5880105 DOI: 10.1074/mcp.ra117.000519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Indexed: 01/05/2023] Open
Abstract
Despite decades of effort, pancreatic adenocarcinoma (PDAC) remains an intractable clinical challenge. An insufficient understanding of mechanisms underlying tumor cell responses to chemotherapy contributes significantly to the lack of effective treatment regimens. Here, paclitaxel, a first-line chemotherapeutic agent, was observed to interact synergistically with birinapant, a second mitochondrial-derived activator of caspases mimetic. Therefore, we investigated molecular-level drug interaction mechanisms using comprehensive, reproducible, and well-controlled ion-current-based MS1 quantification (IonStar). By analyzing 40 biological samples in a single batch, we compared temporal proteomic responses of PDAC cells treated with birinapant and paclitaxel, alone and combined. Using stringent criteria (e.g. strict false-discovery-rate (FDR) control, two peptides/protein), we quantified 4069 unique proteins confidently (99.8% without any missing data), and 541 proteins were significantly altered in the three treatment groups, with an FDR of <1%. Interestingly, most of these proteins were altered only by combined birinapant/paclitaxel, and these predominantly represented three biological processes: mitochondrial function, cell growth and apoptosis, and cell cycle arrest. Proteins responsible for activation of oxidative phosphorylation, fatty acid β-oxidation, and inactivation of aerobic glycolysis were altered largely by combined birinapant/paclitaxel compared with single drugs, suggesting the Warburg effect, which is critical for survival and proliferation of cancer cells, was alleviated by the combination treatment. Metabolic profiling was performed to confirm substantially greater suppression of the Warburg effect by the combined agents compared with either drug alone. Immunoassays confirmed proteomic data revealing changes in apoptosis/survival signaling pathways, such as inhibition of PI3K/AKT, JAK/STAT, and MAPK/ERK signal transduction, as well as induction of G2/M arrest, and showed the drug combination induced much more apoptosis than did single agents. Overall, this in-depth, large-scale proteomics study provided novel insights into molecular mechanisms underlying synergy of combined birinapant/paclitaxel and describes a proteomics/informatics pipeline that can be applied broadly to the development of cancer drug combination regimens.
Collapse
Affiliation(s)
- Xue Wang
- From the ‡Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
- §New York State Center of Excellence in Bioinformatics and Life Sciences, New York 14203
| | - Jin Niu
- ¶Department of Pharmaceutical Sciences
| | - Jun Li
- §New York State Center of Excellence in Bioinformatics and Life Sciences, New York 14203
| | - Xiaomeng Shen
- §New York State Center of Excellence in Bioinformatics and Life Sciences, New York 14203
- ‖Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, New York 14214
| | - Shichen Shen
- §New York State Center of Excellence in Bioinformatics and Life Sciences, New York 14203
- ‖Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, New York 14214
| | - Robert M Straubinger
- From the ‡Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263;
- §New York State Center of Excellence in Bioinformatics and Life Sciences, New York 14203
- ¶Department of Pharmaceutical Sciences
| | - Jun Qu
- From the ‡Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263;
- §New York State Center of Excellence in Bioinformatics and Life Sciences, New York 14203
- ¶Department of Pharmaceutical Sciences
| |
Collapse
|
20
|
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| |
Collapse
|
21
|
Tay AP, Geoghegan V, Yagoub D, Wilkins MR, Hart-Smith G. MethylQuant: A Tool for Sensitive Validation of Enzyme-Mediated Protein Methylation Sites from Heavy-Methyl SILAC Data. J Proteome Res 2017; 17:359-373. [DOI: 10.1021/acs.jproteome.7b00601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aidan P. Tay
- NSW
Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Vincent Geoghegan
- Centre
for Immunology and Infection, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Daniel Yagoub
- NSW
Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Marc R. Wilkins
- NSW
Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Gene Hart-Smith
- NSW
Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
22
|
Wesche J, Kühn S, Kessler BM, Salton M, Wolf A. Protein arginine methylation: a prominent modification and its demethylation. Cell Mol Life Sci 2017; 74:3305-3315. [PMID: 28364192 PMCID: PMC11107486 DOI: 10.1007/s00018-017-2515-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/07/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022]
Abstract
Arginine methylation of histones is one mechanism of epigenetic regulation in eukaryotic cells. Methylarginines can also be found in non-histone proteins involved in various different processes in a cell. An enzyme family of nine protein arginine methyltransferases catalyses the addition of methyl groups on arginines of histone and non-histone proteins, resulting in either mono- or dimethylated-arginine residues. The reversibility of histone modifications is an essential feature of epigenetic regulation to respond to changes in environmental factors, signalling events, or metabolic alterations. Prominent histone modifications like lysine acetylation and lysine methylation are reversible. Enzyme family pairs have been identified, with each pair of lysine acetyltransferases/deacetylases and lysine methyltransferases/demethylases operating complementarily to generate or erase lysine modifications. Several analyses also indicate a reversible nature of arginine methylation, but the enzymes facilitating direct removal of methyl moieties from arginine residues in proteins have been discussed controversially. Differing reports have been seen for initially characterized putative candidates, like peptidyl arginine deiminase 4 or Jumonji-domain containing protein 6. Here, we review the most recent cellular, biochemical, and mass spectrometry work on arginine methylation and its reversible nature with a special focus on putative arginine demethylases, including the enzyme superfamily of Fe(II) and 2-oxoglutarate-dependent oxygenases.
Collapse
Affiliation(s)
- Juste Wesche
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Sarah Kühn
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Benedikt M Kessler
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Alexander Wolf
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| |
Collapse
|
23
|
da Costa KS, Galúcio JMP, Leonardo ES, Cardoso G, Leal É, Conde G, Lameira J. Structural and evolutionary analysis of Leishmania Alba proteins. Mol Biochem Parasitol 2017; 217:23-31. [PMID: 28847609 DOI: 10.1016/j.molbiopara.2017.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/23/2017] [Accepted: 08/18/2017] [Indexed: 01/10/2023]
Abstract
The Alba superfamily proteins share a common RNA-binding domain. These proteins participate in a variety of regulatory pathways by controlling developmental gene expression. They also interact with ribosomal subunits, translation factors, and other RNA-binding proteins. The Leishmania infantum genome encodes two Alba-domain proteins, LiAlba1 and LiAlba3. In this work, we used homology modeling, protein-protein docking, and molecular dynamics (MD) simulations to explore the details of the Alba1-Alba3-RNA complex from Leishmania infantum at the molecular level. In addition, we compared the structure of LiAlba3 with the human ribonuclease P component, Rpp20. We also mapped the ligand-binding residues on the Alba3 surface to analyze its druggability and performed mutational analyses in Alba3 using alanine scanning to identify residues involved in its function and structural stability. These results suggest that the RGG-box motif of LiAlba1 is important for protein function and stability. Finally, we discuss the function of Alba proteins in the context of pathogen adaptation to host cells. The data provided herein will facilitate further translational research regarding Alba structure and function.
Collapse
Affiliation(s)
- Kauê Santana da Costa
- Institute of Biodiversity, Federal University of West of Pará, Santarém, Pará, Brazil
| | | | - Elvis Santos Leonardo
- Institute of Biodiversity, Federal University of West of Pará, Santarém, Pará, Brazil
| | - Guelber Cardoso
- Institute of Biological Sciences, Federal University of Pará, 66075-110 Belém, Pará, Brazil
| | - Élcio Leal
- Institute of Biological Sciences, Federal University of Pará, 66075-110 Belém, Pará, Brazil
| | - Guilherme Conde
- Institute of Biodiversity, Federal University of West of Pará, Santarém, Pará, Brazil
| | - Jerônimo Lameira
- Institute of Biological Sciences, Federal University of Pará, 66075-110 Belém, Pará, Brazil.
| |
Collapse
|
24
|
Shen X, Shen S, Li J, Hu Q, Nie L, Tu C, Wang X, Orsburn B, Wang J, Qu J. An IonStar Experimental Strategy for MS1 Ion Current-Based Quantification Using Ultrahigh-Field Orbitrap: Reproducible, In-Depth, and Accurate Protein Measurement in Large Cohorts. J Proteome Res 2017; 16:2445-2456. [PMID: 28412812 PMCID: PMC5914162 DOI: 10.1021/acs.jproteome.7b00061] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In-depth and reproducible protein measurement in many biological samples is often critical for pharmaceutical/biomedical proteomics but remains challenging. MS1-based quantification using quadrupole/ultrahigh-field Orbitrap (Q/UHF-Orbitrap) holds great promise, but the critically important experimental approaches enabling reliable large-cohort analysis have long been overlooked. Here we described an IonStar experimental strategy achieving excellent quantitative quality of MS1 quantification. Key features include: (i) an optimized, surfactant-aided sample preparation approach provides highly efficient (>75% recovery) and reproducible (<15% CV) peptide recovery across large cell/tissue cohorts; (ii) a long column with modest gradient length (2.5 h) yields the optimal balance of depth/throughput on a Q/UHF-Orbitrap; (iii) a large-ID trap not only enables highly reproducible gradient delivery as for the first time observed via real-time conductivity monitoring, but also increases quantitative loading capacity by >8-fold and quantified >25% more proteins; (iv) an optimized HCD-OT markedly outperforms HCD-IT when analyzing large cohorts with high loading amounts; (v) selective removal of hydrophobic/hydrophilic matrix components using a novel selective trapping/delivery approach enables reproducible, robust LC-MS analysis of >100 biological samples in a single set, eliminating batch effect; (vi) MS1 acquired at higher resolution (fwhm = 120 k) provides enhanced S/N and quantitative accuracy/precision for low-abundance species. We examined this pipeline by analyzing a 5 group, 20 samples biological benchmark sample set, and quantified 6273 unique proteins (≥2 peptides/protein) under stringent cutoffs without fractionation, 6234 (>99.4%) without missing data in any of the 20 samples. The strategy achieved high quantitative accuracy (3-6% media error), low intragroup variation (6-9% media intragroup CV) and low false-positive biomarker discovery rates (3-8%) across the five groups, with quantified protein abundances spanning >6.5 orders of magnitude. Finally, this strategy is straightforward, robust, and broadly applicable in pharmaceutical/biomedical investigations.
Collapse
Affiliation(s)
- Xiaomeng Shen
- Department of Pharmaceutical Science, SUNY at Buffalo, Buffalo, New York 14228, United States
- Center of Excellence in Bioinformatics & Life Sciences, Buffalo, New York 14203, United States
| | - Shichen Shen
- Department of Biochemistry, SUNY at Buffalo, Buffalo, New York 14228, United States
- Center of Excellence in Bioinformatics & Life Sciences, Buffalo, New York 14203, United States
| | - Jun Li
- Department of Pharmaceutical Science, SUNY at Buffalo, Buffalo, New York 14228, United States
- Center of Excellence in Bioinformatics & Life Sciences, Buffalo, New York 14203, United States
| | - Qiang Hu
- Roswell Park Cancer Institute, Buffalo, New York 14263, United States
| | - Lei Nie
- Center of Excellence in Bioinformatics & Life Sciences, Buffalo, New York 14203, United States
- Shandong University, Shandong Sheng 250000, China
| | - Chengjian Tu
- Department of Pharmaceutical Science, SUNY at Buffalo, Buffalo, New York 14228, United States
- Center of Excellence in Bioinformatics & Life Sciences, Buffalo, New York 14203, United States
| | - Xue Wang
- Roswell Park Cancer Institute, Buffalo, New York 14263, United States
| | - Benjamin Orsburn
- ThermoFisher Scientific, Pittsburgh, Pennsylvania 15275, United States
| | - Jianmin Wang
- Roswell Park Cancer Institute, Buffalo, New York 14263, United States
| | - Jun Qu
- Department of Pharmaceutical Science, SUNY at Buffalo, Buffalo, New York 14228, United States
- Center of Excellence in Bioinformatics & Life Sciences, Buffalo, New York 14203, United States
| |
Collapse
|
25
|
Tu C, Mojica W, Straubinger RM, Li J, Shen S, Qu M, Nie L, Roberts R, An B, Qu J. Quantitative proteomic profiling of paired cancerous and normal colon epithelial cells isolated freshly from colorectal cancer patients. Proteomics Clin Appl 2017; 11:10.1002/prca.201600155. [PMID: 27943637 PMCID: PMC5418098 DOI: 10.1002/prca.201600155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/03/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE The heterogeneous structure in tumor tissues from colorectal cancer (CRC) patients excludes an informative comparison between tumors and adjacent normal tissues. Here, we develop and apply a strategy to compare paired cancerous (CEC) versus normal (NEC) epithelial cells enriched from patients and discover potential biomarkers and therapeutic targets for CRC. EXPERIMENTAL DESIGN CEC and NEC cells are respectively isolated from five different tumor and normal locations in the resected colon tissue from each patient (N = 12 patients) using an optimized epithelial cell adhesion molecule (EpCAM)-based enrichment approach. An ion current-based quantitative method is employed to perform comparative proteomic analysis for each patient. RESULTS A total of 458 altered proteins that are common among >75% of patients are observed and selected for further investigation. Besides known findings such as deregulation of mitochondrial function, tricarboxylic acid cycle, and RNA post-transcriptional modification, functional analysis further revealed RAN signaling pathway, small nucleolar ribonucleoproteins (snoRNPs), and infection by RNA viruses are altered in CEC cells. A selection of the altered proteins of interest is validated by immunohistochemistry analyses. CONCLUSION AND CLINICAL RELEVANCE The informative comparison between matched CEC and NEC enhances our understanding of molecular mechanisms of CRC development and provides biomarker candidates and new pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Chengjian Tu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | - Wilfrido Mojica
- Department of Pathology, State University of New York at Buffalo, State University of New York, Buffalo, NY 14260 USA
| | - Robert M. Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | - Jun Li
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | - Miao Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- Beijing University of Chinese Medicine, Beijing, China, 100029
| | - Lei Nie
- School of pharmaceutical sciences, Shandong University, 44 Wenhua West Road, Jinan, China, 250012
| | - Rick Roberts
- Department of Structural Biology, State University of New York at Buffalo, State University of New York, Buffalo, NY 14260 USA
| | - Bo An
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA
| |
Collapse
|
26
|
Ayyar VS, Almon RR, DuBois DC, Sukumaran S, Qu J, Jusko WJ. Functional proteomic analysis of corticosteroid pharmacodynamics in rat liver: Relationship to hepatic stress, signaling, energy regulation, and drug metabolism. J Proteomics 2017; 160:84-105. [PMID: 28315483 DOI: 10.1016/j.jprot.2017.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/15/2017] [Accepted: 03/10/2017] [Indexed: 02/07/2023]
Abstract
Corticosteroids (CS) are anti-inflammatory agents that cause extensive pharmacogenomic and proteomic changes in multiple tissues. An understanding of the proteome-wide effects of CS in liver and its relationships to altered hepatic and systemic physiology remains incomplete. Here, we report the application of a functional pharmacoproteomic approach to gain integrated insight into the complex nature of CS responses in liver in vivo. An in-depth functional analysis was performed using rich pharmacodynamic (temporal-based) proteomic data measured over 66h in rat liver following a single dose of methylprednisolone (MPL). Data mining identified 451 differentially regulated proteins. These proteins were analyzed on the basis of temporal regulation, cellular localization, and literature-mined functional information. Of the 451 proteins, 378 were clustered into six functional groups based on major clinically-relevant effects of CS in liver. MPL-responsive proteins were highly localized in the mitochondria (20%) and cytosol (24%). Interestingly, several proteins were related to hepatic stress and signaling processes, which appear to be involved in secondary signaling cascades and in protecting the liver from CS-induced oxidative damage. Consistent with known adverse metabolic effects of CS, several rate-controlling enzymes involved in amino acid metabolism, gluconeogenesis, and fatty-acid metabolism were altered by MPL. In addition, proteins involved in the metabolism of endogenous compounds, xenobiotics, and therapeutic drugs including cytochrome P450 and Phase-II enzymes were differentially regulated. Proteins related to the inflammatory acute-phase response were up-regulated in response to MPL. Functionally-similar proteins showed large diversity in their temporal profiles, indicating complex mechanisms of regulation by CS. SIGNIFICANCE Clinical use of corticosteroid (CS) therapy is frequent and chronic. However, current knowledge on the proteome-level effects of CS in liver and other tissues is sparse. While transcriptomic regulation following methylprednisolone (MPL) dosing has been temporally examined in rat liver, proteomic assessments are needed to better characterize the tissue-specific functional aspects of MPL actions. This study describes a functional pharmacoproteomic analysis of dynamic changes in MPL-regulated proteins in liver and provides biological insight into how steroid-induced perturbations on a molecular level may relate to both adverse and therapeutic responses presented clinically.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States
| | - Richard R Almon
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States; Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Debra C DuBois
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States; Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Siddharth Sukumaran
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States.
| |
Collapse
|
27
|
Plett KL, Raposo AE, Bullivant S, Anderson IC, Piller SC, Plett JM. Root morphogenic pathways in Eucalyptus grandis are modified by the activity of protein arginine methyltransferases. BMC PLANT BIOLOGY 2017; 17:62. [PMID: 28279165 PMCID: PMC5345158 DOI: 10.1186/s12870-017-1010-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/01/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Methylation of proteins at arginine residues, catalysed by members of the protein arginine methyltransferase (PRMT) family, is crucial for the regulation of gene transcription and for protein function in eukaryotic organisms. Inhibition of the activity of PRMTs in annual model plants has demonstrated wide-ranging involvement of PRMTs in key plant developmental processes, however, PRMTs have not been characterised or studied in long-lived tree species. RESULTS Taking advantage of the recently available genome for Eucalyptus grandis, we demonstrate that most of the major plant PRMTs are conserved in E. grandis as compared to annual plants and that they are expressed in all major plant tissues. Proteomic and transcriptomic analysis in roots suggest that the PRMTs of E. grandis control a number of regulatory proteins and genes related to signalling during cellular/root growth and morphogenesis. We demonstrate here, using chemical inhibition of methylation and transgenic approaches, that plant type I PRMTs are necessary for normal root growth and branching in E. grandis. We further show that EgPRMT1 has a key role in root hair initiation and elongation and is involved in the methylation of β-tubulin, a key protein in cytoskeleton formation. CONCLUSIONS Together, our data demonstrate that PRMTs encoded by E. grandis methylate a number of key proteins and alter the transcription of a variety of genes involved in developmental processes. Appropriate levels of expression of type I PRMTs are necessary for the proper growth and development of E. grandis roots.
Collapse
Affiliation(s)
- Krista L. Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753 Australia
| | - Anita E. Raposo
- School of Science and Health, Western Sydney University, Penrith, NSW 2751 Australia
| | - Stephen Bullivant
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753 Australia
| | - Ian C. Anderson
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753 Australia
| | - Sabine C. Piller
- School of Science and Health, Western Sydney University, Penrith, NSW 2751 Australia
| | - Jonathan M. Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753 Australia
| |
Collapse
|
28
|
Asymmetric Arginine Dimethylation Modulates Mitochondrial Energy Metabolism and Homeostasis in Caenorhabditis elegans. Mol Cell Biol 2017; 37:MCB.00504-16. [PMID: 27994012 DOI: 10.1128/mcb.00504-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/11/2016] [Indexed: 01/25/2023] Open
Abstract
Protein arginine methyltransferase 1 (PRMT-1) catalyzes asymmetric arginine dimethylation on cellular proteins and modulates various aspects of biological processes, such as signal transduction, DNA repair, and transcriptional regulation. We have previously reported that the null mutant of prmt-1 in Caenorhabditis elegans exhibits a slightly shortened life span, but the physiological significance of PRMT-1 remains largely unclear. Here we explored the role of PRMT-1 in mitochondrial function as hinted by a two-dimensional Western blot-based proteomic study. Subcellular fractionation followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that PRMT-1 is almost entirely responsible for asymmetric arginine dimethylation on mitochondrial proteins. Importantly, isolated mitochondria from prmt-1 mutants represent compromised ATP synthesis in vitro, and whole-worm respiration in prmt-1 mutants is decreased in vivo Transgenic rescue experiments demonstrate that PRMT-1-dependent asymmetric arginine dimethylation is required to prevent mitochondrial reactive oxygen species (ROS) production, which consequently causes the activation of the mitochondrial unfolded-protein response. Furthermore, the loss of enzymatic activity of prmt-1 induces food avoidance behavior due to mitochondrial dysfunction, but treatment with the antioxidant N-acetylcysteine significantly ameliorates this phenotype. These findings add a new layer of complexity to the posttranslational regulation of mitochondrial function and provide clues for understanding the physiological roles of PRMT-1 in multicellular organisms.
Collapse
|
29
|
Peng C, Wong CC. The story of protein arginine methylation: characterization, regulation, and function. Expert Rev Proteomics 2017; 14:157-170. [PMID: 28043171 DOI: 10.1080/14789450.2017.1275573] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Arginine methylation is an important post-translational modification (PTM) in cells, which is catalyzed by a group of protein arginine methyltransferases (PRMTs). It plays significant roles in diverse cellular processes and various diseases. Misregulation and aberrant expression of PRMTs can provide potential biomarkers and therapeutic targets for drug discovery. Areas covered: Herein, we review the arginine methylation literature and summarize the methodologies for the characterization of this modification, as well as describe the recent insights into arginine methyltransferases and their biological functions in diseases. Expert commentary: Benefits from the enzyme-based large-scale screening approach, the novel affinity enrichment strategies, arginine methylated protein family is the focus of attention. Although a number of arginine methyltransferases and related substrates are identified, the catalytic mechanism of different types of PRMTs remains unclear and few related demethylases are characterized. Novel functional studies continuously reveal the importance of this modification in the cell cycle and diseases. A deeper understanding of arginine methylated proteins, modification sites, and their mechanisms of regulation is needed to explore their role in life processes, especially their relationship with diseases, thus accelerating the generation of potent, selective, cell-penetrant drug candidates.
Collapse
Affiliation(s)
- Chao Peng
- a National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China.,b Shanghai Science Research Center , Chinese Academy of Sciences , Shanghai , China
| | - Catherine Cl Wong
- a National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China.,b Shanghai Science Research Center , Chinese Academy of Sciences , Shanghai , China
| |
Collapse
|
30
|
Wang Q, Wang K, Ye M. Strategies for large-scale analysis of non-histone protein methylation by LC-MS/MS. Analyst 2017; 142:3536-3548. [DOI: 10.1039/c7an00954b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein methylation is an important post-translational modification (PTM) that plays crucial roles in the regulation of diverse biological processes.
Collapse
Affiliation(s)
- Qi Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
| | - Keyun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
| |
Collapse
|
31
|
Kafková L, Debler EW, Fisk JC, Jain K, Clarke SG, Read LK. The Major Protein Arginine Methyltransferase in Trypanosoma brucei Functions as an Enzyme-Prozyme Complex. J Biol Chem 2016; 292:2089-2100. [PMID: 27998975 DOI: 10.1074/jbc.m116.757112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/14/2016] [Indexed: 11/06/2022] Open
Abstract
Prozymes are catalytically inactive enzyme paralogs that dramatically stimulate the function of weakly active enzymes through complex formation. The two prozymes described to date reside in the polyamine biosynthesis pathway of the human parasite Trypanosoma brucei, an early branching eukaryote that lacks transcriptional regulation and regulates its proteome through posttranscriptional and posttranslational means. Arginine methylation is a common posttranslational modification in eukaryotes catalyzed by protein arginine methyltransferases (PRMTs) that are typically thought to function as homodimers. We demonstrate that a major T. brucei PRMT, TbPRMT1, functions as a heterotetrameric enzyme-prozyme pair. The inactive PRMT paralog, TbPRMT1PRO, is essential for catalytic activity of the TbPRMT1ENZ subunit. Mutational analysis definitively demonstrates that TbPRMT1ENZ is the cofactor-binding subunit and carries all catalytic activity of the complex. Our results are the first demonstration of an obligate heteromeric PRMT, and they suggest that enzyme-prozyme organization is expanded in trypanosomes as a posttranslational means of enzyme regulation.
Collapse
Affiliation(s)
- Lucie Kafková
- From the Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, and Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14214
| | - Erik W Debler
- the Laboratory of Cell Biology, The Rockefeller University, New York, New York 10065, and
| | - John C Fisk
- From the Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, and Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14214
| | - Kanishk Jain
- the Department of Chemistry and Biochemistry and The Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Steven G Clarke
- the Department of Chemistry and Biochemistry and The Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Laurie K Read
- From the Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, and Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14214,
| |
Collapse
|
32
|
Tu C, Shen S, Sheng Q, Shyr Y, Qu J. A peptide-retrieval strategy enables significant improvement of quantitative performance without compromising confidence of identification. J Proteomics 2016; 152:276-282. [PMID: 27903464 DOI: 10.1016/j.jprot.2016.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/21/2016] [Accepted: 11/24/2016] [Indexed: 11/27/2022]
Abstract
Reliable quantification of low-abundance proteins in complex proteomes is challenging largely owing to the limited number of spectra/peptides identified. In this study we developed a straightforward method to improve the quantitative accuracy and precision of proteins by strategically retrieving the less confident peptides that were previously filtered out using the standard target-decoy search strategy. The filtered-out MS/MS spectra matched to confidently-identified proteins were recovered, and the peptide-spectrum-match FDR were re-calculated and controlled at a confident level of FDR≤1%, while protein FDR maintained at ~1%. We evaluated the performance of this strategy in both spectral count- and ion current-based methods. >60% increase of total quantified spectra/peptides was respectively achieved for analyzing a spike-in sample set and a public dataset from CPTAC. Incorporating the peptide retrieval strategy significantly improved the quantitative accuracy and precision, especially for low-abundance proteins (e.g. one-hit proteins). Moreover, the capacity of confidently discovering significantly-altered proteins was also enhanced substantially, as demonstrated with two spike-in datasets. In summary, improved quantitative performance was achieved by this peptide recovery strategy without compromising confidence of protein identification, which can be readily implemented in a broad range of quantitative proteomics techniques including label-free or labeling approaches. SIGNIFICANCE We hypothesize that more quantifiable spectra and peptides in a protein, even including less confident peptides, could help reduce variations and improve protein quantification. Hence the peptide retrieval strategy was developed and evaluated in two spike-in sample sets with different LC-MS/MS variations using both MS1- and MS2-based quantitative approach. The list of confidently identified proteins using the standard target-decoy search strategy was fixed and more spectra/peptides with less confidence matched to confident proteins were retrieved. However, the total peptide-spectrum-match false discovery rate (PSM FDR) after retrieval analysis was still controlled at a confident level of FDR≤1%. As expected, the penalty for occasionally incorporating incorrect peptide identifications is negligible by comparison with the improvements in quantitative performance. More quantifiable peptides, lower missing value rate, better quantitative accuracy and precision were significantly achieved for the same protein identifications by this simple strategy. This strategy is theoretically applicable for any quantitative approaches in proteomics and thereby provides more quantitative information, especially on low-abundance proteins.
Collapse
Affiliation(s)
- Chengjian Tu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, 285 Kapoor Hall, Buffalo, NY 14260, United States; New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203, United States.
| | - Shichen Shen
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, 285 Kapoor Hall, Buffalo, NY 14260, United States; New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203, United States
| | - Quanhu Sheng
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, United States
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, 285 Kapoor Hall, Buffalo, NY 14260, United States; New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203, United States.
| |
Collapse
|
33
|
Caslavka Zempel KE, Vashisht AA, Barshop WD, Wohlschlegel JA, Clarke SG. Determining the Mitochondrial Methyl Proteome in Saccharomyces cerevisiae using Heavy Methyl SILAC. J Proteome Res 2016; 15:4436-4451. [PMID: 27696855 DOI: 10.1021/acs.jproteome.6b00521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Methylation is a common and abundant post-translational modification. High-throughput proteomic investigations have reported many methylation sites from complex mixtures of proteins. The lack of consistency between parallel studies, resulting from both false positives and missed identifications, suggests problems with both over-reporting and under-reporting methylation sites. However, isotope labeling can be used effectively to address the issue of false-positives, and fractionation of proteins can increase the probability of identifying methylation sites in lower abundance. Here we have adapted heavy methyl SILAC to analyze fractions of the budding yeast Saccharomyces cerevisiae under respiratory conditions to allow for the production of mitochondria, an organelle whose proteins are often overlooked in larger methyl proteome studies. We have found 12 methylation sites on 11 mitochondrial proteins as well as an additional 14 methylation sites on 9 proteins that are nonmitochondrial. Of these methylation sites, 20 sites have not been previously reported. This study represents the first characterization of the yeast mitochondrial methyl proteome and the second proteomic investigation of global mitochondrial methylation to date in any organism.
Collapse
Affiliation(s)
- Katelyn E Caslavka Zempel
- Department of Chemistry and Biochemistry and the Molecular Biology Institute and ‡Department of Biological Chemistry and the David Geffen School of Medicine, UCLA , Los Angeles, California 90095, United States
| | - Ajay A Vashisht
- Department of Chemistry and Biochemistry and the Molecular Biology Institute and ‡Department of Biological Chemistry and the David Geffen School of Medicine, UCLA , Los Angeles, California 90095, United States
| | - William D Barshop
- Department of Chemistry and Biochemistry and the Molecular Biology Institute and ‡Department of Biological Chemistry and the David Geffen School of Medicine, UCLA , Los Angeles, California 90095, United States
| | - James A Wohlschlegel
- Department of Chemistry and Biochemistry and the Molecular Biology Institute and ‡Department of Biological Chemistry and the David Geffen School of Medicine, UCLA , Los Angeles, California 90095, United States
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute and ‡Department of Biological Chemistry and the David Geffen School of Medicine, UCLA , Los Angeles, California 90095, United States
| |
Collapse
|
34
|
Shen S, Jiang X, Li J, Straubinger RM, Suarez M, Tu C, Duan X, Thompson AC, Qu J. Large-Scale, Ion-Current-Based Proteomic Investigation of the Rat Striatal Proteome in a Model of Short- and Long-Term Cocaine Withdrawal. J Proteome Res 2016; 15:1702-16. [PMID: 27018876 DOI: 10.1021/acs.jproteome.6b00137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Given the tremendous detriments of cocaine dependence, effective diagnosis and patient stratification are critical for successful intervention yet difficult to achieve due to the largely unknown molecular mechanisms involved. To obtain new insights into cocaine dependence and withdrawal, we employed a reproducible, reliable, and large-scale proteomics approach to investigate the striatal proteomes of rats (n = 40, 10 per group) subjected to chronic cocaine exposure, followed by either short- (WD1) or long- (WD22) term withdrawal. By implementing a surfactant-aided precipitation/on-pellet digestion procedure, a reproducible and sensitive nanoLC-Orbitrap MS analysis, and an optimized ion-current-based MS1 quantification pipeline, >2000 nonredundant proteins were quantified confidently without missing data in any replicate. Although cocaine was cleared from the body, 129/37 altered proteins were observed in WD1/WD22 that are implicated in several biological processes related closely to drug-induced neuroplasticity. Although many of these changes recapitulate the findings from independent studies reported over the last two decades, some novel insights were obtained and further validated by immunoassays. For example, significantly elevated striatal protein kinase C activity persisted over the 22 day cocaine withdrawal. Cofilin-1 activity was up-regulated in WD1 and down-regulated in WD22. These discoveries suggest potentially distinct structural plasticity after short- and long-term cocaine withdrawal. In addition, this study provides compelling evidence that blood vessel narrowing, a long-known effect of cocaine use, occurred after long-term but not short-term withdrawal. In summary, this work developed a well-optimized paradigm for ion-current-based quantitative proteomics in brain tissues and obtained novel insights into molecular alterations in the striatum following cocaine exposure and withdrawal.
Collapse
Affiliation(s)
- Shichen Shen
- New York State Center of Excellence in Bioinformatics & Life Sciences , Buffalo, New York 14203, United States.,Department of Biochemistry, School of Medicine and Biomedical Sciences, SUNY at Buffalo , Buffalo, New York 14214, United States
| | - Xiaosheng Jiang
- Department of Pharmaceutical Sciences, SUNY at Buffalo , Buffalo, New York 14214, United States.,New York State Center of Excellence in Bioinformatics & Life Sciences , Buffalo, New York 14203, United States
| | - Jun Li
- Department of Pharmaceutical Sciences, SUNY at Buffalo , Buffalo, New York 14214, United States.,New York State Center of Excellence in Bioinformatics & Life Sciences , Buffalo, New York 14203, United States
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, SUNY at Buffalo , Buffalo, New York 14214, United States
| | - Mauricio Suarez
- Department of Psychology, SUNY at Buffalo , Buffalo, New York 14260, United States.,Research Institute on Addictions, SUNY at Buffalo , Buffalo, New York 14203, United States
| | - Chengjian Tu
- New York State Center of Excellence in Bioinformatics & Life Sciences , Buffalo, New York 14203, United States.,Department of Biochemistry, School of Medicine and Biomedical Sciences, SUNY at Buffalo , Buffalo, New York 14214, United States
| | - Xiaotao Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology , Beijing 100850, China
| | - Alexis C Thompson
- Department of Psychology, SUNY at Buffalo , Buffalo, New York 14260, United States.,Research Institute on Addictions, SUNY at Buffalo , Buffalo, New York 14203, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, SUNY at Buffalo , Buffalo, New York 14214, United States.,New York State Center of Excellence in Bioinformatics & Life Sciences , Buffalo, New York 14203, United States
| |
Collapse
|
35
|
Goyal M, Banerjee C, Nag S, Bandyopadhyay U. The Alba protein family: Structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:570-83. [PMID: 26900088 DOI: 10.1016/j.bbapap.2016.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/06/2016] [Accepted: 02/16/2016] [Indexed: 01/05/2023]
Abstract
Alba family proteins are small, basic, dimeric nucleic acid-binding proteins, which are widely distributed in archaea and a number of eukaryotes. This family of proteins bears the distinct features of regulation through acetylation/deacetylation, hence named as acetylation lowers binding affinity (Alba). Alba family proteins bind DNA cooperatively with no apparent sequence specificity. Besides DNA, Alba proteins also interact with diverse RNA species and associate with ribonucleo-protein complexes. Initially, Alba proteins were recognized as chromosomal proteins and supposed to be involved in the maintenance of chromatin architecture and transcription repression. However, recent studies have shown increasing evidence of functional plasticity among Alba family of proteins that widely range from genome packaging and organization, transcriptional and translational regulation, RNA metabolism, and development and differentiation processes. In recent years, Alba family proteins have attracted growing interest due to their widespread occurrence in large number of organisms. Presence in multiple copies, functional crosstalk, differential binding affinity, and posttranslational modifications are some of the key factors that might regulate the biological functions of Alba family proteins. In this review article, we present an overview of the Alba family proteins, their salient features and emphasize their functional role in different organisms reported so far.
Collapse
Affiliation(s)
- Manish Goyal
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India.
| |
Collapse
|
36
|
Low JKK, Im H, Erce MA, Hart-Smith G, Snyder MP, Wilkins MR. Protein substrates of the arginine methyltransferase Hmt1 identified by proteome arrays. Proteomics 2016; 16:465-76. [DOI: 10.1002/pmic.201400564] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 09/27/2015] [Accepted: 11/10/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Jason K. K. Low
- Systems Biology Initiative; School of Biotechnology and Biomolecular Sciences; The University of New South Wales; Sydney Australia
| | - Hogune Im
- Department of Genetics; Stanford University School of Medicine; Palo Alto CA USA
| | - Melissa A. Erce
- Systems Biology Initiative; School of Biotechnology and Biomolecular Sciences; The University of New South Wales; Sydney Australia
| | - Gene Hart-Smith
- Systems Biology Initiative; School of Biotechnology and Biomolecular Sciences; The University of New South Wales; Sydney Australia
| | - Michael P. Snyder
- Department of Genetics; Stanford University School of Medicine; Palo Alto CA USA
| | - Marc R. Wilkins
- Systems Biology Initiative; School of Biotechnology and Biomolecular Sciences; The University of New South Wales; Sydney Australia
| |
Collapse
|
37
|
Toxoplasma gondii Arginine Methyltransferase 1 (PRMT1) Is Necessary for Centrosome Dynamics during Tachyzoite Cell Division. mBio 2016; 7:e02094-15. [PMID: 26838719 PMCID: PMC4742710 DOI: 10.1128/mbio.02094-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The arginine methyltransferase family (PRMT) has been implicated in a variety of cellular processes, including signal transduction, epigenetic regulation, and DNA repair pathways. PRMT1 is thought to be responsible for the majority of PRMT activity in Toxoplasma gondii, but its exact function is unknown. To further define the biological function of the PRMT family, we generated T. gondii mutants lacking PRMT1 (Δprmt1) by deletion of the PRMT1 gene. Δprmt1 parasites exhibit morphological defects during cell division and grow slowly, and this phenotype reverses in the Δprmt::PRMT1mRFP complemented strain. Tagged PRMT1 localizes primarily in the cytoplasm with enrichment at the pericentriolar material, and the strain lacking PRMT1 is unable to segregate progeny accurately. Unlike wild-type and complemented parasites, Δprmt1 parasites have abnormal daughter buds, perturbed centrosome stoichiometry, and loss of synchronous replication. Whole-genome expression profiling demonstrated differences in expression of cell-cycle-regulated genes in the Δprmt1 strain relative to the complemented Δprmt1::PRMT1mRFP and parental wild-type strains, but these changes do not correlate with a specific block in cell cycle. Although PRMT1’s primary biological function was previously proposed to be methylation of histones, our studies suggest that PRMT1 plays an important role within the centrosome to ensure the proper replication of the parasite. Apicomplexan parasites include several important pathogens, including Toxoplasma gondii, a major cause of opportunistic infections and congenital birth defects. These parasites divide using a unique form of cell division called endodyogeny that is different from those of most eukaryotes. PRMT1 is a conserved arginine methyltransferase that was thought to regulate gene expression of T. gondii by modifying histone methylation. Using genetic techniques, we show that disruption of PRMT1 affects the parasite’s ability to perform accurate cell division. Our studies reveal an unexpected role for arginine methylation in centrosome biology and regulation of parasite replication.
Collapse
|
38
|
Hart-Smith G, Yagoub D, Tay AP, Pickford R, Wilkins MR. Large Scale Mass Spectrometry-based Identifications of Enzyme-mediated Protein Methylation Are Subject to High False Discovery Rates. Mol Cell Proteomics 2015; 15:989-1006. [PMID: 26699799 DOI: 10.1074/mcp.m115.055384] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 01/22/2023] Open
Abstract
All large scale LC-MS/MS post-translational methylation site discovery experiments require methylpeptide spectrum matches (methyl-PSMs) to be identified at acceptably low false discovery rates (FDRs). To meet estimated methyl-PSM FDRs, methyl-PSM filtering criteria are often determined using the target-decoy approach. The efficacy of this methyl-PSM filtering approach has, however, yet to be thoroughly evaluated. Here, we conduct a systematic analysis of methyl-PSM FDRs across a range of sample preparation workflows (each differing in their exposure to the alcohols methanol and isopropyl alcohol) and mass spectrometric instrument platforms (each employing a different mode of MS/MS dissociation). Through (13)CD3-methionine labeling (heavy-methyl SILAC) of Saccharomyces cerevisiae cells and in-depth manual data inspection, accurate lists of true positive methyl-PSMs were determined, allowing methyl-PSM FDRs to be compared with target-decoy approach-derived methyl-PSM FDR estimates. These results show that global FDR estimates produce extremely unreliable methyl-PSM filtering criteria; we demonstrate that this is an unavoidable consequence of the high number of amino acid combinations capable of producing peptide sequences that are isobaric to methylated peptides of a different sequence. Separate methyl-PSM FDR estimates were also found to be unreliable due to prevalent sources of false positive methyl-PSMs that produce high peptide identity score distributions. Incorrect methylation site localizations, peptides containing cysteinyl-S-β-propionamide, and methylated glutamic or aspartic acid residues can partially, but not wholly, account for these false positive methyl-PSMs. Together, these results indicate that the target-decoy approach is an unreliable means of estimating methyl-PSM FDRs and methyl-PSM filtering criteria. We suggest that orthogonal methylpeptide validation (e.g. heavy-methyl SILAC or its offshoots) should be considered a prerequisite for obtaining high confidence methyl-PSMs in large scale LC-MS/MS methylation site discovery experiments and make recommendations on how to reduce methyl-PSM FDRs in samples not amenable to heavy isotope labeling. Data are available via ProteomeXchange with the data identifier PXD002857.
Collapse
Affiliation(s)
- Gene Hart-Smith
- From the ‡New South Wales Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, and
| | - Daniel Yagoub
- From the ‡New South Wales Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, and
| | - Aidan P Tay
- From the ‡New South Wales Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, and
| | - Russell Pickford
- ‖Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Marc R Wilkins
- From the ‡New South Wales Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, and
| |
Collapse
|
39
|
Porcelli V, Longo A, Palmieri L, Closs EI, Palmieri F. Asymmetric dimethylarginine is transported by the mitochondrial carrier SLC25A2. Amino Acids 2015; 48:427-36. [PMID: 26403849 DOI: 10.1007/s00726-015-2096-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/08/2015] [Indexed: 11/29/2022]
Abstract
Asymmetric dimethyl L-arginine (ADMA) is generated within cells and in mitochondria when proteins with dimethylated arginine residues are degraded. The aim of this study was to identify the carrier protein(s) that transport ADMA across the inner mitochondrial membrane. It was found that the recombinant, purified mitochondrial solute carrier SLC25A2 when reconstituted into liposomes efficiently transports ADMA in addition to its known substrates arginine, lysine, and ornithine and in contrast to the other known mitochondrial amino acid transporters SLC25A12, SLC25A13, SLC25A15, SLC25A18, SLC25A22, and SLC25A29. The widely expressed SLC25A2 transported ADMA across the liposomal membrane in both directions by both unidirectional transport and exchange against arginine or lysine. The SLC25A2-mediated ADMA transport followed first-order kinetics, was nearly as fast as the transport of the best SLC25A2 substrates known so far, and was highly specific as symmetric dimethylarginine (SDMA) was not transported at all. Furthermore, ADMA inhibited SLC25A2 activity with an inhibition constant of 0.38 ± 0.04 mM, whereas SDMA inhibited it poorly. We propose that a major function of SLC25A2 is to export ADMA from mitochondria missing the mitochondrial ADMA-metabolizing enzyme AGXT2. There is evidence that ADMA can also be imported into mitochondria, e.g., in kidney proximal tubulus cells, to be metabolized by AGXT2. SLC25A2 may also mediate this transport function.
Collapse
Affiliation(s)
- Vito Porcelli
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125, Bari, Italy
| | - Antonella Longo
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125, Bari, Italy
| | - Luigi Palmieri
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125, Bari, Italy
| | - Ellen I Closs
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, 55101, Mainz, Germany
| | - Ferdinando Palmieri
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
40
|
Lott K, Mukhopadhyay S, Li J, Wang J, Yao J, Sun Y, Qu J, Read LK. Arginine methylation of DRBD18 differentially impacts its opposing effects on the trypanosome transcriptome. Nucleic Acids Res 2015; 43:5501-23. [PMID: 25940618 PMCID: PMC4477658 DOI: 10.1093/nar/gkv428] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/22/2015] [Indexed: 12/30/2022] Open
Abstract
Arginine methylation is a posttranslational modification that impacts wide-ranging cellular functions, including transcription, mRNA splicing and translation. RNA binding proteins (RBPs) represent one of the largest classes of arginine methylated proteins in both mammals and the early diverging parasitic protozoan, Trypanosoma brucei. Here, we report the effects of arginine methylation on the functions of the essential and previously uncharacterized T. brucei RBP, DRBD18. RNAseq analysis shows that DRBD18 depletion causes extensive rearrangement of the T. brucei transcriptome, with increases and decreases in hundreds of mRNAs. DRBD18 contains three methylated arginines, and we used complementation of DRBD18 knockdown cells with methylmimic or hypomethylated DRBD18 to assess the functions of these methylmarks. Methylmimic and hypomethylated DRBD18 associate with different ribonucleoprotein complexes. These altered macromolecular interactions translate into differential impacts on the T. brucei transcriptome. Methylmimic DRBD18 preferentially stabilizes target RNAs, while hypomethylated DRBD18 is more efficient at destabilizing RNA. The protein arginine methyltransferase, TbPRMT1, interacts with DRBD18 and knockdown of TbPRMT1 recapitulates the effects of hypomethylated DRBD18 on mRNA levels. Together, these data support a model in which arginine methylation acts as a switch that regulates T. brucei gene expression.
Collapse
Affiliation(s)
- Kaylen Lott
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Shreya Mukhopadhyay
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jun Li
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jie Wang
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jin Yao
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yijun Sun
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
41
|
Mitochondrial heat shock protein machinery hsp70/hsp40 is indispensable for proper mitochondrial DNA maintenance and replication. mBio 2015; 6:mBio.02425-14. [PMID: 25670781 PMCID: PMC4337576 DOI: 10.1128/mbio.02425-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial chaperones have multiple functions that are essential for proper functioning of mitochondria. In the human-pathogenic protist Trypanosoma brucei, we demonstrate a novel function of the highly conserved machinery composed of mitochondrial heat shock proteins 70 and 40 (mtHsp70/mtHsp40) and the ATP exchange factor Mge1. The mitochondrial DNA of T. brucei, also known as kinetoplast DNA (kDNA), is represented by a single catenated network composed of thousands of minicircles and dozens of maxicircles packed into an electron-dense kDNA disk. The chaperones mtHsp70 and mtHsp40 and their cofactor Mge1 are uniformly distributed throughout the single mitochondrial network and are all essential for the parasite. Following RNA interference (RNAi)-mediated depletion of each of these proteins, the kDNA network shrinks and eventually disappears. Ultrastructural analysis of cells depleted for mtHsp70 or mtHsp40 revealed that the otherwise compact kDNA network becomes severely compromised, a consequence of decreased maxicircle and minicircle copy numbers. Moreover, we show that the replication of minicircles is impaired, although the lack of these proteins has a bigger impact on the less abundant maxicircles. We provide additional evidence that these chaperones are indispensable for the maintenance and replication of kDNA, in addition to their already known functions in Fe-S cluster synthesis and protein import. Impairment or loss of mitochondrial DNA is associated with mitochondrial dysfunction and a wide range of neural, muscular, and other diseases. We present the first evidence showing that the entire mtHsp70/mtHsp40 machinery plays an important role in mitochondrial DNA replication and maintenance, a function likely retained from prokaryotes. These abundant, ubiquitous, and multifunctional chaperones share phenotypes with enzymes engaged in the initial stages of replication of the mitochondrial DNA in T. brucei.
Collapse
|
42
|
Týč J, Klingbeil MM, Lukeš J. Mitochondrial heat shock protein machinery hsp70/hsp40 is indispensable for proper mitochondrial DNA maintenance and replication. mBio 2015. [PMID: 25670781 DOI: 10.1128/mbio.02425-02414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
UNLABELLED Mitochondrial chaperones have multiple functions that are essential for proper functioning of mitochondria. In the human-pathogenic protist Trypanosoma brucei, we demonstrate a novel function of the highly conserved machinery composed of mitochondrial heat shock proteins 70 and 40 (mtHsp70/mtHsp40) and the ATP exchange factor Mge1. The mitochondrial DNA of T. brucei, also known as kinetoplast DNA (kDNA), is represented by a single catenated network composed of thousands of minicircles and dozens of maxicircles packed into an electron-dense kDNA disk. The chaperones mtHsp70 and mtHsp40 and their cofactor Mge1 are uniformly distributed throughout the single mitochondrial network and are all essential for the parasite. Following RNA interference (RNAi)-mediated depletion of each of these proteins, the kDNA network shrinks and eventually disappears. Ultrastructural analysis of cells depleted for mtHsp70 or mtHsp40 revealed that the otherwise compact kDNA network becomes severely compromised, a consequence of decreased maxicircle and minicircle copy numbers. Moreover, we show that the replication of minicircles is impaired, although the lack of these proteins has a bigger impact on the less abundant maxicircles. We provide additional evidence that these chaperones are indispensable for the maintenance and replication of kDNA, in addition to their already known functions in Fe-S cluster synthesis and protein import. IMPORTANCE Impairment or loss of mitochondrial DNA is associated with mitochondrial dysfunction and a wide range of neural, muscular, and other diseases. We present the first evidence showing that the entire mtHsp70/mtHsp40 machinery plays an important role in mitochondrial DNA replication and maintenance, a function likely retained from prokaryotes. These abundant, ubiquitous, and multifunctional chaperones share phenotypes with enzymes engaged in the initial stages of replication of the mitochondrial DNA in T. brucei.
Collapse
Affiliation(s)
- Jiří Týč
- Faculty of Sciences, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Michele M Klingbeil
- Department of Microbiology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts, USA
| | | |
Collapse
|
43
|
Doll S, Burlingame AL. Mass spectrometry-based detection and assignment of protein posttranslational modifications. ACS Chem Biol 2015; 10:63-71. [PMID: 25541750 PMCID: PMC4301092 DOI: 10.1021/cb500904b] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Recent
advances in mass spectrometry (MS)-based proteomics allow
the identification and quantitation of thousands of posttranslational
modification (PTM) sites in a single experiment. This follows from
the development of more effective class enrichment strategies, new
high performance instrumentation and bioinformatic algorithms with
rigorous scoring strategies. More widespread use of these combined
capabilities have led to a vast expansion in our knowledge of the
complexity of biological processes mediated by PTMs. The classes most
actively pursued include phosphorylation, ubiquitination, O-GlcNAcylation,
methylation, and acetylation. Very recently succinylation, SUMOylation,
and citrullination have emerged. Among the some 260 000 PTM
sites that have been identified in the human proteome thus far, only
a few have been assigned to key regulatory and/or other biological
roles. Here, we provide an update of MS-based PTM analyses, with a
focus on current enrichment strategies coupled with revolutionary
advances in high performance MS. Furthermore, we discuss examples
of the discovery of recently described biological roles of PTMs and
address the challenges of defining site-specific functions.
Collapse
Affiliation(s)
- Sophia Doll
- Department
of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, United States
- Department
of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Alma L. Burlingame
- Department
of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, United States
| |
Collapse
|
44
|
An arginine-glycine-rich RNA binding protein impacts the abundance of specific mRNAs in the mitochondria of Trypanosoma brucei. EUKARYOTIC CELL 2014; 14:149-57. [PMID: 25480938 DOI: 10.1128/ec.00232-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In kinetoplastid parasites, regulation of mitochondrial gene expression occurs posttranscriptionally via RNA stability and RNA editing. In addition to the 20S editosome that contains the enzymes required for RNA editing, a dynamic complex called the mitochondrial RNA binding 1 (MRB1) complex is also essential for editing. Trypanosoma brucei RGG3 (TbRGG3) was originally identified through its interaction with the guide RNA-associated proteins 1 and 2 (GAP1/2), components of the MRB1 complex. Both the arginine-glycine-rich character of TbRGG3, which suggests a function in RNA binding, and its interaction with MRB1 implicate TbRGG3 in mitochondrial gene regulation. Here, we report an in vitro and in vivo characterization of TbRGG3 function in T. brucei mitochondria. We show that in vitro TbRGG3 binds RNA with broad sequence specificity and has the capacity to modulate RNA-RNA interactions. In vivo, inducible RNA interference (RNAi) studies demonstrate that TbRGG3 is essential for proliferation of insect vector stage T. brucei. TbRGG3 ablation does not cause a defect in RNA editing but, rather, specifically affects the abundance of two preedited transcripts as well as their edited counterparts. Protein-protein interaction studies show that TbRGG3 associates with GAP1/2 apart from the remainder of the MRB1 complex, as well as with several non-MRB1 proteins that are required for mitochondrial RNA editing and/or stability. Together, these studies demonstrate that TbRGG3 is an essential mitochondrial gene regulatory factor that impacts the stabilities of specific RNAs.
Collapse
|
45
|
Ferreira TR, Alves-Ferreira EVC, Defina TPA, Walrad P, Papadopoulou B, Cruz AK. Altered expression of an RBP-associated arginine methyltransferase 7 in Leishmania major affects parasite infection. Mol Microbiol 2014; 94:1085-1102. [PMID: 25294169 DOI: 10.1111/mmi.12819] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2014] [Indexed: 12/20/2022]
Abstract
Protein arginine methylation is a widely conserved post-translational modification performed by arginine methyltransferases (PRMTs). However, its functional role in parasitic protozoa is still under-explored. The Leishmania major genome encodes five PRMT homologs, including PRMT7. Here we show that LmjPRMT7 expression and arginine monomethylation are tightly regulated in a lifecycle stage-dependent manner. LmjPRMT7 levels are higher during the early promastigote logarithmic phase, negligible at stationary and late-stationary phases and rise once more post-differentiation to intracellular amastigotes. Immunofluorescence and co-immunoprecipitation studies demonstrate that LmjPRMT7 is a cytosolic protein associated with several RNA-binding proteins (RBPs) from which Alba20 is monomethylated only in LmjPRMT7-expressing promastigote stages. In addition, Alba20 protein levels are significantly altered in stationary promastigotes of the LmjPRMT7 knockout mutant. Considering RBPs are well-known mammalian PRMT substrates, our data suggest that arginine methylation via LmjPRMT7 may modulate RBP function during Leishmania spp. lifecycle progression. Importantly, genomic deletion of the LmjPRMT7 gene leads to an increase in parasite infectivity both in vitro and in vivo, while lesion progression is significantly reduced in LmjPRMT7-overexpressing parasites. This study is the first to describe a role of Leishmania protein arginine methylation in host-parasite interactions.
Collapse
Affiliation(s)
- Tiago R Ferreira
- Cell and Molecular Biology Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | |
Collapse
|
46
|
Lott K, Zhu L, Fisk JC, Tomasello DL, Read LK. Functional interplay between protein arginine methyltransferases in Trypanosoma brucei. Microbiologyopen 2014; 3:595-609. [PMID: 25044453 PMCID: PMC4234254 DOI: 10.1002/mbo3.191] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/05/2014] [Accepted: 05/23/2014] [Indexed: 12/21/2022] Open
Abstract
Arginine methylation is a common posttranslational modification that has far-reaching cellular effects. Trypanosoma brucei is an early-branching eukaryote with four characterized protein arginine methyltransferases (PRMTs), one additional putative PRMT, and over 800 arginine methylated proteins, suggesting that arginine methylation has widespread impacts in this organism. While much is known about the activities of individual T. brucei PRMTs (TbPRMTs), little is known regarding how TbPRMTs function together in vivo. In this study, we analyzed single and selected double TbPRMT knockdowns for the impact on expression of TbPRMTs and global methylation status. Repression of TbPRMT1 caused a decrease in asymmetric dimethylarginine and a marked increase in monomethylarginine that was catalyzed by TbPRMT7, suggesting that TbPRMT1 and TbPRMT7 can compete for the same substrate. We also observed an unexpected and strong interdependence between TbPRMT1 and TbPRMT3 protein levels. This finding, together with the observation of similar methyl landscape profiles in TbPRMT1 and TbPRMT3 repressed cells, strongly suggests that these two enzymes form a functional complex. We show that corepression of TbPRMT6/7 synergistically impacts growth of procyclic-form T. brucei. Our findings also implicate the actions of noncanonical, and as yet unidentified, PRMTs in T. brucei. Together, our studies indicate that TbPRMTs display a functional interplay at multiple levels.
Collapse
Affiliation(s)
- Kaylen Lott
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, 14214
| | | | | | | | | |
Collapse
|
47
|
Emerging technologies to map the protein methylome. J Mol Biol 2014; 426:3350-62. [PMID: 24805349 DOI: 10.1016/j.jmb.2014.04.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 01/26/2023]
Abstract
Protein methylation plays an integral role in cellular signaling, most notably by modulating proteins bound at chromatin and increasingly through regulation of non-histone proteins. One central challenge in understanding how methylation acts in signaling is identifying and measuring protein methylation. This includes locus-specific modification of histones, on individual non-histone proteins, and globally across the proteome. Protein methylation has been studied traditionally using candidate approaches such as methylation-specific antibodies, mapping of post-translational modifications by mass spectrometry, and radioactive labeling to characterize methylation on target proteins. Recent developments have provided new approaches to identify methylated proteins, measure methylation levels, identify substrates of methyltransferase enzymes, and match methylated proteins to methyl-specific reader domains. Methyl-binding protein domains and improved antibodies with broad specificity for methylated proteins are being used to characterize the "protein methylome". They also have the potential to be used in high-throughput assays for inhibitor screens and drug development. These tools are often coupled to improvements in mass spectrometry to quickly identify methylated residues, as well as to protein microarrays, where they can be used to screen for methylated proteins. Finally, new chemical biology strategies are being used to probe the function of methyltransferases, demethylases, and methyl-binding "reader" domains. These tools create a "system-level" understanding of protein methylation and integrate protein methylation into broader signaling processes.
Collapse
|
48
|
Uncovering the protein lysine and arginine methylation network in Arabidopsis chloroplasts. PLoS One 2014; 9:e95512. [PMID: 24748391 PMCID: PMC3991674 DOI: 10.1371/journal.pone.0095512] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/27/2014] [Indexed: 11/28/2022] Open
Abstract
Post-translational modification of proteins by the addition of methyl groups to the side chains of Lys and Arg residues is proposed to play important roles in many cellular processes. In plants, identification of non-histone methylproteins at a cellular or subcellular scale is still missing. To gain insights into the extent of this modification in chloroplasts we used a bioinformatics approach to identify protein methyltransferases targeted to plastids and set up a workflow to specifically identify Lys and Arg methylated proteins from proteomic data used to produce the Arabidopsis chloroplast proteome. With this approach we could identify 31 high-confidence Lys and Arg methylation sites from 23 chloroplastic proteins, of which only two were previously known to be methylated. These methylproteins are split between the stroma, thylakoids and envelope sub-compartments. They belong to essential metabolic processes, including photosynthesis, and to the chloroplast biogenesis and maintenance machinery (translation, protein import, division). Also, the in silico identification of nine protein methyltransferases that are known or predicted to be targeted to plastids provided a foundation to build the enzymes/substrates relationships that govern methylation in chloroplasts. Thereby, using in vitro methylation assays with chloroplast stroma as a source of methyltransferases we confirmed the methylation sites of two targets, plastid ribosomal protein L11 and the β-subunit of ATP synthase. Furthermore, a biochemical screening of recombinant chloroplastic protein Lys methyltransferases allowed us to identify the enzymes involved in the modification of these substrates. The present study provides a useful resource to build the methyltransferases/methylproteins network and to elucidate the role of protein methylation in chloroplast biology.
Collapse
|
49
|
Azkargorta M, Wojtas MN, Abrescia NGA, Elortza F. Lysine methylation mapping of crenarchaeal DNA-directed RNA polymerases by collision-induced and electron-transfer dissociation mass spectrometry. J Proteome Res 2014; 13:2637-48. [PMID: 24625205 DOI: 10.1021/pr500084p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzymatic machineries fundamental for information processing (e.g., transcription, replication, translation) in Archaea are simplified versions of their eukaryotic counterparts. This is clearly noticeable in the conservation of sequence and structure of corresponding enzymes (see for example the archaeal DNA-directed RNA polymerase (RNAP)). In Eukarya, post-translational modifications (PTMs) often serve as functional regulatory factors for various enzymes and complexes. Among the various PTMs, methylation and acetylation have been recently attracting most attention. Nevertheless, little is known about such PTMs in Archaea, and cross-methodological studies are scarce. We examined methylation and N-terminal acetylation of endogenously purified crenarchaeal RNA polymerase from Sulfolobus shibatae (Ssh) and Sulfolobus acidocaldarius (Sac). In-gel and in-solution protein digestion methods were combined with collision-induced dissociation (CID) and electron-transfer dissociation (ETD) mass spectrometry analysis. Overall, 20 and 26 methyl-lysines for S. shibatae and S. acidocaldarius were identified, respectively. Furthermore, two N-terminal acetylation sites for each of these organisms were assessed. As a result, we generated a high-confidence data set for the mapping of methylation and acetylation sites in both Sulfolobus species, allowing comparisons with the data previously obtained for RNAP from Sulfolobus solfataricus (Sso). We confirmed that all observed methyl-lysines are on the surface of the RNAP.
Collapse
Affiliation(s)
- Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, ProteoRed-ISCIII, CIBERehd, 48160 Derio, Spain
| | | | | | | |
Collapse
|
50
|
Gui S, Gathiaka S, Li J, Qu J, Acevedo O, Hevel JM. A remodeled protein arginine methyltransferase 1 (PRMT1) generates symmetric dimethylarginine. J Biol Chem 2014; 289:9320-7. [PMID: 24478314 DOI: 10.1074/jbc.m113.535278] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein arginine methylation is emerging as a significant post-translational modification involved in various cell processes and human diseases. As the major arginine methylation enzyme, protein arginine methyltransferase 1 (PRMT1) strictly generates monomethylarginine and asymmetric dimethylarginine (ADMA), but not symmetric dimethylarginine (SDMA). The two types of dimethylarginines can lead to distinct biological outputs, as highlighted in the PRMT-dependent epigenetic control of transcription. However, it remains unclear how PRMT1 product specificity is regulated. We discovered that a single amino acid mutation (Met-48 to Phe) in the PRMT1 active site enables PRMT1 to generate both ADMA and SDMA. Due to the limited amount of SDMA formed, we carried out quantum mechanical calculations to determine the free energies of activation of ADMA and SDMA synthesis. Our results indicate that the higher energy barrier of SDMA formation (ΔΔG(‡) = 3.2 kcal/mol as compared with ADMA) may explain the small amount of SDMA generated by M48F-PRMT1. Our study reveals unique energetic challenges for SDMA-forming methyltransferases and highlights the exquisite control of product formation by active site residues in the PRMTs.
Collapse
Affiliation(s)
- Shanying Gui
- From the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322
| | | | | | | | | | | |
Collapse
|