1
|
Phetsanthad A, Vu NQ, Yu Q, Buchberger AR, Chen Z, Keller C, Li L. Recent advances in mass spectrometry analysis of neuropeptides. MASS SPECTROMETRY REVIEWS 2023; 42:706-750. [PMID: 34558119 PMCID: PMC9067165 DOI: 10.1002/mas.21734] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 05/08/2023]
Abstract
Due to their involvement in numerous biochemical pathways, neuropeptides have been the focus of many recent research studies. Unfortunately, classic analytical methods, such as western blots and enzyme-linked immunosorbent assays, are extremely limited in terms of global investigations, leading researchers to search for more advanced techniques capable of probing the entire neuropeptidome of an organism. With recent technological advances, mass spectrometry (MS) has provided methodology to gain global knowledge of a neuropeptidome on a spatial, temporal, and quantitative level. This review will cover key considerations for the analysis of neuropeptides by MS, including sample preparation strategies, instrumental advances for identification, structural characterization, and imaging; insightful functional studies; and newly developed absolute and relative quantitation strategies. While many discoveries have been made with MS, the methodology is still in its infancy. Many of the current challenges and areas that need development will also be highlighted in this review.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Nhu Q. Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Amanda R. Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
2
|
Dai KZ, Choi IB, Levitt R, Blegen MB, Kaplan AR, Matsui A, Shin JH, Bocarsly ME, Simpson EH, Kellendonk C, Alvarez VA, Dobbs LK. Dopamine D2 receptors bidirectionally regulate striatal enkephalin expression: Implications for cocaine reward. Cell Rep 2022; 40:111440. [PMID: 36170833 PMCID: PMC9620395 DOI: 10.1016/j.celrep.2022.111440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/04/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Low dopamine D2 receptor (D2R) availability in the striatum can predispose for cocaine abuse; though how low striatal D2Rs facilitate cocaine reward is unclear. Overexpression of D2Rs in striatal neurons or activation of D2Rs by acute cocaine suppresses striatal Penk mRNA. Conversely, low D2Rs in D2-striatal neurons increases striatal Penk mRNA and enkephalin peptide tone, an endogenous mu-opioid agonist. In brain slices, met-enkephalin and inhibition of enkephalin catabolism suppresses intra-striatal GABA transmission. Pairing cocaine with intra-accumbens met-enkephalin during place conditioning facilitates acquisition of preference, while mu-opioid receptor antagonist blocks preference in wild-type mice. We propose that heightened striatal enkephalin potentiates cocaine reward by suppressing intra-striatal GABA to enhance striatal output. Surprisingly, a mu-opioid receptor antagonist does not block cocaine preference in mice with low striatal D2Rs, implicating other opioid receptors. The bidirectional regulation of enkephalin by D2R activity and cocaine offers insights into mechanisms underlying the vulnerability for cocaine abuse. Low striatal D2 receptor levels are associated with cocaine abuse. Dai et al. bidirectionally alter striatal D2 receptor levels to probe the downstream mechanisms underlying this abuse liability. They provide evidence that enhanced enkephalin tone resulting from low D2 receptors is associated with suppressed intra-striatal GABA and potentiated cocaine reward.
Collapse
Affiliation(s)
- Kathy Z Dai
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - In Bae Choi
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Ryan Levitt
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Mariah B Blegen
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - Alanna R Kaplan
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - Aya Matsui
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - J Hoon Shin
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - Miriam E Bocarsly
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Rutgers Brain Health Institute, Newark, NJ, USA
| | - Eleanor H Simpson
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Department of Molecular Pharmacology and Therapeutics, Columbia University Medical Center, New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA; Center on Compulsive Behaviors, IRP, NIH, Bethesda, MD, USA
| | - Lauren K Dobbs
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Anapindi KDB, Romanova EV, Checco JW, Sweedler JV. Mass Spectrometry Approaches Empowering Neuropeptide Discovery and Therapeutics. Pharmacol Rev 2022; 74:662-679. [PMID: 35710134 DOI: 10.1124/pharmrev.121.000423] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The discovery of insulin in the early 1900s ushered in the era of research related to peptides acting as hormones and neuromodulators, among other regulatory roles. These essential gene products are found in all organisms, from the most primitive to the most evolved, and carry important biologic information that coordinates complex physiology and behavior; their misregulation has been implicated in a variety of diseases. The evolutionary origins of at least 30 neuropeptide signaling systems have been traced to the common ancestor of protostomes and deuterostomes. With the use of relevant animal models and modern technologies, we can gain mechanistic insight into orthologous and paralogous endogenous peptides and translate that knowledge into medically relevant insights and new treatments. Groundbreaking advances in medicine and basic science influence how signaling peptides are defined today. The precise mechanistic pathways for over 100 endogenous peptides in mammals are now known and have laid the foundation for multiple drug development pipelines. Peptide biologics have become valuable drugs due to their unique specificity and biologic activity, lack of toxic metabolites, and minimal undesirable interactions. This review outlines modern technologies that enable neuropeptide discovery and characterization, and highlights lessons from nature made possible by neuropeptide research in relevant animal models that is being adopted by the pharmaceutical industry. We conclude with a brief overview of approaches/strategies for effective development of peptides as drugs. SIGNIFICANCE STATEMENT: Neuropeptides, an important class of cell-cell signaling molecules, are involved in maintaining a range of physiological functions. Since the discovery of insulin's activity, over 100 bioactive peptides and peptide analogs have been used as therapeutics. Because these are complex molecules not easily predicted from a genome and their activity can change with subtle chemical modifications, mass spectrometry (MS) has significantly empowered peptide discovery and characterization. This review highlights contributions of MS-based research towards the development of therapeutic peptides.
Collapse
Affiliation(s)
- Krishna D B Anapindi
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| | - James W Checco
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| |
Collapse
|
4
|
Lee AM, Mansuri MS, Wilson RS, Lam TT, Nairn AC, Picciotto MR. Sex Differences in the Ventral Tegmental Area and Nucleus Accumbens Proteome at Baseline and Following Nicotine Exposure. Front Mol Neurosci 2021; 14:657064. [PMID: 34335180 PMCID: PMC8317211 DOI: 10.3389/fnmol.2021.657064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
Sex differences in behaviors relevant to nicotine addiction have been observed in rodent models and human subjects. Behavioral, imaging, and epidemiological studies also suggest underlying sex differences in mesolimbic dopamine signaling pathways. In this study we evaluated the proteome in the ventral tegmental area (VTA) and nucleus accumbens (NAc) shell in male and female mice. Experimental groups included two mouse strains (C3H/HeJ and C57BL/6J) at baseline, a sub-chronic, rewarding regimen of nicotine in C3H/HeJ mice, and chronic nicotine administration and withdrawal in C57BL/6J mice. Isobaric labeling with a TMT 10-plex system, sample fractionation, and tandem mass spectrometry were used to quantify changes in protein abundance. In C3H/HeJ mice, similar numbers of proteins were differentially regulated between sexes at baseline compared with within each sex after sub-chronic nicotine administration. In C57BL/6J mice, there were significantly greater numbers of proteins differentially regulated between sexes at baseline compared with within each sex after chronic nicotine administration and withdrawal. Despite differences by sex, strain, and nicotine exposure parameters, glial fibrillary acidic protein (GFAP) and dopamine and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32, Ppp1r1b) were repeatedly identified as significantly altered proteins, especially in the VTA. Further, network analyses showed sex- and nicotine-dependent regulation of a number of signaling pathways, including dopaminergic signaling. Sub-chronic nicotine exposure in female mice increased proteins related to dopaminergic signaling in the NAc shell but decreased them in the VTA, whereas the opposite pattern was observed in male mice. In contrast, dopaminergic signaling pathways were similarly upregulated in both male and female VTA after chronic nicotine and withdrawal. Overall, this study identifies significant sex differences in the proteome of the mesolimbic system, at baseline and after nicotine reward or withdrawal, which may help explain differential trajectories and susceptibility to nicotine addiction in males and females.
Collapse
Affiliation(s)
- Angela M Lee
- Department of Psychiatry, Yale University, New Haven, CT, United States.,Yale Interdepartmental Neuroscience Program, New Haven, CT, United States
| | - Mohammad Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, New Haven, CT, United States.,Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, United States
| | - Rashaun S Wilson
- Yale/NIDA Neuroproteomics Center, New Haven, CT, United States.,Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, United States.,W.M Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT, United States
| | - TuKiet T Lam
- Yale/NIDA Neuroproteomics Center, New Haven, CT, United States.,Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, United States.,W.M Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT, United States
| | - Angus C Nairn
- Department of Psychiatry, Yale University, New Haven, CT, United States.,Yale/NIDA Neuroproteomics Center, New Haven, CT, United States
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, New Haven, CT, United States.,Yale Interdepartmental Neuroscience Program, New Haven, CT, United States
| |
Collapse
|
5
|
Domi A, Barbier E, Adermark L, Domi E. Targeting the Opioid Receptors: A Promising Therapeutic Avenue for Treatment in “Heavy Drinking Smokers”. Alcohol Alcohol 2021; 56:127-138. [DOI: 10.1093/alcalc/agaa139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 01/12/2023] Open
Abstract
Abstract
Aims
Despite a general decline in tobacco use in the last decades, the prevalence of tobacco smoking in individuals with alcohol use disorder (AUD) remains substantial (45–50%). Importantly, the co-use of both substances potentiates the adverse effects, making it a significant public health problem. Substantial evidence suggests that AUD and Tobacco use disorder (TUD) may share common mechanisms. Targeting these mechanisms may therefore provide more effective therapy. Numerous studies describe a potential role of the endogenous opioid system in both AUD and TUD. Reviewing this literature, we aim to evaluate the efficacy of molecules that target the opioid system as promising therapeutic interventions for treating alcohol and tobacco co-use disorders.
Methods
We provide a synthesis of the current epidemiological knowledge of alcohol and tobacco co-use disorders. We evaluate clinical and preclinical research that focuses on the regulation of the endogenous opioid system in alcohol, nicotine, and their interactions.
Results
The epidemiological data confirm that smoking stimulates heavy drinking and facilitates alcohol craving. Pharmacological findings suggest that treatments that are efficacious in the dual addiction provide a beneficial treatment outcome in comorbid AUD and TUD. In this regard, MOP, DOP and NOP-receptor antagonists show promising results, while the findings prompt caution when considering KOP-receptor antagonists as a treatment option in alcohol and tobacco co-use disorders.
Conclusions
Existing literature suggests a role of the opioid system in sustaining the high comorbidity rates of AUD and TUD. Molecules targeting opioid receptors may therefore represent promising therapeutic interventions in ‘heavy drinking smokers.’
Collapse
Affiliation(s)
- Ana Domi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy University of Gothenburg, Box 410, Gothenburg 405 30, Sweden
| | - Estelle Barbier
- Center for Social and Affective Neuroscience, Linköping University, Campus US, Entrance 65, Linköping 581 85, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy University of Gothenburg, Box 410, Gothenburg 405 30, Sweden
| | - Esi Domi
- Center for Social and Affective Neuroscience, Linköping University, Campus US, Entrance 65, Linköping 581 85, Sweden
| |
Collapse
|
6
|
Altered mRNA Levels of Stress-Related Peptides in Mouse Hippocampus and Caudate-Putamen in Withdrawal after Long-Term Intermittent Exposure to Tobacco Smoke or Electronic Cigarette Vapour. Int J Mol Sci 2021; 22:ijms22020599. [PMID: 33435320 PMCID: PMC7827390 DOI: 10.3390/ijms22020599] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Nicotine addiction is a severe public health problem. The aim of this study was to investigate the alterations in key neurotransmissions after 60 days of withdrawal from seven weeks of intermittent cigarette smoke, e-cigarette vapours, or an e-cigarette vehicle. In the nicotine withdrawal groups, increased depressive and anxiety/obsessive–compulsive-like behaviours were demonstrated in the tail suspension, sucrose preference and marble burying tests. Cognitive impairments were detected in the spatial object recognition test. A significant increase in Corticotropin-releasing factor (Crf) and Crf1 mRNA levels was observed, specifically after cigarette withdrawal in the caudate-putamen nucleus (CPu). The nociceptin precursor levels were reduced by cigarette (80%) and e-cigarette (50%) withdrawal in the CPu. The delta opioid receptor showed a significant reduction in the hippocampus driven by the exposure to an e-cigarette solubilisation vehicle, while the mRNA levels doubled in the CPu of mice that had been exposed to e-cigarettes. Withdrawal after exposure to e-cigarette vapour induced a 35% Bdnf mRNA decrease in the hippocampus, whereas Bdnf was augmented by 118% by cigarette withdrawal in the CPu. This study shows that long-term withdrawal-induced affective and cognitive symptoms associated to lasting molecular alterations in peptidergic signalling may determine the impaired neuroplasticity in the hippocampal and striatal circuitry.
Collapse
|
7
|
Optogenetic Stimulation of Basal Forebrain Parvalbumin Neurons Activates the Default Mode Network and Associated Behaviors. Cell Rep 2020; 33:108359. [PMID: 33176133 DOI: 10.1016/j.celrep.2020.108359] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/25/2020] [Accepted: 10/16/2020] [Indexed: 11/20/2022] Open
Abstract
Activation of the basal forebrain (BF) has been associated with increased attention, arousal, and a heightened cortical representation of the external world. In addition, BF has been implicated in the regulation of the default mode network (DMN) and associated behaviors. Here, we provide causal evidence for a role of BF in DMN regulation, highlighting a prominent role of parvalbumin (PV) GABAergic neurons. The optogenetic activation of BF PV neurons reliably drives animals toward DMN-like behaviors, with no effect on memory encoding. In contrast, BF electrical stimulation enhances memory performance and increases DMN-like behaviors. BF stimulation has a correlated impact on peptide regulation in the BF and ACC, enhancing peptides linked to grooming behavior and memory functions, supporting a crucial role of the BF in DMN regulation. We suggest that in addition to enhancing attentional functions, the BF harbors a network encompassing PV GABAergic neurons that promotes self-directed behaviors associated with the DMN.
Collapse
|
8
|
Zhang P, Wu X, Liang S, Shao X, Wang Q, Chen R, Zhu W, Shao C, Jin F, Jia C. A dynamic mouse peptidome landscape reveals probiotic modulation of the gut-brain axis. Sci Signal 2020; 13:13/642/eabb0443. [DOI: 10.1126/scisignal.abb0443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Certain probiotics have beneficial effects on the function of the central nervous system through modulation of the gut-brain axis. Here, we describe a dynamic landscape of the peptidome across multiple brain regions, modulated by oral administration of different probiotic species over various times. The spatiotemporal and strain-specific changes of the brain peptidome correlated with the composition of the gut microbiome. The hippocampus exhibited the most sensitive response to probiotic treatment. The administration of heat-killed probiotics altered the hippocampus peptidome but did not substantially change the gut microbiome. We developed a literature-mining algorithm to link the neuropeptides altered by probiotics with potential functional roles. We validated the probiotic-regulated role of corticotropin-releasing hormone by monitoring the hypothalamic-pituitary-adrenal axis, the prenatal stress–induced hyperactivity of which was attenuated by probiotics treatment. Our findings provide evidence for modulation of the brain peptidome by probiotics and provide a resource for further studies of the gut-brain axis and probiotic therapies.
Collapse
Affiliation(s)
- Pei Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China
- School of Life Sciences, Hebei University, Hebei Province, Baoding 071002, China
| | - Xiaoli Wu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shan Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianfeng Shao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qianqian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China
| | - Ruibing Chen
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Weimin Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China
| | - Chen Shao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenxi Jia
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China
| |
Collapse
|
9
|
Genders SG, Scheller KJ, Djouma E. Neuropeptide modulation of addiction: Focus on galanin. Neurosci Biobehav Rev 2020; 110:133-149. [DOI: 10.1016/j.neubiorev.2018.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
|
10
|
Extensive characterization and differential analysis of endogenous peptides from Bombyx batryticatus using mass spectrometric approach. J Pharm Biomed Anal 2018; 163:78-87. [PMID: 30286438 DOI: 10.1016/j.jpba.2018.09.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 12/23/2022]
Abstract
Bombyx batryticatus, the dried larva of Bombyx mori L. (4th-5th instars) infected with Beauveria bassiana Vuill, is an important animal-derived medicine effective against several diseases. The metamorphosis of silkworm can result insignificant changes in the levels of proteins and polypeptides in the 4th and 5th instar larvae. Here, we performed extensive characterization of Bombyx batryticatus peptides, including polypeptides containing cysteines, using an MS-based data mining strategy. A total of 779 peptides with various PTMs (post-translational modifications) were identified through database search and de novo sequencing. Some of these peptides might have important biological activities. Besides, the differential analysis of polypeptides between the head and body of Bombyx batryticatus was performed to provide a clinical basis for rational use of the drugs derived from it. This study illustrates the abundance and sequences of endogenous Bombyx batryticatus polypeptides, and thus, provides potential candidates for the screening of active compounds for future biological research and drug discovery studies.
Collapse
|
11
|
Yang N, Anapindi KDB, Rubakhin SS, Wei P, Yu Q, Li L, Kenny PJ, Sweedler JV. Neuropeptidomics of the Rat Habenular Nuclei. J Proteome Res 2018. [PMID: 29518334 DOI: 10.1021/acs.jproteome.7b00811] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Conserved across vertebrates, the habenular nuclei are a pair of small symmetrical structures in the epithalamus. The nuclei functionally link the forebrain and midbrain by receiving input from and projecting to several brain regions. Each habenular nucleus comprises two major asymmetrical subnuclei, the medial and lateral habenula. These subnuclei are associated with different physiological processes and disorders, such as depression, nicotine addiction, and encoding aversive stimuli or omitting expected rewarding stimuli. Elucidating the functions of the habenular nuclei at the molecular level requires knowledge of their neuropeptide complement. In this work, three mass spectrometry (MS) techniques-liquid chromatography (LC) coupled to Orbitrap tandem MS (MS/MS), LC coupled to Fourier transform (FT)-ion cyclotron resonance (ICR) MS/MS, and matrix-assisted laser desorption/ionization (MALDI) FT-ICR MS-were used to uncover the neuropeptide profiles of the rodent medial and lateral habenula. With the assistance of tissue stabilization and bioinformatics, a total of 262 and 177 neuropeptides produced from 27 and 20 prohormones were detected and identified from the medial and lateral habenula regions, respectively. Among these neuropeptides, 136 were exclusively found in the medial habenula, and 51 were exclusively expressed in the lateral habenula. Additionally, novel sites of sulfation, a rare post-translational modification, on the secretogranin I prohormone are identified. The results demonstrate that these two small brain nuclei have a rich and differentiated peptide repertoire, with this information enabling a range of follow-up studies.
Collapse
Affiliation(s)
- Ning Yang
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Krishna D B Anapindi
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Stanislav S Rubakhin
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Pingli Wei
- Chemistry Department , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Qing Yu
- School of Pharmacy , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Lingjun Li
- Chemistry Department , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States.,School of Pharmacy , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Paul J Kenny
- Department of Pharmacology & Systems Therapeutics , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
12
|
Li W, Papilloud A, Lozano-Montes L, Zhao N, Ye X, Zhang X, Sandi C, Rainer G. Stress Impacts the Regulation Neuropeptides in the Rat Hippocampus and Prefrontal Cortex. Proteomics 2018; 18:e1700408. [PMID: 29406625 DOI: 10.1002/pmic.201700408] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/10/2018] [Indexed: 11/05/2022]
Abstract
Adverse life experiences increase the lifetime risk to several stress-related psychopathologies, such as anxiety or depressive-like symptoms following stress in adulthood. However, the neurochemical modulations triggered by stress have not been fully characterized. Neuropeptides play an important role as signaling molecules that contribute to physiological regulation and have been linked to neurological and psychiatric diseases. However, little is known about the influence of stress on neuropeptide regulation in the brain. Here, we have performed an exploratory study of how neuropeptide expression at adulthood is modulated by experiencing a period of multiple stressful experiences. We have targeted hippocampus and prefrontal cortex (PFC) brain areas, which have previously been shown to be modulated by stressors, employing a targeted liquid chromatography-mass spectrometry (LC-MS) based approach that permits broad peptide coverage with high sensitivity. We found that in the hippocampus, Met-enkephalin, Met-enkephalin-Arg-Phe, and Met-enkephalin-Arg-Gly-Leu were upregulated, while Leu-enkephalin and Little SAAS were downregulated after stress. In the PFC area, Met-enkephalin-Arg-Phe, Met-enkephalin-Arg-Gly-Leu, peptide PHI-27, somatostatin-28 (AA1-12), and Little SAAS were all downregulated. This systematic evaluation of neuropeptide alterations in the hippocampus and PFC suggests that stressors impact neuropeptides and that neuropeptide regulation is brain-area specific. These findings suggest several potential peptide candidates, which warrant further investigations in terms of correlation with depression-associated behaviors.
Collapse
Affiliation(s)
- Wenxue Li
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Aurelie Papilloud
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Science, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | | | - Nan Zhao
- Division of Biological Technology, Chinese Academy of Science, Dalian Institute of Chemical Physics, Dalian, P. R. China
| | - Xueting Ye
- Division of Biological Technology, Chinese Academy of Science, Dalian Institute of Chemical Physics, Dalian, P. R. China
| | - Xiaozhe Zhang
- Division of Biological Technology, Chinese Academy of Science, Dalian Institute of Chemical Physics, Dalian, P. R. China
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Science, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Gregor Rainer
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
13
|
Zhu H, Zhu L, Fang Z, Yang S, Chen Y, Jin Y, Zhao X, Shen C, Yao Y. Common variants at somatostatin are significantly associated with hypertension incidence in smoking and drinking populations. ACTA ACUST UNITED AC 2018; 12:230-237.e12. [PMID: 29426577 DOI: 10.1016/j.jash.2017.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/07/2017] [Accepted: 12/21/2017] [Indexed: 12/23/2022]
Abstract
Somatostatin (SST) and growth hormone-releasing hormone (GHRH) are involved in the development of hypertension. This study aimed to evaluate whether SST and GHRH contribute to genetic susceptibility to hypertension. A case-control study consisting of 2012 hypertensive patients and 2210 matched control individuals was performed, and three tagging single-nucleotide polymorphisms were genotyped. The association of these single-nucleotide polymorphisms with hypertension and ischemic stroke was further evaluated among 4098 participants in a follow-up study. Hazard ratio (HR) and 95% confidence interval were estimated by Cox proportional hazards regression. The follow-up study indicated that in smoking population, variants at SST presented significant association with hypertension incidence; the adjusted HR of rs3755792 (GA + AA vs. GG) was 0.634 (P = .037), and the adjusted HR of rs7624906 (TC + CC vs. TT) was 1.803 (P = .005). In drinking population, rs3755792 at SST was associated with hypertension incidence, and the adjusted HR was 0.580 (P = .009). Moreover, rs6032470 at GHRH had a statistical association with ischemic stroke incidence in smoking population, and the adjusted HR of the additive model was 1.625 (P = .049). These results suggested that SST and GHRH harbor genetic susceptible loci with incident hypertension and ischemic stroke and that smoking and drinking might modify the genetic effect.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu, China
| | - Lijun Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu, China
| | - Zhengmei Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu, China
| | - Song Yang
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Yanchun Chen
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Yuelong Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu, China
| | - Xianghai Zhao
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yingshui Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu, China.
| |
Collapse
|
14
|
Ye H, Wang J, Tian Z, Ma F, Dowell J, Bremer Q, Lu G, Baldo B, Li L. Quantitative Mass Spectrometry Reveals Food Intake-Induced Neuropeptide Level Changes in Rat Brain: Functional Assessment of Selected Neuropeptides as Feeding Regulators. Mol Cell Proteomics 2017; 16:1922-1937. [PMID: 28864778 DOI: 10.1074/mcp.ra117.000057] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 12/27/2022] Open
Abstract
Endogenous neuropeptides are important signaling molecules that function as regulators of food intake and body weight. Previous work has shown that neuropeptide gene expression levels in a forebrain reward site, the nucleus accumbens (NAc), were changed by feeding. To directly monitor feeding-induced changes in neuropeptide expression levels within the NAc, we employed a combination of cryostat dissection, heat stabilization, neuropeptide extraction and label-free quantitative neuropeptidomics via a liquid chromatography-high resolution mass spectrometry platform. Using this methodology, we described the first neuropeptidome in NAc and discovered that feeding caused the expression level changes of multiple neuropeptides derived from different precursors, especially proSAAS-derived peptides such as Big LEN, PEN and little SAAS. We further investigated the regulatory functions of these neuropeptides derived from the ProSAAS family by performing an intra-NAc microinjection experiment using the identified ProSAAS neuropeptides, 'Big-LEN' and 'PEN'. Big LEN significantly increased rats' food and water intake, whereas both big LEN and PEN affected other behaviors including locomotion, drinking and grooming. In addition, we quantified the feeding-induced changes of peptides from hippocampus, hypothalamus and striatum to reveal the neuropeptide interplay among different anatomical regions. In summary, our study demonstrated neuropeptidomic changes in response to food intake in the rat NAc and other key brain regions. Importantly, the microinfusion of ProSAAS peptides into NAc revealed that they are behaviorally active in this brain site, suggesting the potential use of these peptides as therapeutics for eating disorders.
Collapse
Affiliation(s)
- Hui Ye
- From the ‡State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang #24, Nanjing 21009, China.,§School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705
| | - Jingxin Wang
- ¶Neuroscience Training Program, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705
| | - Zichuan Tian
- ‖Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706
| | - Fengfei Ma
- §School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705
| | - James Dowell
- §School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705
| | - Quentin Bremer
- **Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, Wisconsin 53719
| | - Gaoyuan Lu
- From the ‡State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang #24, Nanjing 21009, China
| | - Brian Baldo
- ¶Neuroscience Training Program, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705; .,**Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, Wisconsin 53719
| | - Lingjun Li
- §School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705; .,¶Neuroscience Training Program, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705.,‖Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706.,‡‡School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
15
|
Carboni L, Romoli B, Romualdi P, Zoli M. Repeated nicotine exposure modulates prodynorphin and pronociceptin levels in the reward pathway. Drug Alcohol Depend 2016; 166:150-8. [PMID: 27430399 DOI: 10.1016/j.drugalcdep.2016.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Nicotine dependence is maintained by neurobiological adaptations in the dopaminergic brain reward pathway with the contribution of opioidergic circuits. This study assessed the role of opioid peptides and receptors on the molecular changes associated with nicotine dependence. To this aim we analysed nicotine effects on opioid gene and receptor expression in the reward pathway in a nicotine sensitization model. METHODS Sprague-Dawley rats received nicotine administrations for five days and locomotor activity assessment showed the development of sensitization. The mRNA expression of prodynorphin (pdyn), pronociceptin (pnoc) and the respective receptors was measured by quantitative PCR in the ventral midbrain (VM), the nucleus accumbens (NAc), the caudate-putamen (CPu), the pre-frontal cortex (PFCx), and the hippocampus. RESULTS A significant positive effect of sensitization on pdyn mRNA levels was detected in the CPu. This effect was supported by a significant and selective correlation between the two parameters in this region. Moreover, chronic but not acute nicotine treatment significantly decreased pdyn mRNA levels in the NAc and increased expression in the PFCx. Pnoc mRNA was significantly increased in the VM and the PFCx after sub-chronic administration of nicotine, whereas no alterations were observed after acute treatment. No treatment associated changes were detected in κ-opioid receptor or nociceptin receptor mRNAs. CONCLUSIONS This experiment revealed an effect of nicotine administration that was distinguishable from the effect of nicotine sensitization. While several pnoc and pdyn changes were associated to nicotine administration, the only significant effect of sensitization was a significant increase in pdyn in the CPu.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy.
| | - Benedetto Romoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
16
|
Yu X, Khani A, Ye X, Petruzziello F, Gao H, Zhang X, Rainer G. High-Efficiency Recognition and Identification of Disulfide Bonded Peptides in Rat Neuropeptidome Using Targeted Electron Transfer Dissociation Tandem Mass Spectrometry. Anal Chem 2015; 87:11646-51. [PMID: 26531061 DOI: 10.1021/ac504872z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The main goal of the present study is to develop a method to recognize and identify endogenous intrachain disulfide bonded peptide, which are rarely sequenced in current peptidomics studies. In order to achieve highly efficient detection of these peptides in a neuropeptidome analysis, we alkylated the peptides, mined the raw mass spectrometry data, and then recognized the candidates of untreated disulfide bonded peptides from unalkylated peptide extracts. After removing more than 90% features, targeted electron transfer dissociation fragmentation was performed for detecting and fragmenting disulfide bonded peptides, and even most of them were present in low abundance in the original sample. Diverse endogenous disulfide bonded peptides were then detected and sequenced, opening up new perspectives for comprehensively understanding the response of a neuropeptidome.
Collapse
Affiliation(s)
- Xi Yu
- Division of Biological Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457, Dalian, China
| | - Abbas Khani
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg , Chemin de Musee 5, Fribourg, CH-1700, Switzerland
| | - Xueting Ye
- Shenyang Pharmaceutical University , Wenhua Road 103, Shenyang, China
| | - Filomena Petruzziello
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg , Chemin de Musee 5, Fribourg, CH-1700, Switzerland
| | - Huiyuan Gao
- Shenyang Pharmaceutical University , Wenhua Road 103, Shenyang, China
| | - Xiaozhe Zhang
- Division of Biological Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457, Dalian, China
| | - Gregor Rainer
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg , Chemin de Musee 5, Fribourg, CH-1700, Switzerland
| |
Collapse
|
17
|
Ye H, Wang J, Zhang Z, Jia C, Schmerberg C, Catherman AD, Thomas PM, Kelleher NL, Li L. Defining the Neuropeptidome of the Spiny Lobster Panulirus interruptus Brain Using a Multidimensional Mass Spectrometry-Based Platform. J Proteome Res 2015; 14:4776-91. [PMID: 26390183 DOI: 10.1021/acs.jproteome.5b00627] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Decapod crustaceans are important animal models for neurobiologists due to their relatively simple nervous systems with well-defined neural circuits and extensive neuromodulation by a diverse set of signaling peptides. However, biochemical characterization of these endogenous neuropeptides is often challenging due to limited sequence information about these neuropeptide genes and the encoded preprohormones. By taking advantage of sequence homology in neuropeptides observed in related species using a home-built crustacean neuropeptide database, we developed a semi-automated sequencing strategy to characterize the neuropeptidome of Panulirus interruptus, an important aquaculture species, with few known neuropeptide preprohormone sequences. Our streamlined process searched the high mass accuracy and high-resolution data acquired on a LTQ-Orbitrap with a flexible algorithm in ProSight that allows for sequence discrepancy from reported sequences in our database, resulting in the detection of 32 neuropeptides, including 19 novel ones. We further improved the overall coverage to 51 neuropeptides with our multidimensional platform that employed multiple analytical techniques including dimethylation-assisted fragmentation, de novo sequencing using nanoliquid chromatography-electrospray ionization-quadrupole-time-of-flight (nanoLC-ESI-Q-TOF), direct tissue analysis, and mass spectrometry imaging on matrix-assisted laser desorption/ionization (MALDI)-TOF/TOF. The high discovery rate from this unsequenced model organism demonstrated the utility of our neuropeptide discovery pipeline and highlighted the advantage of utilizing multiple sequencing strategies. Collectively, our study expands the catalog of crustacean neuropeptides and more importantly presents an approach that can be adapted to exploring neuropeptidome from species that possess limited sequence information.
Collapse
Affiliation(s)
- Hui Ye
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University , Nanjing 210009, China.,School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | | | - Zichuan Zhang
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Chenxi Jia
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Claire Schmerberg
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Adam D Catherman
- Departments of Chemistry and Molecular Biosciences, Proteomics Center of Excellence and Chemistry of Life Processes Institute, Northwestern University , 2145 North Sheridan Road, Evanston, Illinois 60208, United States
| | - Paul M Thomas
- Departments of Chemistry and Molecular Biosciences, Proteomics Center of Excellence and Chemistry of Life Processes Institute, Northwestern University , 2145 North Sheridan Road, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, Proteomics Center of Excellence and Chemistry of Life Processes Institute, Northwestern University , 2145 North Sheridan Road, Evanston, Illinois 60208, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,School of Life Sciences, Tianjin University , No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
18
|
Methadone’s effect on nAChRs—a link between methadone use and smoking? Biochem Pharmacol 2015; 97:542-549. [DOI: 10.1016/j.bcp.2015.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022]
|
19
|
Romanova EV, Sweedler JV. Peptidomics for the discovery and characterization of neuropeptides and hormones. Trends Pharmacol Sci 2015; 36:579-86. [PMID: 26143240 DOI: 10.1016/j.tips.2015.05.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/31/2022]
Abstract
The discovery of neuropeptides as signaling molecules with paracrine or hormonal regulatory functions has led to trailblazing advances in physiology and fostered the characterization of numerous neuropeptide-binding G protein-coupled receptors (GPCRs) as potential drug targets. The impact on human health has been tremendous: approximately 30% of commercial drugs act via the GPCR pathway. However, about 25% of the GPCRs encoded by the mammalian genome still lack their pharmacological identity. Searching for the orphan GPCR endogenous ligands that are likely to be neuropeptides has proved to be a formidable task. Here we describe the mass spectrometry (MS)-based technologies and experimental strategies that have been successful in achieving high-throughput characterization of endogenous peptides in nervous and endocrine systems.
Collapse
Affiliation(s)
- Elena V Romanova
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
20
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
21
|
Common effects of fat, ethanol, and nicotine on enkephalin in discrete areas of the brain. Neuroscience 2014; 277:665-78. [PMID: 25086310 DOI: 10.1016/j.neuroscience.2014.07.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 01/27/2023]
Abstract
Fat, ethanol, and nicotine share a number of properties, including their ability to reinforce behavior and produce overconsumption. To test whether these substances act similarly on the same neuronal populations in specific brain areas mediating these behaviors, we administered the substances short-term, using the same methods and within the same experiment, and measured their effects, in areas of the hypothalamus (HYPO), amygdala (AMYG), and nucleus accumbens (NAc), on mRNA levels of the opioid peptide, enkephalin (ENK), using in situ hybridization and on c-Fos immunoreactivity (ir) to indicate neuronal activity, using immunofluorescence histochemistry. In addition, we examined for comparison another reinforcing substance, sucrose, and also took measurements of stress-related behaviors and circulating corticosterone (CORT) and triglycerides (TG), to determine if they contribute to these substances' behavioral and physiological effects. Adult Sprague-Dawley rats were gavaged three times daily over 5 days with 3.5 mL of water, Intralipid (20% v/v), ethanol (12% v/v), nicotine (0.01% w/v) or sucrose (22% w/v) (approximately 7 kcal/dose), and tail vein blood was collected for measurements of circulating CORT and TG. On day five, animals were sacrificed, brains removed, and the HYPO, AMYG, and NAc processed for single- or double-labeling of ENK mRNA and c-Fos-ir. Fat, ethanol, and nicotine, but not sucrose, increased the single- and double-labeling of ENK and c-Fos-ir in precisely the same brain areas, the middle parvocellular but not lateral area of the paraventricular nucleus, central but not basolateral nucleus of the AMYG, and core but not shell of the NAc. While having little effect on stress-related behaviors or CORT levels, fat, ethanol, and nicotine all increased circulating levels of TG. These findings suggest that the overconsumption of these three substances and their potential for abuse are mediated by the same populations of ENK-expressing neurons in specific nuclei of the hypothalamus and limbic system.
Collapse
|
22
|
Raffa RB, Baron S, Bhandal JS, Brown T, Song K, Tallarida CS, Rawls SM. Opioid receptor types involved in the development of nicotine physical dependence in an invertebrate (Planaria) model. Pharmacol Biochem Behav 2013; 112:9-14. [PMID: 24084318 DOI: 10.1016/j.pbb.2013.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 09/18/2013] [Accepted: 09/21/2013] [Indexed: 11/18/2022]
Abstract
Recent data suggest that opioid receptors are involved in the development of nicotine physical dependence in mammals. Evidence in support of a similar involvement in an invertebrate (Planaria) is presented using the selective opioid receptor antagonist naloxone, and the more receptor subtype-selective antagonists CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2) (μ, MOR), naltrindole (δ, DOR), and nor-BNI (norbinaltorphimine) (κ, KOR). Induction of physical dependence was achieved by 60-min pre-exposure of planarians to nicotine and was quantified by abstinence-induced withdrawal (reduction in spontaneous locomotor activity). Known MOR and DOR subtype-selective opioid receptor antagonists attenuated the withdrawal, as did the non-selective antagonist naloxone, but a KOR subtype-selective antagonist did not. An involvement of MOR and DOR, but not KOR, in the development of nicotine physical dependence or in abstinence-induced withdrawal was thus demonstrated in a sensitive and facile invertebrate model.
Collapse
Affiliation(s)
- Robert B Raffa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA.
| | | | | | | | | | | | | |
Collapse
|