1
|
Deng J, Wu S, Huang Y, Deng Y, Yu K. Esophageal cancer risk is influenced by genetically determined blood metabolites. Medicine (Baltimore) 2024; 103:e40122. [PMID: 39470544 PMCID: PMC11521038 DOI: 10.1097/md.0000000000040122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/13/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
It remains unclear what causes esophageal cancer (EC), but blood metabolites have been connected to it. Our study performed a Mendelian randomization (MR) analysis to assess the causality from genetically proxied 1400 blood metabolites to EC level. A two-sample MR analysis was employed to evaluate the causal relationship between 1400 blood metabolites and EC. Initially, the EC genome-wide association study (GWAS) data (from Jiang L et al) were examined, leading to the identification of certain metabolites. Subsequently, another set of EC GWAS data from FINNGEN was utilized to validate the findings. Causality was primarily determined through inverse variance weighting, with additional support from the MR-Egger, weighted median, and MR-PRESSO models. Heterogeneity was assessed using the MR Cochran Q test. The MR-Egger intercept and MR-PRESSO global methods were employed to detect multicollinearity. In this study, Bonferroni corrected P value was used for significance threshold. We found 2 metabolites with overlaps, which are lipids. Docosatrienoate (22:3n3) was found to be causally associated with a decreased risk of EC, as evidenced by the EC GWAS data (from Jiang et al) (odds ratio [OR] = 0.620, 95% confidence interval [CI] = 0.390-0.986, P = .044) and the EC GWAS data (from FINNGEN) (OR = 0.77, 95% CI = 0.6-0.99, P = .042), these results were consistent across both data sets. Another overlapping metabolite, glycosyl-N-(2-hydroxyneuramoyl)-sphingosine, was associated with the risk of ES, with EC GWAS data (from Jiang L et al) (OR = 1.536, 95% CI = 1.000-2.360, P = .049), while EC GWAS data (from FINNGEN) (OR = 0.733, 95% CI = 0.574-0.937, P = .013), the 2 data had opposite conclusions. The findings of this study indicate a potential association between lipid metabolites (Docosatrienoate (22:3n3) and glycosyl-N-(2-hydroxynervonoyl)-sphingosine (d18:1/24:1 (2OH))) and the risk of esophageal carcinogenesis.
Collapse
Affiliation(s)
- Jieyin Deng
- Department of General Medical Practice, General Hospital of PLA Western Theater Command, Chengdu, China
| | - Silin Wu
- Department of General Medical Practice, General Hospital of PLA Western Theater Command, Chengdu, China
- School of Clinical Medicine, North Sichuan Medical College, Sichuan, China
| | - Ye Huang
- Department of Nursing, Nursing School, Chengdu Medical College, Chengdu, China
| | - Yi Deng
- Department of General Medical Practice, General Hospital of PLA Western Theater Command, Chengdu, China
| | - Ke Yu
- Department of General Medical Practice, General Hospital of PLA Western Theater Command, Chengdu, China
| |
Collapse
|
2
|
Zhao C, Han H, Tian Y, Qu G, Xu Y, Wang Y, Shi L. Identification of genome-wide copy number variation-driven subtypes for the treatment and prognostic prediction of esophageal carcinoma. Heliyon 2024; 10:e38011. [PMID: 39386821 PMCID: PMC11462465 DOI: 10.1016/j.heliyon.2024.e38011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Background Esophageal carcinoma (ESCA) is a frequently detected gastrointestinal cancer. Copy number variants (CNVs) have a dramatic impact on the screening, diagnosis and prognostic prediction of cancers. However, the mechanism of action of CNVs on ESCA occurrence and progression remains unclear. Methods ESCA samples from The Cancer Genome Atlas (TCGA) were typed by consensus clustering using CNV-associated genes. Weighted Gene Co-Expression Network Analysis (WGCNA) was used to section gene modules closely related to the two clusters, and sub-networks were constructed as hub genes. In addition, seven prognosis-correlated genes were further screened and retained by multivariate Cox regression analysis to develop a prognostic assessment model. The ssGSEA algorithm assessed energy metabolism levels in patients from different clusters and risk groups. Finally, quantitative real-time PCR (qRT-PCR) and live-dead cell staining verified the expression of genes associated with CNV risk scores. Results ESCA was classified into two subtypes based on CNV values. Compared with cluster 1, cluster 2 had significantly higher level of immune score and tumor-associated immune cell infiltration as well as a noticeably better overall survival. The three modules most associated with the two clusters were identified by WGCNA, and a prognostic model with a strong prediction performance was constructed with their genes. Glycolysis, lactate metabolism, fatty acid synthesis, glutathione, methionine, and tryptophan metabolic pathway enrichment scores were remarkably higher in patients in cluster 1 and the high-risk group than in cluster 2 and the low-risk group. Knockdown PIK3C2A promoted ESCA cells apoptosis and inhibited cell vibiality. Conclusion The current research maybe provides new understanding for the pathogenesis of ESCA based on CNV, providing an effective guidance for its clinical diagnosis and prognostic evaluation.
Collapse
Affiliation(s)
- Chao Zhao
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hui Han
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yushuang Tian
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Guangjin Qu
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yingying Xu
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yihan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Lili Shi
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
3
|
López-López Á, López-Gonzálvez Á, Barbas C. Metabolomics for searching validated biomarkers in cancer studies: a decade in review. Expert Rev Mol Diagn 2024; 24:601-626. [PMID: 38904089 DOI: 10.1080/14737159.2024.2368603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION In the dynamic landscape of modern healthcare, the ability to anticipate and diagnose diseases, particularly in cases where early treatment significantly impacts outcomes, is paramount. Cancer, a complex and heterogeneous disease, underscores the critical importance of early diagnosis for patient survival. The integration of metabolomics information has emerged as a crucial tool, complementing the genotype-phenotype landscape and providing insights into active metabolic mechanisms and disease-induced dysregulated pathways. AREAS COVERED This review explores a decade of developments in the search for biomarkers validated within the realm of cancer studies. By critically assessing a diverse array of research articles, clinical trials, and studies, this review aims to present an overview of the methodologies employed and the progress achieved in identifying and validating biomarkers in metabolomics results for various cancer types. EXPERT OPINION Through an exploration of more than 800 studies, this review has allowed to establish a general idea about state-of-art in the search of biomarkers in metabolomics studies involving cancer which include certain level of results validation. The potential for metabolites as diagnostic markers to reach the clinic and make a real difference in patient health is substantial, but challenges remain to be explored.
Collapse
Affiliation(s)
- Ángeles López-López
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Ángeles López-Gonzálvez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
4
|
Liu M, Tian H, Wang M, Guo C, Xu R, Li F, Liu A, Yang H, Duan L, Shen L, Wu Q, Liu Z, Liu Y, Liu F, Pan Y, Hu Z, Chen H, Cai H, He Z, Ke Y. Construction and validation of serum Metabolic Risk Score for early warning of malignancy in esophagus. iScience 2024; 27:109965. [PMID: 38832013 PMCID: PMC11144720 DOI: 10.1016/j.isci.2024.109965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/20/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
Using noninvasive biomarkers to identify high-risk individuals prior to endoscopic examination is crucial for optimization of screening strategies for esophageal squamous cell carcinoma (ESCC). We conducted a nested case-control study based on two community-based screening cohorts to evaluate the warning value of serum metabolites for esophageal malignancy. The serum samples were collected at enrollment when the cases had not been diagnosed. We identified 74 differential metabolites and two prominent perturbed metabolic pathways, and constructed Metabolic Risk Score (MRS) based on 22 selected metabolic predictors. The MRS generated an area under the receiver operating characteristics curve (AUC) of 0.815. The model performed well for the within-1-year interval (AUC: 0.868) and 1-to-5-year interval (AUC: 0.845) from blood draw to diagnosis, but showed limited ability in predicting long-term cases (>5 years). In summary, the MRS could serve as a potential early warning and risk stratification tool for establishing a precision strategy of ESCC screening.
Collapse
Affiliation(s)
- Mengfei Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hongrui Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Minmin Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Department of Global Health, School of Public Health, Peking University, Beijing 100191, China
| | - Chuanhai Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ruiping Xu
- Anyang Cancer Hospital, Anyang 455000, China
| | - Fenglei Li
- Hua County People’s Hospital, Anyang 456400, China
| | - Anxiang Liu
- Endoscopy Center, Anyang Cancer Hospital, Anyang 455000, China
| | - Haijun Yang
- Department of Pathology, Anyang Cancer Hospital, Anyang 455000, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Lin Shen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qi Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Endoscopy Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhen Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ying Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fangfang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yaqi Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhe Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Huanyu Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hong Cai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhonghu He
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yang Ke
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
5
|
McClurg DP, Sanghera C, Mukherjee S, Fitzgerald RC, Jones CM. A systematic review of circulating predictive and prognostic biomarkers to aid the personalised use of radiotherapy in the radical treatment of patients with oesophageal cancer. Radiother Oncol 2024; 195:110224. [PMID: 38479442 DOI: 10.1016/j.radonc.2024.110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The availability of circulating biomarkers that are predictive of treatment response or prognostic of overall outcome could enable the personalised and adaptive use of radiotherapy (RT) in patients with oesophageal adenocarcinoma (OAC) and squamous cell carcinoma (OSCC). METHODS A systematic review was carried out following Preferred Reporting Items for Systematic Reviews guidance. Medline, EMBASE, PubMed, Cochrane Library, CINAHL, Scopus and the Web of Science databases were searched for studies published between January 2005-February 2023 relating to circulating biomarkers evaluated in the context of neoadjuvant or definitive RT delivered for OAC/OSCC. Study quality was assessed using predefined criteria. RESULTS A total of 3012 studies were screened and 57 subsequently included, across which 61 biomarkers were reported. A majority (43/57,75.4%) of studies were of Asian origin and retrospective (40/57, 70.2%), with most (52/57, 91.2%) biomarkers reported in the context of patients with OSCC. There was marked inter-study heterogeneity in patient populations, treatment characteristics, biomarker measurement and the cut points used to define biomarker positivity. Nevertheless, there is evidence for the prognostic and predictive value of circulating tumour DNA and numerous miRNAs in OAC and OSCC, as well as for the prognostic and predictive value of circulating levels of CYFRA21.1 in OSCC. CONCLUSIONS There is consistent evidence for the potential predictive and prognostic value of a small number of biomarkers in OSCC and OAC, though these data are insufficient for translation to current clinical practice. Well-designed prospective studies are now required to validate their role in stratified and personalised RT treatment approaches.
Collapse
Affiliation(s)
- Dylan P McClurg
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Chandan Sanghera
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Somnath Mukherjee
- Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Christopher M Jones
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Nassar AF, Nie X, Zhang T, Yeung J, Norris P, He J, Ogura H, Babar MU, Muldoon A, Libreros S, Chen L. Is Lipid Metabolism of Value in Cancer Research and Treatment? Part I- Lipid Metabolism in Cancer. Metabolites 2024; 14:312. [PMID: 38921447 PMCID: PMC11205345 DOI: 10.3390/metabo14060312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
For either healthy or diseased organisms, lipids are key components for cellular membranes; they play important roles in numerous cellular processes including cell growth, proliferation, differentiation, energy storage and signaling. Exercise and disease development are examples of cellular environment alterations which produce changes in these networks. There are indications that alterations in lipid metabolism contribute to the development and progression of a variety of cancers. Measuring such alterations and understanding the pathways involved is critical to fully understand cellular metabolism. The demands for this information have led to the emergence of lipidomics, which enables the large-scale study of lipids using mass spectrometry (MS) techniques. Mass spectrometry has been widely used in lipidomics and allows us to analyze detailed lipid profiles of cancers. In this article, we discuss emerging strategies for lipidomics by mass spectrometry; targeted, as opposed to global, lipid analysis provides an exciting new alternative method. Additionally, we provide an introduction to lipidomics, lipid categories and their major biological functions, along with lipidomics studies by mass spectrometry in cancer samples. Further, we summarize the importance of lipid metabolism in oncology and tumor microenvironment, some of the challenges for lipodomics, and the potential for targeted approaches for screening pharmaceutical candidates to improve the therapeutic efficacy of treatment in cancer patients.
Collapse
Affiliation(s)
- Ala F. Nassar
- Department of Immunobiology, Yale University, West Haven, CT 06516, USA
| | - Xinxin Nie
- Department of Immunobiology, Yale University, West Haven, CT 06516, USA
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University, West Haven, CT 06516, USA
| | - Jacky Yeung
- Department of Immunobiology, Yale University, West Haven, CT 06516, USA
| | - Paul Norris
- Sciex, 500 Old Connecticut Path, Framingham, MA 01701, USA
| | - Jianwei He
- Department of Immunobiology, Yale University, West Haven, CT 06516, USA
| | - Hideki Ogura
- Department of Microbiology, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Muhammad Usman Babar
- Department of Pathology, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Anne Muldoon
- Department of Immunobiology, Yale University, West Haven, CT 06516, USA
| | - Stephania Libreros
- Department of Pathology, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lieping Chen
- Department of Immunobiology, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
7
|
Yang T, Li X, Wang X, Meng X, Zhang Z, Zhao M, Su R. Combination of histological and metabolomic assessments to evaluate the potential pharmacological efficacy of saikosaponin D. J Pharm Biomed Anal 2024; 242:116001. [PMID: 38354536 DOI: 10.1016/j.jpba.2024.116001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Saikosaponin D (SsD), a natural triterpenoid saponin compound, exhibits notable potential in suppressing tumor growth and inhibiting metastasis, particularly in breast cancer. However, its underlying mechanism of action for SsD remains unclear. In this study, a combination strategy to reveal the metabolism modulation of SsD on breast cancer was performed by integration of histopathological assessments and untargeted metabolomics analysis. Pathological evaluation of the efficacy of SsD from a visual and intuitive perspective. Accordingly, a non-targeted metabolomics study was used to investigate the pharmacological efficacy using a set of serum samples from mice before and after (0-30 days) modulated with SsD based on ultra-high performance liquid chromatography tandem orbitrap mass spectrometry to discover metabolite biomarkers for finding the key metabolic mechanism in a molecular perspective. As a result, 20 metabolites were selected as potential biomarkers for SsD efficacy evaluation with high sensitivity and specificity. These metabolites changes were involved in sphingolipid metabolism, glycerophospholipid metabolism, phenylalanine and tryptophan metabolism, and phenylalanine, tyrosine and tryptophan biosynthesis pathways, suggesting that SsD exerted anti-breast cancer effects through the regulation of the underlying metabolism. In conclusion, we developed a new analysis strategy that effectively discovers tumor-progressing related metabolite biomarkers in serum for pharmacological efficacy evaluation.
Collapse
Affiliation(s)
- Tongtong Yang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Xuanzhu Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Xiaowen Wang
- Chinese Society for Measurement, No. 22, Maizidian Street, Chaoyang District, Beijing, China
| | - Xiangzhe Meng
- Hydrology and Water Resources Bureau of Jilin Province, Changchun 130028, China
| | - Zhe Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Mingyue Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Rui Su
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China; State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
8
|
Gao M, Wu J, Zhou S, Chen Y, Wang M, He W, Jiang L, Shu Y, Wang X. Combining fecal microbiome and metabolomics reveals diagnostic biomarkers for esophageal squamous cell carcinoma. Microbiol Spectr 2024; 12:e0401223. [PMID: 38497715 PMCID: PMC11064534 DOI: 10.1128/spectrum.04012-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most predominant subtypes of esophageal cancer. The characteristics of the gut microbiome and its metabolites from patients with ESCC have not been adequately studied and discussed. In this study, 40 fecal samples (20 from ESCC patients and 20 from healthy controls) were analyzed by 16S rRNA gene sequencing and untargeted metabolomics. The data sets were analyzed individually and synthesized using various bioinformatics methods. Alpha and beta diversity indicated significant differences in microbial diversity and abundance between ESCC and healthy control feces. At the genus level, the abundance of Phascolarctobacterium, Sutterella, and Streptococcus was significantly increased in ESCC. At the genus level, linear discriminant analysis effect size identified two biomarkers: Bacteroides_stercoris and Prevotella_copri. Untargeted metabolomics analysis revealed 307 differential metabolites between ESCC and healthy control feces, with indoles and derivatives, tropane alkaloids, lipids, and lipid-like molecules in higher relative abundance in ESCC feces than in healthy control feces. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that unsaturated fatty acids (FAs), ascorbate and aldarate metabolism, and hypoxia-inducible factor 1 signaling pathway were significantly associated with differential metabolite. Phenylethanolamine and despropionyl p-fluoro fentanyl could be used as reliable biomarkers to differentiate ESCC from healthy control. The correlation analysis showed that Prevotella may be involved in the synthesis of fatty acyl, carboxylic acids and derivatives, benzenes and substituted derivatives, organic oxygenates, and indoles and derivatives as metabolites. Fusicatenibacter and Lachnospira may be involved in the degradation of indoles and derivatives. Alistipes, Agathobacter, and Parabacteroides may be involved in the synthesis of indoles and derivatives with strong contributions. There is an intricate relationship between the gut microbiome and the levels of several metabolites (e.g., fatty acyls, carboxylic acids and derivatives, indoles, and derivatives). Microbial-associated metabolites can be used as diagnostic biomarkers in therapeutic exploration. Further analysis revealed that Prevotella, Alistipes, Agathobacter, and Parabacteroides might promote ESCC by regulating the synthesis of indoles and their derivatives. The results of this study provide favorable evidence for the early diagnosis of ESCC and subsequent individualized treatment and targeted interventions.IMPORTANCEWe describe for the first time the differences in fecal microbiome composition and metabolites between patients with esophageal squamous cell carcinoma (ESCC) and healthy controls by 16S rRNA gene sequencing and untargeted metabolomics. The results of this study provide a favorable basis for the early diagnosis of ESCC and subsequent targeted interventional therapy.
Collapse
Affiliation(s)
| | - Jun Wu
- Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Siding Zhou
- Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Yong Chen
- Dalian Medical University, Dalian, China
| | | | - Wenbo He
- Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Lei Jiang
- Department of Thoracic Surgery, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Yusheng Shu
- Department of Thoracic Surgery, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Xiaolin Wang
- Department of Thoracic Surgery, Northern Jiangsu People’s Hospital, Yangzhou, China
| |
Collapse
|
9
|
Wu L, Ye C, Yao Q, Li Q, Zhang C, Li Y. The role of serum acylcarnitine profiling for the detection of multiple solid tumors in humans. Heliyon 2024; 10:e23867. [PMID: 38205321 PMCID: PMC10776988 DOI: 10.1016/j.heliyon.2023.e23867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Metabolic reprogramming is an essential hallmark of cancer. Several studies have reported the dysregulation of acylcarnitine (ACar) metabolism in tumor cells, suggesting that changes in the blood ACar may be related to tumor growth. Accordingly, this study aimed to understand the alteration of serum ACar profiles in various solid tumors and explore the potential of differential serum ACars as diagnostic biomarkers. A series of 69 relatively abundant ACars were identified via untargeted analysis. Then, targeted metabolomics was used to describe the metabolic alterations in ACars between normal controls and patients with six types of solid tumors. The results suggested that changes in ACars correlated with their carbon chain length and saturation. The six tumor types had highly similar ACar metabolic profiles, indicating similar fatty acid oxidation (FAO) metabolic pathways. Moreover, the receiver operating curve analysis of differential ACars showed that 16 ACars (C8-C14) had high diagnostic capability towards the studied solid tumors. Specifically, the area under the curve of ACar 10:2 isomer2 and ACar 12:2 isomer2 was greater than 0.95. In conclusion, the marked decrease in the levels of medium- and long-chain ACars (C8-C18) in the six solid tumors suggests that they may have similar FAO-based metabolic pathways, which could afford a common target for cancer therapy. Additionally, 16 ACars (C8-C14) were identified as potential biomarkers for diagnosing six types of solid tumors.
Collapse
Affiliation(s)
| | | | | | - Qianqian Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Chunyan Zhang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Yuandong Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
10
|
Li J, Xu J, Zhang R, He J, Wang M, Jiao G, Abliz Z. Strategy for characterization and quantification of fatty acids in plasma by parallel d 0/d 6-dansylhydrazine derivatization combined with UPLC-MS/MS. Talanta 2024; 267:125231. [PMID: 37783107 DOI: 10.1016/j.talanta.2023.125231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Fatty acids (FAs) play a vital physiological role in lipid metabolism, which is reported as potential diagnostic biomarker for various diseases. Thus, it is urgent to develop a credible method that can profile FA metabolism with a holistic view. Here, a targeted strategy to screen FAs was developed by parallel labeling with d0/d6-dansylhydrazine (d0/d6-DnsHz) and using ultra-high performance liquid chromatography coupled with high-resolution tandem mass spectrometry (UPLC-MS/MS) in data-dependent MS/MS (ddMS2) mode. The simple and mild derivatization procedure within 3 h allowed for a significant improvement in sensitivity. Additionally, the characteristic product ions introduced by the derivatization reagent assist to identify the unknown FA species. A quantitation method was established by multiple reaction monitoring (MRM) and the d6-DnsHz tagged standards for each analyte were used as internal standards to overcome the matrix effects. By applying the method to determine FA levels in plasma collected from the esophageal squamous cell carcinoma (ESCC) patients and healthy controls, 65 FA metabolites were characterized and six FAs were found to be altered by the invasion of tumors. The parallel derivatization strategy provides insights into the identification of unknown FAs and paves a new way for targeted metabolomics. Also, this novel method is a powerful tool for characterization and quantification of FAs in biological samples, which shows a great potential application in clinical diagnosis and investigation of disease mechanisms.
Collapse
Affiliation(s)
- Jiangshuo Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jing Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Manjiangcuo Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Guanggen Jiao
- Department of Pathology and Thoracic Surgery, Linzhou Esophageal Cancer Hospital, Linzhou, 456500, China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
11
|
Tang Y, Chen S, Wang S, Xu K, Zhang K, Wang D, Feng N. Decanoylcarnitine Inhibits Triple-Negative Breast Cancer Progression via Mmp9 in an Intermittent Fasting Obesity Mouse. Technol Cancer Res Treat 2024; 23:15330338241233443. [PMID: 38409962 PMCID: PMC10898300 DOI: 10.1177/15330338241233443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Purpose: Treatment of triple-negative breast cancer (TNBC) remains challenging. Intermittent fasting (IF) has emerged as a promising approach to improve metabolic health of various metabolic disorders. Clinical studies indicate IF is essential for TNBC progression. However, the molecular mechanisms underlying metabolic remodeling in regulating IF and TNBC progression are still unclear. Methods: In this study, we utilized a robust mouse model of TNBC and exposed subjects to a high-fat diet (HFD) with IF to explore its impact on the metabolic reprogramming linked to cancer progression. To identify crucial serum metabolites and signaling events, we utilized targeted metabolomics and RNA sequencing (RNA-seq). Furthermore, we conducted immunoblotting, real-time quantitative polymerase chain reaction (RT-qPCR), cell migration assays, lentivirus-mediated Mmp9 overexpression, and Mmp9 inhibitor experiments to elucidate the role of decanoylcarnitine/Mmp9 in TNBC cell migration. Results: Our observations indicate that IF exerts notable inhibitory effects on both the proliferation and cancer metastasis. Utilizing targeted metabolomics and RNA-seq, we initially identified pivotal serum metabolites and signaling events in the progression of TNBC. Among the 349 serum metabolites identified, decanoylcarnitine was picked out to inhibit TNBC cell proliferation and migration. RNA-seq analysis of TNBC cells treated with decanoylcarnitine revealed its suppressive effects on extracellular matrix-related protein components, with a notable reduction observed in Mmp9. Further investigations confirmed that decanoylcarnitine could inhibit Mmp9 expression in TNBC cells, primary tumors, lung, and liver metastasis tissues. Mmp9 overexpression abolished the inhibitory effect of decanoylcarnitine on cell migration. Conclusion: This study pioneers the exploration of IF intervention and the role of decanoylcarnitine/Mmp9 in the progression of TNBC in obese mice, enhancing our comprehension of the potential roles of various dietary patterns in the process of cancer treatment.
Collapse
Affiliation(s)
- Yifan Tang
- Department of Urology, Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Shuai Chen
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Saijun Wang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ke Xu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kun Zhang
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Dongmei Wang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ninghan Feng
- Department of Urology, Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
12
|
Jiao R, Jiang W, Xu K, Luo Q, Wang L, Zhao C. Lipid metabolism analysis in esophageal cancer and associated drug discovery. J Pharm Anal 2024; 14:1-15. [PMID: 38352954 PMCID: PMC10859535 DOI: 10.1016/j.jpha.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 02/16/2024] Open
Abstract
Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis. It is still being explored in depth due to its complex molecular mechanisms of occurrence and development. Lipids play a crucial role in cells by participating in energy supply, biofilm formation, and signal transduction processes, and lipid metabolic reprogramming also constitutes a significant characteristic of malignant tumors. More and more studies have found esophageal cancer has obvious lipid metabolism abnormalities throughout its beginning, progress, and treatment resistance. The inhibition of tumor growth and the enhancement of antitumor therapy efficacy can be achieved through the regulation of lipid metabolism. Therefore, we reviewed and analyzed the research results and latest findings for lipid metabolism and associated analysis techniques in esophageal cancer, and comprehensively proved the value of lipid metabolic reprogramming in the evolution and treatment resistance of esophageal cancer, as well as its significance in exploring potential therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Ruidi Jiao
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China
| | - Wei Jiang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China
| | - Kunpeng Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China
| | - Qian Luo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luhua Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China
| | - Chao Zhao
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
13
|
Li J, Xu S, Zhu F, Shen F, Zhang T, Wan X, Gong S, Liang G, Zhou Y. Multi-omics Combined with Machine Learning Facilitating the Diagnosis of Gastric Cancer. Curr Med Chem 2024; 31:6692-6712. [PMID: 38351697 DOI: 10.2174/0109298673284520240112055108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 01/03/2024] [Indexed: 10/19/2024]
Abstract
Gastric cancer (GC) is a highly intricate gastrointestinal malignancy. Early detection of gastric cancer forms the cornerstone of precision medicine. Several studies have been conducted to investigate early biomarkers of gastric cancer using genomics, transcriptomics, proteomics, and metabolomics, respectively. However, endogenous substances associated with various omics are concurrently altered during gastric cancer development. Furthermore, environmental exposures and family history can also induce modifications in endogenous substances. Therefore, in this study, we primarily investigated alterations in DNA mutation, DNA methylation, mRNA, lncRNA, miRNA, circRNA, and protein, as well as glucose, amino acid, nucleotide, and lipid metabolism levels in the context of GC development, employing genomics, transcriptomics, proteomics, and metabolomics. Additionally, we elucidate the impact of exposure factors, including HP, EBV, nitrosamines, smoking, alcohol consumption, and family history, on diagnostic biomarkers of gastric cancer. Lastly, we provide a summary of the application of machine learning in integrating multi-omics data. Thus, this review aims to elucidate: i) the biomarkers of gastric cancer related to genomics, transcriptomics, proteomics, and metabolomics; ii) the influence of environmental exposure and family history on multiomics data; iii) the integrated analysis of multi-omics data using machine learning techniques.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Siyi Xu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Feng Zhu
- Physical and Chemical Laboratory, Jiangsu Provincial Center for Disease Control & Prevention, 172 Jiangsu Rd, Nanjing, 210009, China
| | - Fei Shen
- Physical and Chemical Laboratory, Jiangsu Provincial Center for Disease Control & Prevention, 172 Jiangsu Rd, Nanjing, 210009, China
| | - Tianyi Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Xin Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Saisai Gong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yonglin Zhou
- Physical and Chemical Laboratory, Jiangsu Provincial Center for Disease Control & Prevention, 172 Jiangsu Rd, Nanjing, 210009, China
| |
Collapse
|
14
|
Qu P, Rom O, Li K, Jia L, Gao X, Liu Z, Ding S, Zhao M, Wang H, Chen S, Xiong X, Zhao Y, Xue C, Zhao Y, Chu C, Wen B, Finney AC, Zheng Z, Cao W, Zhao J, Bai L, Zhao S, Sun D, Zeng R, Lin J, Liu W, Zheng L, Zhang J, Liu E, Chen YE. DT-109 ameliorates nonalcoholic steatohepatitis in nonhuman primates. Cell Metab 2023; 35:742-757.e10. [PMID: 37040763 DOI: 10.1016/j.cmet.2023.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/03/2023] [Accepted: 03/17/2023] [Indexed: 04/13/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) prevalence is rising with no pharmacotherapy approved. A major hurdle in NASH drug development is the poor translatability of preclinical studies to safe/effective clinical outcomes, and recent failures highlight a need to identify new targetable pathways. Dysregulated glycine metabolism has emerged as a causative factor and therapeutic target in NASH. Here, we report that the tripeptide DT-109 (Gly-Gly-Leu) dose-dependently attenuates steatohepatitis and fibrosis in mice. To enhance the probability of successful translation, we developed a nonhuman primate model that histologically and transcriptionally mimics human NASH. Applying a multiomics approach combining transcriptomics, proteomics, metabolomics, and metagenomics, we found that DT-109 reverses hepatic steatosis and prevents fibrosis progression in nonhuman primates, not only by stimulating fatty acid degradation and glutathione formation, as found in mice, but also by modulating microbial bile acid metabolism. Our studies describe a highly translatable NASH model and highlight the need for clinical evaluation of DT-109.
Collapse
Affiliation(s)
- Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Oren Rom
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Ke Li
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 6 Tiantan Xili, Chongwen District, Beijing 100050, China
| | - Linying Jia
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Xiaojing Gao
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Shusi Ding
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 6 Tiantan Xili, Chongwen District, Beijing 100050, China
| | - Mingming Zhao
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 38 Xue Yuan Road, Beijing 100191, China
| | - Huiqing Wang
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 38 Xue Yuan Road, Beijing 100191, China
| | - Shuangshuang Chen
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai 200031, China
| | - Xuelian Xiong
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai 200031, China
| | - Ying Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Chao Xue
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Yang Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Chengshuang Chu
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Zuowen Zheng
- Spring Biological Technology Development Co., Ltd, Fangchenggang, Guangxi 538000, China
| | - Wenbin Cao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Jinpeng Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Liang Bai
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rong Zeng
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiandie Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Lemin Zheng
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 6 Tiantan Xili, Chongwen District, Beijing 100050, China; The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 38 Xue Yuan Road, Beijing 100191, China.
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA.
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China.
| | - Y Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
Untargeted, High-Resolution Metabolomics in Pediatric Eosinophilic Esophagitis. J Pediatr Gastroenterol Nutr 2023; 76:355-363. [PMID: 36728821 DOI: 10.1097/mpg.0000000000003693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND/OBJECTIVES Eosinophilic esophagitis (EoE) is an inflammatory disease of unclear etiology. The aim of this study was to use untargeted plasma metabolomics to identify metabolic pathway alterations associated with EoE to better understand the pathophysiology. METHODS This prospective, case-control study included 72 children, aged 1-17 years, undergoing clinically indicated upper endoscopy (14 diagnosed with EoE and 58 controls). Fasting plasma samples were analyzed for metabolomics by high-resolution dual-chromatography mass spectrometry. Analysis was performed on sex-matched groups at a 2:1 ratio. Significant differences among the plasma metabolite features between children with and without EoE were determined using multivariate regression analysis and were annotated with a network-based algorithm. Subsequent pathway enrichment analysis was performed. RESULTS Patients with EoE had a higher proportion of atopic disease (85.7% vs 50%, P = 0.019) and any allergies (100% vs 57.1%, P = 0.0005). Analysis of the dual chromatography features resulted in a total of 918 metabolites that differentiated EoE and controls. Glycerophospholipid metabolism was significantly enriched with the greatest number of differentiating metabolites and overall pathway enrichment ( P < 0.01). Multiple amino and fatty acid pathways including linoleic acid were also enriched, as well as pyridoxine metabolism ( P < 0.01). CONCLUSIONS In this pilot study, we found differences in metabolites involved in glycerophospholipid and inflammation pathways in pediatric patients with EoE using untargeted metabolomics, as well as overlap with amino acid metabolome alterations found in atopic disease.
Collapse
|
16
|
Li Y, Zhu W, Xiang Q, Kim J, Dufresne C, Liu Y, Li T, Chen S. Creation of a Plant Metabolite Spectral Library for Untargeted and Targeted Metabolomics. Int J Mol Sci 2023; 24:ijms24032249. [PMID: 36768571 PMCID: PMC9916794 DOI: 10.3390/ijms24032249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Large-scale high throughput metabolomic technologies are indispensable components of systems biology in terms of discovering and defining the metabolite parts of the system. However, the lack of a plant metabolite spectral library limits the metabolite identification of plant metabolomic studies. Here, we have created a plant metabolite spectral library using 544 authentic standards, which increased the efficiency of identification for untargeted metabolomic studies. The process of creating the spectral library was described, and the mzVault library was deposited in the public repository for free download. Furthermore, based on the spectral library, we describe a process of creating a pseudo-targeted method, which was applied to a proof-of-concept study of Arabidopsis leaf extracts. As authentic standards become available, more metabolite spectra can be easily incorporated into the spectral library to improve the mzVault package.
Collapse
Affiliation(s)
- Yangyang Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Wei Zhu
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Qingyuan Xiang
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32610, USA
| | - Craig Dufresne
- Thermo Scientific Training Institute, West Palm Beach, FL 32407, USA
| | - Yufeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
- Correspondence:
| |
Collapse
|
17
|
Cui MY, Yi X, Cao ZZ, Zhu DX, Wu J. Targeting Strategies for Aberrant Lipid Metabolism Reprogramming and the Immune Microenvironment in Esophageal Cancer: A Review. JOURNAL OF ONCOLOGY 2022; 2022:4257359. [PMID: 36106333 PMCID: PMC9467784 DOI: 10.1155/2022/4257359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 12/24/2022]
Abstract
Esophageal cancer is of high importance to occurrence, development, and treatment resistance. As evidenced by recent studies, pathways (e.g., Wnt/β-catenin, AMPK, and Hippo) are critical to the proliferation, differentiation, and self-renewal of esophageal cancer. In addition, the above pathways play a certain role in regulating esophageal cancer and act as potential therapeutic targets. Over the past few years, the function of lipid metabolism in controlling tumor cells and immune cells has aroused extensive attention. It has been reported that there are intricate interactions between lipid metabolism reprogramming between immune and esophageal cancer cells, whereas molecular mechanisms should be studied in depth. Immune cells have been commonly recognized as a vital player in the esophageal cancer microenvironment, having complex crosstalk with cancer cells. It is increasingly evidenced that the function of immune cells in the tumor microenvironment (TME) is significantly correlated with abnormal lipid metabolism. In this review, the latest findings in lipid metabolism reprogramming in TME are summarized, and the above findings are linked to esophageal cancer progression. Aberrant lipid metabolism and associated signaling pathways are likely to serve as a novel strategy to treat esophageal cancer through lipid metabolism reprogramming.
Collapse
Affiliation(s)
- Meng-Ying Cui
- Department of Oncology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xing Yi
- Department of Oncology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Zhen-Zhen Cao
- Department of Oncology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Dan-Xia Zhu
- Department of Oncology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jun Wu
- Department of Oncology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
18
|
Zhai G, Yang L, Luo Q, Wu K, Zhao Y, Wang F. Serum phosphopeptide profiling for colorectal cancer diagnosis using liquid chromatography-mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9316. [PMID: 35416361 DOI: 10.1002/rcm.9316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
RATIONALE The identification and evaluation of novel biomarkers are essential to clinical diagnosis and prognosis of colorectal cancer (CRC). Serum phosphopeptides have been recognized as a potential signature pool for cancers; therefore, we aim to profile the expression of serum phosphopeptides and to evaluate their feasibility in CRC diagnosis. METHODS We conducted the characterization and absolute quantification of endogenous phosphopeptides in sera using liquid chromatography-mass spectrometry analysis in combination with enrichment of phosphopeptides by ZrAs-Fe3 O4 @SiO2 nanoparticles and use of deuterium-labeled standards. Differentially expressed analysis of four phosphopeptides was performed, generating a two-phosphopeptide-based biomarker, LF3-4 , by logistic regression analysis, where LF3-4 is equal to (5.85 - 5.13 × [F3] - 3.57 × [F4]), and [F3] and [F4] are the concentration of phosphopeptides DpSGEGDFLAEGGGVR and ADpSGEGDFLAEGGGVR in sera, respectively. RESULTS The LF3-4 values showed significant difference in CRC cases compared with controls, and yielded a specificity of 100%, leading to correct classification of 56 (93%) out of 60 CRC patients, including 12 (92.3%) of 13 CRC cases in stage I. Double-blind validation showed that 97.5% of CRC cases were discriminated accurately. CONCLUSIONS The LF3-4 value was firstly verified to be a potential biomarker for CRC diagnosis, and may expand our view in underlying mechanisms for CRC.
Collapse
Affiliation(s)
- Guijin Zhai
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- Department of Biochemistry and Molecular Biology; Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Liping Yang
- Cancer Research Centre, Tumour Hospital Affiliated to Nantong University, Nantong, Jiangsu, China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Kui Wu
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
19
|
Zhao J, Zhao X, Yu J, Gao S, Zhang M, Yang T, Liu L. A multi-platform metabolomics reveals possible biomarkers for the early-stage esophageal squamous cell carcinoma. Anal Chim Acta 2022; 1220:340038. [DOI: 10.1016/j.aca.2022.340038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 12/24/2022]
|
20
|
Liu L, Wu J, Shi M, Wang F, Lu H, Liu J, Chen W, Yu G, Liu D, Yang J, Luo Q, Ni Y, Jin X, Jin X, Chen WL. New Metabolic Alterations and A Predictive Marker Pipecolic Acid in Sera for Esophageal Squamous Cell Carcinoma. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:670-687. [PMID: 35351627 PMCID: PMC9880896 DOI: 10.1016/j.gpb.2021.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/07/2021] [Accepted: 09/27/2021] [Indexed: 01/31/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a major histological subtype of esophageal cancer with a poor prognosis. Although several serum metabolomic investigations have been reported, ESCC tumor-associated metabolic alterations and predictive biomarkers in sera have not been defined. Here, we enrolled 34 treatment-naive patients with ESCC and collected their pre- and post-esophagectomy sera together with the sera from 34 healthy volunteers for a metabolomic survey. Our comprehensive analysis identified ESCC tumor-associated metabolic alterations as represented by a panel of 12 serum metabolites. Notably, postoperative abrosia and parenteral nutrition substantially perturbed the serum metabolome. Furthermore, we performed an examination using sera from carcinogen-induced mice at the dysplasia and ESCC stages and identified three ESCC tumor-associated metabolites conserved between mice and humans. Notably, among these metabolites, the level of pipecolic acid was observed to be progressively increased in mouse sera from dysplasia to cancerization, and it could be used to accurately discriminate between mice at the dysplasia stage and healthy control mice. Furthermore, this metabolite is essential for ESCC cells to restrain oxidative stress-induced DNA damage and cell proliferation arrest. Together, this study revealed a panel of 12 ESCC tumor-associated serum metabolites with potential for monitoring therapeutic efficacy and disease relapse, presented evidence for refining parenteral nutrition composition, and highlighted serum pipecolic acid as an attractive biomarker for predicting ESCC tumorigenesis.
Collapse
Affiliation(s)
- Lei Liu
- Department of Thoracic Surgery, The Affiliated Tumor Hospital of Nantong University, Nantong 226361, China
| | - Jia Wu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Minxin Shi
- Department of Thoracic Surgery, The Affiliated Tumor Hospital of Nantong University, Nantong 226361, China
| | - Fengying Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Haimin Lu
- Department of Thoracic Surgery, The Affiliated Tumor Hospital of Nantong University, Nantong 226361, China
| | - Jibing Liu
- Department of Epidemiology, Tumor Institute, The Affiliated Tumor Hospital of Nantong University, Nantong 226361, China
| | - Weiqin Chen
- Department of Clinical Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guanzhen Yu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Dan Liu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jing Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qin Luo
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan Ni
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310029, China
| | - Xing Jin
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China,Corresponding authors.
| | - Xiaoxia Jin
- Department of Pathology, The Affiliated Tumor Hospital of Nantong University, Nantong 226361, China,Corresponding authors.
| | - Wen-Lian Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China,Corresponding authors.
| |
Collapse
|
21
|
Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schiöth HB. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev 2022; 74:506-551. [PMID: 35710135 DOI: 10.1124/pharmrev.121.000408] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal β -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.
Collapse
Affiliation(s)
- Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Janis Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Didi Nordberg
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Misty M Attwood
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Stefan Smesny
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Zumrut Duygu Sen
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - An Chi Guo
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Eponine Oler
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Siyang Tian
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Jiamin Zheng
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - David S Wishart
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Helgi B Schiöth
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| |
Collapse
|
22
|
Tian H, Ni Z, Lam SM, Jiang W, Li F, Du J, Wang Y, Shui G. Precise Metabolomics Reveals a Diversity of Aging-Associated Metabolic Features. SMALL METHODS 2022; 6:e2200130. [PMID: 35527334 DOI: 10.1002/smtd.202200130] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Mass spectrometry-based metabolomics has emerged as a powerful technique for biomedical research, although technical issues with its analytical precision and structural characterization remain. Herein, a robust non-targeted strategy for accurate quantitation and precise profiling of metabolomes is developed and applied to investigate plasma metabolic features associated with human aging. A comprehensive set of isotope-labeled standards (ISs) covering major metabolic pathways is incorporated to quantify polar metabolites. Matching rules to select ISs for calibration follow a primary criterion of minimal coefficients of variations (COVs). If minimal COVs between specific ISs for a particular metabolite fall within 5% window, a further selection of ISs is conducted based on structural similarities and proximity in retention time. The introduction and refined selection of appropriate ISs for quantitation reduces the COVs of 480 identified metabolites in quality control samples from 14.3% to 9.8% and facilitates identification of additional metabolite. Finally, the precise metabolomics approach reveals perturbations in a diverse array of metabolic pathways across aging that principally implicate steroid metabolism, amino acid metabolism, lipid metabolism, and purine metabolism, which allows the authors to draw correlates to the pathology of various age-related diseases. These findings provide clues for the prevention and treatment of these age-related diseases.
Collapse
Affiliation(s)
- He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhen Ni
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- LipidALL Technologies Company Limited, Changzhou, Jiangsu Province, 213022, China
| | - Wenxi Jiang
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Fengjuan Li
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jie Du
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yuan Wang
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Xu J, Cao W, Shao A, Yang M, Andoh V, Ge Q, Pan HW, Chen KP. Metabolomics of Esophageal Squamous Cell Carcinoma Tissues: Potential Biomarkers for Diagnosis and Promising Targets for Therapy. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7819235. [PMID: 35782075 PMCID: PMC9246618 DOI: 10.1155/2022/7819235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Background The incidence of esophageal squamous cell carcinoma in China ranks first in the world. The early diagnosis technology is underdeveloped, and the prognosis is poor, which seriously threatens the quality of life of the Chinese people. Epidemiological findings are related to factors such as diet, living habits, and age. The specific mechanism is not clear yet. Metabolomics is a kind of omics that simultaneously and quantitatively analyzes the comprehensive profile of metabolites in living systems. It has unique advantages in the study of the diagnosis and pathogenesis of tumor-related diseases, especially in the search for biomarkers. Therefore, it is desirable to perform metabolic profiling analysis of cancer tissues through metabolomics to find potential biomarkers for the diagnosis and treatment of esophageal squamous cell carcinoma. Methods HPLC-TOF-MS/MS technology and Illumina Hiseq Xten Sequencing was used for the analysis of 210 pairs of matched esophageal squamous cell carcinoma tissues and normal tissues in Zhenjiang City, Jiangsu Province, a high-incidence area of esophageal cancer in China. Bioinformatics analysis was also performed. Results Through metabolomic and transcriptomic analysis, this study found that a total of 269 differential metabolites were obtained in esophageal squamous cell carcinoma and normal tissues, and 48 differential metabolic pathways were obtained through KEGG enrichment analysis. After further screening and identification, 12 metabolites with potential biomarkers to differentiate esophageal squamous cell carcinoma from normal tissues were obtained. Conclusions From the metabolomic data, 4 unknown compounds were found to be abnormally expressed in esophageal squamous cell carcinoma for the first time, such as 9,10-epoxy-12,15-octadecadienoate; 3 metabolites were found in multiple abnormal expression in another tumor, but upregulation or downregulation was found for the first time in esophageal cancer, such as oleoyl glycine; at the same time, it was further confirmed that five metabolites were abnormally expressed in esophageal squamous cell carcinoma, which was similar to the results of other studies, such as PE.
Collapse
Affiliation(s)
- Jia Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Weiping Cao
- The Fourth People's Hospital of Zhenjiang, Zhenjiang, Jiangsu 212001, China
| | - Aizhong Shao
- Department of Cardiothorac Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Ming Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Vivian Andoh
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qi Ge
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hui-wen Pan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ke-ping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
24
|
Iurova MV, Chagovets VV, Pavlovich SV, Starodubtseva NL, Khabas GN, Chingin KS, Tokareva AO, Sukhikh GT, Frankevich VE. Lipid Alterations in Early-Stage High-Grade Serous Ovarian Cancer. Front Mol Biosci 2022; 9:770983. [PMID: 35495636 PMCID: PMC9048792 DOI: 10.3389/fmolb.2022.770983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/15/2022] [Indexed: 12/18/2022] Open
Abstract
Epithelial ovarian cancer (OC) ranks first in the number of deaths among diseases of the female reproductive organs. Identification of OC at early stages is highly beneficial for the treatment but is highly challenging due to the asymptomatic or low-symptom disease development. In this study, lipid extracts of venous blood samples from 41 female volunteers, including 28 therapy-naive patients with histologically verified high-grade serous ovarian cancer at different stages (5 patients with I-II stages; 23 patients with III-IV stages) and 13 apparently healthy women of reproductive age, were profiled by high-performance liquid chromatography mass spectrometry (HPLC-MS). Based on MS signals of 128 differential lipid species with statistically significant level variation between the OC patients and control group, an OPLS-DA model was developed for the recognition of OC with 100% sensitivity and specificity R 2 = 0.87 and Q2 = 0.80. The second OPLS-DA model was developed for the differentiation between I-II OC stages and control group with R 2 = 0.97 and Q2 = 0.86 based on the signal levels of 108 differential lipid species. The third OPLS-DA model was developed for the differentiation between I-II OC stages and III-IV stages based on the signal levels of 99 differential lipid species. Various lipid classes (diglycerides, triglycerides, phosphatidylchlorines, ethanolamines, sphingomyelins, ceramides, phosphatidylcholines and phosphoinositols) in blood plasma samples display distinctly characteristic profiles in I-II OC, which indicates the possibility of their use as marker oncolipids in diagnostic molecular panels of early OC stages. Our results suggest that lipid profiling by HPLC-MS can improve identification of early-stage OC and thus increase the efficiency of treatment.
Collapse
Affiliation(s)
- M. V. Iurova
- Federal State Budget Institution, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - V. V. Chagovets
- Federal State Budget Institution, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - S. V. Pavlovich
- Federal State Budget Institution, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - N. L. Starodubtseva
- Federal State Budget Institution, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, Moscow, Russia
- Department of Molecular and Chemical Physics, The Moscow Institute of Physics and Technology (National Research University), Moscow, Russia
| | - G. N. Khabas
- Federal State Budget Institution, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - K. S. Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, China
| | - A. O. Tokareva
- Federal State Budget Institution, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - G. T. Sukhikh
- Federal State Budget Institution, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - V. E. Frankevich
- Federal State Budget Institution, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| |
Collapse
|
25
|
Mishra V, Singh A, Chen X, Rosenberg AJ, Pearson AT, Zhavoronkov A, Savage PA, Lingen MW, Agrawal N, Izumchenko E. Application of liquid biopsy as multi-functional biomarkers in head and neck cancer. Br J Cancer 2022; 126:361-370. [PMID: 34876674 PMCID: PMC8810877 DOI: 10.1038/s41416-021-01626-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a molecularly heterogeneous disease, with a 5-year survival rate that still hovers at ~60% despite recent advancements. The advanced stage upon diagnosis, limited success with effective targeted therapy and lack of reliable biomarkers are among the key factors underlying the marginally improved survival rates over the decades. Prevention, early detection and biomarker-driven treatment adaptation are crucial for timely interventions and improved clinical outcomes. Liquid biopsy, analysis of tumour-specific biomarkers circulating in bodily fluids, is a rapidly evolving field that may play a striking role in optimising patient care. In recent years, significant progress has been made towards advancing liquid biopsies for non-invasive early cancer detection, prognosis, treatment adaptation, monitoring of residual disease and surveillance of recurrence. While these emerging technologies have immense potential to improve patient survival, numerous methodological and biological limitations must be overcome before their implementation into clinical practice. This review outlines the current state of knowledge on various types of liquid biopsies in HNSCC, and their potential applications for diagnosis, prognosis, grading treatment response and post-treatment surveillance. It also discusses challenges associated with the clinical applicability of liquid biopsies and prospects of the optimised approaches in the management of HNSCC.
Collapse
Affiliation(s)
- Vasudha Mishra
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Alka Singh
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Xiangying Chen
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Ari J Rosenberg
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Alexander T Pearson
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | | | - Peter A Savage
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Mark W Lingen
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Nishant Agrawal
- Department of Surgery, Section of Otolaryngology-Head and Neck Surgery, University of Chicago, Chicago, IL, USA.
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
26
|
Wang PP, Song X, Zhao XK, Wei MX, Gao SG, Zhou FY, Han XN, Xu RH, Wang R, Fan ZM, Ren JL, Li XM, Wang XZ, Yang MM, Hu JF, Zhong K, Lei LL, Li LY, Chen Y, Chen YJ, Ji JJ, Yang YZ, Li J, Wang LD. Serum Metabolomic Profiling Reveals Biomarkers for Early Detection and Prognosis of Esophageal Squamous Cell Carcinoma. Front Oncol 2022; 12:790933. [PMID: 35155234 PMCID: PMC8832491 DOI: 10.3389/fonc.2022.790933] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/04/2022] [Indexed: 11/15/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common aggressive malignancies worldwide, particularly in northern China. The absence of specific early symptoms and biomarkers leads to late-stage diagnosis, while early diagnosis and risk stratification are crucial for improving overall prognosis. We performed UPLC-MS/MS on 450 ESCC patients and 588 controls consisting of a discovery group and two validation groups to identify biomarkers for early detection and prognosis. Bioinformatics and clinical statistical methods were used for profiling metabolites and evaluating potential biomarkers. A total of 105 differential metabolites were identified as reliable biomarker candidates for ESCC with the same tendency in three cohorts, mainly including amino acids and fatty acyls. A predictive model of 15 metabolites [all-trans-13,14-dihydroretinol, (±)-myristylcarnitine, (2S,3S)-3-methylphenylalanine, 3-(pyrazol-1-yl)-L-alanine, carnitine C10:1, carnitine C10:1 isomer1, carnitine C14-OH, carnitine C16:2-OH, carnitine C9:1, formononetin, hyodeoxycholic acid, indole-3-carboxylic acid, PysoPE 20:3, PysoPE 20:3(2n isomer1), and resolvin E1] was developed by logistic regression after LASSO and random forest analysis. This model held high predictive accuracies on distinguishing ESCC from controls in the discovery and validation groups (accuracies > 89%). In addition, the levels of four downregulated metabolites [hyodeoxycholic acid, (2S,3S)-3-methylphenylalanine, carnitine C9:1, and indole-3-carboxylic acid] were significantly higher in early cancer than advanced cancer. Furthermore, three independent prognostic markers were identified by multivariate Cox regression analyses with and without clinical indicators: a high level of MG(20:4)isomer and low levels of 9,12-octadecadienoic acid and L-isoleucine correlated with an unfavorable prognosis; the risk score based on these three metabolites was able to stratify patients into low or high risk. Moreover, pathway analysis indicated that retinol metabolism and linoleic acid metabolism were prominent perturbed pathways in ESCC. In conclusion, metabolic profiling revealed that perturbed amino acids and lipid metabolism were crucial metabolic signatures of ESCC. Both panels of diagnostic and prognostic markers showed excellent predictive performances. Targeting retinol and linoleic acid metabolism pathways may be new promising mechanism-based therapeutic approaches. Thus, this study would provide novel insights for the early detection and risk stratification for the clinical management of ESCC and potentially improve the outcomes of ESCC.
Collapse
Affiliation(s)
- Pan Pan Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xin Song
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xue Ke Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Meng Xia Wei
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - She Gan Gao
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Fu You Zhou
- Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang, China
| | - Xue Na Han
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Rui Hua Xu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Ran Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Zong Min Fan
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Jing Li Ren
- Department of Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xue Min Li
- Department of Pathology, Hebei Provincial Cixian People’s Hospital, Cixian, China
| | - Xian Zeng Wang
- Department of Thoracic Surgery, Linzhou People’s Hospital, Linzhou, China
| | - Miao Miao Yang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Jing Feng Hu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Kan Zhong
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Ling Ling Lei
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Liu Yu Li
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yao Chen
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Ya Jie Chen
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Jia Jia Ji
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yuan Ze Yang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Jia Li
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Li Dong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
- *Correspondence: Li Dong Wang,
| |
Collapse
|
27
|
Li X, Liu L, Li N, Jia Q, Wang X, Zuo L, Long J, Xue P, Sun Z, Zhao H. Metabolomics based plasma biomarkers for diagnosis of oral squamous cell carcinoma and oral erosive lichen planus. J Cancer 2022; 13:76-87. [PMID: 34976172 PMCID: PMC8692701 DOI: 10.7150/jca.59777] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 11/02/2021] [Indexed: 11/05/2022] Open
Abstract
Backgrounds: To identify diagnostic biomarkers for differentiating oral squamous cell carcinoma (OSCC) from oral erosive lichen planus (OELP) and investigate potential biomarkers associated with malignant transformation. Methods: In this study, 72 patients with OSCC, 75 patients with OELP subjects were recruited. Their plasma samples were analyzed by ultra-high-performance liquid chromatography quadrupole-Orbitrap high-resolution accurate mass spectrometry, (UHPLC/Q-Orbitrap HRMS). Principal component analysis, orthogonal partial least square discrimination analysis, t-test analysis and false discovery rate were used to identify different metabolites in patients with OSCC and OELP. The metabolic pathway analysis was performed by MetaboAnalyst. To further screen and identify the biomarkers of OSCC and establish a diagnostic panel, binary logistic regression analysis and receiver operating characteristic analysis were used. The data were then combined with blood samples from healthy individuals for mass spectrometry analysis to obtain biomarkers related to malignant transformation. Results: A total of 20 kinds of endogenous metabolites were identified from plasma samples of OSCC patients and OELP patients. Metabolic pathway analysis showed that the biomarkers associated with OSCC were closely related to cholic acid metabolism and amino acid metabolism. Finally, a diagnostic panel composed of decanoylcarnitine, cysteine and cholic acid was established. This diagnostic panel had good diagnostic efficiency with the AUC=0.998. Other metabolites including uridine, taurine, glutamate, citric acid and LysoPC(18:1) were identified to be general biomarkers for malignant transformation of OELP. Conclusion: Biomarkers based on plasma metabolomics are of great significance for the prediction of malignant transformation of OELP and early diagnosis of OSCC.
Collapse
Affiliation(s)
- Xibo Li
- Department of Oral Emergency, The First Affiliated Hospital of Zhengzhou University· Stomatological Hospital of Henan Province, Zhengzhou, Henan, 450052, China.,School and Hospital of Stomatology of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Liwei Liu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan, 450052, China
| | - Na Li
- Department of Prosthodontics, The First Affiliated Hospital of Zhengzhou University· Stomatological Hospital of Henan Province, Zhengzhou, Henan, 450052, China
| | - Qingquan Jia
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan, 450052, China
| | - Xiaoshuang Wang
- Department of Oral Emergency, The First Affiliated Hospital of Zhengzhou University· Stomatological Hospital of Henan Province, Zhengzhou, Henan, 450052, China.,School and Hospital of Stomatology of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lihua Zuo
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan, 450052, China
| | - Jianglan Long
- Beijing Key Laboratory and Joint Laboratory for International Cooperation of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
| | - Peng Xue
- Health Management Center, The First Affiliated Hospital of Zhengzhou University· Stomatological Hospital of Henan Province, Zhengzhou, Henan, 450052, China
| | - Zhi Sun
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan, 450052, China
| | - Hongyu Zhao
- Department of Oral Emergency, The First Affiliated Hospital of Zhengzhou University· Stomatological Hospital of Henan Province, Zhengzhou, Henan, 450052, China.,School and Hospital of Stomatology of Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
28
|
Huo M, Wang Z, Fu W, Tian L, Li W, Zhou Z, Chen Y, Wei J, Abliz Z. Spatially Resolved Metabolomics Based on Air-Flow-Assisted Desorption Electrospray Ionization-Mass Spectrometry Imaging Reveals Region-Specific Metabolic Alterations in Diabetic Encephalopathy. J Proteome Res 2021; 20:3567-3579. [PMID: 34137614 DOI: 10.1021/acs.jproteome.1c00179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spatially resolved metabolic profiling of brain is vital for elucidating tissue-specific molecular histology and pathology underlying diabetic encephalopathy (DE). In this study, a spatially resolved metabolomic method based on air-flow-assisted desorption electrospray ionization-mass spectrometry imaging (AFADESI-MSI) was developed for investigating the region-specific metabolic disturbances in the brain of DE model rats induced by a high-fat diet in combination with streptozotocin administration. A total of 19 discriminating metabolites associated with glycolysis and the pentose phosphate pathway (PPP); the glutamate/gamma aminobutyric acid-glutamine cycle and tricarboxylic acid cycle; nucleotide metabolism; lipid metabolism; carnitine homeostasis; and taurine, ascorbic acid, histidine, and choline metabolism were identified and located in the brains of the diabetic rats simultaneously for the first time. The results indicated that increased glycolytic and PPP activity; dysfunction of mitochondrial metabolism; dysregulation of adenosinergic, glutamatergic, dopaminergic, cholinergic, and histaminergic systems; disorder of osmotic regulation and antioxidant system; and disorder of lipid metabolism occur in a region-specific fashion in the brains of DE rats. Thus, this study provides valuable information regarding the molecular pathological signature of DE. These findings also underline the high potential of AFADESI-MSI for applications in various central nervous system diseases.
Collapse
Affiliation(s)
- Meiling Huo
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Zhonghua Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Wenqing Fu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Lu Tian
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Wanfang Li
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zhi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Yanhua Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Jinfeng Wei
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zeper Abliz
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China.,Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, P. R. China
| |
Collapse
|
29
|
Han G, Ling R, Sun C, Wang X, Zhou Y, Yu L, Liu S. HMGB1 knockdown increases the radiosensitivity of esophageal squamous cell carcinoma by regulating the expression of molecules involved in DNA repair. Oncol Lett 2021; 22:503. [PMID: 33986864 PMCID: PMC8114541 DOI: 10.3892/ol.2021.12764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/26/2021] [Indexed: 01/01/2023] Open
Abstract
Radiotherapy is an effective therapeutic strategy in esophageal squamous cell carcinoma (ESCC). However, acquired radioresistance of cancer cells leads to radiotherapy failure. The present study aimed to investigate the mechanisms of the effect of high mobility group box 1 (HMGB1) on the radiation sensitivity of ESCC. Small interfering RNA (si) transfection was used to generate three groups of TE-1 cells (TE-1, negative control and TE-1+siHMGB1), and the protein expression levels of HMGB1 in TE-1 cells were detected by western blotting. These groups of TE-1 cells were irradiated with different doses (0, 2, 4, 6 and 8 Gy) of X-rays after transfection. Subsequently, the viability of TE-1 cells was detected using an MTT assay, and the survival fraction of TE-1 cells was observed using a colony formation assay. The apoptotic rate, reactive oxygen species (ROS) content and levels of phosphorylated (p)-histone H2AX at S139 (p-γH2AX) of the cells were detected by flow cytometry. The alterations in mRNA expression levels of nicotinamide adenine nucleotide phosphate oxidase (NOX)1 and NOX5 were detected by reverse transcription-quantitative PCR, while the changes in protein levels of caspase-3, poly(ADP-ribose) polymerase, p-p38, p-ERK1/2 and p-JNK were detected by western blotting. The results revealed that HMGB1 knockdown significantly decreased cell viability, and the apoptosis rate of TE-1 cells transfected with siHMGB1 combined with radiation treatment was increased compared with that in cells with either siHMGB1 transfection or radiation treatment alone. HMGB1 knockdown increased nicotinamide adenine nucleotide phosphate oxidase-mediated ROS production and induced DNA damage via the MAPK signaling pathway, which may promote apoptosis and radiosensitivity after radiation in TE-1 cells. In conclusion, targeting HMGB1 may represent a promising strategy to increase the efficacy of radiation therapy for ESCC.
Collapse
Affiliation(s)
- Guohu Han
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu 214500, P.R. China
| | - Rui Ling
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Changchun Sun
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu 214500, P.R. China
| | - Xuefeng Wang
- Department of Central Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yuepeng Zhou
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Lijiang Yu
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu 214500, P.R. China
| | - Shenzha Liu
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu 214500, P.R. China
| |
Collapse
|
30
|
Liquid Biopsies in Head and Neck Cancer: Current State and Future Challenges. Cancers (Basel) 2021; 13:cancers13081874. [PMID: 33919778 PMCID: PMC8070729 DOI: 10.3390/cancers13081874] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Head and neck cancers are the seventh most frequent malignancy worldwide, consisting of a heterogeneous group of cancers that develop in the oral cavity, pharynx, and larynx, with head and neck squamous cell carcinoma (HNSCC) being the most common pathology. Due to limitations with screening and physical examination, HNSCC often presents in advanced disease states and is thus associated with poor survival. In this setting, liquid biopsies, or obtaining patient bodily fluid samples for cancer diagnosis and prognosis, may play a dramatic role in optimizing care for HNSCC patients. In recent years, there have been dramatic advancements in investigations focused on optimizing and implementing liquid biopsies in general, and specifically for HNSCC patients. Moving forward, there remain significant challenges in liquid biopsy technological development, as well as opportunities for the development of HNSCC liquid biopsy clinical trials and treatment paradigms. In this review, we discuss the current state of liquid biopsy technologies via circulating tumor cells, circulating tumor DNA and exosomes, approaches in head and neck cancer, challenges to optimization and application of liquid biopsies for clinical study, and future prospects for this field of research as it applies to head and neck cancer.
Collapse
|
31
|
Li X, Zhao L, Wei M, Lv J, Sun Y, Shen X, Zhao D, Xue F, Zhang T, Wang J. Serum metabolomics analysis for the progression of esophageal squamous cell carcinoma. J Cancer 2021; 12:3190-3197. [PMID: 33976728 PMCID: PMC8100812 DOI: 10.7150/jca.54429] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND: Previous metabolomics studies have found differences in metabolic characteristics between the healthy and ESCC patients. However, few of these studies concerned the whole process of the progression of ESCC. This study aims to explore serum metabolites associated with the progression of ESCC. METHODS: Serum samples from 653 participants (305 normal, 77 esophagitis, 228 LGD, and 43 HGD/ESCC) were examined by ultra-high performance liquid chromatography quadruple time-of-flight mass spectrometry (UHPLC-QTOF/MS). Principal component analysis (PCA) was first applied to obtain an overview of the clustering trend for the multidimensional data. Fuzzy c-means (FCM) clustering was then used to screen metabolites with a changing tendency in the progression of ESCC. Univariate ordinal logistic regression analysis and multiple ordinal logistic regression analysis were applied to evaluate the association of metabolites with the risk of ESCC progression, and adjusted for age, gender, BMI, tobacco smoking, and alcohol drinking status. RESULTS: After FCM clustering analysis, a total of 38 metabolites exhibiting changing tendency among normal, esophagitis, LGD, and HGD/ESCC patients. Final results showed 15 metabolites associated with the progression of ESCC. Ten metabolites (dopamine, L-histidine, 5-hydroxyindoleacetate, L-tryptophan, 2'-O-methylcytidine, PC (14:0/0:0), PC (O-16:1/0:0), PE (18:0/0:0), PC (16:1/0:0), PC (18:2/0:0)) were associated with decreased risk of developing ESCC. Five metabolites (hypoxanthine, inosine, carnitine (14:1), glycochenodeoxycholate, PC (P-18:0/18:3)) were associated with increased risk of developing ESCC. CONCLUSIONS: These results demonstrated that serum metabolites are associated with the progression of ESCC. These metabolites are capable of potential biomarkers for the risk prediction and early detection of ESCC.
Collapse
Affiliation(s)
- Xia Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lihong Zhao
- Tumor Preventative and Therapeutic Base of Shandong Province, Feicheng People's Hospital, Feicheng 271600, China
| | - Mengke Wei
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jiali Lv
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yawen Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xiaotao Shen
- Interdisciplinary Research Center on Biology and Chemistry, and Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Deli Zhao
- Tumor Preventative and Therapeutic Base of Shandong Province, Feicheng People's Hospital, Feicheng 271600, China
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jialin Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.,Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| |
Collapse
|
32
|
Aftabi Y, Soleymani J, Jouyban A. Efficacy of Analytical Technologies in Metabolomics Studies of the Gastrointestinal Cancers. Crit Rev Anal Chem 2021; 52:1593-1605. [PMID: 33757389 DOI: 10.1080/10408347.2021.1901646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
According to the reports of the World Health Organization and the International Agency for Research on Cancer, cancer is the second leading cause of human death worldwide. However, early-stage detection of cancers can efficiently enhance the chance of therapy and saving lives. Metabolomics strategies apply a variety of approaches to discover new potential diagnoses, prognoses, and/or therapeutic biomarkers of various diseases. Metabolomics aims to identify and measure different low-molecular-weight biomolecules in physiological environments. In these studies, special metabolites are extracted from biological samples and identified using analytical techniques. Afterward, using data processing programs discovering significantly associated biomarkers is pursued. In the present review, we aimed to discuss recently reported analytical approaches on the metabolomics studies of gastrointestinal cancers including gastric, colorectal, and esophageal cancers. The gas- and liquid-chromatography with different detectors have been shown that are the main analytical techniques and for metabolites quantification, nuclear magnetic resonance has been utilized as a master method.
Collapse
Affiliation(s)
- Younes Aftabi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Ren Z, Rajani C, Jia W. The Distinctive Serum Metabolomes of Gastric, Esophageal and Colorectal Cancers. Cancers (Basel) 2021; 13:cancers13040720. [PMID: 33578739 PMCID: PMC7916516 DOI: 10.3390/cancers13040720] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/18/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Cancer of the stomach, esophagus and colon are often fatal. Ways are being sought to establish patient-friendly screening tests that would allow these cancers to be detected earlier. Examination of the metabolomics results of cancer patient’s serum for certain metabolites unique for a particular cancer was the goal of this review. From studies conducted within the past five years several metabolites were found to be changed in cancer compared to non-cancer patients for each of the three cancers. Further confirmation of what was discovered in this review coupled with establishment of standard protocols may allow for cancer screening on patient blood samples to become routine clinical tests. Abstract Three of the most lethal cancers in the world are the gastrointestinal cancers—gastric (GC), esophageal (EC) and colorectal cancer (CRC)—which are ranked as third, sixth and fourth in cancer deaths globally. Early detection of these cancers is difficult, and a quest is currently on to find non-invasive screening tests to detect these cancers. The reprogramming of energy metabolism is a hallmark of cancer, notably, an increased dependence on aerobic glycolysis which is often referred to as the Warburg effect. This metabolic change results in a unique metabolic profile that distinguishes cancer cells from normal cells. Serum metabolomics analyses allow one to measure the end products of both host and microbiota metabolism present at the time of sample collection. It is a non-invasive procedure requiring only blood collection which encourages greater patient compliance to have more frequent screenings for cancer. In the following review we will examine some of the most current serum metabolomics studies in order to compare their results and test a hypothesis that different tumors, notably, from EC, GC and CRC, have distinguishing serum metabolite profiles.
Collapse
Affiliation(s)
- Zhenxing Ren
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China;
| | - Cynthia Rajani
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
- Correspondence: (C.R.); or (W.J.)
| | - Wei Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China;
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Correspondence: (C.R.); or (W.J.)
| |
Collapse
|
34
|
Dagamajalu S, Vijayakumar M, Shetty R, Rex DAB, Narayana Kotimoole C, Prasad TSK. Proteogenomic examination of esophageal squamous cell carcinoma (ESCC): new lines of inquiry. Expert Rev Proteomics 2020; 17:649-662. [PMID: 33151123 DOI: 10.1080/14789450.2020.1845146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Esophageal squamous cell carcinoma (ESCC), a histopathologic subtype of esophageal cancer is a major cause of cancer-related morbidity and mortality worldwide. This is primarily because patients are diagnosed at an advanced stage by the time symptoms appear. The genomics and mass spectrometry-based proteomics continue to provide important leads toward biomarker discovery for ESCC. However, such leads are yet to be translated into clinical utilities. Areas covered: We gathered information pertaining to proteomics and proteogenomics efforts in ESCC from the literature search until 2020. An overview of omics approaches to discover the candidate biomarkers for ESCC were highlighted. We present a summary of recent investigations of alterations in the level of gene and protein expression observed in biological samples including body fluids, tissue/biopsy and in vitro-based models. Expert opinion: A large number of protein-based biomarkers and therapeutic targets are being used in cancer therapy. Several candidates are being developed as diagnostics and prognostics for the management of cancers. High-resolution proteomic and proteogenomic approaches offer an efficient way to identify additional candidate biomarkers for diagnosis, monitoring of disease progression, prediction of response to chemo and radiotherapy. Some of these biomarkers can also be developed as therapeutic targets.
Collapse
Affiliation(s)
- Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University) , Mangalore, India
| | - Manavalan Vijayakumar
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to Be University) , Mangalore, India
| | - Rohan Shetty
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to Be University) , Mangalore, India
| | - D A B Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University) , Mangalore, India
| | - Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University) , Mangalore, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University) , Mangalore, India
| |
Collapse
|
35
|
Zhang S, Lu X, Hu C, Li Y, Yang H, Yan H, Fan J, Xu G, Abnet CC, Qiao Y. Serum Metabolomics for Biomarker Screening of Esophageal Squamous Cell Carcinoma and Esophageal Squamous Dysplasia Using Gas Chromatography-Mass Spectrometry. ACS OMEGA 2020; 5:26402-26412. [PMID: 33110968 PMCID: PMC7581083 DOI: 10.1021/acsomega.0c02600] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/30/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies with poor diagnosis. Esophageal squamous dysplasia (ESD) is considered as an immediate precancerous lesion of ESCC. Lack of biomarkers for discriminating ESCC and ESD from healthy subjects limits the early diagnosis and treatment of ESCC. Therefore, a serum metabolomic strategy was conducted to identify and validate potential metabolic markers for the screening of ESCC and ESD subjects. METHODS A total of 74 patients with ESCC, 72 patients with ESD, and 75 normal control (NC) subjects were enrolled in this study. Gas chromatography-mass spectrometry was used to acquire serum metabolic profiles. Pathway analysis was conducted to uncover the fluctuated metabolic pathways during ESCC. Multivariate analyses were used to screen and validate the biomarkers. RESULTS ESCC, ESD, and NC subjects revealed progressively altered metabolic profiles, in which amino acids globally increased, while fatty acids decreased in ESCCs compared with the control groups. Pathway analysis demonstrated the activated biosynthesis of amino acids and inhibited desaturation of saturated fatty acids. The panel constructed with propanoic acid, linoleic acid, glycerol-3-phosphate, and l-glutamine showed the area under the curve (AUC), sensitivity, and specificity of 0.817, 0.75, and 0.74, respectively, in the discrimination of ESCC/ESD patients from NC subjects. The panel constructed by propanoic acid, l-leucine, and hydroxyproline revealed the AUC, sensitivity, and specificity of 0.819, 0.76, and 0.72, respectively, in the discrimination of ESD from NC subjects. The combination of hypoxanthine, 2-ketoisocaproic acid, l-glutamate, and l-aspartate showed the AUC, sensitivity, and specificity of 0.818, 0.83, and 0.74, respectively, in the discrimination of ESCC patients from ESD subjects. CONCLUSIONS Our study revealed the systematic landscape for metabolic alterations in sera of ESD and ESCC patients. The defined metabolite markers showed reasonable performance in the discrimination of ESCC and ESD patients, and may provide helpful reference for clinicians and biologists.
Collapse
Affiliation(s)
- Su Zhang
- Department
of Cancer Epidemiology, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical College, 17 South Panjiayuan Lane, Beijing 100021, China
| | - Xin Lu
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
| | - Chunxiu Hu
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
| | - Yanli Li
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
| | - Huan Yang
- Department
of Cancer Epidemiology, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical College, 17 South Panjiayuan Lane, Beijing 100021, China
| | - Huijiao Yan
- Department
of Cancer Epidemiology, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical College, 17 South Panjiayuan Lane, Beijing 100021, China
| | - Jinhu Fan
- Department
of Cancer Epidemiology, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical College, 17 South Panjiayuan Lane, Beijing 100021, China
- . Tel: 010-87787423
| | - Guowang Xu
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- . Tel/Fax: 0086-422-84379530
| | - Christian C. Abnet
- Division
of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Youlin Qiao
- Department
of Cancer Epidemiology, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical College, 17 South Panjiayuan Lane, Beijing 100021, China
| |
Collapse
|
36
|
Liu J, Wang J, Ma X, Feng Y, Chen Y, Wang Y, Xue D, Qiao S. Study of the Relationship Between Serum Amino Acid Metabolism and Lymph Node Metastasis in Patients with Colorectal Cancer. Onco Targets Ther 2020; 13:10287-10296. [PMID: 33116609 PMCID: PMC7568677 DOI: 10.2147/ott.s273107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/18/2020] [Indexed: 12/09/2022] Open
Abstract
Purpose Lymph node metastasis is one of the important prognostic factors of colorectal cancer, and an important index of individualized treatment. The purpose of this study is to use metabonomics to identify potential molecular markers of lymph node metastasis in colorectal cancer (CRC). Patients and Methods Peripheral blood samples of 223 CRC patients were collected. The metabolic levels of amino acids and carnitine in peripheral blood of CRC patients, with and without lymph node metastasis, were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results The results show that there were significant differences in the levels of serum amino acids and carnitine between lymph node metastatic patients and lymph node non-metastatic patients. The diagnostic model that was constructed by 9 types of serum metabolites has a high diagnostic ability. Conclusion LC-MS/MS is a detection method that has a broad application in predicting CRC prognosis, individualized treatment, and in studying the mechanism of lymph node metastasis.
Collapse
Affiliation(s)
- Jinhao Liu
- The Second Ward of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Jikun Wang
- Oncology Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Xueqian Ma
- The Second Ward of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Yang Feng
- The Second Ward of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Yanlei Chen
- The Second Ward of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Yanping Wang
- The Second Ward of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Dong Xue
- The Second Ward of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Shifeng Qiao
- The Second Ward of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| |
Collapse
|
37
|
Buckley AM, Dunne MR, Morrissey ME, Kennedy SA, Nolan A, Davern M, Foley EK, Clarke N, Lysaght J, Ravi N, O'Toole D, MacCarthy F, Reynolds JV, Kennedy BN, O'Sullivan J. Real-time metabolic profiling of oesophageal tumours reveals an altered metabolic phenotype to different oxygen tensions and to treatment with Pyrazinib. Sci Rep 2020; 10:12105. [PMID: 32694701 PMCID: PMC7374542 DOI: 10.1038/s41598-020-68777-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 06/26/2020] [Indexed: 11/23/2022] Open
Abstract
Oesophageal cancer is the 6th most common cause of cancer related death worldwide. The current standard of care for oesophageal adenocarcinoma (OAC) focuses on neoadjuvant therapy with chemoradiation or chemotherapy, however the 5-year survival rates remain at < 20%. To improve treatment outcomes it is critical to further investigate OAC tumour biology, metabolic phenotype and their metabolic adaptation to different oxygen tensions. In this study, by using human ex-vivo explants we demonstrated using real-time metabolic profiling that OAC tumour biopsies have a significantly higher oxygen consumption rate (OCR), a measure of oxidative phosphorylation compared to extracellular acidification rate (ECAR), a measure of glycolysis (p = 0.0004). Previously, we identified a small molecule compound, pyrazinib which enhanced radiosensitivity in OAC. Pyrazinib significantly inhibited OCR in OAC treatment-naïve biopsies (p = 0.0139). Furthermore, OAC biopsies can significantly adapt their metabolic rate in real-time to their environment. Under hypoxic conditions pyrazinib produced a significant reduction in both OCR (p = 0.0313) and ECAR in OAC treatment-naïve biopsies. The inflammatory secretome profile from OAC treatment-naïve biopsies is heterogeneous. OCR was positively correlated with three secreted factors in the tumour conditioned media: vascular endothelial factor A (VEGF-A), IL-1RA and thymic stromal lymphopoietin (TSLP). Pyrazinib significantly inhibited IL-1β secretion (p = 0.0377) and increased IL-3 (p = 0.0020) and IL-17B (p = 0.0181). Importantly, pyrazinib did not directly alter the expression of dendritic cell maturation markers or reduce T-cell viability or activation markers. We present a new method for profiling the metabolic rate of tumour biopsies in real-time and demonstrate the novel anti-metabolic and anti-inflammatory action of pyrazinib ex-vivo in OAC tumours, supporting previous findings in-vitro whereby pyrazinib significantly enhanced radiosensitivity in OAC.
Collapse
Affiliation(s)
- Amy M Buckley
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Margaret R Dunne
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Maria E Morrissey
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Susan A Kennedy
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Aoife Nolan
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Maria Davern
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Emma K Foley
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Niamh Clarke
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Joanne Lysaght
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Narayanasamy Ravi
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Dermot O'Toole
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Finbar MacCarthy
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - John V Reynolds
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Breandán N Kennedy
- UCD Conway Institute and UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
38
|
Schmidt J, Kajtár B, Juhász K, Péter M, Járai T, Burián A, Kereskai L, Gerlinger I, Tornóczki T, Balogh G, Vígh L, Márk L, Balogi Z. Lipid and protein tumor markers for head and neck squamous cell carcinoma identified by imaging mass spectrometry. Oncotarget 2020; 11:2702-2717. [PMID: 32733643 PMCID: PMC7367650 DOI: 10.18632/oncotarget.27649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. To improve pre- and post-operative diagnosis and prognosis novel molecular markers are desirable. Here we used MALDI imaging mass spectrometry (IMS) and immunohistochemistry (IHC) to seek tumor specific expression of proteins and lipids in HNSCC samples. Among low molecular weight proteins visualized, S100A8 and S100A9 were found to be expressed in the regions of tumor tissue but not in the surrounding healthy stroma of a post-operative microdissected tissue. Marker potential of S100A8 and S100A9 was confirmed by immunohistochemistry of paraffin-embedded pathological samples. Imaging lipids showed a remarkable depletion of lysophosphatidylcholine species LPC[16:0], LPC[18:2] and, in parallel, accumulation of major glycerophospholipid species PE-P[36:4], PC[32:1], PC[34:1] in neoplastic areas. This was confirmed by shotgun lipidomics of dissected healthy and tumor tissue sections. A combination of the negative (LPC[16:0]) and positive (PC[32:1], PC[34:1]) markers was also applicable to uncover tumorous character of a pre-operative biopsy. Furthermore, marker potential of lysophospholipids was supported by elevated expression levels of the lysophospholipid degrading enzyme lysophospholipase A1 (LYPLA1) in the tumor regions of paraffin-embedded HNSCC samples. Finally, experimental evidence of 3D cell spheroid tests showed that LPC[16:0] facilitates HNSCC invasion, implying that HNSCC progression in vivo may be dependent on lysophospholipid supply. Altogether, a series of novel proteins and lipid species were identified by IMS and IHC screening, which may serve as potential molecular markers for tumor diagnosis, prognosis, and may pave the way to better understand HNSCC pathophyisiology.
Collapse
Affiliation(s)
- Janos Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Béla Kajtár
- Department of Pathology, Medical School, University of Pécs, Pécs, Hungary
| | - Kata Juhász
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Tamás Járai
- Department of Oto-Rhino-Laryngology, Medical School, University of Pécs, Pécs, Hungary
| | - András Burián
- Department of Oto-Rhino-Laryngology, Medical School, University of Pécs, Pécs, Hungary
| | - László Kereskai
- Department of Pathology, Medical School, University of Pécs, Pécs, Hungary
| | - Imre Gerlinger
- Department of Oto-Rhino-Laryngology, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Tornóczki
- Department of Pathology, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Lászó Márk
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary.,MTA-PTE Human Reproduction Group, Medical School, University of Pécs, Pécs, Hungary.,Imaging Center for Life and Material Sciences, Medical School, University of Pécs, Pécs, Hungary
| | - Zsolt Balogi
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
39
|
Distribution and clinical relevance of phospholipids in hepatocellular carcinoma. Hepatol Int 2020; 14:544-555. [PMID: 32504407 PMCID: PMC7366576 DOI: 10.1007/s12072-020-10056-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/21/2020] [Indexed: 01/10/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is the most common liver cancer and featured with prominent disparity in incidence and mortality rate between male and female. It remains unclear whether alterations of phospholipids (PL) in hepatic tissues contribute to the pathogenesis, progression, and disparity of HCC. Methods Using electrospray ionization mass spectrometry (ESI–MS), PL profiles including 320 individual phospholipid species in 13 PL classes were determined in paired samples from HCC and adjacent benign hepatic tissues (BHT). Results (1) Concentrations of PLs in most of individual species, in subgroups and in total were decreased in HCC than in BHT in all studied population; (2) the number of individual PL species significantly different between HCC and BHT, and the number of PLs in six subgroups and in total decreased in HCC were more in male population than in female population; (3) panels of PL parameters (more in male population than in female population) were identified as biomarkers in differentiation of HCC from BHT, and in the prediction of pathological grade and clinical stage of HCC with high sensitivity, specificity, and accuracy. Conclusion It is concluded that alterations of PLs in hepatic tissues play important roles in pathogenesis, progression, and gender disparity of HCC. Electronic supplementary material The online version of this article (10.1007/s12072-020-10056-8) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Sun C, Wang F, Zhang Y, Yu J, Wang X. Mass spectrometry imaging-based metabolomics to visualize the spatially resolved reprogramming of carnitine metabolism in breast cancer. Theranostics 2020; 10:7070-7082. [PMID: 32641979 PMCID: PMC7330837 DOI: 10.7150/thno.45543] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/19/2020] [Indexed: 01/08/2023] Open
Abstract
New insights into tumor-associated metabolic reprogramming have provided novel vulnerabilities that can be targeted for cancer therapy. Here, we propose a mass spectrometry imaging (MSI)-based metabolomic strategy to visualize the spatially resolved reprogramming of carnitine metabolism in heterogeneous breast cancer. Methods: A wide carnitine coverage MSI method was developed to investigate the spatial alternations of carnitines in cancer tissues of xenograft mouse models and human samples. Spatial expression of key metabolic enzymes that are closely associated with the altered carnitines was examined in adjacent cancer tissue sections. Results: A total of 17 carnitines, including L-carnitine, 6 short-chain acylcarnitines, 3 middle-chain acylcarnitines, and 7 long-chain acylcarnitines were imaged. L-carnitine and short-chain acylcarnitines are significantly reprogrammed in breast cancer. A classification model based on the carnitine profiles of 170 cancer samples and 128 normal samples enables an accurate identification of breast cancer. CPT 1A, CPT 2, and CRAT, which are extensively involved in carnitine system-mediated fatty acid β-oxidation pathway were also found to be abnormally expressed in breast cancer. Remarkably, the expressions of CPT 2 and CRAT were found for the first time to be altered in breast cancer. Conclusion: These data not only expand our understanding of the complex tumor metabolic reprogramming, but also provide the first evidence that carnitine metabolism is reprogrammed at both the metabolite and enzyme levels in breast cancer.
Collapse
Affiliation(s)
- Chenglong Sun
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Fukai Wang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yang Zhang
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jinqian Yu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiao Wang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
41
|
Virulence Characteristics of mecA-Positive Multidrug-Resistant Clinical Coagulase-Negative Staphylococci. Microorganisms 2020; 8:microorganisms8050659. [PMID: 32369929 PMCID: PMC7284987 DOI: 10.3390/microorganisms8050659] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) are an important group of opportunistic pathogenic microorganisms that cause infections in hospital settings and are generally resistant to many antimicrobial agents. We report on phenotypic and genotypic virulence characteristics of a select group of clinical, mecA-positive (encoding penicillin-binding protein 2a) CoNS isolates. All CoNS were resistant to two or more antimicrobials with S. epidermidis strain 214EP, showing resistance to fifteen of the sixteen antimicrobial agents tested. Aminoglycoside-resistance genes were the ones most commonly detected. The presence of megaplasmids containing both horizontal gene transfer and antimicrobial resistance genetic determinants indicates that CoNS may disseminate antibiotic resistance to other bacteria. Staphylococcus sciuri species produced six virulence enzymes, including a DNase, gelatinase, lipase, phosphatase, and protease that are suspected to degrade tissues into nutrients for bacterial growth and contribute to the pathogenicity of CoNS. The PCR assay for the detection of biofilm-associated genes found the eno (encoding laminin-binding protein) gene in all isolates. Measurement of their biofilm-forming ability and Spearman’s rank correlation coefficient analyses revealed that the results of crystal violet (CV) and extracellular polymeric substances (EPS) assays were significantly correlated (ρ = 0.9153, P = 3.612e-12). The presence of virulence factors, biofilm-formation capability, extracellular enzymes, multidrug resistance, and gene transfer markers in mecA-positive CoNS clinical strains used in this study makes them powerful opportunistic pathogens. The study also warrants a careful evaluation of nosocomial infections caused by CoNS and may be useful in studying the mechanism of virulence and factors associated with their pathogenicity in vivo and developing effective strategies for mitigation.
Collapse
|
42
|
Zhou Z, Chen Y, Gao Y, Bi N, Yue X, He J, Zhang R, Wang L, Abliz Z. Development of a high-coverage metabolome relative quantitative method for large-scale sample analysis. Anal Chim Acta 2020; 1109:44-52. [DOI: 10.1016/j.aca.2020.02.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 12/23/2022]
|
43
|
Zhu ZJ, Qi Z, Zhang J, Xue WH, Li LF, Shen ZB, Li ZY, Yuan YL, Wang WB, Zhao J. Untargeted Metabolomics Analysis of Esophageal Squamous Cell Carcinoma Discovers Dysregulated Metabolic Pathways and Potential Diagnostic Biomarkers. J Cancer 2020; 11:3944-3954. [PMID: 32328198 PMCID: PMC7171502 DOI: 10.7150/jca.41733] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/12/2020] [Indexed: 12/29/2022] Open
Abstract
Background: Esophageal squamous cell carcinoma (ESCC) is one of the most fatal diseases worldwide. Because early diagnosis is difficult, ESCC is mostly diagnosed at an advanced stage, leading to a poor overall prognosis. The purpose of this study was to explore the differences between plasma metabolic profiles in ESCC patients and healthy controls and to establish a diagnostic model of ESCC. Methods: In this study, a cohort of 310 subjects, containing 140 ESCC patients and 170 healthy controls (HC), was recruited. Participants were randomly separated into a training set (80 ESCCs, 80 HCs) and a validation set (60 ESCCs, 90 HCs) and their plasma metabolomics profiles were analyzed by ultra-performance liquid chromatography-tandem quadruple time-of-flight mass spectrometry (UPLC-QTOF/MS) technique. Univariate statistical analysis and multivariate analysis (MVA) methods were used to identify differential metabolites. Finally, the dysregulated pathways associated with ESCC were further explored and the diagnostic performance of the biomarker panel was evaluated. Results: Metabolic analyses identified 34 significant metabolites involved in the metabolism of amino acids, phospholipids, fatty acids, purine, and choline. Farthermore, an effective diagnostic model for ESCC was constructed based on eight metabolites. This panel of biomarkers consisted of hypoxanthine, proline betaine, indoleacrylic acid, inosine, 9-decenoylcarnitine, tetracosahexaenoic acid, LPE (20:4), and LPC (20:5). The model was verified and evaluated in the validation set. The AUC value of the ROC curve was 0.991(95% CI: 0.981-1.000, CI, Confidence interval), with a sensitivity (SE) of 98.8% and a specificity (SP) of 94.9% for the training set and 0.965(95% CI: 0.936-0.993), with a SE of 88.3% and a SP of 88.9% for the validation set. Among them, three biomarkers, indoleacrylic acid, LPC (20:5), and LPE (20:4), exhibited a trend associated with the ESCC progression. Conclusions: Our study identified a novel plasma biomarker panel, which clearly distinguishes ESCC patients and provides insight into the mechanisms of ESCC. This finding may form the basis for the development of a minimally invasive method for ESCC detection.
Collapse
Affiliation(s)
- Zi-Jia Zhu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Zheng Qi
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ji Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Wen-Hua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Li-Feng Li
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhi-Bo Shen
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ze-Yun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Yong-Liang Yuan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Wen-Bin Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Jie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Engineering Laboratory for Digital Telemedicine Service, Zhengzhou, Henan, 450052, China
| |
Collapse
|
44
|
Li J, Xu J, Zhang R, Hao Y, He J, Chen Y, Jiao G, Abliz Z. Strategy for Global Profiling and Identification of 2- and 3-Hydroxy Fatty Acids in Plasma by UPLC-MS/MS. Anal Chem 2020; 92:5143-5151. [PMID: 32134635 DOI: 10.1021/acs.analchem.9b05627] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
2-Hydroxy fatty acids (2-OHFAs) and 3-hydroxy fatty acids (3-OHFAs) with the same carbon backbone are isomers, both of which are closely related to diseases involving fatty acid oxidation disorder. However, the comprehensive profiling of 2- and 3-OHFAs remains an ongoing challenge due to their high structure similarity, few structure-informative product ions, and limited availability of standards. Here, we developed a new strategy to profile and identify 2- and 3-OHFAs according to structure-dependent retention time prediction models using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Both accurate MS and MS/MS spectra were collected for peak annotation by comparison with an in-house database of theoretically possible 2- and 3-OHFAs. The structures were further confirmed by the validated structure-dependent retention time prediction models, taking advantage of the correlation between the retention time, carbon chain length and number of double bonds, as well as the hydroxyl position-induced isomeric retention time shift rule. With the use of this strategy, 18 2-OHFAs and 32 3-OHFAs were identified in the pooled plasma, of which 7 2-OHFAs and 20 3-OHFAs were identified for the first time in this work, furthering our understanding of OHFA metabolism. Subsequent quantitation method was developed by scheduled multiple reaction monitoring (MRM) and then applied to investigate the alteration of 2- and 3-OHFAs in esophageal squamous cell carcinoma (ESCC) patients. Finally, a potential biomarker panel consisting of six OHFAs with good diagnostic performance was achieved. Our study provides a new strategy for isomer identification and analysis, showing great potential for targeted metabolomics in clinical biomarker discovery.
Collapse
Affiliation(s)
- Jiangshuo Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, China
| | - Jing Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, China
| | - Yanzeng Hao
- Department of Pathology and Thoracic Surgery, Linzhou Esophageal Cancer Hospital, 456500 Linzhou, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, China
| | - Yanhua Chen
- Centre for Imaging & Systems Biology, Minzu University of China, 100081 Beijing, China
| | - Guanggen Jiao
- Department of Pathology and Thoracic Surgery, Linzhou Esophageal Cancer Hospital, 456500 Linzhou, China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, China.,Centre for Imaging & Systems Biology, Minzu University of China, 100081 Beijing, China
| |
Collapse
|
45
|
Goh YM, Antonowicz SS, Boshier P, Hanna GB. Metabolic Biomarkers of Squamous Cell Carcinoma of the Aerodigestive Tract: A Systematic Review and Quality Assessment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2930347. [PMID: 32685090 PMCID: PMC7330643 DOI: 10.1155/2020/2930347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/22/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
Introduction. Aerodigestive squamous cell carcinomas (ASCC) constitute a major source of global cancer deaths. Patients typically present with advanced, incurable disease, so new means of detecting early disease are a research priority. Metabolite quantitation is amenable to point-of-care analysis and can be performed in ASCC surrogates such as breath and saliva. The purpose of this systematic review is to summarise progress of ASCC metabolomic studies, with an emphasis on the critical appraisal of methodological quality and reporting. METHOD A systematic online literature search was performed to identify studies reporting metabolic biomarkers of ASCC. This review was conducted in accordance with the recommendations of the Cochrane Library and MOOSE guidelines. RESULTS Thirty studies comprising 2117 patients were included in the review. All publications represented phase-I biomarker discovery studies, and none validated their findings in an independent cohort. There was heterogeneity in study design and methodological and reporting quality. Sensitivities and specificities were higher in oesophageal and head and neck squamous cell carcinomas compared to those in lung squamous cell carcinoma. The metabolic phenotypes of these cancers were similar, as was the kinetics of metabolite groups when comparing blood, tissue, and breath/saliva concentrations. Deregulation of amino acid metabolism was the most frequently reported theme. CONCLUSION Metabolite analysis has shown promising diagnostic performance, especially for oesophageal and head and neck ASCC subtypes, which are phenotypically similar. However, shortcomings in study design have led to inconsistencies between studies. To support future studies and ultimately clinical adoption, these limitations are discussed.
Collapse
Affiliation(s)
- Yan Mei Goh
- Department of Surgery & Cancer, Imperial College London, London W2 1NY, UK
| | | | - Piers Boshier
- Department of Surgery & Cancer, Imperial College London, London W2 1NY, UK
| | - George B. Hanna
- Department of Surgery & Cancer, Imperial College London, London W2 1NY, UK
| |
Collapse
|
46
|
Wang D, Li W, Yin L, Du Y, Zhang S, Suo J. Association of serum levels of deoxyribose 1-phosphate and S-lactoylglutathione with neoadjuvant chemotherapy sensitivity in patients with gastric cancer: A metabolomics study. Oncol Lett 2020; 19:2231-2242. [PMID: 32194721 PMCID: PMC7039117 DOI: 10.3892/ol.2020.11350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
The present study screened serum samples from patients with advanced-stage gastric cancer and known sensitivities to neoadjuvant chemotherapy, in order to identify metabolites that may serve as potential biomarkers for chemotherapy sensitivity. A total of 47 patients with stage III (T4b) or IV gastric cancer, including 31 in the training group and 16 in a validation group, were classified based on their responses to conversion therapy consisting of oxaliplatin, tegafur and continuous hyperthermic peritoneal perfusion with cisplatin. Serum samples were analyzed by liquid chromatography-mass spectrometry to obtain a metabolite profile of each patient. Patients who were responsive and non-responsive to neoadjuvant chemotherapy exhibited significant differences in serum levels of deoxyribose 1-phosphate, S-lactoylglutathione, lysophosphatidylcholine (16:0) and O-arachidonoyl ethanolamine. Logistic regression analysis indicated that deoxyribose 1-phosphate and S-lactoylglutathione were independently associated with chemosensitivity. Serum levels of deoxyribose 1-phosphate and S-lactoylglutathione were independently associated with the sensitivity of gastric cancer to neoadjuvant chemotherapy, therefore, serving as potential predictors of patient response.
Collapse
Affiliation(s)
- Daguang Wang
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei Li
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Yin
- Research Institute of Translational Medicine, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yechao Du
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shaopeng Zhang
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jian Suo
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China.,Jilin Province Key Laboratory of Bioinformatics for Gastrointestinal Tumor, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
47
|
Yu J, Zhao J, Zhang M, Guo J, Liu X, Liu L. Metabolomics studies in gastrointestinal cancer: a systematic review. Expert Rev Gastroenterol Hepatol 2020; 14:9-25. [PMID: 31786962 DOI: 10.1080/17474124.2020.1700112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: This systemic review provides an overview of metabolic perturbations and possible mechanisms in gastrointestinal cancer. The authors discuss emerging challenges of technical and clinical applications.Areas covered: In this systemic review, the authors summarized the currently available results of metabolomic biomarkers linked to GI cancer, and discussed the altered metabolism pathways including carbohydrate metabolism, amino acid metabolism, lipids, and nucleotide metabolism and other metabolisms. Furthermore, future efforts need to adhere to normalize analysis procedures, validate with the larger cohort and utilize multiple-omics technologies. The search was conducted in PubMed with the following search terms (biomarker, gastrointestinal cancer, colorectal cancer, and esophageal cancer) from 2013 to 2019.Expert opinion: This systemic review summarized the currently available results of metabolomic biomarkers linked to gastrointestinal cancer, and discussed the altered metabolism pathways. The authors believe that metabolomics will benefit deeper understandings of the pathogenic mechanism, discovery of biomarkers and aid the search for drug targets as we move toward the era of personalized medicine. Personalized medication for tumors can improve the curative effect, avoid side effects and medical resource waste. As a promisingtool, metabolomics that targets the entire cancer-specific metabolite network should be applied more widely in cancer research.
Collapse
Affiliation(s)
- Jiaying Yu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Jinhui Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Mingjia Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Jing Guo
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Xiaowei Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Liyan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
48
|
Serum metabolomics reveals the progression of coronary artery stenosis in patients with hypercholesterolemia: a pilot study. Blood Coagul Fibrinolysis 2019; 30:205-216. [PMID: 31157678 DOI: 10.1097/mbc.0000000000000819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
: The current study explores potential characteristic metabolic signatures associated with the high cholesterol (CHO), and the progression of coronary artery stenosis (CAS) in high-CHO patients. A metabolomics strategy based on ultra high-performance liquid chromatography/MS-MS and multivariate statistics has been implemented to identify potential biomarkers in high-CHO patients with different levels of CAS. The current study included 57 individuals, comprising 17 healthy paticipants, and 40 high-CHO patients. The high CHO patients were subgrouped based on the computed tomography angiography results, that is, CHO+ no ART (n = 10), CHO+ ART less than 50% (n = 13), CHO+ ART 50-75% (n = 11), and CHO+ ART more than 75% (n = 6). After metabolomics study, 16 discriminating metabolites in positive ion mode and 17 discriminating metabolites in negative ion mode were regarded as possible biomarker candidates to reflect metabolic traits differences between patients with healthy subjects and CHO. A total of six metabolites were tentatively identified as potential biomarkers for the progression diagnosis of CAS: three lysophosphatidylcholines (Lyso-phosphocholine, lysoPC and Lysopersicon esculentum, lysoPE), proline betaine and tryptophan, and prasterone sulfate. The results demonstrated that tryptophan and proline betaine could differentiate the patients with or without high CHO. Tryptophan, prasterone sulfate, LysoPE (0 : 0/18 : 2) or LysoPE (18 : 2/0 : 0), and LysoPE (0 : 0/18 : 1) or LysoPE (18 : 1/0 : 0) could differentiate the patients with severe stenosis (ART > 70%) from the healthy or mild stenosis ones. Proline betaine and significant decrease of LysoPC (17 : 0) could also be a promising biomarker for the mild stenosis (ART < 50%).
Collapse
|
49
|
Wolrab D, Jirásko R, Chocholoušková M, Peterka O, Holčapek M. Oncolipidomics: Mass spectrometric quantitation of lipids in cancer research. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
50
|
Zhang M, He J, Li T, Hu H, Li X, Xing H, Wang J, Yang F, Ma Q, Liu B, Tang C, Abliz Z, Liu X. Accurate Classification of Non-small Cell Lung Cancer (NSCLC) Pathology and Mapping of EGFR Mutation Spatial Distribution by Ambient Mass Spectrometry Imaging. Front Oncol 2019; 9:804. [PMID: 31555581 PMCID: PMC6722907 DOI: 10.3389/fonc.2019.00804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/07/2019] [Indexed: 12/25/2022] Open
Abstract
Objectives: Tumor pathology examination especially epidermal growth factor receptor (EGFR) mutations molecular testing has been integral part of lung cancer clinical practices. However, the EGFR mutations spatial distribution characteristics remains poorly investigated, which is critical to tumor heterogeneity analysis and precision diagnosis. Here, we conducted an exploratory study for label-free lung cancer pathology diagnosis and mapping of EGFR mutation spatial distribution using ambient mass spectrometry imaging (MSI). Materials and Methods: MSI analysis were performed in 55 post-operative non-small cell lung cancer (NSCLC) tumor and paired normal tissues to distinguish tumor from normal and classify pathology. We then compared diagnostic sensitivity of MSI and ADx-amplification refractory mutation system (ARMS) for the detection of EGFR mutation in pathological confirmed lung adenocarcinoma (AC) and explored EGFR mutations associated biomarkers to depict EGFR spatial distribution base on ambient MSI. Results: Of 55 pathological confirmed NSCLC, MSI achieved a diagnostic sensitivity of 85.2% (23/27) and 82.1% (23/28) for AC and squamous cell carcinoma (SCC), respectively. Among 27 AC, there were 17 EGFR-wild-type and 10 EGFR-mutated-positive samples detected by ARMS, and MSI achieved a diagnostic sensitivity of 82.3% (14/17) and 80% (8/10) for these two groups. Several phospholipids were specially enriched in AC compared with SCC tissues, with the higher ions intensity of phospholipids in EGFR-mutated-positive compared with EGFR-wild-type AC tissues. We also found EGFR mutations distribution was heterogeneous in different regions of same tumor by multi-regions ARMS detection, and only the regions with higher ions intensity of phospholipids were EGFR-mutated-positive. Conclusion: MSI method could accurately distinguish tumor pathology and subtypes, and phospholipids were reliable EGFR mutations associated biomarkers, phospholipids imaging could intuitively visualize EGFR mutations spatial distribution, may facilitate our understanding of tumor heterogeneity.
Collapse
Affiliation(s)
- Min Zhang
- Academy of Military Medical Science, Beijing, China.,Department of Lung Cancer, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tiegang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Haixu Hu
- Laboratory of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Hao Xing
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Jun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Qunfeng Ma
- Department of Thoracic Surgery, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bing Liu
- Laboratory of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chuanhao Tang
- Department of Oncology, Peking University International Hospital, Beijing, China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Center for Imaging and Systems Biology, Minzu University of China, Beijing, China
| | - Xiaoqing Liu
- Department of Lung Cancer, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|