1
|
Ma X, Li M, Wang X, Qi G, Wei L, Zhang D. Sialylation in the gut: From mucosal protection to disease pathogenesis. Carbohydr Polym 2024; 343:122471. [PMID: 39174097 DOI: 10.1016/j.carbpol.2024.122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 08/24/2024]
Abstract
Sialylation, a crucial post-translational modification of glycoconjugates, entails the attachment of sialic acid (SA) to the terminal glycans of glycoproteins and glycolipids through a tightly regulated enzymatic process involving various enzymes. This review offers a comprehensive exploration of sialylation within the gut, encompassing its involvement in mucosal protection and its impact on disease progression. The sialylation of mucins and epithelial glycoproteins contributes to the integrity of the intestinal mucosal barrier. Furthermore, sialylation regulates immune responses in the gut, shaping interactions among immune cells, as well as their activation and tolerance. Additionally, the gut microbiota and gut-brain axis communication are involved in the role of sialylation in intestinal health. Altered sialylation patterns have been implicated in various intestinal diseases, including inflammatory bowel disease (IBD), colorectal cancer (CRC), and other intestinal disorders. Emerging research underscores sialylation as a promising avenue for diagnostic, prognostic, and therapeutic interventions in intestinal diseases. Potential strategies such as sialic acid supplementation, inhibition of sialidases, immunotherapy targeting sialylated antigens, and modulation of sialyltransferases have been utilized in the treatment of intestinal diseases. Future research directions will focus on elucidating the molecular mechanisms underlying sialylation alterations, identifying sialylation-based biomarkers, and developing targeted interventions for precision medicine approaches.
Collapse
Affiliation(s)
- Xueni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Muyang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaochun Wang
- Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, China
| | - Guoqing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lina Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
2
|
Spinato G, Schiavon V, Torvilli S, Carraro S, Amato F, Daloiso A, Di Fiore A, Favero V, Franz L, Marioni G, de Filippis C, Fabbris C, Emanuelli E, Nicolai P. Oral Care in Head and Neck Radiotherapy: Proposal for an Oral Hygiene Protocol. J Pers Med 2024; 14:1013. [PMID: 39338267 PMCID: PMC11433007 DOI: 10.3390/jpm14091013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
This review aims to provide a comprehensive overview of the literature on the oral side effects caused by radiotherapy for head and neck cancers. Various treatments are examined to mitigate these sequelae, and a protocol is proposed for dentists and dental hygienists to manage oncological patients. A literature search was conducted to select relevant articles addressing the effects of radiotherapy treatments on the oral cavity, with a particular focus on the development of mucositis, candidiasis, changes in salivary pH, trismus, fibrosis, and alterations in the oral biofilm. PubMed and MedLine were used as search engines, with keyword combinations including: head and neck cancer, mucositis, candida, dental care, dental hygiene, epidemiology, oral microbiome, biofilm, trismus, fibrosis, and salivary pH. A total of 226 articles were identified, spanning the period from 1998 to 2023. Articles deemed inappropriate or in languages other than English or Italian were excluded. A management protocol for oncological patients was proposed, divided into two phases: home-based and professional. Despite the advancements in intensity-modulated radiation therapy, it is impossible to completely avoid damage to healthy tissues. Preventive education and counseling in the dental chair, ongoing motivation, and education about oral hygiene are crucial to combine a good therapeutic outcome with an improved quality of life for the patient.
Collapse
Affiliation(s)
- Giacomo Spinato
- Department of Neuroscience, Section of Otolaryngology, University of Padova, 35121 Padova, Italy
| | - Valentina Schiavon
- Department of Neuroscience, School of Dentistry, University of Padova, 35121 Padova, Italy
| | - Sara Torvilli
- Department of Neuroscience, School of Dentistry, University of Padova, 35121 Padova, Italy
| | - Stefano Carraro
- Department of Neuroscience, Section of Otolaryngology, University of Padova, 35121 Padova, Italy
| | - Federica Amato
- Department of Neuroscience, Section of Otolaryngology, University of Padova, 35121 Padova, Italy
| | - Antonio Daloiso
- Department of Neuroscience, Section of Otolaryngology, University of Padova, 35121 Padova, Italy
| | - Adolfo Di Fiore
- Department of Neuroscience, School of Dentistry, University of Padova, 35121 Padova, Italy
| | - Vittorio Favero
- Department of Neuroscience, Section of Maxillofacial Surgery, University of Padova, 35121 Padova, Italy
| | - Leonardo Franz
- Department of Neuroscience, Section of Audiology and Phoniatry, University of Padova, Treviso Hospital, 31100 Treviso, Italy
| | - Gino Marioni
- Department of Neuroscience, Section of Audiology and Phoniatry, University of Padova, Treviso Hospital, 31100 Treviso, Italy
| | - Cosimo de Filippis
- Department of Neuroscience, Section of Audiology and Phoniatry, University of Padova, Treviso Hospital, 31100 Treviso, Italy
| | - Cristoforo Fabbris
- Department of Medicine DIMED, University of Padova, 35122 Padova, Italy
- ENT Unit, Department of Surgery, South Padova United Hospitals, 35043 Padova, Italy
| | - Enzo Emanuelli
- AULSS 2 Marca Trevigiana, Section of Otolaryngology, Treviso Hospital, 31100 Treviso, Italy
| | - Piero Nicolai
- Department of Neuroscience, Section of Otolaryngology, University of Padova, 35121 Padova, Italy
| |
Collapse
|
3
|
Faruque MRJ, Potocka W, Nazmi K, Ligtenberg AJ, Bikker FJ, Laine ML. Scent of relief: Mastic resin scent recovers salivation in chronic dry mouth patients. Biomed Pharmacother 2024; 178:117245. [PMID: 39111079 DOI: 10.1016/j.biopha.2024.117245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/25/2024] Open
Abstract
BACKGROUND Olfactory stimulation with mastic resin, derived from the Pistacia lentiscus tree, demonstrated a bona fide sialagogic effect in healthy volunteers [1]. Its main volatile compound, α-pinene, also showed this effect. The current study aimed to validate the effect of mastic resin volatiles in chronic dry mouth patients with confirmed decreased saliva secretion. METHODS 41 chronic dry mouth patients with decreased unstimulated saliva secretion (<0.25 mL/min) were exposed to mastic resin volatiles as part of the diagnostic routine at the Saliva Clinic of Academic Centre for Dentistry Amsterdam. During their visit, dry-mouth questionnaires were conducted and samples of unstimulated whole saliva, chew-stimulated saliva, acid-stimulated saliva and mastic resin stimulated saliva were collected. Saliva flow rate, spinnbarkeit, pH, ion composition, MUC5B and MUC7 levels in all samples were analyzed. RESULTS Salivary flow rates increased by all stimuli when compared to the baseline unstimulated saliva (P<0.001). During olfactory mastic resin stimulation, the salivary spinnbarkeit (P<0.001) and sodium concentration (P<0.01) were increased compared to unstimulated saliva. MUC5B and MUC7 levels were increased during olfactory mastic resin stimulation compared to chew-stimulated saliva (P=0.016 and P<0.001, respectively). Spinnbarkeit correlated positively with MUC5B (R=0.399, P=0.002) and MUC7 levels (R=0.375, P=0.004). Results of dry-mouth questionnaires indicated reduced posterior palate dryness shortly after olfactory mastic resin stimulation (P=0.04). CONCLUSIONS Olfactory mastic resin stimulation increased mucous saliva secretion and reduced posterior palate dryness in a group of chronic dry mouth patients. These findings, validated in patients, underscore mastic resin scent as a beneficial and non-invasive sialagogic treatment for clinical applications.
Collapse
Affiliation(s)
- Mouri R J Faruque
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands; Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands.
| | - Wiktoria Potocka
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands; Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Antoon J Ligtenberg
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Marja L Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Porat J, Watkins CP, Jin C, Xie X, Tan X, Lebedenko CG, Hemberger H, Shin W, Chai P, Collins JJ, Garcia BA, Bojar D, Flynn RA. O-glycosylation contributes to mammalian glycoRNA biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610074. [PMID: 39257776 PMCID: PMC11384000 DOI: 10.1101/2024.08.28.610074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
There is an increasing appreciation for the role of cell surface glycans in modulating interactions with extracellular ligands and participating in intercellular communication. We recently reported the existence of sialoglycoRNAs, where mammalian small RNAs are covalently linked to N-glycans through the modified base acp3U and trafficked to the cell surface. However, little is currently known about the role for O-glycosylation, another major class of carbohydrate polymer modifications. Here, we use parallel genetic, enzymatic, and mass spectrometry approaches to demonstrate that O-linked glycan biosynthesis is responsible for the majority of sialoglycoRNA levels. By examining the O-glycans associated with RNA from cell lines and colon organoids we find known and previously unreported O-linked glycan structures. Further, we find that O-linked glycans released from small RNA from organoids derived from ulcerative colitis patients exhibit higher levels of sialylation than glycans from healthy organoids. Together, our work provides flexible tools to interrogate O-linked glycoRNAs (O-glycoRNA) and suggests that they may be modulated in human disease.
Collapse
Affiliation(s)
- Jennifer Porat
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA
| | - Christopher P. Watkins
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA
| | - Chunsheng Jin
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xixuan Xie
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiao Tan
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, USA
- Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charlotta G. Lebedenko
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA
| | - Helena Hemberger
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA
| | - Woojung Shin
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, USA
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Peiyuan Chai
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA
| | - James J. Collins
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, USA
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden. Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ryan A. Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, USA
| |
Collapse
|
5
|
Al-Haidose A, Hassan S, Elhassan M, Ahmed E, Al-Riashi A, Alharbi YM, Ghunaim M, Alhejaili T, Abdallah AM. Role of ncRNAs in the Pathogenesis of Sjögren's Syndrome. Biomedicines 2024; 12:1540. [PMID: 39062113 PMCID: PMC11274537 DOI: 10.3390/biomedicines12071540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Sjögren's syndrome is a multisystemic autoimmune disease that mainly affects the exocrine glands, causing dryness of the eyes and the mouth as the principal symptoms. Non-coding RNAs (ncRNAs), once regarded as genomic "junk", are now appreciated as important molecular regulators of gene expression, not least in Sjögren's syndrome and other autoimmune diseases. Here we review research into the causative roles of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) on immunological responses, inflammation, and salivary gland epithelial cell function in Sjögren's syndrome patients. These ncRNAs represent promising new therapeutic targets for treating the disease and possibly as biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Amal Al-Haidose
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Sondoss Hassan
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Mahmoud Elhassan
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Eiman Ahmed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Abdulla Al-Riashi
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Yazeed M. Alharbi
- Department of Internal Medicine, Collage of Medicine, Taibah University, Madinah 42353, Saudi Arabia; (Y.M.A.); (M.G.)
| | - Monther Ghunaim
- Department of Internal Medicine, Collage of Medicine, Taibah University, Madinah 42353, Saudi Arabia; (Y.M.A.); (M.G.)
| | - Talal Alhejaili
- Department of Gastroenterology, King Salman Medical City, Madinah 42319, Saudi Arabia;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| |
Collapse
|
6
|
Tafech B, Rokhforouz MR, Leung J, Sung MM, Lin PJ, Sin DD, Lauster D, Block S, Quon BS, Tam Y, Cullis P, Feng JJ, Hedtrich S. Exploring Mechanisms of Lipid Nanoparticle-Mucus Interactions in Healthy and Cystic Fibrosis Conditions. Adv Healthc Mater 2024; 13:e2304525. [PMID: 38563726 DOI: 10.1002/adhm.202304525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Mucus forms the first defense line of human lungs, and as such hampers the efficient delivery of therapeutics to the underlying epithelium. This holds particularly true for genetic cargo such as CRISPR-based gene editing tools which cannot readily surmount the mucosal barrier. While lipid nanoparticles (LNPs) emerge as versatile non-viral gene delivery systems that can help overcome the delivery challenge, many knowledge gaps remain, especially for diseased states such as cystic fibrosis (CF). This study provides fundamental insights into Cas9 mRNA or ribonucleoprotein-loaded LNP-mucus interactions in healthy and diseased states by assessing the impact of the genetic cargo, mucin sialylation, mucin concentration, ionic strength, pH, and polyethylene glycol (PEG) concentration and nature on LNP diffusivity leveraging experimental approaches and Brownian dynamics (BD) simulations. Taken together, this study identifies key mucus and LNP characteristics that are critical to enabling a rational LNP design for transmucosal delivery.
Collapse
Affiliation(s)
- Belal Tafech
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Mohammad-Reza Rokhforouz
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jerry Leung
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Molly Mh Sung
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Paulo Jc Lin
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Daniel Lauster
- Institute of Pharmacy, Biopharmaceuticals, Freie Universität Berlin, 12169, Berlin, Germany
| | - Stephan Block
- Institute of Organic Chemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Bradley S Quon
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Adult Cystic Fibrosis Clinic, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Pieter Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - James J Feng
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Sarah Hedtrich
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Center of Biological Design, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| |
Collapse
|
7
|
Stanforth KJ, Zakhour MI, Chater PI, Wilcox MD, Adamson B, Robson NA, Pearson JP. The MUC2 Gene Product: Polymerisation and Post-Secretory Organisation-Current Models. Polymers (Basel) 2024; 16:1663. [PMID: 38932019 PMCID: PMC11207715 DOI: 10.3390/polym16121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
MUC2 mucin, the primary gel-forming component of intestinal mucus, is well researched and a model of polymerisation and post-secretory organisation has been published previously. Recently, several significant developments have been made which either introduce new ideas or challenge previous theories. New ideas include an overhaul of the MUC2 C-terminal globular structure which is proposed to harbour several previously unobserved domains, and include a site for an extra intermolecular disulphide bridge dimer between the cysteine 4379 of adjacent MUC2 C-termini. MUC2 polymers are also now thought to be secreted attached to the epithelial surface of goblet cells in the small intestine and removed following secretion via a metalloprotease meprin β-mediated cleavage of the von Willebrand D2 domain of the N-terminus. It remains unclear whether MUC2 forms intermolecular dimers, trimers, or both, at the N-termini during polymerisation, with several articles supporting either trimer or dimer formation. The presence of a firm inner mucus layer in the small intestine is similarly unclear. Considering this recent research, this review proposes an update to the previous model of MUC2 polymerisation and secretion, considers conflicting theories and data, and highlights the importance of this research to the understanding of MUC2 mucus layers in health and disease.
Collapse
Affiliation(s)
- Kyle J. Stanforth
- Aelius Biotech, The Medical School, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (P.I.C.); (M.D.W.); (B.A.); (N.A.R.)
| | - Maria I. Zakhour
- Biosciences Institute, Newcastle University Biosciences Institute, Catherine Cookson Building, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (M.I.Z.); (J.P.P.)
| | - Peter I. Chater
- Aelius Biotech, The Medical School, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (P.I.C.); (M.D.W.); (B.A.); (N.A.R.)
| | - Matthew D. Wilcox
- Aelius Biotech, The Medical School, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (P.I.C.); (M.D.W.); (B.A.); (N.A.R.)
| | - Beth Adamson
- Aelius Biotech, The Medical School, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (P.I.C.); (M.D.W.); (B.A.); (N.A.R.)
| | - Niamh A. Robson
- Aelius Biotech, The Medical School, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (P.I.C.); (M.D.W.); (B.A.); (N.A.R.)
| | - Jeffrey P. Pearson
- Biosciences Institute, Newcastle University Biosciences Institute, Catherine Cookson Building, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (M.I.Z.); (J.P.P.)
| |
Collapse
|
8
|
George GS, Fleming CJ, Upadhyay R. Perspective on oral processing of plant-based beverages. J Texture Stud 2024; 55:e12846. [PMID: 38899530 DOI: 10.1111/jtxs.12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024]
Abstract
Around the world, the market for plant-derived beverages is one of the fastest-expanding segments in the functional and specialty beverage areas of newer food product development. Consumers are increasingly likely to choose alternatives to bovine beverages due to factors including lactose intolerance, hypercholesterolemia prevalence, allergies to bovine beverages, and preference for vegan diets that contain functionally active ingredients with health-promoting characteristics. Due to health, ecological, and ethical concerns, many customers are interested in reducing their usage of animal products like bovine milk. A variety of plant-based beverage substitutes are being created by the food sector as a result. To create viable alternatives, it is first necessary to provide an overview of the chemical composition, structure, features, and nutritional attributes of ordinary bovine milk. Sensory acceptability in the case of substitutes for beverages made from legumes is a significant barrier to their widespread acceptance, and thus saliva acts as a sophisticated fluid that serves a variety of purposes in the cavity of the mouth. Designing and producing next-generation plant-based beverages that mimic the physicochemical and functional qualities of conventional bovine-based beverages is gaining popularity, and many of these products can be thought of as colloidal materials that contain the particles or polymers that give them their unique qualities NG-PB foods can have a wide range of rheological qualities, such as fluids with low viscosity (such as plant-based beverages), high-viscosity liquids (like creams), soft liquids (like yogurt), as well as hard solids (such as some cheeses).
Collapse
Affiliation(s)
- Gintu Sara George
- Division of Food Processing Technology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Craig J Fleming
- Giraffe Foods a Symrise Group Company, Mississauga, Ontario, Canada
| | - Rituja Upadhyay
- Division of Food Processing Technology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| |
Collapse
|
9
|
Winter C, Tetyczka C, Pham DT, Kolb D, Leitinger G, Schönfelder S, Kunert O, Gerlza T, Kungl A, Bucar F, Roblegg E. Investigation of Hydrocolloid Plant Polysaccharides as Potential Candidates to Mimic the Functions of MUC5B in Saliva. Pharmaceutics 2024; 16:682. [PMID: 38794344 PMCID: PMC11124828 DOI: 10.3390/pharmaceutics16050682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The successful substitution of complex physiological fluids, such as human saliva, remains a major challenge in drug development. Although there are a large number of saliva substitutes on the market, their efficacy is often inadequate due to short residence time in the mouth, unpleasant mouthfeel, or insufficient protection of the teeth. Therefore, systems need to be identified that mimic the functions of saliva, in particular the salivary mucin MUC5B and the unique physiological properties of saliva. To this end, plant extracts known to contain hydrocolloid polysaccharides and to have mucus-forming properties were studied to evaluate their suitability as saliva substitutes. The aqueous plant extracts of Calendula officinalis, Fucus sp. thalli, and lichenan from Lichen islandicus were examined for composition using a range of techniques, including GC-MS, NMR, SEC, assessment of pH, osmolality, buffering capacity, viscoelasticity, viscoelastic interactions with human saliva, hydrocolloid network formation, and in vitro cell adhesion. For this purpose, a physiologically adapted adhesive test was developed using human buccal epithelial cells. The results show that lichenan is the most promising candidate to mimic the properties of MUC5B. By adjusting the pH, osmolality, and buffering capacity with K2HPO4, it was shown that lichenan exhibited high cell adhesion, with a maximum detachment force that was comparable to that of unstimulated whole mouth saliva.
Collapse
Affiliation(s)
- Christina Winter
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, 8010 Graz, Austria; (C.W.); (C.T.)
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Carolin Tetyczka
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, 8010 Graz, Austria; (C.W.); (C.T.)
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Duy Toan Pham
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam;
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Center for Medical Research, Medical University of Graz, Neue Stiftingtalstrasse 6/VI, 8010 Graz, Austria;
| | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6/V, 8010 Graz, Austria;
| | - Sandra Schönfelder
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstraße 8, 8010 Graz, Austria; (S.S.); (F.B.)
| | - Olaf Kunert
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Schubertstraße 1, 8010 Graz, Austria; (O.K.); (T.G.); (A.K.)
| | - Tanja Gerlza
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Schubertstraße 1, 8010 Graz, Austria; (O.K.); (T.G.); (A.K.)
| | - Andreas Kungl
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Schubertstraße 1, 8010 Graz, Austria; (O.K.); (T.G.); (A.K.)
| | - Franz Bucar
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstraße 8, 8010 Graz, Austria; (S.S.); (F.B.)
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, 8010 Graz, Austria; (C.W.); (C.T.)
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
10
|
Martin-Alarcon L, Govedarica A, Ewoldt RH, Bryant SL, Jay GD, Schmidt TA, Trifkovic M. Scale-Dependent Rheology of Synovial Fluid Lubricating Macromolecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306207. [PMID: 38161247 DOI: 10.1002/smll.202306207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/20/2023] [Indexed: 01/03/2024]
Abstract
Synovial fluid (SF) is the complex biofluid that facilitates the exceptional lubrication of articular cartilage in joints. Its primary lubricating macromolecules, the linear polysaccharide hyaluronic acid (HA) and the mucin-like glycoprotein proteoglycan 4 (PRG4 or lubricin), interact synergistically to reduce boundary friction. However, the precise manner in which these molecules influence the rheological properties of SF remains unclear. This study aimed to elucidate this by employing confocal microscopy and multiscale rheometry to examine the microstructure and rheology of solutions containing recombinant human PRG4 (rhPRG4) and HA. Contrary to previous assumptions of an extensive HA-rhPRG4 network, it is discovered that rhPRG4 primarily forms stiff, gel-like aggregates. The properties of these aggregates, including their size and stiffness, are found to be influenced by the viscoelastic characteristics of the surrounding HA matrix. Consequently, the rheology of this system is not governed by a single length scale, but instead responds as a disordered, hierarchical network with solid-like rhPRG4 aggregates distributed throughout the continuous HA phase. These findings provide new insights into the biomechanical function of PRG4 in cartilage lubrication and may have implications in the development of HA-based therapies for joint diseases like osteoarthritis.
Collapse
Affiliation(s)
- Leonardo Martin-Alarcon
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Aleksandra Govedarica
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Randy H Ewoldt
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Steven L Bryant
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Gregory D Jay
- Department of Emergency Medicine - Warren Alpert Medical School & School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Milana Trifkovic
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
11
|
Kogawa EM, Melo FF, Pires RG, Caetano PCC, de Lima Rodrigues J, Benito LAO, da Silva ICR, de Castro Cantuária AP, de Carvalho Sales-Peres SH. The changes on salivary flow rates, buffering capacity and chromogranin A levels in adults after bariatric surgery. Clin Oral Investig 2024; 28:159. [PMID: 38378939 DOI: 10.1007/s00784-024-05551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/10/2024] [Indexed: 02/22/2024]
Abstract
OBJECTIVES This study aimed to investigate changes in salivary flow rates, buffering capacity, and salivary chromogranin A (CHGA) levels in adults undergoing bariatric surgery (BS) compared with a non-obese control group. MATERIALS AND METHODS Salivary analyses were performed on 62 participants aged over 50 years, stratified into two groups matched for age and gender-individuals who had undergone bariatric surgery (BS) (n = 31) and a corresponding healthy control group (n = 31). Before saliva collection, participants completed a comprehensive 11-point visual numerical rating scale (NRS 0-10) xerostomia questionnaire, assessing subjective perceptions of two key aspects: dryness of the oral mucosa and resultant impact on oral functional ability. Three distinct saliva measurements were obtained: unstimulated whole saliva (UWS), stimulated whole saliva (SWS), and unstimulated upper labial saliva (ULS). The buffering capacity of unstimulated saliva was assessed using pH indicator strips, and concentrations of salivary Chromogranin A (CHGA) were quantified in stimulated saliva via enzyme-linked immunosorbent assay (ELISA). RESULTS After BS, more than 40% of BS group patients reported xerostomia, with 16.1% experiencing only mild symptoms without significant functional impact (p = 0.009). The prevalence of xerostomia and tongue dryness was higher in the BS group compared to the control group (p = 0.028 and p = 0.025, respectively). The comparative analysis unveiled no statistically significant differences in flow rates of unstimulated upper labial saliva (ULS), unstimulated whole saliva (UWS), and stimulated whole saliva (SWS) between the control group and patients who underwent bariatric surgery. However, in patients undergone BS with xerostomia, both ULS and UWS flow rates were significantly lower than in controls with xerostomia (p = 0.014 and p = 0.007, respectively). The buffering capacity was significantly lower in patients undergone BS than in controls (p = 0.009). No differences were found between groups regarding CHGA concentration and output values, nevertheless, higher values of CHGA concentrations were significantly correlated to lower flow rates. CONCLUSION According to the results, this study suggests that individuals undergoing BS may exhibit altered salivary buffering capacity and reduced unstimulated salivary flows in the presence of xerostomia. Additionally, the findings suggest that elevated concentration of salivary CHGA might be associated, in part, with salivary gland hypofunction. CLINICAL RELEVANCE The clinical significance of this study lies in highlighting the changes in salivary functions after BS. The identified salivary alterations might be attributed to adverse effects of BS such as vomiting, gastroesophageal reflux, and dehydration. Understanding these changes is crucial for healthcare professionals involved in the care of post-BS patients, as it sheds light on potential oral health challenges that may arise as a consequence of the surgical intervention. Monitoring and managing these salivary alterations can contribute to comprehensive patient care and enhance the overall postoperative experience for individuals undergoing BS.
Collapse
Affiliation(s)
- Evelyn Mikaela Kogawa
- Faculdade de Odontologia de Bauru, Universidade de São Paulo (USP), Bauru, SP, 17012-901, Brazil.
- Departamento de Odontologia, Faculdade de Ciências da Saúde, Universidade de Brasília (UnB), Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil.
- Programa de Pós-Graduação em Odontologia, Universidade de Brasília, Brasília, DF, 70910-900, Brazil.
| | - Fabíola Ferreira Melo
- Programa de Pós-Graduação em Odontologia, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Reuel Gomes Pires
- Curso de Odontologia, Universidade Católica de Brasília, Brasília, DF, 71966-700, Brazil
| | | | | | - Linconl Agudo Oliveira Benito
- Pós-Graduação em Ciências e Tecnologias em Saúde (PPGCTS), FCE, Universidade de Brasília, Brasília, DF, 72220-275, Brazil
| | | | | | | |
Collapse
|
12
|
Faruque MRJ, Taidouch K, Bikker FJ, Ligtenberg AJM. Exploring the Correlation between Salivary Spinnbarkeit and Caries Scores. Caries Res 2024; 58:111-116. [PMID: 38246142 PMCID: PMC10997273 DOI: 10.1159/000536402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024] Open
Abstract
INTRODUCTION In this study, the relationship between the spinnbarkeit, i.e., the stretchability of saliva, and dental caries was investigated. METHODS Dentistry students were divided into a group with more than 2 decayed, missed, and filled teeth (DMFT ≥2, n = 30) and caries-free group (DMFT = 0, n = 36). RESULTS Unstimulated saliva flow rate, pH, and spinnbarkeit were determined. Salivary spinnbarkeit was significantly lower in the caries-prone group compared to the caries-free group (5.4 ± 3.9 mm vs. 13.5 ± 7.6 mm, respectively, p < 0.001). CONCLUSION This suggests that saliva with high spinnbarkeit protects better against dental caries.
Collapse
Affiliation(s)
- Mouri R J Faruque
- Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Kawtar Taidouch
- Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Floris J Bikker
- Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Antoon J M Ligtenberg
- Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| |
Collapse
|
13
|
Khavandgar Z, Warner BM, Baer AN. Evaluation and management of dry mouth and its complications in rheumatology practice. Expert Rev Clin Immunol 2024; 20:1-19. [PMID: 37823475 PMCID: PMC10841379 DOI: 10.1080/1744666x.2023.2268283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION The symptom of dry mouth has multiple potential etiologies and can be a diagnostic clue to the presence of common systemic diseases encountered in rheumatology practice. The presence of decreased saliva flow (i.e. salivary hypofunction) defines a subset of dry mouth patients in whom there may be reversible drug effects, an iatrogenic insult such as head and neck irradiation, or a disease that directly involves the salivary glands (e.g. Sjögren's disease). The assessment of salivary hypofunction includes sialometry, salivary gland imaging, salivary gland biopsy, and an assessment for relevant systemic diseases. Optimal management of dry mouth requires accurate definition of its cause, followed by general measures that serve to alleviate its symptoms and prevent its complications. AREAS COVERED Through a literature search on xerostomia and salivary hypofunction, we provide an overview of the causes of dry mouth, highlight the potential impact of salivary hypofunction on oral and systemic health, detail routine evaluation methods and treatment strategies, and emphasize the importance of collaboration with oral health care providers. EXPERT OPINION Our Expert Opinion is provided on unmet needs in the management of dry mouth and relevant research progress in the field.
Collapse
Affiliation(s)
- Zohreh Khavandgar
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Blake M. Warner
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Alan N. Baer
- Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
14
|
Yang TH, Cheng YF, Chen CS, Lin HC. Increased prevalences of head and neck cancers in patients with Sjögren's syndrome. Head Neck 2023; 45:2874-2881. [PMID: 37737573 DOI: 10.1002/hed.27518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE This study aimed to investigate prevalences of head and neck cancers in patients with and those without Sjögren's syndrome using a population-based dataset. METHODS We retrieved sampled patients from Taiwan's Longitudinal Health Insurance Database. This study included 38 930 patients with Sjögren's syndrome and 155 720 propensity-score matched comparison patients without Sjögren's syndrome. RESULTS Chi-squared tests revealed that there was a statistically significant difference in the prevalences of head and neck cancers between patients with Sjögren's syndrome and comparison patients (1.77% vs. 1.22%, p < 0.001). The odds ratio for head and neck cancers for patients with Sjögren's syndrome relative to the comparison group was 1.452 (95% CI = 1.325-1.592). CONCLUSIONS Our study demonstrated that patients with Sjögren's syndrome face increased odds of head and neck cancers, encompassing several sites including the oral cavity, oropharynx, nasopharynx, and thyroid.
Collapse
Affiliation(s)
- Tzong-Hann Yang
- Department of Otorhinolaryngology, Taipei City Hospital, Taipei, Taiwan
- Department of Speech, Language and Audiology, National Taipei University of Nursing and Health, Taipei, Taiwan
- Department of Otorhinolaryngology, National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan
- Center of General Education, University of Taipei, Taipei, Taiwan
- Research Center of Sleep Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Fu Cheng
- Research Center of Sleep Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chin-Shyan Chen
- Research Center of Sleep Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Economics, National Taipei University, New Taipei City, Taiwan
| | - Herng-Ching Lin
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei, Taiwan
- Research Center of Sleep Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
15
|
Assy Z, van Santen JS, Brand HS, Bikker FJ. Use and efficacy of dry-mouth interventions in Sjögren's disease patients and possible association with perceived oral dryness and patients' discomfort. Clin Oral Investig 2023; 27:5529-5537. [PMID: 37507599 PMCID: PMC10492750 DOI: 10.1007/s00784-023-05172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
OBJECTIVES Sjögren's disease (SjD) patients use various interventions to relief their oral dryness. However, the use and efficacy of these interventions have only partially been evaluated. The present study aims to investigate whether there is an association between the perceived oral dryness and discomfort of SjD patients and their use of specific interventions. MATERIALS AND METHODS A cross-sectional study was performed among SjD patients, who completed several questionnaires to assess the severity of their oral dryness and an inventory of dry-mouth interventions. The perceived efficacy of each intervention was reported on a 5-point Likert-scale. RESULTS The questionnaires were returned by 92 SjD patients. For relief of oral dryness, they mostly used "eating fruit", "drinking tea", "moistening the lips", "drinking water, and "drinking small volumes" (> 50%). Three interventions had a frequency of use ranging from 2-6 times/day, whereas, "drinking water" and "drinking small volumes" showed higher frequencies (> 14). The highest overall efficacy (≥ 3.5) was reported for "chewing gum" and "using a mouth gel". Furthermore, various dry-mouth interventions showed significant associations with oral dryness scores and/or patients' discomfort. For example, "drinking small volumes" and "using XyliMelts" were associated with the Bother Index score. CONCLUSION Great variation was found in the use of dry-mouth interventions by the participants and the severity of the oral dryness and/or patients' discomfort seemed to affect their choice of intervention. Notably, the mostly used interventions did not show the highest reported efficacy. CLINICAL RELEVANCE These findings might help SjD patients and clinicians in their choice of effective dry-mouth interventions.
Collapse
Affiliation(s)
- Z Assy
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands.
| | - J S van Santen
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - H S Brand
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - F J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Zhou Y, Liu Z. Saliva biomarkers in oral disease. Clin Chim Acta 2023; 548:117503. [PMID: 37536520 DOI: 10.1016/j.cca.2023.117503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Saliva is a versatile biofluid that contains a wide variety of biomarkers reflecting both physiologic and pathophysiologic states. Saliva collection is noninvasive and highly applicable for tests requiring serial sampling. Furthermore, advances in test accuracy, sensitivity and precision for saliva has improved diagnostic performance as well as the identification of novel markers especially in oral disease processes. These include dental caries, periodontitis, oral squamous cell carcinoma (OSCC) and Sjögren's syndrome (SS). Numerous growth factors, enzymes, interleukins and cytokines have been identified and are the subject of much research investigation. This review highlights current procedures for successful determination of saliva biomarkers including preanalytical factors associated with sampling, storage and pretreatment as well as subsequent analysis. Moreover, it provides an overview of the diagnostic applications of these salivary biomarkers in common oral diseases.
Collapse
Affiliation(s)
- Yuehong Zhou
- Wenzhou Medical University Renji College, Wenzhou, China
| | - Zhenqi Liu
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Ghosh S, Ahearn CP, Isabella CR, Marando VM, Dodge GJ, Bartlett H, McPherson RL, Dugan AE, Jain S, Neznanova L, Tettelin H, Putnik R, Grimes CL, Ruhl S, Kiessling LL, Imperiali B. Human oral lectin ZG16B acts as a cell wall polysaccharide probe to decode host-microbe interactions with oral commensals. Proc Natl Acad Sci U S A 2023; 120:e2216304120. [PMID: 37216558 PMCID: PMC10235990 DOI: 10.1073/pnas.2216304120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
The oral microbiome is critical to human health and disease, yet the role that host salivary proteins play in maintaining oral health is unclear. A highly expressed gene in human salivary glands encodes the lectin zymogen granule protein 16 homolog B (ZG16B). Despite the abundance of this protein, its interaction partners in the oral microbiome are unknown. ZG16B possesses a lectin fold, but whether it binds carbohydrates is unclear. We postulated that ZG16B would bind microbial glycans to mediate recognition of oral microbes. To this end, we developed a microbial glycan analysis probe (mGAP) strategy based on conjugating the recombinant protein to fluorescent or biotin reporter functionality. Applying the ZG16B-mGAP to dental plaque isolates revealed that ZG16B predominantly binds to a limited set of oral microbes, including Streptococcus mitis, Gemella haemolysans, and, most prominently, Streptococcus vestibularis. S. vestibularis is a commensal bacterium widely distributed in healthy individuals. ZG16B binds to S. vestibularis through the cell wall polysaccharides attached to the peptidoglycan, indicating that the protein is a lectin. ZG16B slows the growth of S. vestibularis with no cytotoxicity, suggesting that it regulates S. vestibularis abundance. The mGAP probes also revealed that ZG16B interacts with the salivary mucin MUC7. Analysis of S. vestibularis and MUC7 with ZG16B using super-resolution microscopy supports ternary complex formation that can promote microbe clustering. Together, our data suggest that ZG16B influences the compositional balance of the oral microbiome by capturing commensal microbes and regulating their growth using a mucin-assisted clearance mechanism.
Collapse
Affiliation(s)
- Soumi Ghosh
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Christian P. Ahearn
- Department of Oral Biology, University at Buffalo School of Dental Medicine, Buffalo, NY14214
| | | | - Victoria M. Marando
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Gregory J. Dodge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Helen Bartlett
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Robert L. McPherson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Amanda E. Dugan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Shikha Jain
- Department of Oral Biology, University at Buffalo School of Dental Medicine, Buffalo, NY14214
| | - Lubov Neznanova
- Department of Oral Biology, University at Buffalo School of Dental Medicine, Buffalo, NY14214
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD21201
| | - Rachel Putnik
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE19716
| | - Catherine L. Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE19716
| | - Stefan Ruhl
- Department of Oral Biology, University at Buffalo School of Dental Medicine, Buffalo, NY14214
| | - Laura L. Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
18
|
Kamounah S, Sembler-Møller ML, Nielsen CH, Pedersen AML. Sjögren's syndrome: novel insights from proteomics and miRNA expression analysis. Front Immunol 2023; 14:1183195. [PMID: 37275849 PMCID: PMC10232878 DOI: 10.3389/fimmu.2023.1183195] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Sjögren's syndrome (SS) is a systemic autoimmune disease, which affects the exocrine glands leading to glandular dysfunction and, particularly, symptoms of oral and ocular dryness. The aetiology of SS remains unclear, and the disease lacks distinctive clinical features. The current diagnostic work-up is complex, invasive and often time-consuming. Thus, there is an emerging need for identifying disease-specific and, ideally, non-invasive immunological and molecular biomarkers that can simplify the diagnostic process, allow stratification of patients, and assist in monitoring the disease course and outcome of therapeutic intervention in SS. Methods This systematic review addresses the use of proteomics and miRNA-expression profile analyses in this regard. Results and discussion Out of 272 papers that were identified and 108 reviewed, a total of 42 papers on proteomics and 23 papers on miRNA analyses in saliva, blood and salivary gland tissue were included in this review. Overall, the proteomic and miRNA studies revealed considerable variations with regard to candidate biomarker proteins and miRNAs, most likely due to variation in sample size, processing and analytical methods, but also reflecting the complexity of SS and patient heterogeneity. However, interesting novel knowledge has emerged and further validation is needed to confirm their potential role as biomarkers in SS.
Collapse
Affiliation(s)
- Sarah Kamounah
- Section for Oral Biology and Immunopathology/Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Lynn Sembler-Møller
- Section for Oral Biology and Immunopathology/Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Henrik Nielsen
- Section for Oral Biology and Immunopathology/Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Rheumatology and Spine Diseases, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Anne Marie Lynge Pedersen
- Section for Oral Biology and Immunopathology/Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Wu CM, Wheeler KM, Cárcamo-Oyarce G, Aoki K, McShane A, Datta SS, Mark Welch JL, Tiemeyer M, Griffen AL, Ribbeck K. Mucin glycans drive oral microbial community composition and function. NPJ Biofilms Microbiomes 2023; 9:11. [PMID: 36959210 PMCID: PMC10036478 DOI: 10.1038/s41522-023-00378-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/20/2023] [Indexed: 03/25/2023] Open
Abstract
Human microbiome composition is closely tied to health, but how the host manages its microbial inhabitants remains unclear. One important, but understudied, factor is the natural host environment: mucus, which contains gel-forming glycoproteins (mucins) that display hundreds of glycan structures with potential regulatory function. Leveraging a tractable culture-based system to study how mucins influence oral microbial communities, we found that mucin glycans enable the coexistence of diverse microbes, while resisting disease-associated compositional shifts. Mucins from tissues with unique glycosylation differentially tuned microbial composition, as did isolated mucin glycan libraries, uncovering the importance of specific glycan patterns in microbiome modulation. We found that mucins shape microbial communities in several ways: serving as nutrients to support metabolic diversity, organizing spatial structure through reduced aggregation, and possibly limiting antagonism between competing taxa. Overall, this work identifies mucin glycans as a natural host mechanism and potential therapeutic intervention to maintain healthy microbial communities.
Collapse
Affiliation(s)
- Chloe M Wu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kelsey M Wheeler
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gerardo Cárcamo-Oyarce
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Abigail McShane
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sujit S Datta
- Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Ann L Griffen
- Department of Dentistry, Nationwide Children's Hospital, Columbus, OH, USA
- Divisions of Biosciences and Pediatric Dentistry, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
20
|
Faruque MRJ, Cukkemane N, Fu C, Nazmi K, Laine ML, Bikker FJ. Identification and Characterization of MUC5B Binding Peptides by Phage Display. Arch Oral Biol 2023; 147:105624. [PMID: 36701953 DOI: 10.1016/j.archoralbio.2023.105624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVES MUC5B plays a multifactorial role in oral health. As a consequence, decreased MUC5B output leads to impaired salivary functions and xerostomia. Synthetic combinatorial technologies have been used to develop functional peptide libraries by phage display e.g. for therapeutic purposes. In this light, our primary aim was to identify peptide sequences with specific selectivity for salivary MUC5B in vitro using phage display. Our secondary aims were to analyze their effect on salivary spinnbarkeit in situ and their effect on acid-induced demineralization in vitro. METHODS MUC5B binding phages were selected by phage display. Peptide affinity to MUC5B was evaluated using MUC5B coated hydroxyapatite (HA) granules. The MUC5B binding peptides (MBPs) were then examined for their effects on salivary spinnbarkeit and protective effect on acid-induced demineralization in vitro. A competitive ELISA was performed to identify the binding epitope on MUC5B using F2, a MUC5B specific antibody. RESULTS MBP-12 and MBP-14 displayed the highest affinity to MUC5B. MBP-12 mildly stabilized the spinnbarkeit of serous saliva after overnight incubation and of mucous saliva at all timepoints tested. The addition of MBP-12 to a pellicle of unstimulated saliva on HA discs showed no additive protective effect against acid-induced demineralization. Epitope characterization suggested sulfo-Lewisa SO3-3Gal_1-3GlcNAc (galactose residue) as MBP-12 binding site on MUC5B. CONCLUSIONS The use of phage display in generating MBPs was successful. Characterization of the MBPs revealed a mild effect on spinnbarkeit in case of mucous saliva. Possibly, combinatorial peptide libraries might contribute to the development of novel formulations to treat xerostomia.
Collapse
Affiliation(s)
- Mouri R J Faruque
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands; Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands.
| | - Nivedita Cukkemane
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Cuicui Fu
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Marja L Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Wiriyakijja P, Niklander S, Santos-Silva AR, Shorrer MK, Simms ML, Villa A, Sankar V, Kerr AR, Riordain RN, Jensen SB, Delli K. World Workshop on Oral Medicine VIII: Development of a Core Outcome Set for Dry Mouth: A Systematic Review of Outcome Domains for Xerostomia. Oral Surg Oral Med Oral Pathol Oral Radiol 2023:S2212-4403(23)00068-8. [PMID: 37198047 DOI: 10.1016/j.oooo.2023.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 01/25/2023] [Indexed: 03/08/2023]
Abstract
OBJECTIVE The purpose of this study was to identify all outcome domains used in clinical studies of xerostomia, that is, subjective sensation of dry mouth. This study is part of the extended project "World Workshop on Oral Medicine Outcomes Initiative for the Direction of Research" to develop a core outcome set for dry mouth. STUDY DESIGN A systematic review was performed on MEDLINE, EMBASE, CINAHL, and Cochrane Central Register of Controlled Trials databases. All clinical and observational studies that assessed xerostomia in human participants from 2001 to 2021 were included. Information on outcome domains was extracted and mapped to the Core Outcome Measures in Effectiveness Trials taxonomy. Corresponding outcome measures were summarized. RESULTS From a total of 34,922 records retrieved, 688 articles involving 122,151 persons with xerostomia were included. There were 16 unique outcome domains and 166 outcome measures extracted. None of these domains or measures were consistently used across all the studies. The severity of xerostomia and physical functioning were the 2 most frequently assessed domains. CONCLUSION There is considerable heterogeneity in outcome domains and measures reported in clinical studies of xerostomia. This highlights the need for harmonization of dry mouth assessment to enhance comparability across studies and facilitate the synthesis of robust evidence for managing patients with xerostomia.
Collapse
|
22
|
View from the Biological Property: Insight into the Functional Diversity and Complexity of the Gut Mucus. Int J Mol Sci 2023; 24:ijms24044227. [PMID: 36835646 PMCID: PMC9960128 DOI: 10.3390/ijms24044227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Due to mucin's important protective effect on epithelial tissue, it has garnered extensive attention. The role played by mucus in the digestive tract is undeniable. On the one hand, mucus forms "biofilm" structures that insulate harmful substances from direct contact with epithelial cells. On the other hand, a variety of immune molecules in mucus play a crucial role in the immune regulation of the digestive tract. Due to the enormous number of microorganisms in the gut, the biological properties of mucus and its protective actions are more complicated. Numerous pieces of research have hinted that the aberrant expression of intestinal mucus is closely related to impaired intestinal function. Therefore, this purposeful review aims to provide the highlights of the biological characteristics and functional categorization of mucus synthesis and secretion. In addition, we highlight a variety of the regulatory factors for mucus. Most importantly, we also summarize some of the changes and possible molecular mechanisms of mucus during certain disease processes. All these are beneficial to clinical practice, diagnosis, and treatment and can provide some potential theoretical bases. Admittedly, there are still some deficiencies or contradictory results in the current research on mucus, but none of this diminishes the importance of mucus in protective impacts.
Collapse
|
23
|
Salivary film thickness and MUC5B levels at various intra-oral surfaces. Clin Oral Investig 2023; 27:859-869. [PMID: 35941397 PMCID: PMC9889518 DOI: 10.1007/s00784-022-04626-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVES In this study, we investigated the salivary film thickness and the MUC5B levels at various intra-oral locations in healthy volunteers, with a focus on the palate. Besides, measurements of the palatal surface area were included to explore the possible relationships between the palatal surface area and the palatal salivary film and MUC5B levels. MATERIALS AND METHODS The salivary film thickness was determined using filter strips, which were pressed to the mucosal surfaces of five different intra-oral locations; conductance was then analysed using a Periotron. After elution of the strips, the MUC5B levels at various intra-oral locations were determined using ELISA. The palatal surface area was measured using an intra-oral scanner. The surface area was subsequently calculated using the software. RESULTS The anterior tongue had the thickest salivary film and also the highest levels of MUC5B, while the anterior palate had the thinnest salivary film and lowest MUC5B levels. There was no association between the palatal surface area and the salivary film thickness of the palate. CONCLUSION The salivary film and MUC5B levels are unequally distributed over the intra-oral regions of the soft tissues. The lack of association between the palatal surface area and the salivary film thickness indicates that a larger surface area is not associated with a relative thinner palatal salivary film. CLINICAL RELEVANCE The results of the current study increase our understanding of saliva distribution in the oral cavity and could be used as reference values for future studies.
Collapse
|
24
|
Carvajal P, Bahamondes V, Jara D, Castro I, Matus S, Aguilera S, Molina C, González S, Hermoso M, Barrera MJ, González MJ. The integrated stress response is activated in the salivary glands of Sjögren's syndrome patients. Front Med (Lausanne) 2023; 10:1118703. [PMID: 37035319 PMCID: PMC10079080 DOI: 10.3389/fmed.2023.1118703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Primary Sjögren's syndrome (SS) is an autoimmune exocrinopathy that affects the structure and function of salivary and lachrymal glands. Labial salivary gland (LSG) acinar cells from SS patients lose cellular homeostasis and experience endoplasmic reticulum and oxidative stress. The integrated cellular stress response (ISR) is an adaptive pathway essential for restoring homeostasis against various stress-inducing factors, including pro-inflammatory cytokines, and endoplasmic reticulum and oxidative stress. ISR activation leads eIF2α phosphorylation, which transiently blocks protein synthesis while allowing the ATF4 expression, which induces a gene expression program that seeks to optimize cellular recovery. PKR, HRI, GCN2, and PERK are the four sentinel stress kinases that control eIF2α phosphorylation. Dysregulation and chronic activation of ISR signaling have pathologic consequences associated with inflammation. Methods Here, we analyzed the activation of the ISR in LSGs of SS-patients and non-SS sicca controls, determining the mRNA, protein, and phosphorylated-protein levels of key ISR components, as well as the expression of some of ATF4 targets. Moreover, we performed a qualitative characterization of the distribution of ISR components in LSGs from both groups and evaluated if their levels correlate with clinical parameters. Results We observed that the four ISR sensors are expressed in LSGs of both groups. However, only PKR and PERK showed increased expression and/or activation in LSGs from SS-patients. eIF2α and p-eIF2α protein levels significantly increased in SS-patients; meanwhile components of the PP1c complex responsible for eIF2α dephosphorylation decreased. ATF4 mRNA levels were decreased in LSGs from SS-patients along with hypermethylation of the ATF4 promoter. Despite low mRNA levels, SS-patients showed increased levels of ATF4 protein and ATF4-target genes involved in the antioxidant response. The acinar cells of SS-patients showed increased staining intensity for PKR, p-PKR, p-PERK, p-eIF2α, ATF4, xCT, CHOP, and NRF2. Autoantibodies, focus score, and ESSDAI were correlated with p-PERK/PERK ratio and ATF4 protein levels. Discussion In summary, the results showed an increased ISR activation in LSGs of SS-patients. The increased protein levels of ATF4 and ATF4-target genes involved in the redox homeostasis could be part of a rescue response against the various stressful conditions to which the LSGs of SS-patients are subjected and promote cell survival.
Collapse
Affiliation(s)
- Patricia Carvajal
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Verónica Bahamondes
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Daniela Jara
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Isabel Castro
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Soledad Matus
- Fundación Ciencia and Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago, Chile
| | - Sergio Aguilera
- Departamento de Reumatología, Clínica INDISA, Santiago, Chile
| | - Claudio Molina
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Bellavista, Santiago, Chile
| | - Sergio González
- Escuela de Odontología, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile
| | - Marcela Hermoso
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María-José Barrera
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Bellavista, Santiago, Chile
- María-José Barrera,
| | - María-Julieta González
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- *Correspondence: María-Julieta González,
| |
Collapse
|
25
|
A review on the role of salivary MUC5B in oral health. J Oral Biosci 2022; 64:392-399. [DOI: 10.1016/j.job.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
|
26
|
Assy Z, Jager DHJ, Brand HS, Bikker FJ. Correlations of palatal surface area with anthropometric dimensions of the head and face. SURGICAL AND RADIOLOGIC ANATOMY : SRA 2022; 44:1261-1267. [PMID: 36056237 PMCID: PMC9492607 DOI: 10.1007/s00276-022-03008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/14/2022] [Indexed: 11/26/2022]
Abstract
Purpose Saliva distribution over the palatal surface plays an important role in the perception of dry mouth. It is envisaged that non-invasive estimation of the palatal surface area by anthropometric measurements of the head and face can be useful in the assessment of oral dryness. For this purpose, the relationship between the palatal surface area and anthropometric measurements of the head and face was investigated. Methods The palatal surface was measured in 51 healthy volunteers using an intra-oral scanner. The distances between anthropometric landmarks of the head and face were determined using an anatomical sliding caliper. Correlations between the palatal surface area and the anthropometric landmarks were investigated. Results The median palatal surface area for the total study population was found to be 2120.6 mm2. Virtually, all anthropometric measurements showed significant differences between females and males. Various head and face measurements had a significant correlation with the palatal surface area. However, these correlations disappeared when the participants were stratified based on their sex, with the exception of mandibular length and palatal width in females. Conclusion The surface area of the palate correlates with nearly all anthropometric measurements of the head and face included in this study. Yet, the clinical applicability seems limited to females.
Collapse
Affiliation(s)
- Z Assy
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Room 12N-37, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| | - D H J Jager
- Department of Maxillofacial Surgery and Oral Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity Amsterdam, Amsterdam, The Netherlands
| | - H S Brand
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Room 12N-37, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - F J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Room 12N-37, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Saliva changes in composition associated to COVID-19: a preliminary study. Sci Rep 2022; 12:10879. [PMID: 35760827 PMCID: PMC9237082 DOI: 10.1038/s41598-022-14830-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2), is usually associated with a wide variety of clinical presentations from asymptomatic to severe cases. The use of saliva as a diagnostic and monitoring fluid has gained importance since it can be used to investigate the immune response and to direct quantification of antibodies against COVID-19. Additionally, the use of proteomics in saliva has allowed to increase our understanding of the underlying pathophysiology of diseases, bringing new perspectives on diagnostics, monitoring, and treatment. In this work, we compared the salivary proteome of 10 patients with COVID-19, (five patients with mild and five patients with severe COVID-19) and ten control healthy patients. Through the application of proteomics, we have identified 30 proteins whose abundance levels differed between the COVID-19 groups and the control group. Two of these proteins (TGM3 and carbonic anhydrase-CA6) were validated by the measurement of gGT and TEA respectively, in 98 additional saliva samples separated into two groups: (1) COVID-19 group, integrated by 66 patients who tested positive for COVID-19 (2) control group, composed of 32 healthy individuals who did not show any sign of disease for at least four weeks and were negative for COVID-19 in RT-PCR. In the proteomic study there were observed upregulations in CAZA1, ACTN4, and ANXA4, which are proteins related to the protective response against the virus disturbance, and the upregulation of TGM3, that is correlated to the oxidative damage in pulmonary tissue. We also showed the downregulation in cystatins and CA6 that can be involved in the sensory response to stimulus and possibly related to the presence of anosmia and dysgeusia during the COVID-19. Additionally, the presence of FGB in patients with severe COVID-19 but not in mild COVID-19 patients could indicate a higher viral aggregation and activation in these cases. In conclusion, the salivary proteome in patients with COVID-19 showed changes in proteins related to the protective response to viral infection, and the altered sensory taste perception that occur during the disease. Moreover, gGT and TEA could be potential biomarkers of respiratory complications that can occurs during COVID 19 although further larger studies should be made to corroborate this.
Collapse
|
28
|
Yamada M, Masaki C, Mukaibo T, Munemasa T, Nodai T, Kondo Y, Hosokawa R. Altered Rheological Properties of Saliva with Aging in Mouse Sublingual Gland. J Dent Res 2022; 101:942-950. [PMID: 35238237 DOI: 10.1177/00220345221076071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mucin in saliva plays a critical role in the hydration and lubrication of the oral mucosa by retaining water molecules, and its impaired function may be associated with hyposalivation-independent xerostomia. Age-dependent effects on salivary gland function and rheological properties of secreted saliva are not fully understood as aging is a complex and multifactorial process. We aimed to evaluate age-related changes in the rheological properties of saliva and elucidate the underlying mechanism. We performed ex vivo submandibular gland (SMG) and sublingual gland (SLG) perfusion experiments to collect saliva from isolated glands of young (12 wk old) and aged (27 mo old) female C57BL/6J mice and investigate the rheological properties by determining the spinnbarkeit (viscoelasticity). While fluid secretion was comparable in SMG and SLG of both mice, spinnbarkeit showed a significant decrease in SLG saliva of aged mice than that of young mice. There were no significant differences in GalNAc concentration between young and aged SLG saliva. Liquid chromatography/tandem mass spectrometry analysis of SLG saliva revealed that (Hex)1 (HexNAc)1 (NeuAc)1 at m/z 793.31 was the most abundant O-glycan structure in SLG saliva commonly detected in both mice. Lectin staining of salivary gland tissue showed that SLG stained strongly with Maackia amurensis lectin II (MAL II) while Sambucus nigra agglutinin (SNA) stained little, if any, SLG. The messenger RNA expression of St3gal1 that encodes an α-2,3 sialic acid sialyltransferase SIAT4-A showed a decrease in SLG of aged mice, confirmed by a Western blot analysis. Lectin blot analysis in SLG saliva revealed that the relative signal intensity detected by MAL II was significantly lower in aged SLG. Our results suggest that spinnbarkeit decreases in SLG of aging mice due to downregulation of sialic acid linked to α-2,3 sialic acid sialyltransferase expression.
Collapse
Affiliation(s)
- M Yamada
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - C Masaki
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - T Mukaibo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - T Munemasa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - T Nodai
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Y Kondo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - R Hosokawa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
29
|
Hertel S, Hannig M, Hannig C, Sterzenbach T. Mucins 5b and 7 and secretory IgA in the oral acquired pellicle of children with caries and caries-free children. Arch Oral Biol 2021; 134:105314. [PMID: 34861462 DOI: 10.1016/j.archoralbio.2021.105314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The objective of this study was to determine whether differences in the abundance of mucins 5b and 7 as well as secretory IgA exist in the oral acquired pellicle between children with active caries and caries-free children. DESIGN Pellicle formation was performed for 10 min in-situ on ceramic slabs in the oral cavity of children (5-7 years of age) with caries (n = 15) and without signs of caries (n = 13). Furthermore, unstimulated saliva was collected. Concentrations of Muc5b, Muc7 and sIgA were measured in desorbed pellicle eluates and in saliva. RESULTS Significantly larger concentrations of Muc5b, Muc7 and sIgA were detected in the pellicle obtained from children with caries compared to caries-free children. However, in the salivary samples concentrations of mucins Muc5b and Muc7 as well as sIgA did not differ significantly between the two groups. CONCLUSIONS All three pellicle components Muc5b, Muc7 as well as sIgA could be identified as potential biomarkers for early childhood caries with high sensitivity and specificity. This could contribute to a better understanding of the different caries susceptibility in children.
Collapse
Affiliation(s)
- Susann Hertel
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Faculty of Medicine, Saarland University, Kirrberger Straße, 66421 Homburg, Saar, Germany
| | - Christian Hannig
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Torsten Sterzenbach
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| |
Collapse
|
30
|
Almhöjd U, Cevik-Aras H, Karlsson N, Chuncheng J, Almståhl A. Stimulated saliva composition in patients with cancer of the head and neck region. BMC Oral Health 2021; 21:509. [PMID: 34627217 PMCID: PMC8501675 DOI: 10.1186/s12903-021-01872-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To analyse over time changes in stimulated whole saliva regarding total protein, Immunoglobulin A (IgA), and mucin type O-glycans (mostly MUC5B and MUC7) in head and neck cancer patients. METHODS 29 dentate patients (20 men and 9 women, 59 ± 8 years) treated with curative radiation therapy and chemotherapy for cancer of the head and neck region were included. The stimulated whole salivary secretion rate was determined and saliva collected at four time-points: at pretreatment, and at 6 months, 1 and 2 years post treatment. The total protein concentration was determined spectrophotometrically by using Bicinchoninic Acid assay and Immunoglobulin A (IgA) by using ELISA technique. Glycosylation pattern of salivary mucins was determined in samples collected pre- and post treatment by using LC/MS electrospray and mucin content quantified using SDS-AgPAGE gels and PAS staining. RESULTS Compared with pretreatment, the total protein concentration was increased already at 6 months post treatment (p < 0.01), and continued to increase up to 2 years post treatment (p < 0.001). During that period no significant changes in IgA concentration was detected. At pretreatment, the output/min of both total protein and IgA was significantly higher than at all time-points post treatment. Saliva from the cancer patients showed a low abundance/no detectable MUC7, while the MUC5B level remained, compared to saliva from a healthy control. The glycomic analysis showed that the percentage of core 2 O-glycans was increased as core 1, 3 and 4 O-glycans were decreased. The level of sialylation was higher at 6 months post treatment, while sulfation was lower. CONCLUSION A decreased output per minute of proteins at decreased salivary secretion rate, as well as reduced sulfation of MUC5B at 6 months post treatment tended to correlate with the patients' experience of sticky saliva and oral dryness. At 2 years post treatment, the decreased amount of IgA combined with a lowered salivary secretion rate indicate a reduced oral defense with increased risk of oral infections.
Collapse
Affiliation(s)
- Ulrica Almhöjd
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hulya Cevik-Aras
- Department of Oral Pathology and Medicine, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,NÄL Hospital, Trollhättan, Sweden
| | - Niclas Karlsson
- BioMS, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jin Chuncheng
- BioMS, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Annica Almståhl
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
31
|
Li Q, Shen J, Qin T, Zhou G, Li Y, Chen Z, Li M. A Qualitative and Comprehensive Analysis of Caries Susceptibility for Dental Fluorosis Patients. Antibiotics (Basel) 2021; 10:antibiotics10091047. [PMID: 34572628 PMCID: PMC8464924 DOI: 10.3390/antibiotics10091047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/04/2022] Open
Abstract
Dental fluorosis (DF) is an endemic disease caused by excessive fluoride exposure during childhood. Previous studies mainly focused on the acid resistance of fluorotic enamel and failed to reach a consensus on the topic of the caries susceptibility of DF patients. In this review, we discuss the role of DF classification in assessing this susceptibility and follow the “four factors theory” in weighing the pros and cons of DF classification in terms of host factor (dental enamel and saliva), food factor, bacteria factor, and DF treatment factor. From our analysis, we find that susceptibility is possibly determined by various factors such as the extent of structural and chemical changes in fluorotic enamel, eating habits, fluoride levels in diets and in the oral cavity, changes in quantity and quality of saliva, and/or oral hygiene. Thus, a universal conclusion regarding caries susceptibility might not exist, instead depending on each individual’s situation.
Collapse
Affiliation(s)
- Qianrui Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Q.L.); (J.S.); (T.Q.); (G.Z.); (Y.L.)
| | - Jiaqi Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Q.L.); (J.S.); (T.Q.); (G.Z.); (Y.L.)
| | - Tao Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Q.L.); (J.S.); (T.Q.); (G.Z.); (Y.L.)
| | - Ge Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Q.L.); (J.S.); (T.Q.); (G.Z.); (Y.L.)
| | - Yifeng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Q.L.); (J.S.); (T.Q.); (G.Z.); (Y.L.)
| | - Zhu Chen
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi 563000, China;
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Q.L.); (J.S.); (T.Q.); (G.Z.); (Y.L.)
- Correspondence:
| |
Collapse
|
32
|
Assy Z, Bikker FJ, Picauly O, Brand HS. The association between oral dryness and use of dry-mouth interventions in Sjögren's syndrome patients. Clin Oral Investig 2021; 26:1465-1475. [PMID: 34374853 PMCID: PMC8816756 DOI: 10.1007/s00784-021-04120-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022]
Abstract
Objective Sjögren’s syndrome patients use different dry-mouth interventions for the relieve of their oral dryness. Recently, it was shown that patients with dry-mouth complaints have regional differences in perceived intra-oral dryness. Therefore, the aim of the present study was to investigate whether the use of dry-mouth interventions is related to the perceived regional oral dryness. Materials and methods A cross-sectional study was performed among Sjögren’s patients. Volunteers could anonymously administer various questionnaires, including the Regional Oral Dryness Inventory (RODI), Xerostomia Inventory (XI), Bother Index (BI) and a list of dry-mouth interventions. Results Sjögren’s syndrome patients use a wide variety for the relieve of oral dryness. “Drinking water’’ and “moistening the lips’’ were used most frequently. Dry-mouth interventions, “drinking water’’, “rinsing of the mouth”, and “drinking small volumes” had significant associations with the RODI-scores of the posterior palate, and anterior and posterior tongue, respectively. On the other hand, “using mouth gel’’ had a significant association with the RODI-scores of the inside cheeks. Conclusion Sjögren’s syndrome patients are more likely to use mouth gels when their inside cheeks were experienced as most dry, while they drank water, rinsed their mouth or drank small volumes if the posterior palate, and anterior and posterior tongue were considered as dry. It can be concluded that intra-oral dryness affects dry-mouth perception and thereby also the use of the various dry-mouth interventions. Clinical relevance The therapeutic choice of dry-mouth interventions by Sjögren’s syndrome patients seems to some extent to be related to dryness at specific intra-oral regions.
Collapse
Affiliation(s)
- Z Assy
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan, 3004, Amsterdam, 1081 LA, the Netherlands.
| | - F J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan, 3004, Amsterdam, 1081 LA, the Netherlands
| | - O Picauly
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan, 3004, Amsterdam, 1081 LA, the Netherlands
| | - H S Brand
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan, 3004, Amsterdam, 1081 LA, the Netherlands
| |
Collapse
|
33
|
Laguna L, Fiszman S, Tarrega A. Saliva matters: Reviewing the role of saliva in the rheology and tribology of liquid and semisolid foods. Relation to in-mouth perception. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106660] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Ding L, Fu X, Guo W, Cheng Y, Chen X, Zhang K, Zhu G, Yang F, Yu H, Chen Z, Wang X, Wang X, Wang X, Li Z. Pregnancy-associated decrease of Siaα2-3Gal-linked glycans on salivary glycoproteins affects their binding ability to avian influenza virus. Int J Biol Macromol 2021; 184:339-348. [PMID: 34097968 DOI: 10.1016/j.ijbiomac.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 11/19/2022]
Abstract
Salivary glycoproteins are known as an important barrier to inhibit influenza infection by presenting sialic acid (Sia) ligands that can bind with viral hemagglutination. Here, to further understand why pregnant women are more vulnerable to avian influenza virus (AIV), we investigated the alteration of protein sialylation in the saliva of women during pregnancy and postpartum, and its impact on the saliva binding affinity to AIV. Totally 1200 saliva samples were collected, the expression levels of terminal α2-3/6-linked Sia on salivary proteins were tested and validated, and the binding activities of salivary proteins were assessed against 3 strains of AIV and the H1N1 vaccine. Result showed that the expression of terminal α2-3-linked Sia in the saliva of women decreased dramatically during pregnancy compared to that of non-pregnancy control, especially for women in the second or third trimester (fold change = 0.53 and 0.37, p < 0.001). And their salivary protein binding ability to AIV declined accordingly. The variation of terminal α2-3-linked Sia on salivary MUC5B and IgA was consistent with the above results. This study indicates that the decrease of terminal α2-3-linked Sia on salivary glycoproteins of pregnant women affects their binding ability to AIV, which may provide new insights into AIV prevention and control.
Collapse
Affiliation(s)
- Li Ding
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xinle Fu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Wei Guo
- Department of Obstetrics and Gynecology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yimin Cheng
- Department of Obstetrics and Gynecology, Xi'an Shiyou University, Xi'an, China
| | - Xiangqin Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Kun Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Guang Zhu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Fuying Yang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zhuo Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xilong Wang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiurong Wang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, China
| | - Xiaohong Wang
- Department of Obstetrics and Gynecology, Xi'an Honghui Hospital, Xi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
35
|
Proctor GB, Shaalan AM. Disease-Induced Changes in Salivary Gland Function and the Composition of Saliva. J Dent Res 2021; 100:1201-1209. [PMID: 33870742 PMCID: PMC8461045 DOI: 10.1177/00220345211004842] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although the physiological control of salivary secretion has been well studied, the impact of disease on salivary gland function and how this changes the composition and function of saliva is less well understood and is considered in this review. Secretion of saliva is dependent upon nerve-mediated stimuli, which activate glandular fluid and protein secretory mechanisms. The volume of saliva secreted by salivary glands depends upon the frequency and intensity of nerve-mediated stimuli, which increase dramatically with food intake and are subject to facilitatory or inhibitory influences within the central nervous system. Longer-term changes in saliva secretion have been found to occur in response to dietary change and aging, and these physiological influences can alter the composition and function of saliva in the mouth. Salivary gland dysfunction is associated with different diseases, including Sjögren syndrome, sialadenitis, and iatrogenic disease, due to radiotherapy and medications and is usually reported as a loss of secretory volume, which can range in severity. Defining salivary gland dysfunction by measuring salivary flow rates can be difficult since these vary widely in the healthy population. However, saliva can be sampled noninvasively and repeatedly, which facilitates longitudinal studies of subjects, providing a clearer picture of altered function. The application of omics technologies has revealed changes in saliva composition in many systemic diseases, offering disease biomarkers, but these compositional changes may not be related to salivary gland dysfunction. In Sjögren syndrome, there appears to be a change in the rheology of saliva due to altered mucin glycosylation. Analysis of glandular saliva in diseases or therapeutic interventions causing salivary gland inflammation frequently shows increased electrolyte concentrations and increased presence of innate immune proteins, most notably lactoferrin. Altering nerve-mediated signaling of salivary gland secretion contributes to medication-induced dysfunction and may also contribute to altered saliva composition in neurodegenerative disease.
Collapse
Affiliation(s)
- G B Proctor
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - A M Shaalan
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
36
|
Vinke J, Oude Elberink M, Stokman MA, Kroese FGM, Nazmi K, Bikker FJ, van der Mei HC, Vissink A, Sharma PK. Lubricating properties of chewing stimulated whole saliva from patients suffering from xerostomia. Clin Oral Investig 2021; 25:4459-4469. [PMID: 33661446 PMCID: PMC8310523 DOI: 10.1007/s00784-020-03758-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/21/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVES The study aimed to quantify the lubricating properties of chewing stimulated whole saliva from healthy controls (n = 22), from patients suffering from primary Sjögren's syndrome (n = 37) and from patients undergoing head-and-neck radiotherapy (n = 34). MATERIALS AND METHODS All participants had to complete the Xerostomia Inventory questionnaire to score dry mouth sensation. Lubrication was measured using an ex vivo tongue-enamel friction system in terms of Relief and Relief period. MUC5b and total protein concentrations of the saliva samples were measured by an enzyme-linked immunosorbent assay and a bicinchoninic acid assay, respectively. RESULTS Relief of Sjögren's patients' saliva and post-irradiation patients' saliva was similar compared with healthy controls, but saliva from post-irradiation patients lubricated significantly better than saliva from Sjögren's patients. The Relief period was similar between the three groups. The Relief and Relief period were higher for saliva samples post-irradiation compared to pre-irradiation. MUC5b and total protein concentrations were comparable in all groups. MUC5b and total protein output were significantly lower in patients subjected to radiotherapy compared to saliva from healthy controls and pre-irradiation patients. MUC5b concentrations positively correlated with lubricating properties of post-irradiation patient saliva. CONCLUSIONS The lubricating properties of patient saliva were not any worse than healthy controls. Lower flow rate leads to lower availability of saliva in the oral cavity and decreases the overall output of protein and MUC5b, which might result in an insufficient replenishing of the mucosal salivary film. CLINICAL RELEVANCE An insufficient replenishing might underlie the sensation of a dry mouth and loss of oral function.
Collapse
Affiliation(s)
- Jeroen Vinke
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Marijn Oude Elberink
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Monique A Stokman
- Department of Radiation Oncology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Frans G M Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, Amsterdam, The Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, Amsterdam, The Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Arjan Vissink
- Department of Oral and Maxillofacial Surgery, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Prashant K Sharma
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands.
| |
Collapse
|
37
|
Wang BX, Wu CM, Ribbeck K. Home, sweet home: how mucus accommodates our microbiota. FEBS J 2021; 288:1789-1799. [PMID: 32755014 PMCID: PMC8739745 DOI: 10.1111/febs.15504] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022]
Abstract
As a natural environment for human-microbiota interactions, healthy mucus houses a remarkably stable and diverse microbial community. Maintaining this microbiota is essential to human health, both to support the commensal bacteria that perform a wide array of beneficial functions and to prevent the outgrowth of pathogens. However, how the host selects and maintains a specialized microbiota remains largely unknown. In this viewpoint, we propose several strategies by which mucus may regulate the composition and function of the human microbiota and discuss how compromised mucus barriers in disease can give rise to microbial dysbiosis.
Collapse
Affiliation(s)
- Benjamin X Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chloe M Wu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
38
|
Investigation of Changes in Saliva in Radiotherapy-Induced Head Neck Cancer Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041629. [PMID: 33572065 PMCID: PMC7914760 DOI: 10.3390/ijerph18041629] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
The intact function of the salivary glands is of utmost importance for oral health. During radiotherapy in patients with head and neck tumors, the salivary glands can be damaged, causing the composition of saliva to change. This leads to xerostomia, which is a primary contributor to oral mucositis. Medications used for protective or palliative treatment often show poor efficacy as radiation-induced changes in the physico-chemical properties of saliva are not well understood. To improve treatment options, this study aimed to carefully examine unstimulated whole saliva of patients receiving radiation therapy and compare it with healthy unstimulated whole saliva. To this end, the pH, osmolality, electrical conductivity, buffer capacity, the whole protein and mucin concentrations, and the viscoelastic and adhesive properties were investigated. Moreover, hyaluronic acid was examined as a potential candidate for a saliva replacement fluid. The results showed that the pH of radiation-induced saliva shifted from neutral to acidic, the osmolality increased and the viscoelastic properties changed due to a disruption of the mucin network and a change in water secretion from the salivary glands. By adopting an aqueous 0.25% hyaluronic acid formulation regarding the lost properties, similar adhesion characteristics as in healthy, unstimulated saliva could be achieved.
Collapse
|
39
|
Fusconi M, Meliante PG, Pagliuca G, Greco A, de Vincentiis M, Polimeni A, Musy I, Candelori F, Gallo A. Interpretation of the mucous plug through sialendoscopy. Oral Dis 2021; 28:384-389. [PMID: 33547856 DOI: 10.1111/odi.13796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/30/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The purpose of this manuscript is to highlight the behaviour of mucus inside the ducts of the major salivary glands, in presence of typical pathologies, through images obtained with sialendoscopy. SUBJECT The authors present and comment on some sialendoscopies that show mucous plug in the ducts of the major salivary glands. RESULTS In primary Sjogren's syndrome, mucous plugs confirm the qualitative anomaly of the mucins and acidification saliva. Instead, salivary calculations behave like foreign bodies that generate mechanical pressure and friction on the duct walls of major salivary glands, so mucus deposits in the duct in its defence; in case of infected stone, mucous plugs are formed also with the function of protecting the ducts from the aggression of germs. During sialadenitis, there is a conflict between mucus and bacteria which explains sialendoscopic evidence such as white duct walls and mucous plugs. CONCLUSIONS The study of the salivary ducts through sialendoscopy often confirms the clinical diagnosis or hypothesize it. During its execution, it is necessary not only to liberate the ducts of the major salivary glands but also analyse the appearance of the mucous plugs and the ductal walls as they are useful to guide the physician towards diagnosis.
Collapse
Affiliation(s)
- Massimo Fusconi
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Piero G Meliante
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Giulio Pagliuca
- Faculty of Pharmacy and Medicine Latina, Department of Medico-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Latina, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Marco de Vincentiis
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonella Polimeni
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Isotta Musy
- Unit of ENT Central Management of Health, Ministry of the Interior, Rome, Italy
| | | | - Andrea Gallo
- Faculty of Pharmacy and Medicine Latina, Department of Medico-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Latina, Italy
| |
Collapse
|
40
|
Fusconi M, Candelori F, Weiss L, Riccio A, Priori R, Businaro R, Mastromanno L, Musy I, de Vincentiis M, Greco A. Qualitative mucin disorders in patients with primary Sjögren's syndrome: a literature review. Med Oral Patol Oral Cir Bucal 2021; 26:e71-e77. [PMID: 33247578 PMCID: PMC7806352 DOI: 10.4317/medoral.23996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/09/2020] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND It is a common opinion that Primary Sjögren Syndrome (pSS) damages the exocrine glands and determines the reduction of secreted saliva, some studies show that there are qualitative anomalies of the mucins produced in saliva, including MUC7, MUC5B, MUC1. The purpose of this study is to trace all the information useful to establish whether there is a qualitative or quantitative defect of the mucins in the pSS. MATERIAL AND METHODS We reviewed the literature by looking for publications relevant to the topic in electronic databases. Sixteen articles met the search criteria. The studies were divided into two categories, those that studied the rheological characteristics of the saliva and those that studied the structural and / or metabolism modifications of the muciparous cells in the salivary glands. RESULTS in Patients with pSS, xerostomia and the reduction of salivary spinnbarkeit are only partially related to the reduction of the unstimulated salivary flow. In pSS, pathological alterations of mucins' chemical-physical properties prevail as a cause of the clinical characteristics. Moreover, in pSS there are structural and metabolism changes in salivary glands' muciparous cells. CONCLUSIONS There is much evidence that supports the presence of qualitative alterations in the saliva's rheological properties in Patients with pSS, and these are the main cause, more than the reduction of the unstimulated salivary flow, of the disease clinical characteristics - dry mouth and complications in the oral cavity. Therefore we propose to add to the classification criteria of pSS also a qualitative test of salivary glycoproteins.
Collapse
|
41
|
Wang B, Chen S, Zheng Q, Li Y, Zhang X, Xuan J, Liu Y, Shi G. Early diagnosis and treatment for Sjögren's syndrome: current challenges, redefined disease stages and future prospects. J Autoimmun 2020; 117:102590. [PMID: 33310686 DOI: 10.1016/j.jaut.2020.102590] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
There are some challenges and unmet needs in the early diagnosis and management of Sjögren's syndrome (SjS) such as prominent glandular dysfunction at diagnosis and long diagnostic delay. Those challenges are partly attributed to the lack of a good knowledge of the early stages of SjS, which is a major obstacle to delivering appropriate care to SjS patients. Findings from both clinical and experimental studies suggest the plausibility of a redefined SjS course consisting of 4 stages, which includes initiation stage, preclinical stage, asymptomatic SjS stage and overt SjS stage. More studies focusing on the pathological processes and changes during the early stages of SjS are needed. To enable early diagnosis and treatment for SjS, more useful biomarkers of the early stages of SjS need to be identified, and individuals at high risk of SjS development need to be identified. Appropriate screening can be performed to facilitate the early diagnosis of SjS among those high-risk individuals.
Collapse
Affiliation(s)
- Bin Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Shiju Chen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Qing Zheng
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Yan Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Xinwei Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Jingxiu Xuan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Yuan Liu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China.
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China; Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, 361003, China.
| |
Collapse
|
42
|
Hu J, Andablo-Reyes E, Mighell A, Pavitt S, Sarkar A. Dry mouth diagnosis and saliva substitutes-A review from a textural perspective. J Texture Stud 2020; 52:141-156. [PMID: 33274753 DOI: 10.1111/jtxs.12575] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
The aim of this review is to assess the objective and subjective diagnosis, as well as symptomatic topical treatment of dry mouth conditions with a clear focus on textural perspective. We critically examine both the current practices as well as outline emerging possibilities in dry mouth diagnosis and treatment, including a patent scan for saliva substitutes. For diagnosis, salivary flow rates and patient-completed questionnaires have proven to be useful tools in clinical practice. To date, objective measurements of changes in mechanical properties of saliva via rheological, adsorption, and tribological measurements and biochemical properties of saliva such as assessing protein, mucins (MUC5B) are seldom incorporated into clinical diagnostics; these robust diagnostic tools have been largely restricted to application in non-clinical settings. As for symptomatic treatments of dry mouth, four key agents including lubricating, thickening, adhesive, and moisturizing agents have been identified covering the overall landscape of commercial saliva substitutes. Although thickening agents such as modified celluloses, polysaccharide gum, polyethylene glycol, and so forth are most commonly employed saliva substitutes, they offer short-lived relief from dry mouth and generally do not provide boundary lubrication properties of real human saliva. Innovative technologies such as self-assembly, emulsion, liposomes, and microgels are emerging as novel saliva substitutes hold promise for alternative approaches for efficient moistening and lubrication of the oral mucosa. Their adoption into clinical practice will depend on their efficacies, duration of relief, and ease of application by the practitioners and patient compliance.
Collapse
Affiliation(s)
- Jing Hu
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, UK
| | - Efren Andablo-Reyes
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, UK
| | - Alan Mighell
- School of Dentistry, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Sue Pavitt
- School of Dentistry, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, UK
| |
Collapse
|
43
|
Cerullo AR, Lai TY, Allam B, Baer A, Barnes WJP, Barrientos Z, Deheyn DD, Fudge DS, Gould J, Harrington MJ, Holford M, Hung CS, Jain G, Mayer G, Medina M, Monge-Nájera J, Napolitano T, Espinosa EP, Schmidt S, Thompson EM, Braunschweig AB. Comparative Animal Mucomics: Inspiration for Functional Materials from Ubiquitous and Understudied Biopolymers. ACS Biomater Sci Eng 2020; 6:5377-5398. [DOI: 10.1021/acsbiomaterials.0c00713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Antonio R. Cerullo
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Tsoi Ying Lai
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Alexander Baer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - W. Jon P. Barnes
- Centre for Cell Engineering, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Zaidett Barrientos
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Dimitri D. Deheyn
- Marine Biology Research Division-0202, Scripps Institute of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Douglas S. Fudge
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - John Gould
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | - Matthew J. Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Mandë Holford
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- Department of Invertebrate Zoology, The American Museum of Natural History, New York, New York 10024, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The PhD Program in Biology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Chia-Suei Hung
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Gaurav Jain
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802, United States
| | - Julian Monge-Nájera
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Tanya Napolitano
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Eric M. Thompson
- Sars Centre for Marine Molecular Biology, Thormøhlensgt. 55, 5020 Bergen, Norway
- Department of Biological Sciences, University of Bergen, N-5006 Bergen, Norway
| | - Adam B. Braunschweig
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
44
|
Letawsky VH, Schreiber AM, Skoretz SA. A Tutorial on Saliva's Role in Swallowing With a Focus on Sjögren's Syndrome. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2020; 29:1307-1319. [PMID: 32531172 DOI: 10.1044/2020_ajslp-19-00083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Purpose Saliva is integral to swallowing and necessary for oral health. Understanding saliva's origin and properties is important for swallowing assessment and management. Diseases such as Sjögren's syndrome (SS) can affect saliva negatively, often contributing to dysphagia. Our objectives are to (a) highlight saliva's fundamental role in swallowing, (b) provide a bibliometric overview of literature pertaining to SS pathophysiology and effects on saliva, (c) explore implications of salivary changes on swallowing and quality of life in SS and other populations, and (d) provide suggestions for systematic saliva assessment in practice. Method This tutorial reviews saliva production, composition, and involvement in swallowing within health and disease. Using rapid review methodology, we outline the effect of SS on saliva and describe SS etiology, diagnosis, and treatment. We discuss formal saliva assessments and a multidisciplinary approach. Results Saliva plays a vital role in swallowing, particularly lubrication, bolus formation, and oral health. SS affects the salivary glands altering salivary flow rate and composition. We identified 55 studies (N) measuring salivary changes, grouping them according to four strata demarcated by SS classification criteria updates. For some, xerostomia, dysphagia, and reduced life quality result. Formal saliva assessments include the Clinical Oral Dryness Score, Xerostomia Inventory, and Secretion Rating Scale. Multidisciplinary care is optimal for patients with salivary changes. Conclusion Understanding salivary changes in disease may enhance understanding of swallowing and inform dysphagia practice. Expanding swallowing assessments with formal saliva evaluations, and patient perspectives thereof, may aid in developing bespoke treatments, ultimately improving outcomes and quality of life. Supplemental Material https://doi.org/10.23641/asha.12456449.
Collapse
Affiliation(s)
- Veronica H Letawsky
- School of Audiology and Speech Sciences, University of British Columbia, Vancouver, Canada
| | - Ann-Marie Schreiber
- School of Audiology and Speech Sciences, University of British Columbia, Vancouver, Canada
| | - Stacey A Skoretz
- School of Audiology and Speech Sciences, University of British Columbia, Vancouver, Canada
- Department of Critical Care Medicine, University of Alberta, Edmonton, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, Vancouver, Canada
| |
Collapse
|
45
|
Abstract
Oral lubrication mediated by mucin and protein containing salivary conditioning films (SCFs) with strong water retainability can get impaired due to disease such as xerostomia, that is, a subjective dry mouth feel associated with the changed salivary composition and low salivary flow rate. Aberrant SCFs in xerostomia patient cause difficulties in speech, mastication, and dental erosion while the prescribed artificial saliva is inadequate to solve the complications on a lasting basis. With the growing aging population, it is urgently needed to propose a new strategy to restore oral lubrication. Existing saliva substitutes often overwhelm the aberrant SCFs, generating inadequate relief. Here we demonstrated that the function of aberrant SCFs in a patient with Sjögren syndrome can be boosted through mucin recruitment by a simple mucoadhesive, chitosan-catechol (Chi-C). Chi-C with different conjugation degrees (Chi-C7.6%, Chi-C14.5%, Chi-C22.4%) was obtained by carbodiimide chemistry, which induced a layered structure composed of a rigid bottom and a soft secondary SCF (S-SCF) after reflow of saliva. The higher conjugation degree of Chi-C generates a higher glycosylated S-SCF by mucin recruitment and a lower friction in vitro. The layered S-SCF extends the "relief period" for Sjögren patient saliva over 7-fold, measured on an ex vivo tongue-enamel friction system. Besides lubrication, Chi-C-treated S-SCF reduces dental erosion depths from 125 to 70 μm. Chi-C shows antimicrobial activity against Streptococcus mutans. This research provides a new key insight in restoring the functionality of conditioning film at articulating tissues in living systems.
Collapse
Affiliation(s)
- H. Wan
- Department of Biomedical
Engineering, University of Groningen and University Medical Center
Groningen, Groningen, the Netherlands
| | - A. Vissink
- Department of Oral Maxillofacial
Surgery, University of Groningen and University Medical Center Groningen,
Groningen, the Netherlands
| | - P.K. Sharma
- Department of Biomedical
Engineering, University of Groningen and University Medical Center
Groningen, Groningen, the Netherlands
| |
Collapse
|
46
|
Abstract
The oral microbiome is one of the most stable ecosystems in the body and yet the reasons for this are still unclear. As well as being stable, it is also highly diverse which can be ascribed to the variety of niches available in the mouth. Previous studies have focused on the microflora in disease-either caries or periodontitis-and only recently have they considered factors that maintain the normal microflora. This has led to the perception that the microflora proliferate in nutrient-rich periods during oral processing of foods and drinks and starves in between times. In this review, evidence is presented which shows that the normal flora are maintained on a diet of salivary factors including urea, lactate, and salivary protein degradation. These factors are actively secreted by salivary glands which suggests these factors are important in maintaining normal commensals in the mouth. In addition, the immobilization of SIgA in the mucosal pellicle indicates a mechanism to retain certain bacteria that does not rely on the bacterial-centric mechanisms such as adhesins. By examining the salivary metabolome, it is clear that protein degradation is a key nutrient and the availability of free amino acids increases resistance to environmental stresses.
Collapse
Affiliation(s)
- G H Carpenter
- Salivary Research, Centre for Host-microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
47
|
Mizunuma H, Sonomura M, Shimokasa K. Numerical simulation of pharyngeal bolus flow influenced by bolus viscosity and apparent slip. J Texture Stud 2020; 51:742-754. [PMID: 32329056 DOI: 10.1111/jtxs.12527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
Pharyngeal bolus flow was simulated numerically using a finite element method. The bolus liquids were X-ray medium, glucose, and thickener solutions. For a low-viscosity bolus, the simulation showed a reasonable agreement of bolus velocity with X-ray measurements. The influence of bolus density on swallowing velocity was investigated numerically. Although a higher density resulted in a higher bolus velocity, the increase in velocity was modest. When the bolus viscosity was high, it was necessary to apply the slip boundary condition to obtain an agreement for bolus velocity between the simulation and X-ray measurements. The simulations also showed that the method of characteristic shear rate proposed by Zhu et al., Journal of Texture Studies, 2014, 45, 430-439 is effective for predicting the bolus velocity for shear-thinning fluids. In order to discuss the effect of saliva lubrication and the physical meaning of the characteristic shear rate, an immiscible two-layer flow of the core and wall layer was analyzed theoretically by analogy with mesopharyngeal bolus flow. The characteristic shear rate enabled us to correlate the macroscopic flow behavior and the viscosity of the core layer fluid. Lubrication due to the wall layer caused the apparent slip and enhanced the transfer of viscous core fluid. For viscous fluid that presented a large apparent slip in the two-layer model, the slip boundary condition was needed in the swallowing simulation. The numerical simulation and model flow analysis revealed the usefulness of characteristic shear rate and the importance of saliva-layer lubrication in swallowing.
Collapse
Affiliation(s)
- Hiroshi Mizunuma
- Department of Mechanical Engineering, Tokyo Metropolitan University, Hachiohji, Tokyo, Japan
| | - Mitsuhiro Sonomura
- Department of Mechanical Engineering, Tokyo Metropolitan University, Hachiohji, Tokyo, Japan
| | - Kenji Shimokasa
- Department of Industrial Information, Tsukuba University of Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
48
|
Flowers SA, Grant OC, Woods RJ, Rebeck GW. O-glycosylation on cerebrospinal fluid and plasma apolipoprotein E differs in the lipid-binding domain. Glycobiology 2020; 30:74-85. [PMID: 31616924 PMCID: PMC7335482 DOI: 10.1093/glycob/cwz084] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 01/25/2023] Open
Abstract
The O-glycoprotein apolipoprotein E (APOE), the strongest genetic risk factor for Alzheimer's disease, associates with lipoproteins. Cerebrospinal fluid (CSF) APOE binds only high-density lipoproteins (HDLs), while plasma APOE attaches to lipoproteins of diverse sizes with binding fine-tuned by the C-terminal loop. To better understand the O-glycosylation on this critical molecule and differences across tissues, we analyzed the O-glycosylation on APOE isolated from the plasma and CSF of aged individuals. Detailed LC-MS/MS analyses allowed the identification of the glycosite and the attached glycan and site occupancy for all detectable glycosites on APOE and further three-dimensional modeling of physiological glycoforms of APOE. APOE is O-glycosylated at several sites: Thr8, Thr18, Thr194, Ser197, Thr289, Ser290 and Ser296. Plasma APOE held more abundant (20.5%) N-terminal (Thr8) sialylated core 1 (Neu5Acα2-3Galβ1-3GalNAcα1-) glycosylation compared to CSF APOE (0.1%). APOE was hinge domain glycosylated (Thr194 and Ser197) in both CSF (27.3%) and plasma (10.3%). CSF APOE held almost 10-fold more abundant C-terminal (Thr289, Ser290 and Ser296) glycosylation (36.8% of CSF peptide283-299 was glycosylated, 3.8% of plasma peptide283-299), with sialylated and disialylated (Neu5Acα2-3Galβ1-3(Neu5Acα2-6) GalNAcα1-) core 1 structures. Modeling suggested that C-terminal glycosylation, particularly the branched disialylated structure, could interact across domains including the receptor-binding domain. These data, although limited by sample size, suggest that there are tissue-specific APOE glycoforms. Sialylated glycans, previously shown to improve HDL binding, are more abundant on the lipid-binding domain of CSF APOE and reduced in plasma APOE. This indicates that APOE glycosylation may be implicated in lipoprotein-binding flexibility.
Collapse
Affiliation(s)
- Sarah A Flowers
- Department of Neuroscience, Georgetown University, 3970 Reservoir Rd NW, Washington DC 20007, USA
| | - Oliver C Grant
- Biochemistry and Molecular Chemistry, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Robert J Woods
- Biochemistry and Molecular Chemistry, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, 3970 Reservoir Rd NW, Washington DC 20007, USA
| |
Collapse
|
49
|
Katsani KR, Sakellari D. Saliva proteomics updates in biomedicine. ACTA ACUST UNITED AC 2019; 26:17. [PMID: 31890650 PMCID: PMC6909541 DOI: 10.1186/s40709-019-0109-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/25/2019] [Indexed: 12/25/2022]
Abstract
In the years of personalized (or precision) medicine the 'omics' methodologies in biomedical sciences-genomics, transcriptomics, proteomics and metabolomics-are helping researchers to detect quantifiable biological characteristics, or biomarkers, that will best define the human physiology and pathologies. Proteomics use high throughput and high efficiency approaches with the support of bioinformatic tools in order to identify and quantify the total protein content of cells, tissues or biological fluids. Saliva receives a lot of attention as a rich biological specimen that offers a number of practical and physiological advantages over blood and other biological fluids in monitoring human health. The aim of this review is to present the latest advances in saliva proteomics for biomedicine.
Collapse
Affiliation(s)
- Katerina R Katsani
- 1Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitra Sakellari
- 2Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
50
|
Acharya S, Jin C, Bylund J, Shen Q, Kamali-Moghaddam M, Jontell M, Carlén A, Karlsson NG. Reduced sialyl-Lewis x on salivary MUC7 from patients with burning mouth syndrome. Mol Omics 2019; 15:331-339. [PMID: 31414088 DOI: 10.1039/c9mo00061e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We analysed and compared MUC7 O-glycosylation and inflammatory biomarkers in saliva from female patients with burning mouth syndrome (BMS) and gender/age-matched controls. Oligosaccharides from salivary MUC7 from BMS and controls were released. Inflammatory mediators were measured by multiplex proximity extension assay. Presence of sialyl-Lewisx (Si-Lex) epitope on MUC7 was confirmed using Western blot. MUC7 O-glycans and measured inflammatory biomarkers were found to be similar between BMS and controls. However, oligosaccharides sialyl-Lewisx (Si-Lex) was found to be reduced in samples from BMS patients. Positive correlation (combined patients and controls) was found between levels of C-C motif chemokine 19 (CCL-19) and the amount of core-2 oligosaccharides on MUC7 as well as fractalkine (CX3CL1) and level of sialylation. Patients with BMS were shown to represent a heterogeneous group in terms of inflammatory biomarkers. This indicates that BMS patients could be further stratified on the basis of low-level inflammation. The results furthermore indicate that reduced sialylation of MUC7, particularly Si-Lex, may be an important feature in patients with BMS. However, the functional aspects and potential involvement in immune regulation of Si-Lex remains unclear. Our data suggests a chemokine driven alteration of MUC7 glycosylation.
Collapse
Affiliation(s)
- Shikha Acharya
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, PO 450, 40530, Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|